
TI-RTOS 2.20

User’s Guide

Literature Number: SPRUHD4M

June 2016

SPRUHD4M—June 2016 Contents 2
Submit Documentation Feedback

Contents

Preface . 6

1 About TI-RTOS . 7

1.1 What is TI-RTOS? . 7

1.2 What are the TI-RTOS Components?. 8

1.3 SYS/BIOS: The TI-RTOS Kernel . 9

1.4 UIA: TI-RTOS Instrumentation . 9

1.5 NDK: TI-RTOS Networking. 10

1.6 TI-RTOS Network Services. 10

1.7 FatFS Module: TI-RTOS File System . 10

1.8 TI-RTOS Drivers and Board Initialization . 11

1.8.1 Drivers . 11

1.8.2 MWare . 11

1.8.3 MSPWare. 12

1.8.4 TivaWare . 12

1.8.5 C26xxWare and the CC3200 Driverlib. 12

1.9 XDCtools. 13

1.10 wolfSSL Embedded SSL Library . 13

2 Instrumentation with TI-RTOS . 14

2.1 Overview. 14

2.2 Adding Logging to a Project . 15

2.3 Modifying an Example to Upload Logging Data at Runtime . 17

2.3.1 Project Changes . 17

2.3.2 Code Changes. 19

2.3.3 Configuration Changes . 20

2.4 Using Log Events . 22

2.4.1 Adding Log Events to your Code . 22

2.4.2 Using Instrumented or Non-Instrumented Libraries . 22

2.5 Viewing the Logs . 23

2.5.1 Using RTOS Analyzer and System Analyzer. 23

2.5.2 Viewing Log Records in ROV . 24

3 Debugging TI-RTOS Applications . 25

3.1 Using CCS Debugging Tools . 25

3.1.1 Stepping Through TI-RTOS Code . 27

3.2 Using IAR Debugging Tools . 27

3.3 Generating printf Output . 28

3.3.1 Output with printf() . 28

3.3.2 Output with System_printf() . 28

3.4 Controlling Software Versions for Use with TI-RTOS . 31

3.5 Understanding the Build Flow. 32

4 Board-Specific Files . 33

4.1 Overview. 33

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M

SPRUHD4M—June 2016 Contents 3
Submit Documentation Feedback

www.ti.com Contents

4.2 Board-Specific Code Files . 34

4.3 Linker Command Files . 35

4.4 Target Configuration Files . 35

5 TI-RTOS Drivers . 36

5.1 Overview. 37

5.2 Driver Framework . 38

5.2.1 Static Configuration . 38

5.2.2 Driver Object Declarations . 39

5.2.3 Dynamic Configuration and Common APIs . 42

5.2.4 TI-RTOS Driver Implementations for Concerto Devices . 42

5.2.5 TI-RTOS Driver Implementations for TivaC Devices . 43

5.2.6 TI-RTOS Driver Implementations for CC26xx Devices . 43

5.2.7 TI-RTOS Driver Implementations for CC3200 Devices . 44

5.2.8 TI-RTOS Driver Hwis for MSP43x Devices . 45

5.3 Camera Driver . 48

5.3.1 Static Configuration . 48

5.3.2 Runtime Configuration . 48

5.3.3 Camera Modes . 48

5.3.4 APIs . 49

5.3.5 Examples . 49

5.4 EMAC Driver . 50

5.4.1 Static Configuration . 50

5.4.2 Runtime Configuration . 50

5.4.3 APIs . 50

5.4.4 Usage. 50

5.4.5 Instrumentation . 51

5.5 GPIO Driver . 52

5.5.1 Static Configuration . 52

5.5.2 Runtime Configuration . 54

5.5.3 APIs . 54

5.5.4 Usage. 54

5.5.5 Instrumentation . 55

5.5.6 Examples . 55

5.6 I2C Driver . 56

5.6.1 Static Configuration . 56

5.6.2 Runtime Configuration . 56

5.6.3 APIs . 56

5.6.4 Usage. 57

5.6.5 I2C Modes . 58

5.6.6 I2C Transactions . 59

5.6.7 Instrumentation . 62

5.7 I2S Driver . 63

5.7.1 Static Configuration . 63

5.7.2 Runtime Configuration . 63

5.7.3 I2S Modes . 63

5.7.4 APIs . 64

5.8 LCD Driver . 66

5.8.1 Static Configuration . 66

5.8.2 Runtime Configuration . 66

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

4 Contents SPRUHD4M—June 2016
Submit Documentation Feedback

Contents www.ti.com

5.8.3 APIs . 67

5.8.4 Usage. 67

5.8.5 Instrumentation . 67

5.9 PWM Driver . 68

5.9.1 Static Configuration . 68

5.9.2 Runtime Configuration . 68

5.9.3 APIs . 68

5.9.4 Usage. 69

5.9.5 PWM Modes . 69

5.9.6 Instrumentation . 70

5.10 SDSPI Driver . 71

5.10.1 Static Configuration . 71

5.10.2 Runtime Configuration . 71

5.10.3 APIs . 71

5.10.4 Usage. 72

5.10.5 Instrumentation . 72

5.11 SPI Driver . 73

5.11.1 Static Configuration . 73

5.11.2 Runtime Configuration . 73

5.11.3 APIs . 73

5.11.4 Usage. 74

5.11.5 Callback and Blocking Modes . 75

5.11.6 SPI Transactions . 76

5.11.7 Master/Slave Modes . 77

5.11.8 Instrumentation . 78

5.12 UART Driver . 79

5.12.1 Static Configuration . 79

5.12.2 Runtime Configuration . 79

5.12.3 APIs . 79

5.12.4 Usage. 80

5.12.5 UART DMA Driver for TivaC Devices . 81

5.12.6 UART DMA Driver for SimpleLink CC32xx Devices . 81

5.12.7 Instrumentation . 82

5.13 USBMSCHFatFs Driver . 83

5.13.1 Static Configuration . 83

5.13.2 Runtime Configuration . 83

5.13.3 APIs . 83

5.13.4 Usage. 84

5.13.5 Instrumentation . 85

5.14 USB Reference Modules . 86

5.14.1 USB Reference Modules in TI-RTOS . 87

5.14.2 USB Reference Module Design Guidelines . 88

5.15 USB Device and Host Modules. 89

5.16 Watchdog Driver . 91

5.16.1 Static Configuration . 91

5.16.2 Runtime Configuration . 91

5.16.3 APIs . 91

5.16.4 Usage. 92

5.16.5 Instrumentation . 92

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Contents 5
Submit Documentation Feedback

www.ti.com Contents

5.17 WiFi Driver . 93

5.17.1 Static Configuration . 93

5.17.2 Runtime Configuration . 94

5.17.3 APIs . 94

5.17.4 Usage. 95

5.17.5 Instrumentation . 95

6 TI-RTOS Utilities . 96

6.1 Overview. 96

6.2 UARTMon Module . 96

6.2.1 UARTMon with CCS Tools . 98

6.2.2 GUI Composer . 102

6.3 UART Example Implementation . 102

7 Using the FatFs File System Drivers . 103

7.1 Overview. 103

7.2 FatFs and TI-RTOS . 104

7.3 Using FatFs . 105

7.3.1 Static FatFS Module Configuration . 105

7.3.2 Defining Drive Numbers. 106

7.3.3 Preparing FatFs Drivers. 106

7.3.4 Opening Files Using FatFs APIs . 107

7.3.5 Opening Files Using C I/O APIs. 107

7.4 Cautionary Notes . 107

8 Rebuilding TI-RTOS . 108

8.1 Rebuilding TI-RTOS . 109

8.1.1 Building TI-RTOS for CCS. 109

8.1.2 Building TI-RTOS for IAR. 110

8.1.3 Building TI-RTOS for GCC. 110

8.1.4 Rebuilding the TI-RTOS Drivers with the Debug Profile . 111

8.2 Rebuilding MSPWare's driverlib for TI-RTOS and Its Drivers. 111

8.3 Rebuilding Individual Components . 112

9 Memory Usage with TI-RTOS . 113

9.1 Memory Footprint Reduction. 113

9.2 Networking Stack Memory Usage. 125

A Revision History . 126

Index . 130

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Read This First 6
Submit Documentation Feedback

Preface
SPRUHD4M—June 2016

Read This First

About This Manual

This document describes TI-RTOS and contains information related to all supported device families. The

version number as of the publication of this manual is v2.20.

Notational Conventions

This document uses the following conventions:

• Program listings, program examples, and interactive displays are shown in a special typeface.

Examples use a bold version of the special typeface for emphasis.

Here is a sample program listing:

• Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you

specify the information within the brackets. Unless the square brackets are in a bold typeface, do not

enter the brackets themselves.

Trademarks

Registered trademarks of Texas Instruments include Stellaris, and StellarisWare.

Trademarks of Texas Instruments include: the Texas Instruments logo, Texas Instruments, TI, TI.COM,

BoosterPack, C2000, C5000, C6000, Code Composer, Code Composer Studio, Concerto, controlSUITE,

DSP/BIOS, E2E, MSP430, MSP430Ware, MSP432, OMAP, SimpleLink, SPOX, Sitara, TI-RTOS, Tiva,

TivaWare, TMS320, TMS320C5000, TMS320C6000, and TMS320C2000.

ARM is a registered trademark, and Cortex is a trademark of ARM Limited.

Windows is a registered trademark of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

IAR Systems and IAR Embedded Workbench are registered trademarks of IAR Systems AB:

All other brand or product names are trademarks or registered trademarks of their respective companies

or organizations.

June 9, 2016

#include <xdc/runtime/System.h>

int main(void){

 System_printf("Hello World!\n");

 return (0);

}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M

SPRUHD4M—June 2016 About TI-RTOS 7
Submit Documentation Feedback

Chapter 1
SPRUHD4M—June 2016

About TI-RTOS

This chapter provides an overview of TI-RTOS and its components.

1.1 What is TI-RTOS?

TI-RTOS is a scalable, one-stop embedded tools ecosystem for TI devices. It

scales from a real-time multitasking kernel (SYS/BIOS) to a complete RTOS

solution including additional middleware components and device drivers. By

providing essential system software components that are pre-tested and

preintegrated, TI-RTOS enables you to focus on differentiating your application.

If you use Code Composer Studio (CCS), you can install TI-RTOS in the CCS

App Center. There are several different versions of TI-RTOS to support

different device families, including TI-RTOS for MSP43x, TI-RTOS for TivaC,

and TI-RTOS for C2000. You can also use TI-RTOS outside of CCS, including

with IAR Embedded Workbench and GNU compilers.

For information about installing TI-RTOS and creating and configuring examples that use TI-RTOS, see

the TI-RTOS Getting Started Guide for your device family:

• TI-RTOS for C2000 Getting Started Guide -- SPRUHU3

• TI-RTOS for MSP43x Getting Started Guide -- SPRUHU4

• TI-RTOS for TivaC Getting Started Guide -- SPRUHU5

• TI-RTOS for CC13xx/CC26xx SimpleLink™ Wireless MCUs Getting Started Guide -- SPRUHU7

• TI-RTOS for CC32xx SimpleLink™ Wireless MCUs Getting Started Guide -- SPRUHU8

1.1 What is TI-RTOS? . 7

1.2 What are the TI-RTOS Components? . 8

1.3 SYS/BIOS: The TI-RTOS Kernel . 9

1.4 UIA: TI-RTOS Instrumentation . 9

1.5 NDK: TI-RTOS Networking . 10

1.6 TI-RTOS Network Services . 10

1.7 FatFS Module: TI-RTOS File System . 10

1.8 TI-RTOS Drivers and Board Initialization . 11

1.9 XDCtools . 13

1.10 wolfSSL Embedded SSL Library . 13

Topic Page

http://www.ti.com/lit/pdf/spruhu3
http://www.ti.com/lit/pdf/spruhu4
http://www.ti.com/lit/pdf/spruhu5
http://www.ti.com/lit/pdf/spruhu8
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com/lit/pdf/spruhu7

8 About TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

What are the TI-RTOS Components? www.ti.com

1.2 What are the TI-RTOS Components?

TI-RTOS contains its own source files, pre-compiled libraries (both instrumented and non-instrumented),

and examples. Additionally, TI-RTOS contains a number of components within its "products"

subdirectory. The components of TI-RTOS are as follows. Some components are not available for all

device families.

Table 1–1. TI-RTOS Components

• TI-RTOS Kernel — SYS/BIOS. SYS/BIOS is a scalable real-time kernel. It is designed to be used

by applications that require real-time scheduling and synchronization or real-time instrumentation. It

provides preemptive multi-threading, hardware abstraction, real-time analysis, and configuration

tools. SYS/BIOS is designed to minimize memory and CPU requirements on the target.

• TI-RTOS Instrumentation — UIA. The Unified Instrumentation Architecture (UIA) provides target

content that aids in the creation and gathering of instrumentation data (for example, Log data).

• TI-RTOS Networking — NDK. The Network Developer's Kit (NDK) is a platform for development and

demonstration of network enabled applications on TI embedded processors.

• TI-RTOS Network Services. The Network Services component provides application layer network

protocols, such as an HTTP Client and an SNTP Client.

• MSPWare, MWare, TivaWare, CC26xxWare, and the CC3200 SDK's driverlib. These provide

software designed to simplify and speed development of applications on the corresponding device

family. These components are rebuilt to include only the portions required by TI-RTOS

• XDCtools. This core component provides the underlying tooling for configuring and building TI-

RTOS and its components. XDCtools is installed as part of CCS v6.x. If you install TI-RTOS outside

CCS, a compatible version of XDCtools is installed automatically.

TI-RTOS Component Name PDF Documentation Location

TI-RTOS TI-RTOS examples Chapter 3 of the TI-RTOS Getting Started Guide for your

device

TI-RTOS Kernel SYS/BIOS SYS/BIOS (TI-RTOS Kernel) User’s Guide -- SPRUEX3

TI-RTOS Instrumentation UIA System Analyzer User’s Guide -- SPRUH43

TI-RTOS Networking NDK TI Network Developer's Kit (NDK) Guide -- SPRU523

TI Network Developer's Kit (NDK) API Reference -- SPRU524

TI-RTOS Network Services Network Services Section 1.6 of this User’s Guide

TI-RTOS File System FatFS Chapter 7 of this User’s Guide

TI-RTOS USB USB stack Section 5.14 and Section 5.15 of this User’s Guide

TI-RTOS Drivers and

Board Initialization

Drivers and TivaWare,

MSPWare, Mware,

CC26xxWare, or the

CC3200 SDK's driverlib

Section 1.8 and Chapter 5 of this User’s Guide

http://www.ti.com/lit/pdf/spruex3
http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spru523
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 About TI-RTOS 9
Submit Documentation Feedback

www.ti.com SYS/BIOS: The TI-RTOS Kernel

1.3 SYS/BIOS: The TI-RTOS Kernel

SYS/BIOS is an advanced real-time operating system from Texas Instruments for use in a wide range of

DSPs, microprocessors, and microcontrollers. It is designed for use in embedded applications that need

real-time scheduling, synchronization, and instrumentation. SYS/BIOS is designed to minimize memory

and CPU requirements on the target. SYS/BIOS provides a wide range of services, such as:

• Preemptive, deterministic multi-threading

• Hardware abstraction

• Memory management

• Configuration tools

• Real-time analysis

For more information about SYS/BIOS, see the following:

SYS/BIOS User’s Guide (SPRUEX3)

SYS/BIOS API and configuration reference. In the top-level TI-RTOS installation directory, open

the Release Notes and follow the links to Documentation and then to Documentation Overview.

In the Documentation Overview page, choose the TI-RTOS Kernel Runtime APIs and

Configuration (cdoc) item.

SYS/BIOS on Texas Instruments Wiki

TI-RTOS forum on TI’s E2E Community

1.4 UIA: TI-RTOS Instrumentation

The Unified Instrumentation Architecture (UIA) provides target content that aids in the creation and

gathering of instrumentation data (for example, Log data).

The System Analyzer tool suite, which is part of CCS, provides a consistent and portable way to

instrument software. It includes the views that can be opened from the Tools > RTOS Analyzer and

Tools > System Analyzer menus in CCS. It enables software to be re-used with a variety of silicon

devices, software applications, and product contexts. It works together with UIA to provide visibility into

the real-time performance and behavior of software running on TI's embedded single-core and multicore

devices.

For more information about UIA and System Analyzer, see the following:

System Analyzer User’s Guide (SPRUH43)

UIA API and configuration reference. In the top-level TI-RTOS installation directory, open the

Release Notes and follow the links to Documentation and then to Documentation Overview. In the

Documentation Overview page, choose the TI-RTOS Instrumentation Runtime APIs and

Configuration (cdoc) item.

System Analyzer on Texas Instruments Wiki

http://www.ti.com/lit/pdf/spruex3
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://e2e.ti.com/support/embedded/f/355.aspx
http://www.ti.com/lit/pdf/spruh43
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

10 About TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

NDK: TI-RTOS Networking www.ti.com

1.5 NDK: TI-RTOS Networking

The Network Developer's Kit (NDK) is a platform for development and demonstration of network enabled

applications on TI embedded processors, currently limited to the TMS320C6000 family and ARM

processors. The NDK stack serves as a rapid prototyping platform for the development of network and

packet processing applications. It can be used to add network connectivity to existing applications for

communications, configuration, and control. Using the components provided in the NDK, developers can

quickly move from development concepts to working implementations attached to the network.

The NDK is a networking stack that operates on top of SYS/BIOS.

For more information about NDK, see the following:

NDK User’s Guide (SPRU523)

NDK Programmer’s Reference Guide (SPRU524)

NDK Support Package Ethernet Driver Design Guide (SPRUFP2)

NDK configuration reference. In the top-level TI-RTOS installation directory, open the Release

Notes and follow the links to Documentation and then to Documentation Overview. In the

Documentation Overview page, open the TI-RTOS Networking Configuration (cdoc).

NDK API reference.

Run <tirtos_install>/products/ndk_#_##_##_##/docs/doxygen/html/index.html.

NDK on Texas Instruments Wiki

TI-RTOS forum on TI’s E2E Community

1.6 TI-RTOS Network Services

The Network Services component provides application layer network protocols, such as an HTTP Client

and an SNTP Client. These are designed for TI embedded processors. Documentation is provided in

<tirtos_install>/products/ns_<version>/docs/NS_Users_Guide.html.

1.7 FatFS Module: TI-RTOS File System

FatFS is an open-source FAT file system module intended for use in embedded systems. The API used

by your applications is generic to all FatFS implementations, and is described and documented at

http://elm-chan.org/fsw/ff/00index_e.html. In order to use FatFS in TI-RTOS applications, use the

ti.mw.fatfs.FatFS module.

For more information about FatFS, see the following:

Chapter 7, "Using the FatFs File System Drivers"

http://www.ti.com/lit/pdf/spru523
http://www.ti.com/lit/pdf/spru524
http://processors.wiki.ti.com/index.php/Category:NDK
http://e2e.ti.com/support/embedded/f/355.aspx
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com
http://www.ti.com/lit/pdf/sprufp2

SPRUHD4M—June 2016 About TI-RTOS 11
Submit Documentation Feedback

www.ti.com TI-RTOS Drivers and Board Initialization

1.8 TI-RTOS Drivers and Board Initialization

TI-RTOS provides drivers for device families for which a *Ware package is supported by TI-RTOS. This

*Ware packages include TivaWare, MSPWare, MWare, CC26xxWare, and the CC3200SDK Driverlib.

The *Ware libraries distributed with TI-RTOS have been reduced in size to include only the necessary

portions of the libraries.

1.8.1 Drivers

TI-RTOS includes drivers for a number of peripherals. See Chapter 5 for a list of the specific drivers and

details about each one.

The drivers are in the <tirtos_install>/products/tidrivers_<version>/packages/ti/drivers

directory. TI-RTOS examples are provided to show how to use these drivers.

Note that all of these drivers are built on top of MWare, MSPWare, and TivaWare. These drivers provide

the following advantages over those provided by MWare, MSPWare, and TivaWare:

• The TI-RTOS drivers are thread-safe for use with SYS/BIOS threads.

• The TI-RTOS drivers are provided in both instrumented and non-instrumented versions. The

instrumented versions support logging and asserts.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details about the driver APIs.

1.8.2 MWare

MWare is the M3 portion of controlSUITE, a software package that provides support for F28M3x

(Concerto) devices. It includes low-level drivers and examples.

• The version of MWare provided with TI-RTOS differs from the version in controlSUITE in that it has

been rebuilt. See the TI-RTOS.README file in the <tirtos_install>\products\MWare_v###a

directory for more specific details. To indicate that the version has been modified, the name of the

MWare folder has an added letter (beginning with "a" and to be incremented in subsequent versions).

For example <tirtos_install>\products\MWare_v202a.

Note that the MWare drivers are not thread-safe. You can use synchronization mechanisms provided by

SYS/BIOS to protect multiple threads that access the same MWare APIs.

For more information about MWare and controlSUITE, see the following:

Documents in <tirtos_install>/products/MWare_##

controlSUITE on Texas Instruments Wiki

controlSUITE Product Folder

http://processors.wiki.ti.com/index.php/ControlSUITE_for_C2000
http://www.ti.com/tool/controlsuite
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

12 About TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

TI-RTOS Drivers and Board Initialization www.ti.com

1.8.3 MSPWare

MSPWare is an extensive suite of drivers, code examples, and design resources designed to simplify and

speed development of MSP430 and MSP432 microcontroller applications. Currently, TI-RTOS uses

MSPWare to support MSP430F5xx, MSP430F6xx, and MSP432 devices. TI-RTOS utilizes MSPWare's

driverlib, usblib430, and grlib components.

The version of MSPWare provided with TI-RTOS differs from the full version in several ways. See the TI-

RTOS.README file in the <tirtos_install>\products\MSPWare_2_##_##_##a directory for more

specific details. To indicate that the version has been modified, the name of the MSPWare folder has an

added letter (beginning with "a" and to be incremented in subsequent versions). For example

<tirtos_install>\products\MSPWare_2_00_00_40c.

Note that the MSPWare drivers are not thread-safe. You can use synchronization mechanisms provided

by SYS/BIOS to protect multiple threads that access the same MSPWare APIs.

For more information about MSPWare, see the following:

Release notes in <tirtos_install>/products/MSPWare_#_##_##_##a

Documents in <tirtos_install>/products/MSPWare_#_##_##_##a/driverlib/doc

Documents in <tirtos_install>/products/MSPWare_#_##_##_##a/usblib430/

MSP430_USB_Software/Documentation

MSPWare Product Folder

1.8.4 TivaWare

This software is an extensive suite of software designed to simplify and speed development of Tiva-

based (ARM Cortex-M) microcontroller applications. (TivaWare was previously called StellarisWare.)

The version of TivaWare provided with TI-RTOS differs from the standard release in that it has been

rebuilt. See the TI-RTOS.README file in the <tirtos_install>\products\TivaWare_C_Series-1.#

directory for more specific details.

Note that the TivaWare drivers are not thread-safe. You can use synchronization mechanisms provided

by SYS/BIOS to protect multiple threads that access the same TivaWare APIs.

For more information about TivaWare, see the following:

Documents in <tirtos_install>/products/TivaWare_####/docs

TivaWare Product Folder

Online StellarisWare Workshop

1.8.5 C26xxWare and the CC3200 Driverlib

The CC3200 Driverlib provides driver source code and libraries for SimpleLink Wireless MCUs. This

Driverlib is a subset of the CC3200 SDK. It provides register-level access to CC3200 peripherals. The

version of the Driverlib provided with TI-RTOS differs from the standard release in that it has been rebuilt

with an Operating System Abstraction Library (OSAL) for TI-RTOS.

CC13xxWare and CC26xxWare are software suites that provide register-level access to CC13xx and

CC26xx peripherals.

Note that these drivers are not thread-safe. You can use synchronization mechanisms provided by

SYS/BIOS to protect multiple threads that access the same CC3200 Driverlib and CC26xxWare APIs.

For more information, see the following:

SimpleLink WiFi Radio Tool

http://www.ti.com/tool/msp430ware
http://www.ti.com/lsds/ti/microcontroller/tiva_arm_cortex/c_series/tm4c_arm_cortex-m4/tools_software.page
http://processors.wiki.ti.com/index.php/Getting_Started_with_StellarisWare_Workshop
http://www.ti.com/tool/cc3xxxradiotest
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 About TI-RTOS 13
Submit Documentation Feedback

www.ti.com XDCtools

1.9 XDCtools

XDCtools is a separate software component provided by Texas Instruments that provides the underlying

tooling needed for configuring and building SYS/BIOS, NDK, and UIA.

TI-RTOS installs XDCtools only if the version needed by TI-RTOS has not already been installed as part

of a CCS or SYS/BIOS installation. If TI-RTOS installs XDCtools, it places it in the top-level CCS directory

(for example, c:\ti), not the TI-RTOS products directory.

• XDCtools provides the XGCONF Configuration Editor and the scripting language used in the *.cfg

files. This is used to configure modules in a number of the components that make up TI-RTOS.

• XDCtools provides the tools used to build the configuration file. These tools are used automatically

by CCS if your project contains a *.cfg file. This build step generates source code files that are then

compiled and linked with your application code.

• XDCtools provides a number of modules and runtime APIs that TI-RTOS and its components

leverage for memory allocation, logging, system control, and more.

XDCtools is sometimes referred to as "RTSC" (pronounced "rit-see"—Real Time Software Components),

which is the name for the open-source project within the Eclipse.org ecosystem for providing reusable

software components (called "packages") for use in embedded systems. For more about how XDCtools

and SYS/BIOS are related, see the SYS/BIOS User’s Guide (SPRUEX3).

For more information about XDCtools, see the following:

XDCtools API and configuration reference. In the top-level TI-RTOS installation directory, open

the Release Notes and follow the links to Documentation and then to Documentation Overview.

In the Documentation Overview page, choose the TI-RTOS Kernel Runtime APIs and

Configuration (cdoc) item and see help for the xdc.runtime modules.

RTSC-Pedia Wiki

TI-RTOS forum on TI’s E2E Community

1.10 wolfSSL Embedded SSL Library

The wolfSSL embedded SSL library (formerly called CyaSSL) is a lightweight, portable, C-language-

based SSL/TLS library. It is targeted at applications for IoT, embedded, and RTOS primarily because of

its size, speed, and feature set. The wolfSSL library supports industry standards up to the current TLS

1.2 and DTLS 1.2. It can be as small as 1/20th the size of OpenSSL.

The wolfSSL library is not installed as part of TI-RTOS. You can download and install it separately. In

order to use wolfSSL in TI-RTOS applications, follow the steps in the Using wolfSSL with TI-RTOS wiki

page. The wolfSSL library must be used with the TI-RTOS NDK stack.

For more information about wolfSSL, see the following:

wolfSSL website

wolfSSL manual

http://processors.wiki.ti.com/index.php/Using_wolfSSL_with_TI-RTOS
https://wolfssl.com
https://wolfssl.com/wolfSSL/Docs-wolfssl-manual-toc.html
http://www.ti.com/lit/pdf/spruex3
http://rtsc.eclipse.org/docs-tip
http://e2e.ti.com/support/embedded/f/355.aspx
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Instrumentation with TI-RTOS 14
Submit Documentation Feedback

Chapter 2
SPRUHD4M—June 2016

Instrumentation with TI-RTOS

This chapter describes how to instrument your application with log calls and view the data with System

Analyzer (SA).

2.1 Overview

TI-RTOS uses the Unified Instrumentation Architecture (UIA) to instrument your application with log calls.

The data can be viewed and visualized with System Analyzer (SA) to create execution graphs, load

graphs and more. For detailed information on using UIA and SA refer to the Getting Started Guide in the

<tirtos_install>/products/uia_#_##_##_##/docs directory and the System Analyzer User’s Guide

(SPRUH43).

Note that System Analyzer includes the views that can be opened from both the Tools > RTOS Analyzer

and Tools > System Analyzer menus in CCS. That is, the RTOS Analyzer tools in CCS are part of

System Analyzer.

2.1 Overview . 14

2.2 Adding Logging to a Project . 15

2.3 Modifying an Example to Upload Logging Data at Runtime 17

2.4 Using Log Events . 22

2.5 Viewing the Logs. 23

Topic Page

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spruh43

SPRUHD4M—June 2016 Instrumentation with TI-RTOS 15
Submit Documentation Feedback

www.ti.com Adding Logging to a Project

2.2 Adding Logging to a Project

To add SYS/BIOS logging to a project, follow these steps:

1. Double-click on the configuration file (.cfg) for your project to open it with the XGCONF Configuration

Editor.

2. If LoggingSetup is already listed in your Outline pane, skip to Step 5.

3. In the "Available Products" area, expand the list as shown here to find the LoggingSetup module in

the UIA product.

4. Right-click on the LoggingSetup module, and select Use LoggingSetup. This adds the

LoggingSetup module to your project and opens the configuration page for the module.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

16 Instrumentation with TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Adding Logging to a Project www.ti.com

5. Use the configuration page for the LoggingSetup module as follows:

a) In the Built-in Software Instrumentation area, use the check boxes to select what types of

threads you want to be logged for execution analysis, including tasks, software interrupts (Swi),

and hardware interrupts (Hwi). If you check the Run-time control of Event Logging box, you

can turn that type of logging on or off at runtime.

b) Also in the Built-in Software Instrumentation area, you can check boxes if you want the CPU

load to be logged for various types of activity.

c) In the User-written Software Instrumentation area, you can enable logging of any additional

instrumentation you have added with application code.

d) In the Loggers area, you configure the logger to use in your main application. Calls to Log_info(),

Log_warning(), and Log_error() in your main application as well as any instrumented driver logs

will be sent to this logger. By default, LoggingSetup creates a logger that sends events over

JTAG when the target is halted (that is, in Stop Mode).

The examples provided with TI-RTOS include and configure the LoggingSetup module. For more

information on using LoggingSetup refer to Section 5.3.1 in the System Analyzer User’s Guide

(SPRUH43).

http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spruh43
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Instrumentation with TI-RTOS 17
Submit Documentation Feedback

www.ti.com Modifying an Example to Upload Logging Data at Runtime

2.3 Modifying an Example to Upload Logging Data at Runtime

The UART Console example uses UIA to upload logging data at runtime to RTOS Analyzer and System

Analyzer views in CCS. All other TI-RTOS examples, including UART Echo, use Stop Mode uploading of

such data. This section provides the steps to modify the UART Echo example to use the USB for the

same type of runtime data uploading performed by the UART Console example. These steps can be

adapted to other TI-RTOS examples.

In order to change from stop mode to runtime uploading, you need to make changes to the UART Echo

project, code, and configuration as described in the following pages.

2.3.1 Project Changes

Add the following two files to your UART Echo project:

• USBCDCD_LoggerIdle.c

• USBCDCD_LoggerIdle.h

These two files are included in the UART Console example. You can choose Project > Add Files in CCS

and copy them to your project from the <tirtos_install>/examples/<target>/uartconsole

directory.

The UART Echo examples already include the appropriate USB library. This library is provided by

MWare, TivaWare, and MSPWare. If you are modifying an example other than UART Echo, add the

appropriate library from the following list to your project:

• <tirtos_install>\products\MWare_v20#a\MWare\usblib\ccs\Debug\usblib.lib

• <tirtos_install>\products\TivaWare_C_Series-2.#a\usblib\ccs\Debug\usblib.lib

• <tirtos_install>\products\MSPWare_2_##_##_##a\driverlib\ccs-MSP430F5529\ccs-
MSP430F5529.lib

To add a library to a CCS project, follow these steps:

1. Right-click on the project name in the Project Explorer pane of CCS and select Properties from the

context menu.

2. Expand the Build > Linker category and select the File Search Path category.

3. Click the + button over the Include library file or command file as input field.

4. Click File System in the Add file path dialog.

5. Browse to the location of the appropriate usblib library, and select the library file. Click Open.

6. Click OK in the Add file path dialog.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

18 Instrumentation with TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Modifying an Example to Upload Logging Data at Runtime www.ti.com

7. Click OK in the Properties dialog.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Instrumentation with TI-RTOS 19
Submit Documentation Feedback

www.ti.com Modifying an Example to Upload Logging Data at Runtime

2.3.2 Code Changes

Open the uartecho.c file in CCS and add the following code:

• Include the USBCDCD_LoggerIdle.h header file:

• Add the calls to Board_initUSB() and USBCDCD_init() to the main() function as shown in green

below:

#include "USBCDCD_LoggerIdle.h"

Int main(Void)

{

 Error_Block eb;

 Task_Params taskParams;

 /* Call board init functions. */

 Board_initGeneral();

 Board_initGPIO();

 Board_initUART();

 Board_initUSB(Board_USBDEVICE);

 System_printf("Starting the example\nSystem provider is set to SysMin,"

 "halt the target and use ROV to view output.\n");

 /* SysMin will only print to the console when you call flush or exit */

 System_flush();

 /* Turn on user LED */

 GPIO_write(Board_LED, Board_LED_ON);

 /* Initialize the USB CDC device for logging transport */

 USBCDCD_init();

 /* Create the task */

 Error_init(&eb);

 Task_Params_init(&taskParams);

 taskParams.instance->name = "echo";

 echo = Task_create(echoFxn, &taskParams, &eb);

 if (echo == NULL) {

 System_printf("Task was not created\n");

 System_abort("Aborting...\n");

 }

 /* Enable interrupts and start SYS/BIOS */

 BIOS_start();

 return (0);

}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

20 Instrumentation with TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Modifying an Example to Upload Logging Data at Runtime www.ti.com

2.3.3 Configuration Changes

You can modify the project’s configuration with the XGCONF Configuration Editor or with a text editor.

Here are the steps for both of these methods:

1. Using the XGCONF Configuration Editor, open the UART Echo project's uartecho.cfg file.

2. Select the LoggingSetup module in the Outline pane.

3. In the LoggingSetup configuration page, move to the Loggers section and change the logger type

to LoggerIdle - Upload in Idle loop.

4. Follow the Please click here to configure the LoggerIdle module link.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Instrumentation with TI-RTOS 21
Submit Documentation Feedback

www.ti.com Modifying an Example to Upload Logging Data at Runtime

5. In the Logger Idle configuration page, check the Add the LoggerIdle module to my configuration

box.

6. Set the Buffer Size to 1024.

Set the Transport Function to USBCDCD_LoggerIdle_sendData,

Set the Transport Type to TransportType_USB.

7. Save the configuration file.

To modify the configuration with a text editor, add the following statements at the end of the uartecho.cfg

file:

Note: The configuration file should already contain the following statement:

LoggingSetup.loggerType = LoggingSetup.LoggerType_IDLE;

LoggerIdle.transportType = LoggerIdle.TransportType_USB;

LoggerIdle.bufferSize = 1024;

LoggerIdle.transportFxn = "&USBCDCD_LoggerIdle_sendData";

var LoggingSetup = xdc.useModule('ti.uia.sysbios.LoggingSetup');

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

22 Instrumentation with TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Using Log Events www.ti.com

2.4 Using Log Events

You can add Log events to your application and control whether Log events are processed by drivers as

described in the following sub-sections.

2.4.1 Adding Log Events to your Code

Your application can send messages to a Log using the standard Log module APIs (xdc.runtime.Log).

Log calls are of the format Log_typeN(String, arg1, arg2… argN). Valid types are print, info, warning

and error. N is the number of arguments between 0 and 5. For example:

See the SYS/BIOS Log example project for more use cases.

2.4.2 Using Instrumented or Non-Instrumented Libraries

TI-RTOS allow you to control whether or not Log events are handled by

choosing to build with the instrumented or non-instrumented libraries. The

instrumented libraries process Log events and Asserts, while the non-

instrumented libraries do not.

To select the type of library to build with, follow these steps:

1. Double-click on the configuration file (.cfg) for your project to open it with the

XGCONF Configuration Editor.

2. In the “Available Products” area, expand the Drivers item and choose the

Config module.

3. On the configuration page, choose whether to use the instrumented or non-

instrumented libraries.

4. On the same page, check the boxes for any drivers your application will use. The WiFi driver must

be configured as a separate module. Use the Drivers folder in the Available Products pane.

See Section 5.2.1 for more about configuring instrumented or non-instrumented libraries. Refer to the

individual drivers in Chapter 5 for details about what is logged and which Diags masks are used.

Log_info2("tsk1 Entering. arg0,1 = %d %d", arg0, arg1)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Instrumentation with TI-RTOS 23
Submit Documentation Feedback

www.ti.com Viewing the Logs

2.5 Viewing the Logs

You can use CCS to view Log messages using the RTOS Analyzer, System Analyzer, and/or ROV tools.

2.5.1 Using RTOS Analyzer and System Analyzer

After you have built and run your application, follow these steps in the CCS Debug view to see Log

messages from your application with RTOS Analyzer:

1. Open an analyzer by selecting Tools > RTOS Analyzer > Printf and Error Logs.

2. The Analysis Configuration detects the type of transport you are using.

3. Select additional analyzer views you would like to run.

4. Configure the analyzer to run for a set time or forever (that is, until you manually pause the data

transfer). You can also choose when to process the data (Transport Data only after collection),

whether to clear existing data and save the data to a file which can be imported back into SA.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

24 Instrumentation with TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Viewing the Logs www.ti.com

If you save data to a file, you can analyze it later by selecting Tools > RTOS Analyzer > Open File >

Open Binary File.

See Section 4.2 ("Starting an RTOS Analyzer or System Analyzer Session") in the System Analyzer

User’s Guide (SPRUH43) for more about using this dialog.

2.5.2 Viewing Log Records in ROV

The RTOS Object View (ROV) can be used to view log events stored on the target.

After you have built and run your application, you can open the ROV tool in the CCS Debug view by

selecting Tools > RTOS Object View (ROV) and then navigating to the logging module you want to view

(for example, LoggerStopMode or LoggerIdle). When the target is halted, ROV repopulates the data.

Select the Records tab to view log events still stored in the buffer. For loggers configured to use JTAG,

the records shown here are also uploaded to System Analyzer. If you are using the LoggerIdle module,

these are the records that have not yet been sent.

See the http://rtsc.eclipse.org/docs-tip/RTSC_Object_Viewer web page for more about using the RTOS

Object View (ROV) tool.

http://rtsc.eclipse.org/docs-tip/RTSC_Object_Viewer
http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spruh43
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Debugging TI-RTOS Applications 25
Submit Documentation Feedback

Chapter 3
SPRUHD4M—June 2016

Debugging TI-RTOS Applications

This chapter provides information about ways to debug your TI-RTOS applications.

3.1 Using CCS Debugging Tools

Within Code Composer Studio (CCS), there are several tools you can use to debug your TI-RTOS

applications:

• RTOS Object View (ROV) is a stop-mode debugging tool, which means it can receive data about an

application only when the target is halted, not when it is running. ROV is a tool provided by the

XDCtools component. ROV gets information from many of the modules your applications are likely

to use.

The ROV tool is also available for use with TI-RTOS examples within IAR Embedded Workbench.

See the TI-RTOS Getting Started Guide for your device family for details.

3.1 Using CCS Debugging Tools . 25

3.2 Using IAR Debugging Tools . 27

3.3 Generating printf Output . 28

3.4 Controlling Software Versions for Use with TI-RTOS 31

3.5 Understanding the Build Flow . 32

Topic Page

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M

26 Debugging TI-RTOS Applications SPRUHD4M—June 2016
Submit Documentation Feedback

Using CCS Debugging Tools www.ti.com

• System Analyzer includes analysis features for viewing the CPU and thread loads, the execution

sequence, thread durations, and context profiling. The features include graphs, detailed logs, and

summary logs. These views gather data from the UIA component. For information, see the System

Analyzer User’s Guide (SPRUH43).

• Printf-style output lets you use the tried-and-true debugging mechanism of sending execution

information to the console. For information, see “Generating printf Output” on page 28.

• Standard CCS IDE features provide many tools for debugging your applications. In CCS, choose

Help > Help Contents and open the Code Composer Help > Views and Editors category for a list

of debugging tools and more information. These debugging features include:

— Source-level debugger

— Assembly-level debugger

— Breakpoints (software and hardware) See Section 3.1.1 for information about stepping through

driver code.

— Register, memory, cache, variable, and expression views

— Pin and port connect views

— Trace Analyzer view

• Exception Handling is provided by SYS/BIOS. If this module is enabled, the execution state is

saved into a buffer that can be viewed with the ROV tool when an exception occurs. Details of the

behavior of this module are target-specific. In the CCS online help, see the SYS/BIOS API Reference

help on the ti.sysbios.family.c64p.Exception module or the ti.sysbios.family.arm.exc.Exception

module for details.

• Assert Handling is provided by XDCtools. It provides configurable diagnostics similar to the

standard C assert() macro. In the CCS online help, see the XDCtools API Reference help on the

xdc.runtime.Assert module for details.

http://www.ti.com/lit/pdf/spruh43
http://www.ti.com/lit/pdf/spruh43
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Debugging TI-RTOS Applications 27
Submit Documentation Feedback

www.ti.com Using IAR Debugging Tools

3.1.1 Stepping Through TI-RTOS Code

Stepping through code is vital when debugging an application. When using CCS there are instances

where stepping into a TI-RTOS Kernel or Driver API will produce an output message on the code editor

window similar to the following. A similar message is shown in IAR Embedded Workbench.

Since TI-RTOS provides pre-compiled libraries, the debug information in the library is based on the file

locations when the libraries were built. Because these locations differ on your system, when the

debugger attempts to access TI-RTOS library debug information, it cannot find the source files. There are

two ways to correct this issue: rebuild TI-RTOS or locate the source files.

Rebuilding TI-RTOS in your development environment regenerates the debug information for all libraries.

This process is only done once per TI-RTOS installation. (You will need to repeat these steps if you use

a different TI-RTOS product or if install a newer TI-RTOS version.) To rebuild TI-RTOS, see Section 8.1

and Section 8.1.4.

The other method is to locate the source files within the file system. This process is faster than rebuilding

TI-RTOS, but will need to be repeated for every TI-RTOS driver or kernel module being debugged. To

location the source files for CCS, follow these steps:

1. Click the Locate File button when the message shown above appears.

2. Navigate to the directory that contains the source file mentioned in the message. For TI-RTOS

drivers, this is likely <tirtos_install>\products\tidrivers_<version>\packages\ti\

drivers.

3. Click OK. The editor window will search for the file and show the source code.

IAR Embedded Workbench provides similar tools for locating the source files within the file system.

3.2 Using IAR Debugging Tools

For information about using TI-RTOS examples in IAR, see the wiki page on Creating TI-RTOS

Applications in IAR Embedded Workbench on the Texas Instruments wiki.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com
http://processors.wiki.ti.com/index.php/Creating_TI-RTOS_Applications_in_IAR_Embedded_Workbench
http://processors.wiki.ti.com/index.php/Creating_TI-RTOS_Applications_in_IAR_Embedded_Workbench

28 Debugging TI-RTOS Applications SPRUHD4M—June 2016
Submit Documentation Feedback

Generating printf Output www.ti.com

3.3 Generating printf Output

Along with many advanced GUI debugging features described in “Using CCS Debugging Tools” on

page 25, TI-RTOS provides flexibility with the tried-and-true printf method of debugging. TI-RTOS

supports both the standard printf() and a more flexible replacement called System_printf().

3.3.1 Output with printf()

By default, the printf() function outputs data to a CIO buffer on the target. When CCS is attached to the

target (for example, via JTAG or USB), the printf() output is displayed in the Console window. It is

important to realize that when the CIO buffer is full or a ‘\n’ is output, a CIO breakpoint is hit on the target.

This allows CCS to read the data and output the characters to the console. Once the data is read, CCS

resumes running the target. This interruption of the target can have significant impact on a real-time

system. Because of this interruption and the associated performance overhead, use of the printf() API is

discouraged.

The UART Console example shows how to route the printf() output to a UART via the add_device() API.

3.3.2 Output with System_printf()

The xdc.runtime.System module provided by the XDCtools component offers a more flexible and

potentially better-performing replacement to printf() called System_printf().

The System module allows different low-level implementations (System Support implementations) to be

plugged in based on your needs. You can plug in the System Support implementation you want to use

via the application configuration. Your choice does not require any changes to the runtime code.

Currently the following System Support implementations are available:

• SysMin: Stores output to an internal buffer. The buffer is flushed to stdout (which goes to the CCS

Console view) when System_flush() is called or when an application terminates (for example, when

BIOS_exit() or exit() is called). When the buffer is full, the oldest characters are over-written.

Characters that have not been sent to stdout can be viewed via the RTOS Object View (ROV) tool.

The SysMin module is part of the XDCtools component. Its full module path is xdc.runtime.SysMin.

• SysCallback: Simply calls user-defined functions that implement the System module's functionality.

The UART Console example provides a set of functions that use the UART. The SysCallback module

is part of the XDCtools component. Its full module path is xdc.runtime.SysCallback.

• SysStd: Sends the characters to the standard printf() function. The SysStd module is part of the

XDCtools component. Its full module path is xdc.runtime.SysStd.

Most TI-RTOS examples use either the SysMin or SysStd module. The UART Console example uses

SysCallback and routes the output to a UART.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Debugging TI-RTOS Applications 29
Submit Documentation Feedback

www.ti.com Generating printf Output

To configure the SysMin module, open the application’s *.cfg file with the XGCONF Configuration Editor.

In the Outline area, select the System module. Configure the System Provider to use SysMin as follows:

Then, find the SysMin module in the Outline pane, and configure the output buffer and options as needed.

For example, here are the settings used by most examples provided with TI-RTOS:

The following statements create the same configuration as the graphical settings shown for the System

and SysMin modules:

var System = xdc.useModule('xdc.runtime.System');
var SysMin = xdc.useModule('xdc.runtime.SysMin');
System.SupportProxy = SysMin;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

30 Debugging TI-RTOS Applications SPRUHD4M—June 2016
Submit Documentation Feedback

Generating printf Output www.ti.com

The following table shows the pros and cons of the various System provider modules:

Please note, the System module also provides the additional APIs that can be used instead of standard

‘C’ functions: System_abort(), System_atexit(), System_exit(), System_putch(), and System_flush().

Table 3-1 System providers shipped with TI-RTOS

System Provider Pros Cons

SysMin • Good performance • Requires RAM (but size is configurable)

• Potentially lose data

• Out-of-box experience

• To view in CCS console, you must add System_flush()

or have the application terminate

• Can use ROV to view output, but requires you halt the

target

SysStd • Easy to use (just like printf) • Bad to use (just like printf). CCS halts target when CIO

buffer is full or a ‘\n’ is written

• Cannot be called from a SYS/BIOS Hwi or Swi thread

SysCallback • Can be used for many custom

purposes

• Requires that you provide your own callback functions

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Debugging TI-RTOS Applications 31
Submit Documentation Feedback

www.ti.com Controlling Software Versions for Use with TI-RTOS

3.4 Controlling Software Versions for Use with TI-RTOS

You do not need to add the "products" subdirectory to the RTSC (also called XDCtools) discovery path.

Once CCS has found the main TI-RTOS directory, it will also find the additional components provided in

that tree.

In addition, the components installed with TI-RTOS will be used as needed by examples you import with

the TI Resource Explorer. When you choose Project > Properties for a project that uses TI-RTOS, the

sub-components are not checked in the RTSC tab of the General category. However, the version

installed with TI-RTOS is automatically used for sub-components that are needed by the example. You

can see these components and which versions are used by going to the Order tab.

If, at a later time, you install newer software versions that you want to use instead of the versions installed

with TI-RTOS, you can use the Products and Repositories tab to add those versions to your project

and the Up and Down buttons in the Orders tab to make your newer versions take precedence over the

versions installed with TI-RTOS. However, you should be aware that is it possible that newer component

versions may not be completely compatible with your version of TI-RTOS.

Note that in the RTSC tab, the XDCtools version in the drop-down list is the version that controls UI

behavior in CCS, such as the XGCONF editor and various RTSC dialog layouts. The XDCtools version

in the list of products is the version used for APIs and configuration, such as the xdc.runtime modules.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

32 Debugging TI-RTOS Applications SPRUHD4M—June 2016
Submit Documentation Feedback

Understanding the Build Flow www.ti.com

3.5 Understanding the Build Flow

The build flow for TI-RTOS applications begins with an extra step to process the configuration file (*.cfg)

in the project. The configuration file is a script file with syntax similar to JavaScript. You can edit it

graphically in CCS using the XGCONF Configuration Editor. The configuration determines which

modules in TI-RTOS components are used, sets global behavior parameters for modules, and statically

creates objects managed by the modules. Static configuration has several advantages, including

reducing code memory use by the application. Components that can be configured using this file include

XDCtools, SYS/BIOS, TI-RTOS, NDK, and UIA.

The configuration file is processed by the XDCtools component. If you look at the messages printed

during the build, you will see a command line that runs the “xs” executable in the XDCtools component

with the “xdc.tools.configuro” tool specified. For example:

In CCS, you can control the command-line options used with XDCtools by choosing Project > Properties

from the menus and selecting the Build > XDCtools category.

Target settings for processing your individual project are in the RTSC tab of the CCS General category.

(RTSC is the name for the Eclipse specification implemented by XDCtools.)

When XDCtools processes your *.cfg file, the code is generated in the <project_dir>/Debug/configPkg

directory. This code is compiled so that it can be linked with your final application. In addition, a

compiler.opt file is created for use during program compilation, and a linker.cmd file is created for use in

linking the application. You should not modify the files in the <project_dir>/Debug/configPkg directory

after they are generated, since they will be overwritten the next time you build.

For more information about the build flow, see Chapter 2 of the SYS/BIOS User’s Guide (SPRUEX3). For

command-line details about xdc.tools.configuro, see the RTSC-pedia reference topic.

'Invoking: XDCtools'

"<>/xs" --xdcpath="<tirtos_install>/packages;
<bios_install>/packages;<uia_install>/packages;" xdc.tools.configuro -o configPkg
-t ti.targets.arm.elf.M3 -p ti.platforms.concertoM3:F28M35H52C1 -r release
-c "C:/ccs/ccsv6/tools/compiler/tms470" "../<project>.cfg"

http://www.ti.com/lit/pdf/spruex3
http://rtsc.eclipse.org/cdoc-tip/index.html#xdc/tools/configuro/package.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Board-Specific Files 33
Submit Documentation Feedback

Chapter 4
SPRUHD4M—June 2016

Board-Specific Files

This chapter provides information that is specific to targets for which you can use TI-RTOS.

4.1 Overview

Currently, TI-RTOS provides examples for the following boards:

Family Device on Board Board

Concerto (ARM M3 + DSP 28x) F28M35H52C1 TMDXDOCKH52C1 Experimenter Kit

Concerto (ARM M3 + DSP 28x) F28M36P63C2 TMDXDOCK28M36 Experimenter Kit

ARM (Tiva) TM4C123GH6PM EK-TM4C123GXL LaunchPad

ARM (Stellaris) LM4F120H5QR EK-LM4F120XL LaunchPad

(earlier version of EK-TM4C123GXL LaunchPad)

ARM (Tiva) Cortex-M4F TM4C129XNCZAD DK-TM4C129X Evaluation Kit

ARM (Tiva) TM4C1294NCPDT EK-TM4C1294XL Evaluation Kit

ARM (Tiva) TM4C129ENCPDT EK-TM4C129EXL Evaluation Kit

MSP430F5xx MSP430F5529 MSP-EXP430F5529LP LaunchPad

MSP430FR5xx MSP430FR5969 MSP-EXP430FR5969LP LaunchPad

MSP430FR5xx MSP430FR5994 MSP-EXP430FR5994LP LaunchPad

MSP430FR6xx MSP430FR6989 MSP-EXP430FR6989LP LaunchPad

MSP432 MSP432P401R MSP-EXP432P401RLP LaunchPad

CC1310 CC1310F128 CC1310 LaunchPad

CC1310 CC1310F128 CC1310 Development Kit

CC1350 CC1350F128 CC1350 LaunchPad

CC1350 CC1350F128 CC1350 SensorTag

CC2650 CC2650F128 CC2650 LaunchPad

4.1 Overview . 33

4.2 Board-Specific Code Files . 34

4.3 Linker Command Files . 35

4.4 Target Configuration Files . 35

Topic Page

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M

34 Board-Specific Files SPRUHD4M—June 2016
Submit Documentation Feedback

Board-Specific Code Files www.ti.com

F28M3x devices contain both M3 and 28x subsystems.

TI-RTOS can also be used on other boards. Examples are provided specifically for the supported boards,

but libraries are provided for each of these device families, so that you can port the examples to similar

boards. The Texas Instruments Wiki contains a TI-RTOS Porting Guide and a topic on Creating TI-RTOS

Projects for Other MSP430 Devices.

4.2 Board-Specific Code Files

TI-RTOS examples contain a board-specific C file (and its companion header file). The filenames are

<board>.c and <board>.h, where <board> is the name of the board, such as TMDXDOCKH52C1. Notice

that an underscore is used in place of a hyphen in file and folder names for board names that contain a

hyphen, such as EKS-LM4F232.

All the examples for a specific board have identical <board> files. These files are considered part of the

application, and you can modify them as needed.

The board-specific code files do not perform any dynamic memory allocation.

The <board> files perform board-specific configuration of the drivers provided by TI-RTOS. For example,

they perform the following:

• GPIO port and pin configuration

• LED configuration

In addition, the board-specific files provide the following functions that you can use in your applications,

These are typically called from main(). Files are provided only for boards on which the driver is supported.

• <board>_initDMA() function

• <board>_initEMAC() function

• <board>_initGeneral() function

• <board>_initGPIO() function

• <board>_initI2C() function

• <board>_initSDSPI() function

• <board>_initSPI() function

• <board>_initUART() function

• <board>_initUSB() function

• <board>_initUSBMSCHFatFs() function

• <board>_initWatchdog() function

• <board>_initWiFi() function

CC2650 CC2650F128 CC2650 SensorTag

CC2650 CC2650F128 CC2650 Development Kit

CC3200 CC3200 CC3200-LAUNCHXL

http://processors.wiki.ti.com/index.php/TI-RTOS_Porting_Guide
http://processors.wiki.ti.com/index.php/Creating_TI-RTOS_Projects_for_Other_MSP430_Devices
http://processors.wiki.ti.com/index.php/Creating_TI-RTOS_Projects_for_Other_MSP430_Devices
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Board-Specific Files 35
Submit Documentation Feedback

www.ti.com Linker Command Files

4.3 Linker Command Files

All of TI-RTOS examples contain a <board>.cmd linker command file. A different file is provided for each

supported board. These files define memory segments and memory sections used by the application.

4.4 Target Configuration Files

To create a target configuration for an example provided with TI-RTOS, use Step 3 (Debugger

Configuration) in the TI Resource Explorer. (To create TI-RTOS example projects using the TI Resource

Explorer, see Chapter 3 of the TI-RTOS Getting Started Guide.)

When you click the link for Step 3, you see the Debugger Configuration dialog. Choose an emulator from

the list. For F28M3x devices, choose the Texas Instruments XDS 100v2 USB Emulator. For Tiva

devices, choose the Stellaris In-Circuit Debug Interface. For MSP430 devices, choose the TI MSP430

USB1. For MSP432 devices, use the Texas Instruments XDS 110 USB Emulator.

The Debugger Configuration step creates a CCS Target Configuration File (*.ccxml). This file specifies

the connection and device for the project for use in a debugging session. You can choose View > Target

Configurations in CCS to see and edit these files.

Note: If you want to use a simulator instead of a hardware connection, select any emulator in

the Debugger Configuration dialog and click OK. Then choose View > Target

Configurations. Expand the Projects list and double-click on the *.ccxml file for your

example project to open the target configuration editor. Select Texas Instruments

Simulator in the Connection field, and the simulator for your device in the Device list.

Then click Save.

For the F28M3x Demo example, you should not use a C28 target configuration. Instead, use the target

configuration for the M3 and connect to the C28 and load that application manually as described in the

example’s readme file.

http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://www.ti.com/lit/pdf/spruhd3
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 36
Submit Documentation Feedback

Chapter 5
SPRUHD4M—June 2016

TI-RTOS Drivers

This chapter provides information about the drivers provided with TI-RTOS.

5.1 Overview . 37

5.2 Driver Framework . 38

5.3 Camera Driver . 48

5.4 EMAC Driver . 50

5.5 GPIO Driver . 52

5.6 I2C Driver . 56

5.7 I2S Driver . 63

5.8 LCD Driver . 66

5.9 PWM Driver . 68

5.10 SDSPI Driver . 71

5.11 SPI Driver . 73

5.12 UART Driver . 79

5.13 USBMSCHFatFs Driver . 83

5.14 USB Reference Modules. 86

5.15 USB Device and Host Modules . 89

5.16 Watchdog Driver . 91

5.17 WiFi Driver . 93

Topic Page

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M

SPRUHD4M—June 2016 TI-RTOS Drivers 37
Submit Documentation Feedback

www.ti.com Overview

5.1 Overview

TI-RTOS includes drivers for a number of peripherals. These drivers are in the

<tirtos_install>/products/tidrivers_<version>/packages/ti/drivers directory. TI-RTOS

examples show how to use these drivers. Note that all of these drivers are built on top of MWare,

MSPWare, TivaWare, CC26xxWare, and CCWare. This chapter contains a section for each driver.

• Camera. Driver for CC3200 Camera BoosterPack.

• EMAC. Ethernet driver used by the networking stack (NDK) and not intended to be called directly.

• GPIO. API set intended to be used directly by the application or middleware to manage the GPIO

interrupts, pins, and ports (and therefore the LEDs).

• I2C. (Inter-Integrated Circuit) API set intended to be used for attaching low-speed peripherals to

embedded system boards. The APIs are used directly by the application or middleware.

• I2S. (Inter-IC Sound) API set intended to be used for connecting digital audio devices so that audio

signals can be communicated between devices. The APIs are used directly by the application or

middleware.

• LCD. Driver for CC26xx LCD display.

• PIN. Driver for CC26xx Pin interrupts.

• PWM. API set intended to be used directly by the application or middleware to generate Pulse Width

Modulated signals.

• SDSPI. SPI-based SD driver used by FatFs and not intended to be interfaced directly.

• SPI. API set intended to be used directly by the application or middleware to communicate with the

Serial Peripheral Interface (SPI) bus. This driver has been designed to operate in an RTOS

environment such as SYS/BIOS. It protects SPI transactions with OS primitives supplied by

SYS/BIOS. SPI is sometimes called SSI (Synchronous Serial Interface).

• UART. API set intended to be used directly by the application to communicate with the UART.

• USBMSCHFatFs. USB MSC Host under FatFs (for flash drives). This driver is used by FatFS and is

not intended to be called directly.

• Other USB functionality. See the USB examples for reference modules that provide support for the

Human Interface Device (HID) class (mouse and keyboard) and Communications Device Class

(CDC). This code is provided as part of the examples, not as a separate driver.

• Watchdog. API set for use directly by the application or middleware to manage the Watchdog timer.

• WiFi. Driver used by a Wi-Fi device's host driver to exchange commands, data, and events between

the host MCU and the wireless network processor. Not intended to be interfaced directly.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

38 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

Driver Framework www.ti.com

5.2 Driver Framework

TI-RTOS drivers have a common framework for static configuration and for a set of APIs that all drivers

implement. This section describes that common framework. The driver-specific sections after the

framework description provide details about individual implementations.

5.2.1 Static Configuration

The following line in the *.cfg file for a TI-RTOS application causes all TI-RTOS drivers to be available to

the application build.

var driversConfig = xdc.useModule('ti.drivers.Config');

Note that this does not mean that all the drivers will be compiled into the application. To minimize the

memory footprint of the application, only driver library code called by the application will be included in

the compiled and linked executable.

By default, the application is configured to use non-instrumented libraries, which do not process Log

events and Asserts. You can select the instrumented libraries by using XGCONF as shown in Section

2.4.2 or by adding the following statement to your application’s *.cfg file:

driversConfig.libType = driversConfig.LibType_Instrumented;

Refer to the individual drivers in this chapter for details about what is logged and which Diags masks are

used when instrumentation is enabled.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 39
Submit Documentation Feedback

www.ti.com Driver Framework

5.2.2 Driver Object Declarations

All TI-RTOS drivers require the application to allocate data storage and define a set of data structures

with specific hardware attributes. Drivers are designed in a two-tier hierarchy to facilitate scalable driver

additions and enhancements while providing a consistent application programming interface.

This diagram shows the relationship between a driver interface and two driver implementations. The

driver interface named "Driver" is configured to operate on two driver implementations: "DriverA" and

"DriverB". The driver's Driver_config[] structure contains three instances. The first two instances are of

type "DriverA" and the third is of type "DriverB".

“board.c”

#include <ti/drivers/Driver.h>
#include <ti/drivers/driver/DriverA.h>
#include <ti/drivers/driver/DriverB.h>

DriverA_Object driverA_object[2];
const DriverA_HWAttrs driverA_hwattrs[2] = {…};

DriverB_Object driverB_object;
const DriverB_HWAttrs driverB_hwattrs = {…};

const Driver_Config Driver_config[] = {
{&driverA_fnxTable, &driverA_object[0], &driverA_hwattrs[0]},
{&driverA_fnxTable, &driverA_object[1], &driverA_hwattrs[1]},
{&driverB_fnxTable, &driverB_object, &driverB_hwattrs},
…
{NULL, NULL, NULL}

}

Driver Interface

ti/drivers/Driver.h

typedef struct Driver_FxnTable {
Driver_closeFxn closeFxn;
Driver_initFxn initFxn;
Driver_openFxn openFxn;
...
Driver_funcN funcNFxn;

} Driver_FxnTable;

typedef struct Driver_Config {
Driver_FxnTable const *fxnTablePtr;
Void *object;
Void const *hwAttrs;

} Driver_Config;

Driver Implementation
ti/drivers/driver/DriverA.h

extern Driver_FxnTable driverA_fxnTable;

typedef struct DriverA_Object {
/* Specific object vars */

};
typedef struct DriverA_HWAttrs {

/* Specific hardware attributes */
};

Driver Implementation
ti/drivers/driver/DriverB.h

extern Driver_FxnTable driverB_fxnTable;

typedef struct DriverB_Object {
/* Specific object vars */

};
typedef struct DriverB_HWAttrs {

/* Specific hardware attributes */
};

Joined at link-time

Purpose

� Specify the number of peripheral instances

� Allocate the proper data object and hardware attributes for a given driver
implementation

� Scalable expansion for varies driver implementations.

� Driver hardware attribute structures are owned and customizable by the application

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

40 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

Driver Framework www.ti.com

Applications interface with a TI-RTOS driver using a top-level driver interface. This interface is configured

via a set of data structures that specify one or more specific lower-level driver implementations. Driver

files are located in the <tirtos_install>\products\tidrivers_<version>\packages\ti\drivers

directory. The interfaces that define data structures are in Driver.h, while driver implementations are

defined in an additional subdirectory, named after the driver interface. For example, the UART driver

interface resides in the UART.h file, and its driver implementations exist in the \uart subdirectory.

5.2.2.1 Driver Interface

Each driver's interface defines a configuration data structure as:

typedef struct Driver_Config {
 Driver_FxnTable const *fxnTablePtr;
 Void *object;
 Void const *hwAttrs;
} Driver_Config;

(The GPIO driver is an exception. See Section 5.5.1.1.)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 41
Submit Documentation Feedback

www.ti.com Driver Framework

The application must declare a NULL-terminated array of Driver_Config elements as

Driver_config[].The index argument in a driver's _open() call is used to select the array element of

this Driver_config[] array where each element corresponds to a peripheral instance. There is no

correlation between the index and the peripheral designation (such as UART0 or UART1). For example,

it is possible to use UART_config[0] for UART1.

Each individual Driver_Config element must be populated by pointers to a specific driver

implementation's Driver_FxnTable, Driver_Object, and Driver_HWAttrs data structures. While the

function table is defined by the driver implementation, the implementation-specific data object and

hardware attribute structures need to be defined by the application. With this Driver_config[] table, it is

possible to use any number of permutations of driver implementations per driver interface; assuming that

the device has the same number of peripherals available.

5.2.2.2 Driver Implementations

The application needs to create instances of both the object and hardware attribute structures for every

peripheral used with a given driver implementation. Instances of data objects are used to store driver

variables on a per peripheral basis and should be accessed exclusively by the driver. Hardware attribute

structures are used to specify implementation-specific constants such as peripheral base addresses,

interrupt vectors, GPIO pins, and more. Field definitions for these hardware attributes are available in the

driver's Doxygen documentation.

All TI-RTOS examples use a <board>.c file that contains necessary data object and hardware structure

instances, similar to the following:

static DriverA_Object driverAObject;

const DriverA_HWAttrs driverAHWAttrs = {
 type field0;
 type field1;
 ...
 type fieldn;
};

These structures should be used as a reference when moving from a development board to a custom

printed circuit board. The following is an example that integrates a UART driver implementation into the

UART driver interface:

/* UART objects */
UARTTiva_Object uartTivaObjects[EKS_LM4F232_UARTCOUNT];

/* UART configuration structure */
const UARTTiva_HWAttrs uartTivaHWAttrs [EKS_LM4F232_UARTCOUNT] = {
 {UART0_BASE, INT_UART0}, /* UART0 */
};

const UART_Config UART_config[] = {
 {&UARTTiva_fxnTable, &uartTivaObjects[0], &uartTivaHWAttrs[0]},
 {NULL, NULL, NULL}
};

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

42 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

Driver Framework www.ti.com

5.2.3 Dynamic Configuration and Common APIs

TI-RTOS drivers all implement the following APIs (with the exception of the GPIO driver*).

• Void Driver_init(Void)

— Initializes the driver. Must be called only once and before any calls to the other driver APIs.

Generally, this is done before SYS/BIOS is started.

— The board files in the examples call this function for you.

• Void Driver_Params_init(Driver_Params *params)

— Initializes the driver’s parameter structure to default values. All drivers, with the exception of

GPIO, implement the Params structure. The Params structure is empty for some drivers.

• Driver_Handle Driver_open(UInt index, Driver_Params *params)

— Opens the driver instance specified by the index with the params provided.

— If the params field is NULL, the driver uses default values. See specific drivers for their defaults.

— Returns a handle that will be used by other driver APIs and should be saved.

— If there is an error opening the driver or the driver has already been opened, Driver_open()

returns NULL.

• Void Driver_close(Driver_Handle handle)

— Closes the driver instance that was opened, specified by the driver handle returned during open.

— Closes the driver immediately, without checking if the driver is currently in use. It is up to the

application to determine when to call Driver_close() and to ensure it doesn’t disrupt on-going

driver activity.

— The Watchdog driver does not have a close() function, because the watchdog timer cannot be

disabled once it has been enabled.

* The GPIO driver implements only GPIO_init() to avoid complicating the driver. See Section 5.5 for

information on using the GPIO driver.

5.2.4 TI-RTOS Driver Implementations for Concerto Devices

If you are modifying the <board>.c file for an application, you will see types and data structures that are

defined by the lower-level driver implementations. These implementations are provided in the driver

directories. For example, the lower-level implementation for the I2C driver is in the I2CTiva.c and

I2CTiva.h files in the <tirtos_install>\products\tidrivers_<version>\packages\ti\

drivers\i2c directory.

The lower-level driver implementations for the TI-RTOS drivers on the M3 portion of Concerto devices

are as follows. (The *.c file is listed, but the *.h file contains important type definitions.)

• EMAC: EMACTiva.c

• GPIO: GPIOTiva.c

• I2C: I2CTiva.c

• SDSPI: SDSPITiva.c

• SPI: SPITivaDMA.c

• UART: UARTTiva.c

• USBMSCHFatFs: USBMSCHFatFsTiva.c

• Watchdog: WatchdogTiva.c

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 43
Submit Documentation Feedback

www.ti.com Driver Framework

5.2.5 TI-RTOS Driver Implementations for TivaC Devices

If you are modifying the <board>.c file for an application, you will see types and data structures that are

defined by the lower-level driver implementations. These implementations are provided in the driver

directories. For example, the lower-level implementation for the I2C driver is in the I2CTiva.c and

I2CTiva.h files in the <tirtos_install>\products\tidrivers_<version>\packages\ti\

drivers\i2c directory.

The lower-level driver implementations for the TI-RTOS drivers on Tiva devices are as follows. (The *.c

file is listed, but the *.h file contains important type definitions.)

• EMAC: EMACTiva.c

• GPIO: GPIOTiva.c

• I2C: I2CTiva.c

• PWM: PWMTiva.c

• SDSPI: SDSPITiva.c

• SPI: SPITivaDMA.c

• UART: UARTTiva.c

• UART DMA: UARTTivaDMA.c

• USBMSCHFatFs: USBMSCHFatFsTiva.c

• Watchdog: WatchdogTiva.c

• WiFi: WiFiCC3100.c

5.2.6 TI-RTOS Driver Implementations for CC26xx Devices

For CC26xx devices, the <board.c> and <board.h> files are replaced with literal "Board.c" and "Board.h"

files. The purpose of these files is to #include a common device-specific "Board.c" and "Board.h" located

in <ti/board>. The board files located in <tirtos_install>\products\tidrivers_<version>\

packages\ti\boards are shared with other CC2650 examples, so use caution if you choose to modify

these files.

The data structures in these board files are defined by lower-level driver implementations. These

implementations are provided in the driver directories. For example, the lower-level implementation for

the I2C driver is in the I2CCC26XX.c and I2CCC26XX.h files in the <tirtos_install>\products\

tidrivers_<version>\packages\ti\drivers\i2c directory.

The lower-level driver implementations for the TI-RTOS drivers on CC26xx devices are as follows. (The

*.c file is listed, but the *.h file contains important type definitions.)

• Crypto: CryptoCC26XX.c

• I2C: I2CCC26XX.c

• PIN: PINCC26XX.c

• SPI: SPICC26XXDMA.c

• UART: UARTCC26XX.c

• Watchdog: WatchdogCC26XX.c

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

44 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

Driver Framework www.ti.com

5.2.7 TI-RTOS Driver Implementations for CC3200 Devices

If you are modifying the <board>.c file for an application, you will see types and data structures that are

defined by the lower-level driver implementations. These implementations are provided in the driver

directories. For example, the lower-level implementation for the I2C driver is in the I2CCC3200.c and

I2CCC3200.h files in the <tirtos_install>\products\tidrivers_<version>\packages\ti\

drivers\i2c directory.

The lower-level driver implementations for the TI-RTOS drivers on CC3200 devices are as follows. (The

*.c file is listed, but the *.h file contains important type definitions.)

• Camera: CameraCC3200DMA.c.

• GPIO: GPIOCC3200.c.

• I2C: I2CCC3200.c

• I2S: I2SCC3200DMA.c

• Power: PowerCC3200.c

• PWM: PWMTimerCC3200.c

• SDSPI: SDSPICC3200.c

• SPI: SPICC3200DMA.c

• UART: UARTCC3200.c

• UART DMA: UARTCC3200DMA.c

• Watchdog: WatchdogCC3200.c

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 45
Submit Documentation Feedback

www.ti.com Driver Framework

5.2.8 TI-RTOS Driver Hwis for MSP43x Devices

MSP432 devices use the Hwi dispatcher provided by the TI-RTOS Kernel. The dispatcher creates the

necessary interrupts at run-time, so no special steps are required to support MSP432 interrupts.

However, for MSP430 devices, the TI-RTOS Kernel does not use a Hwi dispatcher to allow for run-time

creation of interrupts. For this reason, MSP430 users must create Hwis statically in the application's *.cfg

file. Follow the steps below to configure the appropriate Hwis for applications that use TI-RTOS drivers.

1. Identify the TI-RTOS drivers and implementations that you want to add into your application. TI-

RTOS has a set of MSP43x driver implementations to support the USCI and EUSCI peripherals.

Some TI-RTOS drivers (for example, WiFi) have dependencies on other TI-RTOS drivers.

2. Use Table 5-1 for MSP430F5xxx devices and Table 5-2 for MSP430FR5xxx devices to determine

whether these drivers require any Hwi interrupts to be created.

Table 5-1 Hwi functions required for TI-RTOS driver ISRs (USCI on MSP430F5xxx)

TI-RTOS Driver

MSP430 Driver

Implementations Interrupt Service Routine Hwi Function Name

GPIO GPIOMSP430 GPIO_hwiIntFxn

I2C I2CUSCIB I2CUSCIB_hwiIntFxn

SDSPI SDSPIUSCIA,

SDSPIUSCIB

N/A. This driver is polling based

SPI SPIUSCIADMA,

SPIUSCIBDMA

A DMA interrupt function defined by the user must call the SPI driver's

SPI_serviceISR function.

UART UARTUSCIA UARTUSCIA_hwiIntFxn

Watchdog WatchdogMSP430 N/A. This driver only generates a reset signal

WiFi WiFiCC3100 The WiFiCC3100_hostIntHandler function is tied to a GPIO interrupt. A user

DMA interrupt function calls SPI_serviceISR. (WiFi driver uses SPI driver.)

Table 5-2 Hwi functions required for TI-RTOS driver ISRs (EUSCI on MSP430FR5xxx/FR6xxx)

TI-RTOS Driver

MSP430 Driver

Implementations Interrupt Service Routine Hwi Function Name

GPIO GPIOMSP430 GPIO_hwiIntFxn

I2C I2CEUSCIB I2CEUSCIB_hwiIntFxn

SDSPI SDSPIEUSCIA,

SDSPIEUSCIB

N/A. This driver is polling based

SPI SPIUSCIADMA,

SPIUSCIBDMA

A DMA interrupt function defined by the user must call the SPI driver's

SPI_serviceISR function.

UART UARTEUSCIA UARTEUSCIA_hwiIntFxn

Watchdog WatchdogMSP430 N/A. This driver only generates a reset signal

WiFi WiFiCC3100 The WiFiCC3100_hostIntHandler function is tied to a GPIO interrupt. A user

DMA interrupt function calls SPI_serviceISR. (WiFi driver uses SPI driver.)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

46 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

Driver Framework www.ti.com

3. If the TI-RTOS driver is interrupt driven, find the peripheral's base address for every driver

implementation entry in the HWAttrs data structure of the driver’s Driver_config[] array.

For example, I2C_Config[0] has its HWAttrs data structure configured to USCI_B0_BASE. Similarly,

I2C_Config[1] has its HWAttrs data structure configured to use USBI_B1_BASE.

4. Find the associated interrupt vector number for each peripheral at the specified base address. For

example, on the MSP430F5529, the USBI_B0 interrupt vector is 55 and the USCI_B1 interrupt vector

is 45. The interrupt vector number is set in the device's main *.h header file. For MSP430F5529, the

file would be msp430f5529.h.

— In CCS, this file is found in: <CCS_install>/ccsv6/ccs_base/msp430/include.

— In IAR, this file is found in: <IAR_install>/430/inc.

5. Create Hwi objects for each entry in the Driver_config[] array using the information obtained in the

previous steps. Map the information to the Hwi in the following manner:

— Hwi (ISR) function. Use the Hwi function name from Table 5-1.

— Interrupt vector number. Use the vector number from the device's main *.h header file.

— Argument passed to ISR function. For the GPIO driver, the argument must be the GPIO port

number corresponding to the interrupt. For all other drivers, use the index number into the

Driver_config[] array.

/* I2C objects */

I2CUSCIB_Object i2cUSCIBObjects[MSP_EXP430F5529LP_I2CCOUNT];

/* I2C configuration structure */

const I2CUSCIB_HWAttrs i2cUSCIBHWAttrs[MSP_EXP430F5529LP_I2CCOUNT] = {

 {

 USCI_B0_BASE,

 USCI_B_I2C_CLOCKSOURCE_SMCLK

 },

 {

 USCI_B1_BASE,

 USCI_B_I2C_CLOCKSOURCE_SMCLK

 }

};

const I2C_Config I2C_config[] = {

 {

 &I2CUSCIB_fxnTable,

 &i2cUSCIBObjects[0],

 &i2cUSCIBHWAttrs[0]

 },

 {

 &I2CUSCIB_fxnTable,

 &i2cUSCIBObjects[1],

 &i2cUSCIBHWAttrs[1]

 },

 {NULL, NULL, NULL}

};

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 47
Submit Documentation Feedback

www.ti.com Driver Framework

Hwi objects can be created using the graphical user interface or by manually adding it to the project’s

*.cfg file. Both of the following examples configure two Hwi objects that run the I2CUSCIB_hwiIntFxn

function required by the I2C driver with the interrupt vectors for USBI_B0 and USBI_B1.

This example shows the statements in the *.cfg file:

This example shows how to configure the Hwi objects graphically with the XGCONF Configuration Editor:

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

48 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

Camera Driver www.ti.com

5.3 Camera Driver

The Camera driver is used to retrieve the data being transferred by the Camera sensor. This driver

provides an API for capturing the image from the Camera sensor. The camera sensor control and

implementation are the responsibility of the application using the interface.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.3.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

5.3.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the Camera driver requires the application to initialize board-

specific settings and provide the Camera driver with the Camera_config structure.

5.3.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initCamera() function that initializes the board-specific Camera

peripheral settings. This function also calls Camera_init() to initialize the Camera driver.

5.3.2.2 Camera_Params Structure

The Camera_Params structure may be used to override the default settings for an Camera instance you

are creating. The params in the structure must be set before calling Camera_open(). The structure has

the following fields:

typedef struct Camera_Params {
 Camera_CaptureMode captureMode; /* blocking or callback mode */
 uint32_t outputClock; /* to set divider */
 Camera_HSyncPolarity hsyncPolarity; /* polarity of horizontal Sync */
 Camera_VSyncPolarity vsyncPolarity; /* polarity of vertical Sync */
 Camera_PixelClkConfig pixelClkConfig; /* rising edge or falling edge */
 Camera_ByteOrder byteOrder; /* order of bytes captured */
 Camera_IfSynchoronisation interfaceSync; /* camera-sensor synchronisation */
 Camera_StopCaptureConfig stopConfig; /* action when capture stops */
 Camera_StartCaptureConfig startConfig; /* action when capture starts */
 uint32_t captureTimeout; /* timeout length for capture */
 void *custom; /* custom target-specific option */

5.3.3 Camera Modes

The Camera operation mode determines whether transmit and/or receive modes are enabled. The mode

is specified with one of the following constants:

• Camera_MODE_BLOCKING: Uses a semaphore to block while data is being sent. Context of the

call must be a Task.

• Camera_MODE_CALLBACK: Non-blocking call, which will return immediately. When the capture by

the interrupt, is finished the configured callback function is called.

Other enumerated types are available for other Camera driver parameters.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 49
Submit Documentation Feedback

www.ti.com Camera Driver

5.3.4 APIs

In order to use the Camera module APIs, the Camera.h header file should be included in an application

as follows:

#include <ti/drivers/Camera.h>

The following are the Camera APIs:

• Camera_init() initializes the Camera module.

• Camera_Params_init() initializes an Camera_Params data structure.

• Camera_open() initializes a given Camera instance.

• Camera_close() deinitializes a given Camera instance.

• Camera_control() performs implementation-specific features on a given Camera peripheral.

• Camera_capture() handles the capture of a frame.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.3.4.1 Opening the Camera driver

To open a Camera driver instance, initialize a Camera_Params object and specify the desired

parameters.

Camera_Handle handle;
Camera_Params params;

Camera_Params_init(¶ms);
params.captureMode = Camera_MODE_BLOCKING;
/* Change any other params as needed */

handle = Camera_open(someCamera_configIndexValue, ¶ms);
if (!handle) {
 System_printf("Camera did not open");
}

5.3.4.2 Writing Data

The following example calls Camera_capture() to cause a picture to be taken by the camera and the

photo to be placed in a buffer.

unsigned char captureBuffer[1920];

ret = Camera_capture(handle, &captureBuffer, sizeof(captureBuffer));

5.3.5 Examples

See the SimpleLink Wi-Fi CC3200 Software Development Kit (SDK) for examples that use this driver.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

50 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

EMAC Driver www.ti.com

5.4 EMAC Driver

This is the Ethernet driver used by the networking stack (NDK).

5.4.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

5.4.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the EMAC driver requires the application to initialize board-

specific portions of the EMAC and provide the EMAC driver with the EMAC_config structure.

5.4.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initEMAC() function that must be called to initialize the board-

specific EMAC peripheral settings. This function also calls the EMAC_init() to initialize the EMAC driver.

5.4.2.2 EMAC_config Structure

The <board>.c file also declare the EMAC_config structure. This structure must be provided to the EMAC

driver. It must be initialized before the EMAC_init() function is called and cannot be changed afterwards.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.4.3 APIs

To use the EMAC module APIs, the EMAC header file should be included in an application as follows:

#include <ti/drivers/EMAC.h>

The following EMAC API is provided:

• EMAC_init() sets up the EMAC driver. This function must be called before the NDK stack thread is

started.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

See the NDK documentation for information about NDK APIs that can be used if the EMAC driver is

enabled and initialized.

5.4.4 Usage

The EMAC driver is designed to be used by the NDK. The only function that must be called is the

EMAC_init() function. This function must be called before BIOS_start() is called to ensure that the driver

is initialized before the NDK starts.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 51
Submit Documentation Feedback

www.ti.com EMAC Driver

5.4.5 Instrumentation

The EMAC driver logs the following actions using the Log_print() APIs provided by SYS/BIOS.

• EMAC driver setup success or failure.

• EMAC started or stopped.

• EMAC failed to receive or transmit a packet.

• EMAC successfully sent or received a packet.

• No packet could be allocated.

• Packet is too small for the received buffer.

Logging is controlled by the Diags_USER1 and Diags_USER2 masks. Diags_USER1 is for general

information and Diags_USER2 is for more detailed information.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

52 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

GPIO Driver www.ti.com

5.5 GPIO Driver

The GPIO module allows you to manage General Purpose I/O pins via simple and portable APIs. GPIO

pin behavior is usually configured statically, but can also be configured or reconfigured at runtime.

The application is required to supply a device specific GPIOxxx_Config structure to the module, where

xxx is the name of the target family. This structure communicates to the GPIO module which GPIO pins

are used by the application and how they are to be configured. (See the GPIO_PinConfig array

description in Section 5.5.1.2.)

The application is required to call GPIO_init(). This function initializes all the GPIO pins defined in the

GPIO_PinConfig table to the configurations specified. Once initialization is complete, the other APIs can

be used to access the pins.

Because of its simplicity, the GPIO driver does not follow the model of other TI-RTOS drivers in which a

driver application interface has separate device-specific implementations. This difference is most

apparent in the GPIOxxx_Config structure (described in more detail in Section 5.5.1.1), which does not

require you to specify a particular function table or object.

5.5.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

5.5.1.1 GPIO_Config Structure

The <board>.c file declares a board-specific GPIOxxx_Config structure. This structure is used internally

by the GPIO Driver and must be provided by the user. Currently the GPIOxxx_Config structure usually

consists of pointers to two arrays—an array of GPIO_PinConfig elements and an array of GPIO_Callback

elements—their respective number of elements, and an interrupt priority field used to configure the

interrupts that will be used for input pins with callbacks.

Below is an example of a typical GPIOxxx_Config structure, in this case specific to Tiva boards:

typedef struct GPIOTiva_Config {
 /*! Pointer to the board's GPIO_PinConfig array */
 GPIO_PinConfig *pinConfigs;

 /*! Pointer to the board's GPIO_CallbackFxn array */
 GPIO_CallbackFxn *callbacks;

 /*! number of GPIO_PinConfigs defined */
 uint32_t numberOfPinConfigs;

 /*! number of GPIO_Callbacks defined */
 uint32_t numberOfCallbacks;

 /*! GPIO interrupt priority. Setting (~0) configures lowest priority */
 uint32_t intPriority;
} GPIOTiva_Config;

A brief discussion of several fields in this structure follows. See the Doxygen help in

<tirtos_install>\products\tidrivers_<version>\docs\html\index.html for details.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 53
Submit Documentation Feedback

www.ti.com GPIO Driver

5.5.1.2 GPIO_pinConfig Array

The elements in this array define the configuration and device-specific identities for each of the physical

GPIO pins used by the application. A pin is referenced in the application by its corresponding index in

this array.

The pin type (that is, INPUT/OUTPUT), its initial state (that is OUTPUT_HIGH or LOW), and interrupt

behavior (RISING/FALLING edge, etc.) are configured in each element of this array.

For example, this GPIO_PinConfig array for Tiva is provided in the EK_TM4C1294XL.h file.

GPIO_PinConfig gpioPinConfigs[] = {
 /* Input pins */
 /* EK_TM4C1294XL_USR_SW1 */
 GPIOTiva_PJ_0 | GPIO_CFG_IN_PU | GPIO_CFG_IN_INT_RISING,
 /* EK_TM4C1294XL_USR_SW2 */
 GPIOTiva_PJ_1 | GPIO_CFG_IN_PU | GPIO_CFG_IN_INT_RISING,

 /* Output pins */
 /* EK_TM4C1294XL_USR_D1 */
 GPIOTiva_PN_1 | GPIO_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_LOW,
 /* EK_TM4C1294XL_USR_D2 */
 GPIOTiva_PN_0 | GPIO_CFG_OUT_STD | GPIO_CFG_OUT_STR_HIGH | GPIO_CFG_OUT_LOW,
};

5.5.1.3 GPIO_callbackFxn Array

Each element in this array is a callback function pointer for each of the GPIO pins configured to interrupt

the device. The indexes for these array elements correspond to the pins defined in the GPIO_pinConfig

array. These function pointers can be defined statically by referencing the callback function name in the

array element, or dynamically, by setting the array element to NULL and using GPIO_setCallback() at

runtime to plug the callback entry.

For example, this GPIO_callbackFxn array for Tiva is provided in the EK_TM4C1294XL.h file.

GPIO_CallbackFxn gpioCallbackFunctions[] = {
 NULL, /* EK_TM4C1294XL_USR_SW1 */
 NULL /* EK_TM4C1294XL_USR_SW2 */
};

Pins not used for interrupts can be omitted from the callback array to reduce memory usage (if they are

placed at end of GPIO_pinConfig array).

The callback function syntax should match the following:

void (*GPIO_CallbackFxn)(unsigned int index);

The index parameter is the same index that was passed to GPIO_setCallback(). This allows the same

callback function to be used for multiple GPIO interrupts, by using the index to identify the GPIO that

caused the interrupt.

5.5.1.4 intPriority

(Not used for MSP430.)

This parameter defines the priority of the interrupt associated with the pins. Values for this parameter are

device-specific. You should be well-acquainted with the interrupt controller used in your device before

setting this parameter to a non-default value. The sentinel value of ~(0) (the default value) is used to

indicate that the lowest possible priority should be used.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

54 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

GPIO Driver www.ti.com

5.5.1.5 MSP430 GPIO Interrupts

As with other MSP430 drivers, the GPIO driver requires port interrupts be statically created in the

configuration file. However the GPIO driver also requires the port number to be set as a Hwi argument

(see Section 5.2.8).

5.5.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the GPIO driver requires the application to initialize board-

specific portions of the GPIO and provide the GPIO driver with a board-specific GPIOxxx_config

structure.

5.5.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initGPIO() function that must be called at runtime—usually within

main()—to initialize board-specific GPIO peripheral settings. Unlike other drivers, there in no board-

specific initialization performed by this function. It simply calls GPIO_init(), which initializes the GPIO

driver and configures all the pins as prescribed by the GPIOxxx_Config structure.

5.5.3 APIs

In order to use the GPIO module APIs, the GPIO header file should be included in an application as

follows:

#include <ti/drivers/GPIO.h>

The following are the GPIO APIs:

• GPIO_init() sets up the configured GPIO pins.

• GPIO_read() gets the current state of the specified GPIO input pin.

• GPIO_write() sets the state of the specified GPIO pin to on or off.

• GPIO_toggle() toggles the state of the specified GPIO pin.

• GPIO_setCallback() dynamically binds a callback function to the specified GPIO input pin.

• GPIO_setConfig() dynamically configures the specified GPIO input pin.

• GPIO_clearInt() clears the interrupt flag for the specified GPIO pin.

• GPIO_disableInt() disables interrupts on the specified GPIO pin.

• GPIO_enableInt() enables interrupts on the specified GPIO pin.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.5.4 Usage

Once the GPIO_init() function has been called, the other GPIO APIs functions can be called. For

example, LEDs can be switched on as follows:

GPIO_write(Board_LED0, Board_LED_ON);
GPIO_write(Board_LED1, Board_LED_ON);
GPIO_write(Board_LED2, Board_LED_ON);

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 55
Submit Documentation Feedback

www.ti.com GPIO Driver

For GPIO interrupts, once the GPIO_setCallback() function has been called to install a callback for a pin

that pin’s interrupt can be enabled as shown below:

/* Install callback and enable interrupts */
GPIO_setCallback(Board_BUTTON0, gpioButtonFxn0);
GPIO_setCallback(Board_BUTTON1, gpioButtonFxn1);

GPIO_enableInt(Board_BUTTON0);
GPIO_enableInt(Board_BUTTON1);

5.5.5 Instrumentation

The GPIO driver logs the following actions using the Log_print() APIs provided by SYS/BIOS:

• GPIO pin read.

• GPIO pin toggled.

• GPIO pin written to.

• GPIO hardware interrupt creation failure.

• GPIO interrupt flag cleared.

• GPIO interrupt enabled.

• GPIO interrupt disabled.

Logging is controlled by the Diags_USER1 and Diags_USER2 masks. Diags_USER1 is for general

information and Diags_USER2 is for more detailed information.

5.5.6 Examples

All the TI-RTOS examples use the GPIO driver. The GPIO Interrupt example demonstrates interrupt

usage. The GPIO_init() function is called in the board-specific file (for example, CC3200_LAUNCHXL.c).

A filled in GPIO_Config structure is provided in the same file.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

56 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

I2C Driver www.ti.com

5.6 I2C Driver

This section assumes that you have background knowledge and understanding about how the I2C

protocol operates. For the full I2C specifications and user manual (UM10204), see the NXP

Semiconductors website.

The I2C driver has been designed to operate as a single I2C master by performing I2C transactions

between the target and I2C slave peripherals. The I2C driver does not support I2C slave mode at this time.

I2C is a communication protocol—the specifications define how data transactions are to occur via the I2C

bus. The specifications do not define how data is to be formatted or handled, allowing for flexible

implementations across different peripheral vendors. As a result, the I2C handles only the exchange of

data (or transactions) between master and slaves. It is the left to the application to interpret and

manipulate the contents of each specific I2C peripheral.

The I2C driver has been designed to operate in a RTOS environment such as SYS/BIOS. It protects its

transactions with OS primitives supplied by SYS/BIOS.

5.6.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

5.6.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the I2C driver requires the application to initialize board-

specific portions of the I2C and provide the I2C driver with the I2C_config structure.

5.6.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initI2C() function that must be called to initialize the board-specific

I2C peripheral settings. This function also calls the I2C_init() to initialize the I2C driver.

5.6.2.2 I2C_config Structure

The <board>.c file also declare the I2C_config structure. This structure must be provided to the I2C driver.

It must be initialized before the I2C_init() function is called and cannot be changed afterwards.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.6.3 APIs

In order to use the I2C module APIs, the I2C.h header file should be included in an application as follows:

#include <ti/drivers/I2C.h>

The following are the I2C APIs:

• I2C_init() initializes the I2C module.

• I2C_Params_init() initializes an I2C_Params data structure. It defaults to Blocking mode.

• I2C_open() initializes a given I2C peripheral.

• I2C_close() deinitializes a given I2C peripheral.

http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 57
Submit Documentation Feedback

www.ti.com I2C Driver

• I2C_transfer() handles the I2C transfer for SYS/BIOS.

The I2C_transfer() API can be called only from a Task context. It requires an I2C_Tramsaction structure

that specifies the location of the write and read buffer, the number of bytes to be processed, and the I2C

slave address of the device.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.6.4 Usage

The application needs to supply the following structures in order to set up the framework for the driver:

• I2C_Params specifies the transfer mode and any callback function to be used. See Section 5.6.4.1.

• I2C_Transaction specifies details about a transfer to be performed. See Section 5.6.4.2.

• I2C_Callback specifies a function to be used if you are using callback mode. See Section 5.6.4.3.

5.6.4.1 I2C Parameters

The I2C_Params structure is used with the I2C_open() function call. If the transferMode is set to

I2C_MODE_BLOCKING, the transferCallback argument is ignored. If transferMode is set to

I2C_MODE_CALLBACK, a user-defined callback function must be supplied.

typedef struct I2C_Params {
 I2C_TransferMode transferMode; /* Blocking or Callback mode */
 I2C_CallbackFxn transferCallbackFxn; /* Callback function pointer */
} I2C_Params;

5.6.4.2 I2C Transaction

The I2C_Transaction structure is used to specify what type of I2C_transfer needs to take place.

typedef struct I2C_Transaction {
 UChar *writeBuf; /* Pointer to a buffer to be written */
 UInt writeCount; /* Number of bytes to be written */

 UChar *readBuf; /* Pointer to a buffer to be read */
 UInt readCount; /* Number of bytes to be read */

 UChar slaveAddress; /* Address of the I2C slave device */

 UArg arg; /* User definable argument to the callback function */
 Ptr nextPtr; /* Driver uses this for queuing in I2C_MODE_CALLBACK */
} I2C_Transaction;

slaveAddress specifies the I2C slave address the I2C will communicate with. If writeCount is nonzero,

I2C_transfer writes writeCount bytes from the buffer pointed by writeBuf. If readCount is nonzero,

I2C_transfer reads readCount bytes into the buffer pointed by readBuf. If both writeCount and readCount

are non-zero, the write operation always runs before the read operation.

The optional arg variable can only be used when the I2C driver has been opened in Callback mode. This

variable is used to pass a user-defined value into the user-defined callback function.

nextPtr is used to maintain a linked-list of I2C_Transactions when the I2C driver has been opened in

Callback mode. It must never be modified by the user application.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

58 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

I2C Driver www.ti.com

5.6.4.3 I2C Callback Function Prototype

This typedef defines the function prototype for the I2C driver’s callback function for Callback mode. When

the I2C driver calls this function, it supplies the associated I2C_Handle, a pointer to the I2C_Transaction

that just completed, and a Boolean value indicating the transfer result. The transfer result is the same as

from the I2C_transfer() when operating in Blocking mode.

typedef Void (*I2C_Callback)(I2C_Handle, I2C_Transaction *, Bool);

5.6.5 I2C Modes

The I2C driver supports two modes of operation, blocking and callback modes. The mode is determined

when the I2C driver is opened using the I2C_Params data structure. If no I2C_Params structure is

specified, the I2C driver defaults to blocking mode. Once opened, the only way to change the operation

mode is to close and re-open the I2C instance with the new mode.

5.6.5.1 Opening in Blocking Mode

By default, the I2C driver operates in blocking mode. In blocking mode, a Task’s code execution is

blocked until an I2C transaction has completed. This ensures that only one I2C transaction operates at a

given time. Other tasks requesting I2C transactions while a transaction is currently taking place are also

placed into a blocked state and are executed in the order in which they were received.

I2C_Handle i2c;
UInt peripheralNum = 0; /* Such as I2C0 */
I2C_Params i2cParams;

I2C_Params_init(&i2cParams);
i2cParams.transferMode = I2C_MODE_BLOCKING;
i2cParams.transferCallbackFxn = NULL;

i2c = I2C_open(peripheralNum, &i2cParams);
if (i2c == NULL) {
 /* Error opening I2C */
}

If no I2C_Params structure is passed to I2C_open(), default values are used. If the open call is

successful, it returns a non-NULL value.

5.6.5.2 Opening in Callback Mode

In callback mode, an I2C transaction functions asynchronously, which means that it does not block a

Task’s code execution. After an I2C transaction has been completed, the I2C driver calls a user-provided

hook function. If an I2C transaction is requested while a transaction is currently taking place, the new

transaction is placed onto a queue to be processed in the order in which it was received.

I2C_Handle i2c;
UInt peripheralNum = 0; /* Such as I2C0 */
I2C_Params i2cParams;

I2C_Params_init(&i2cParams);
i2cParams.transferMode = I2C_MODE_CALLBACK;
i2cParams.transferCallbackFxn = UserCallbackFxn;

i2c = I2C_open(peripheralNum, &i2cParams);
if (i2c == NULL) {
 /* Error opening I2C */
}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 59
Submit Documentation Feedback

www.ti.com I2C Driver

5.6.5.3 Specifying an I2C Bus Frequency

The I2C controller’s bus frequency is determined as part the I2C_Params data structure and is set when

the application calls I2C_open(). The standard I2C bus frequencies are 100 kHz and 400 kHz, with 100

kHz being the default.

I2C_Handle i2c;
UInt peripheralNum = 0; /* Such as I2C0 */
I2C_Params i2cParams;

I2C_Params_init(&i2cParams); /* Default is I2C_100kHz */
i2cParams.bitRate = I2C_400kHz;
i2c = I2C_open(peripheralNum, &i2cParams);
if (i2c == NULL) {
 /* Error Initializing I2C */
}

5.6.6 I2C Transactions

I2C can perform three types of transactions: Write, Read, and Write/Read. All I2C transactions are atomic

operations with the slave peripheral. The I2C_transfer() function determines how many bytes need to be

written and/or read to the designated I2C peripheral by reading the contents of an I2C_Transaction data

structure.

The basic I2C_Transaction arguments include the slave peripheral’s I2C address, pointers to write and

read buffers, and their associated byte counters. The I2C driver always writes the contents from the write

buffer before it starts reading the specified number of bytes into the read buffer. If no data needs to be

written or read, simply set the corresponding counter(s) to 0.

5.6.6.1 Write Transaction (Blocking Mode)

As the name implies, an I2C write transaction writes data to a specified I2C slave peripheral. The following

code writes three bytes of data to a peripheral with a 7-bit slave address of 0x50.

I2C_Transaction i2cTransaction;
UChar writeBuffer[3];
UChar readBuffer[2];
Bool transferOK;

i2cTransaction.slaveAddress = 0x50; /* 7-bit peripheral slave address */
i2cTransaction.writeBuf = writeBuffer; /* Buffer to be written */
i2cTransaction.writeCount = 3; /* Number of bytes to be written */
i2cTransaction.readBuf = NULL; /* Buffer to be read */
i2cTransaction.readCount = 0; /* Number of bytes to be read */

transferOK = I2C_transfer(i2c, &i2cTransaction); /* Perform I2C transfer */
if (!transferOK) {
 /* I2C bus fault */
}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

60 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

I2C Driver www.ti.com

5.6.6.2 Read Transaction (Blocking Mode)

A read transaction reads data from a specified I2C slave peripheral. The following code reads two bytes

of data from a peripheral with a 7-bit slave address of 0x50.

I2C_Transaction i2cTransaction;
UChar writeBuffer[3];
UChar readBuffer[2];
Bool transferOK;

i2cTransaction.slaveAddress = 0x50; /* 7-bit peripheral slave address */
i2cTransaction.writeBuf = NULL; /* Buffer to be written */
i2cTransaction.writeCount = 0; /* Number of bytes to be written */
i2cTransaction.readBuf = readBuffer; /* Buffer to be read */
i2cTransaction.readCount = 2; /* Number of bytes to be read */

transferOK = I2C_transfer(i2c, &i2cTransaction); /* Perform I2C transfer */
if (!transferOK) {
 /* I2C bus fault */
}

5.6.6.3 Write/Read Transaction (Blocking Mode)

A write/read transaction first writes data to the specified peripheral. It then writes an I2C restart bit, which

starts a read operation from the peripheral. This transaction is useful if the I2C peripheral has a pointer

register that needs to be adjusted prior to reading from referenced data registers. The following code

writes three bytes of data, sends a restart bit, and reads two bytes of data from a peripheral with the slave

address of 0x50.

I2C_Transaction i2cTransaction;
UChar writeBuffer[3];
UChar readBuffer[2];
Bool transferOK;

i2cTransaction.slaveAddress = 0x50; /* 7-bit peripheral slave address */
i2cTransaction.writeBuf = writeBuffer; /* Buffer to be written */
i2cTransaction.writeCount = 3; /* Number of bytes to be written */
i2cTransaction.readBuf = readBuffer; /* Buffer to be read */
i2cTransaction.readCount = 2; /* Number of bytes to be read */

transferOK = I2C_transfer(i2c, &i2cTransaction); /* Perform I2C transfer */
if (!transferOK) {
 /* I2C bus fault */
}

5.6.6.4 Write/Read Transaction (Callback Mode)

In callback mode, I2C transfers are non-blocking transactions. After an I2C transaction has completed,

the I2C interrupt routine calls the user-provided callback function, which was passed in when the I2C

driver was opened.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 61
Submit Documentation Feedback

www.ti.com I2C Driver

In addition to the standard I2C_Transaction arguments, an additional user-definable argument can be

passed through to the callback function.

I2C_Transaction i2cTransaction;
UChar writeBuffer[3];
UChar readBuffer[2];
Bool transferOK;

i2cTransaction.slaveAddress = 0x50; /* 7-bit peripheral slave address */
i2cTransaction.writeBuf = writeBuffer; /* Buffer to be written */
i2cTransaction.writeCount = 3; /* Number of bytes to be written */
i2cTransaction.readBuf = readBuffer; /* Buffer to be read */
i2cTransaction.readCount = 2; /* Number of bytes to be read */
i2cTransaction.arg = someOptionalArgument;

/* I2C_transfers will always return successful */
I2C_transfer(i2c, &i2cTransaction); /* Perform I2C transfer */

5.6.6.5 Queuing Multiple I2C Transactions

Using the callback mode, you can queue up multiple I2C transactions. However, each I2C transfer must

use a unique instance of an I2C_Transaction data structure. In other words, it is not possible to

reschedule an I2C_Transaction structure more than once. This also implies that the application must

make sure the I2C_Transaction isn’t reused until it knows that the I2C_Transaction is available again.

The following code posts a Semaphore after the last I2C_Transaction has completed. This is done by

passing the Semaphore’s handle through the I2C_Transaction data structure and evaluating it in the

UserCallbackFxn.

Void UserCallbackFxn(I2C_Handle handle, I2C_Transaction *msg, Bool transfer) {
 if (msg->arg != NULL) {
 Semaphore_post((Semaphore_Handle)(msg->arg));
 }
}

Void taskfxn(arg0, arg1) {
 I2C_Transaction i2cTransaction0;
 I2C_Transaction i2cTransaction1;
 I2C_Transaction i2cTransaction2;

 /* Set up i2cTransaction0/1/2 here */
 ...
 i2cTransaction0.arg = NULL;
 i2cTransaction1.arg = NULL;
 i2cTransaction2.arg = semaphoreHandle;

 /* Start and queue up the I2C transactions */
 I2C_transfer(i2c, &i2cTransaction0);
 I2C_transfer(i2c, &i2cTransaction1);
 I2C_transfer(i2c, &i2cTransaction2);

 /* Do other optional code here */
 ...

 /* Pend on the I2C transactions to have completed */
 Semaphore_pend(semaphoreHandle);
}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

62 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

I2C Driver www.ti.com

5.6.7 Instrumentation

The instrumented I2C library contains Log_print() statements that help to debug I2C transfers. The I2C

driver logs the following actions using the Log_print() APIs provided by SYS/BIOS:

• I2C object opened or closed.

• Data written or read in the interrupt handler.

• Transfer results.

Logging is controlled by the Diags_USER1 and Diags_USER2 masks. Diags_USER1 is for general

information and Diags_USER2 is for more detailed information. Diags_USER2 provides detailed logs

intended to help determine where a problem may lie in the I2C transaction. This level of diagnostics will

generate a significant amount of Log entries. Use this mask when granular transfer details are needed.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 63
Submit Documentation Feedback

www.ti.com I2S Driver

5.7 I2S Driver

The I2S driver facilitates the use of Inter-IC Sound (I2S), which is used to connect digital audio devices

so that audio signals can be communicated between devices. The I2S driver simplifies reading and

writing to any of the Multichannel Audio Serial Port (McASP) peripherals on the board with Receive and

Transmit support. These include blocking, non-blocking, read and write characters on the McASP

peripheral.

5.7.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

5.7.2 Runtime Configuration

The board's I2S peripheral and pins must be configured before initializing an I2S instance.

As the overview in Section 5.2.2 indicates, the I2S driver requires the application to initialize board-

specific settings and provide the I2S driver with the I2S_config structure.

5.7.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initI2S() function that initializes the board-specific I2S peripheral

settings. This function also calls I2S_init() to initialize the I2S driver.

5.7.2.2 I2S_Params Structure

The I2S_Params structure may be used to override the default settings for an I2S instance you are

creating. The params in the structure must be set before calling I2S_open().

The structure has the following fields:

typedef struct I2S_Params {
 I2S_OpMode operationMode;
 uint32_t samplingFrequency; /* in samples/second, default = 16000 */
 unsigned char slotLength; /* default = 16 */
 unsigned char bitsPerSample; /* default = 16 */
 unsigned char numChannels; /* Mono/Stereo */

 I2S_DataMode readMode; /* mode for all read calls */
 I2S_Callback readCallback; /* pointer to read callback */
 uint32_t readTimeout;

 I2S_DataMode writeMode; /* mode for all write calls */
 I2S_Callback writeCallback; /* pointer to write callback */
 uint32_t writeTimeout;
 void * customParams;
} I2S_Params;

5.7.3 I2S Modes

The I2S operation mode determines whether transmit and/or receive modes are enabled. The mode is

specified with one of the following constants:

• I2S_OPMODE_TX_ONLY: Enable transmit only.

• I2S_OPMODE_RX_ONLY: Enable receive only.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

64 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

I2S Driver www.ti.com

• I2S_OPMODE_TX_RX_SYNC: Enable both transmit and receive.

A separate data mode may be specified for read calls and write calls. The available modes are:

• I2S_MODE_CALLBACK: This mode is non-blocking. Calls to read or write return immediately. When

the transfer is finished, the configured callback function is called.

• I2S_MODE_ISSUERECLAIM: Call I2S_readIssue() and I2S_writeIssue() to queue buffers to the I2S.

I2S_readReclaim() blocks until a buffer of data is available. I2S_writeReclaim() blocks until a buffer

of data has been issued and the descriptor can be returned back to the caller.

5.7.4 APIs

In order to use the I2S module APIs, the I2S.h header file should be included in an application as follows:

#include <ti/drivers/I2S.h>

The following are the I2S APIs:

• I2S_init() initializes the I2S module.

• I2S_Params_init() initializes an I2S_Params data structure.

• I2S_open() initializes a given I2S instance.

• I2S_close() deinitializes a given I2S instance.

• I2S_control() performs implementation-specific features on a given I2S peripheral.

• I2S_read() queues a buffer for reading from the peripheral.

• I2S_readIssueFxn() queues a buffer for reading from the peripheral.

• I2S_readReclaimFxn() retrieves a received buffer of data from the peripheral.

• I2S_write() queues a buffer for writing from the peripheral.

• I2S_writeIssueFxn() queues a buffer for writing from the peripheral.

• I2S_writeReclaimFxn() retrieves a sent buffer of data from the peripheral.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.7.4.1 Opening the I2S driver

To open a I2S driver instance, initialize a I2S_Params object and specify the desired parameters.

I2S_Handle handle;
I2S_Params params;
I2SCC3200DMA_SerialPinParams customParams;

I2S_Params_init(¶ms);
params.operationMode = I2S_MODE_TX_RX_SYNC;
/* Change other params as required */

handle = I2S_open(someI2S_configIndexValue, ¶ms);
if (!handle) {
 System_printf("I2S did not open");
}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 65
Submit Documentation Feedback

www.ti.com I2S Driver

5.7.4.2 Writing Data

The following example calls I2S_write() to write to an I2S driver instance that has been opened. It first

queues up two buffers of text. Within an infinite loop, it then calls I2S_writeReclaim to retrieve a buffer.,

prints the size of the buffer retrieved, and re-queues the buffer.

 const unsigned char hello[] = "Hello World\n";
 const unsigned char hello1[] = "Hello World1\n";
 I2S_BufDesc writeBuffer1;
 I2S_BufDesc writeBuffer2;
 I2S_BufDesc *pDesc = NULL;

 writeBuffer1.bufPtr = &hello;
 writeBuffer1.bufSize = sizeof(hello);
 writeBuffer2.bufPtr = &hello1;
 writeBuffer2.bufSize = sizeof(hello1);

 ret = I2S_write(handle, &writeBuffer1);
 ret = I2S_write(handle, &writeBuffer2);

 while(1)
 {
 ret = I2S_writeReclaim(handle, &pDesc);
 System_printf("The I2S wrote %d bytes\n", ret);
 pDesc->bufPtr = &hello;
 pDesc->bufSize = sizeof(hello);
 ret = I2S_write(handle, pDesc);
 }

5.7.4.3 Reading Data

The following example calls I2S_read() to queue a buffer for reading from an I2S driver instance. It first

queues up two buffers of text. Within an infinite loop, it then calls I2S_readReclaim to queue a buffer and

reads the buffer.

unsigned char rxBuffer[20];
unsigned char rxBuffer1[20];
I2S_BufDesc readBuffer1;
I2S_BufDesc readBuffer2;
I2S_BufDesc *pDesc = NULL;

readBuffer1.bufPtr = &rxBuffer;
readBuffer1.bufSize = 20;
readBuffer2.bufPtr = &rxBuffer1;
readBuffer2.bufSize = 20;

ret = I2S_read(handle, &readBuffer1);
ret = I2S_read(handle, &readBuffer2);

while(1)
{
 ret = I2S_readReclaim(handle, &pDesc);
 System_printf("The I2S read %d bytes\n", ret);
 pDesc->bufPtr = &rxBuffer;
 pDesc->bufSize = 20;
 ret = I2S_read(handle, pDesc);
}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

66 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

LCD Driver www.ti.com

5.8 LCD Driver

The LCD driver manages the DOGM128W-6 LCD display, which is the one used on the SmartRF06 EB

(Evaluation Board). This LCD display can be written to by first writing the data to display to an internal

buffer, and then sending the buffer content to the LCD display. The LCD driver uses the SPI driver for

updating the display. The driver contains different functions for both modifying the internal buffer and for

updating the display with the buffer content.

The DOGM128W-6 LCD display contains 128 pixel columns and 64 pixel rows. The origin (0,0) location

of the display is in the upper-left corner. This LCD driver uses a 5x7 font, thus each character takes up 5

pixels width and 7 pixels height. See the LCDDogm1286.h help topic in

<tirtos_install>\products\tidrivers_<version>\docs\html\index.html for details.

This driver is located in <tirtos_install>\products\tidrivers_<version>\packages\ti\mw\lcd.

Note that this location is different from the location of most other TI-RTOS drivers, because this is a

middleware driver.

In order to use this driver, C files use the following #include statement. This statement is already included

in the board files for the targets that support this driver.

#include <ti/mw/lcd/LCDDogm1286.h>

5.8.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

To enable this driver, add the following statement to your application’s *.cfg file.

var mwConfig = xdc.useModule('ti.mw.Config');

Note that this package location is different from the location of most other drivers, because this is a

middleware driver.

5.8.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the LCD driver uses the LCD_config structure.

5.8.2.1 LCD_config Structure

The <board>.c file declares the LCD_config structure. This structure must be provided to the LCD driver.

It must be initialized before the LCD_init() function is called and cannot be changed afterwards.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 67
Submit Documentation Feedback

www.ti.com LCD Driver

5.8.3 APIs

In order to use the LCD module APIs, include the SDSPI header file in an application as follows:

#include <ti/mw/lcd/LCDDogm1286.h>

The following are some of the LCD APIs:

• LCD_init() sets up the LCD for operation.

• LCD_open() initializes the SPI parameters and other objects used by the driver. Sends an

initialization command to the LCD.

• LCD_close() closes the objects and resources used by the LCD driver.

• LCD_writeLine() writes one line to a buffer and sends it to the display.

• LCD_bufferClear() empties the specified LCD buffer.

• LCD_bufferPrintString() writes a string to the specified buffer.

• LCD_bufferInvert() inverts the pixels in a given region of the specified buffer.

• LCD_update() writes the specified buffer to the display.

• LCD_setContrast() sets the LCD contrast level.

• LCD_Params_init() initializes an LCD_Params structure to its defaults.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.8.4 Usage

The LCD driver uses an array of LCD_Buffer structures named lcdBuffers. lcdBuffers is implemented in

the application with each entry being an instance of a LCD_Buffer. The number of buffers available must

be passed as an argument to LCD_open().

Once the LCD has been initialized and opened, LCD APIs can be used to write to the buffers and send

all or part of a buffer to the display.

When the application has finished using the LCD, it should call LCD_close().

5.8.5 Instrumentation

The instrumented LCD library contains Log_print() statements that help debug LCD activity.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

68 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

PWM Driver www.ti.com

5.9 PWM Driver

The PWM module facilitates the generation of Pulse Width Modulated signals via simple and portable

APIs. The PWM driver is designed such that a driver instance generates a single waveform. This section

assumes that you have an understanding of Pulse Width Modulation techniques.

5.9.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

5.9.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the PWM driver requires the application to initialize board-

specific settings and provide the PWM driver with the PWM_config structure.

5.9.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initPWM() function that initializes the board-specific PWM

peripheral settings. This function also calls PWM_init() to initialize the PWM driver.

5.9.2.2 PWM_config Structure

The <board>.c file also declares the PWM_config structure. This structure must be provided to the PWM

driver. It must be initialized before the PWM_init() function is called and cannot be changed afterwards.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.9.3 APIs

To use the PWM module APIs, the PWM.h header file should be included in an application as follows:

#include <ti/drivers/PWM.h>

The following are the PWM APIs:

• PWM_init() initializes the PWM module.

• PWM_Params_init() initializes an PWM_Params data structure.

• PWM_open() initializes a given PWM instance.

• PWM_close() deinitializes a given PWM instance.

• PWM_control() performs implementation-specific features to a given PWM peripheral.

• PWM_getPeriodCounts() returns the PWM period in timer ticks.

• PWM_getPeriodMicroSecs() returns the PWM period in microseconds.

• PWM_setDuty() sets a PWM instances duty cycle.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 69
Submit Documentation Feedback

www.ti.com PWM Driver

5.9.4 Usage

The application needs to supply the following structures in order to set up the framework for the driver:

• PWM_Params specifies the period, units in which the duty is specified and the PWM output polarity.

See Section 5.9.4.1.

5.9.4.1 PWM Parameters

The PWM_Params structure is used to initialize a PWM driver instance with the PWM_open() function

call. Before opening the driver, the desired PWM period should be specified set in the PWM_Params.

The period must be specified in microseconds. Additionally, the PWM output polarity and the duty mode

should also be configured as desired.

typedef struct PWM_Params {
 uint32_t period; /* PWM period in microseconds */
 PWM_DutyMode dutyMode; /* Units which duty is specified */
 PWM_Polarity polarity; /* Set duty active high or active low */
} PWM_Params;

5.9.5 PWM Modes

The PWM operating mode determines the units in which the duty specified when calling PWM_setDuty().

The PWM driver supports three modes of operation:

• PWM_DUTY_COUNTS: The duty is specified in PWM timer counts.

• PWM_DUTY_TIME: The duty is specified in microseconds.

• PWM_DUTY_SCALAR: The duty is an integer scaled to the period, where 0 corresponds to a duty

of 0% and 65535 corresponds to 100% duty.

The mode is determined by the PWM_DutyMode field within PWM_Params data structure. The

PWM_Params default for this field is PWM_DUTY_TIME mode. Once opened, the only way to change

the operating mode is to close and re-open the PWM instance with a new mode.

5.9.5.1 Opening the PWM driver

To open a PWM driver instance, initialize a PWM_Params object and specify the desired PWM period.

Additionally, if a duty mode other than PWM_DUTY_TIME (default) is desired, specify it in the

PWM_Params before opening the driver instance.

PWM_Handle handle;
PWM_Params params;
uint8_t pwmOutputNumber = 0;

PWM_Params_init(¶ms);
params.period = 20000; // Period in microseconds
params.dutyMode = PWM_DUTY_COUNTS; // Set PWM duty mode

handle = PWM_open(Board_PWM0, ¶ms);
if (handle == NULL) {
 /* Error opening PWM */
}

PWM_setDuty(handle, 3000); // Set a duty cycle of 3000 PWM timer counts

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

70 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

PWM Driver www.ti.com

5.9.6 Instrumentation

The instrumented PWM library contains Log_print() statements that help to debug PWM driver calls. The

PWM driver logs the following actions using the Log_print() APIs provided by SYS/BIOS:

• PWM object opened or closed.

• The duty cycle of a PWM output has been changed.

Logging is controlled by the Diags_USER1 and Diags_USER2 masks. Diags_USER1 is for general

information and Diags_USER2 is for more detailed information. Diags_USER2 provides detailed logs

intended to help determine if a problem has occurred while changing a duty cycle. This level of

diagnostics generates a significant number of Log entries. Use this mask when granular details are

needed.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 71
Submit Documentation Feedback

www.ti.com SDSPI Driver

5.10 SDSPI Driver

The SDSPI FatFs driver is used to communicate with SD (Secure Digital) cards via SPI (Serial Peripheral

Interface).

The SDSPI driver is a FatFs driver module for the FatFs middleware module. With the exception of the

standard TI-RTOS driver APIs—SDSPI_open(), SDSPI_close(), and SDSPI_init()—the SDSPI driver is

exclusively used by FatFs module to handle the low-level hardware communications. See Chapter 7,

"Using the FatFs File System Drivers" for usage guidelines.

The SDSPI driver only supports one SSI (SPI) peripheral at a given time. It does not utilize interrupts.

The SDSPI driver is polling based for performance reasons and due the relatively high SPI bus bit rate.

This means it does not utilize the SPI’s peripheral interrupts, and it consumes the entire CPU time when

communicating with the SPI bus. Data transfers to or from the SD card are typically 512 bytes, which

could take a significant amount of time to complete. During this time, only higher priority Tasks, Swis, and

Hwis can preempt Tasks making calls that use the FatFs.

5.10.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

To enable this driver, add the following statements to your application’s *.cfg file.

var FatFs = xdc.useModule('ti.mw.fatfs.FatFS');

5.10.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the SDSPI driver requires the application to initialize board-

specific portions of the SDSPI and provide the SDSPI driver with the SDSPI_config structure.

5.10.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initSDSPI() function that must be called to initialize the board-

specific SDSPI peripheral settings. This function also calls the SDSPI_init() to initialize the SDSPI driver.

5.10.2.2 SDSPI_config Structure

The <board>.c file also declare the SDSPI_config structure. This structure must be provided to the

SDSPI driver. It must be initialized before the SDSPI_init() function is called and cannot be changed

afterwards.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.10.3 APIs

In order to use the SDSPI module APIs, include the SDSPI header file in an application as follows:

#include <ti/drivers/SDSPI.h>

The following are the SDSPI APIs:

• SDSPI_init() sets up the specified SPI and GPIO pins for operation.

• SDSPI_open() registers the SDSPI driver with FatFs and mounts the FatFs file system.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

72 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

SDSPI Driver www.ti.com

• SDSPI_close() unmounts the file system and unregisters the SDSPI driver from FatFs.

• SDSPI_Params_init() initializes a SDSPI_Params structure to its defaults.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.10.4 Usage

Before any FatFs or C I/O APIs can be used, the application needs to open the SDSPI driver. The

SDSPI_open() function ensures that the SDSPI disk functions get registered with the FatFs module that

subsequently mounts the FatFs volume to that particular drive.

SDSPI_Handle sdspiHandle;
SDSPI_Params sdspiParams;
UInt peripheralNum = 0; /* Such as SPI0 */
UInt FatFsDriveNum = 0;

SDSPI_Params_init(&sdspiParams);
sdspiHandle = SDSPI_open(peripheralNum, FatFsDriveNum, &sdspiParams);
if (sdspiHandle == NULL) {
 System_abort("Error opening SDSPI\n");
}

Similarly, the SDSPI_close() function unmounts the FatFs volume and unregisters SDSPI disk functions.

SDSPI_close(sdspiHandle);

Note that it is up to the application to ensure the no FatFs or C I/O APIs are called before the SDSPI

driver has been opened or after the SDSPI driver has been closed.

5.10.5 Instrumentation

The SDSPI driver does not make any Log calls.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 73
Submit Documentation Feedback

www.ti.com SPI Driver

5.11 SPI Driver

The Serial Peripheral Interface (SPI) driver is a generic, full-duplex driver that transmits and receives data

on a SPI bus. SPI is sometimes called SSI (Synchronous Serial Interface).

The SPI protocol defines the format of a data transfer over the SPI bus, but it leaves flow control, data

formatting, and handshaking mechanisms to higher-level software layers.

5.11.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

5.11.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the SPI driver requires the application to initialize board-

specific portions of the SPI and to provide the SPI driver with the SPI_config structure.

5.11.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initSPI() function that must be called to initialize the board-specific

SPI peripheral settings. This function also calls the SPI_init() to initialize the SPI driver.

5.11.2.2 SPI_config Structure

The <board>.c file also declares the SPI_config structure. This structure must be provided to the SPI

driver. It must be initialized before the SPI_init() function is called and cannot be changed afterwards.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.11.3 APIs

In order to use the SPI module APIs, the SPI.h header file should be included in an application as follows:

#include <ti/drivers/SPI.h>

The following are the SPI APIs:

• SPI_init() initializes the SPI module.

• SPI_Params_init() initializes a SPI_Params data structure to default values.

• SPI_open() initializes a given SPI peripheral.

• SPI_close() deinitializes a given SPI peripheral.

• SPI_transfer() handles the SPI transfers for SYS/BIOS.

The SPI_transfer() API can be called only from a Task context when used in SPI_MODE_BLOCKING. It

requires a SPI_Transaction structure that specifies the location of the write and read buffer and the

number of SPI frames to be transmitted/received. In SPI frame formats, data is sent in full-duplex mode.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

74 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

SPI Driver www.ti.com

5.11.4 Usage

The application needs to supply the following structures in order to set up the framework for the driver:

• SPI_Params specifies the transfer mode and any callback function to be used. See Section 5.11.4.1.

• SPI_Transaction specifies details about a transfer to be performed. See Section 5.11.4.2.

• SPI_Callback specifies a function to be used if you are using callback mode. See Section 5.11.4.3.

5.11.4.1 SPI Parameters

The SPI_Params structure is used with the SPI_open() function call.

If the transferMode is set to SPI_MODE_BLOCKING, the transferCallback argument is ignored. If

transferMode is set to SPI_MODE_CALLBACK, a user-defined callback function must be supplied. The

mode parameter determines whether the SPI operates in master or slave mode. The desired SPI bit

transfer rate, frame data size, and frame format are specified with bitRate, dataSize and frameFormat

respectively.

typedef struct SPI_Params {
 SPI_TransferMode transferMode; /* Blocking or Callback mode */
 SPI_CallbackFxn transferCallbackFxn; /* Callback function pointer */
 SPI_Mode mode; /* Master or Slave mode */
 UInt bitRate; /* SPI bit rate in Hz */
 UInt dataSize; /* SPI data frame size in bits */
 SPI_FrameFormat frameFormat; /* SPI frame format */
} SPI_Params;

5.11.4.2 SPI Frame Formats, Transactions, and Data Sizes

The SPI driver can configure the device's SPI peripheral with various SPI frameFormat options: SPI (with

various polarity and phase settings), TI, and Micro-wire.

The smallest single unit of data transmitted onto the SPI bus is called a SPI frame and is of size dataSize.

A series of SPI frames transmitted/received on a SPI bus is known as a SPI transaction. A SPI_transfer()

of a SPI transaction is performed atomically.

typedef struct SPI_Transaction {
 UInt count; /* Number of frames for this transaction */

 Ptr txBuf; /* Ptr to a buffer with data to be transmitted */
 Ptr rxBuf; /* Ptr to a buffer to receive data */

 UArg arg; /* Argument to be passed to the callback function */
} SPI_Transaction;

The txBuf and rxBuf parameters are both pointers to data buffers. If txBuf is NULL, the driver sends SPI

frames with all data bits set to 0. If rxBuf is NULL, the driver discards all SPI frames received.

When the SPI is opened, the dataSize value determines the element types of txBuf and rxBuf. If the

dataSize is from 4 to 8 bits, the driver assumes the data buffers are of type UChar (unsigned char). If the

dataSize is larger than 8 bits, the driver assumes the data buffers are of type UShort (unsigned short).

The optional arg variable can only be used when the SPI driver has been opened in callback mode. This

variable is used to pass a user-defined value into the user-defined callback function.

Specifics about SPI frame formatting and data sizes are provided in device-specific data sheets and

technical reference manuals.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 75
Submit Documentation Feedback

www.ti.com SPI Driver

5.11.4.3 SPI Callback Function Prototype

This typedef defines the function prototype for the SPI driver's callback function for callback mode:

typedef Void (*SPI_Callback)(SPI_Handle, SPI_Transaction *);

When the SPI driver calls this function, it supplies the associated SPI_Handle and a pointer to the

SPI_Transaction that just completed. There is no formal definition for what constitutes a successful SPI

transaction, so every callback is considered a successful transaction. The application or middleware

should examine the data to determine if the transaction met application-specific requirements.

5.11.5 Callback and Blocking Modes

The SPI driver supports two modes of operation: blocking and callback modes. The mode is determined

by the mode parameter in the SPI_Params data structure used when the SPI driver is opened. If no

SPI_Params structure is specified, the SPI driver defaults to blocking mode. Once a SPI driver is opened,

the only way to change the operation mode is to close and re-open the SPI instance with the new mode.

5.11.5.1 Opening a SPI Driver in Blocking Mode

By default, the SPI driver operates in blocking mode. In blocking mode, a Task's code execution is

blocked until a SPI transaction has completed. This ensures that only one SPI transaction operates at a

given time. Other tasks requesting SPI transactions while a transaction is currently taking place are also

placed into a blocked state and are executed in the order in which they were received.

SPI_Handle spi;
UInt peripheralNum = 0; /* Such as SPI0 */
SPI_Params spiParams;

SPI_Params_init(&spiParams);
spiParams.transferMode = SPI_MODE_BLOCKING;
spiParams.transferCallbackFxn = NULL;

spi = SPI_open(peripheralNum, &spiParams);
if (spi == NULL) {
 /* Error opening SPI */
}

Blocking mode is not supported in the execution context of a Swi or Hwi.

If no SPI_Params structure is passed to SPI_open(), default values are used. If the open call is

successful, it returns a non-NULL value.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

76 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

SPI Driver www.ti.com

5.11.5.2 Opening a SPI Driver in Callback Mode

In callback mode, a SPI transaction functions asynchronously, which means that it does not block code

execution. After a SPI transaction has been completed, the SPI driver calls a user-provided hook

function.

SPI_Handle spi;
UInt peripheralNum = 0; /* Such as SPI0 */
SPI_Params spiParams;

SPI_Params_init(&spiParams);
spiParams.transferMode = SPI_MODE_CALLBACK;
spiParams.transferCallbackFxn = UserCallbackFxn;

spi = SPI_open(peripheralNum, &spiParams);
if (spi == NULL) {
 /* Error opening SPI */
}

Callback mode is supported in the execution context of Tasks, Swis and Hwis. However, if a SPI

transaction is requested while a transaction is taking place, the SPI_transfer() returns FALSE.

5.11.6 SPI Transactions

SPI_transfer() always performs full-duplex SPI transactions. This means the SPI simultaneously receives

data as it transmits data. The application is responsible for formatting the data to be transmitted as well

as determining whether the data received is meaningful. The following code snippets perform SPI

transactions.

Transferring n 4-8 bit SPI frames:

SPI_Transaction spiTransaction;
UChar transmitBuffer[n];
UChar receiveBuffer[n];
Bool transferOK;

SPI_Params_init(&spiParams);
spiParams.dataSize = 6; /* dataSize can range from 4 to 8 bits */
spi = SPI_open(peripheralNum, &spiParams);

...

spiTransaction.count = n;
spiTransaction.txBuf = transmitBuffer;
spiTransaction.rxBuf = receiveBuffer;

transferOK = SPI_transfer(spi, &spiTransaction);
if (!transferOK) {
 /* Error in SPI transfer or transfer is already in progress */
}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 77
Submit Documentation Feedback

www.ti.com SPI Driver

Transferring n 9-16 bit SPI frames:

SPI_Transaction spiTransaction;
UShort transmitBuffer[n];
UShort receiveBuffer[n];
Bool transferOK;

SPI_Params_init(&spiParams);
spiParams.dataSize = 12; /* dataSize can range from 9 to 16 bits */
spi = SPI_open(peripheralNum, &spiParams);

...

spiTransaction.count = n;
spiTransaction.txBuf = transmitBuffer;
spiTransaction.rxBuf = receiveBuffer;

transferOK = SPI_transfer(spi, &spiTransaction);
if (!transferOK) {
 /* Error in SPI transfer or transfer is already in progress */
}

5.11.7 Master/Slave Modes

This SPI driver functions in both SPI master and SPI slave modes. Logically, the implementation is

identical; however the difference between these two modes is driven by hardware. As a SPI master, the

peripheral is in control of the clock signal and therefore will commence communications to the SPI slave

immediately. As a SPI slave, the SPI driver prepares the peripheral to transmit and receive data in a way

such that the peripheral is ready to transfer data when the SPI master initiates a transaction.

Asserting on Chip Select

The SPI protocol requires that the SPI master asserts a SPI slave's chip select pin prior starting a SPI

transaction. While this protocol is generally followed, various types of SPI peripherals have different

timing requirements as to when and for how long the chip select pin must remain asserted for a SPI

transaction.

Commonly, the SPI master uses a hardware chip select to assert and de-assert the SPI slave for every

data frame. In other cases, a SPI slave imposes the requirement of asserting the chip select over several

SPI data frames. This is generally accomplished by using a regular, general-purpose output pin. Due to

the complexity of such SPI peripheral implementations, the SPI driver provided with TI-RTOS has been

designed to operate transparently to the SPI chip select. When the hardware chip select is used, the

peripheral automatically selects/enables the peripheral. When using a software chip select, the

application needs to handle the proper chip select and pin configuration.

• Hardware chip select. No additional action by the application is required.

• Software chip select. The application needs to handle the chip select assertion and de-assertion

for the proper SPI peripheral.

Note that the implementation of hardware chip select is device-dependent. MSP43x does not support the

hardware chip select feature. Tiva devices performs hardware chip select only when pin-muxed out.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

78 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

SPI Driver www.ti.com

5.11.8 Instrumentation

The instrumented SPI library contains Log_print() and Log_error() statements that help debug SPI

transfers. The SPI driver logs the following actions:

• SPI object opened or closed

• DMA transfer configurations enabled

• SPI interrupt occurred

• Initialization error occurred

• Semaphore pend or post

Logging is controlled by the Diags_USER1 and Diags_USER2 masks. Diags_USER1 is for general

information and Diags_USER2 is for more detailed information. Diags_USER2 provides detailed logs

intended to help determine where a problem may lie in the SPI transactions. This level of diagnostics will

generate a significant amount of Log entries. Use this mask when granular transfer details are needed.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 79
Submit Documentation Feedback

www.ti.com UART Driver

5.12 UART Driver

A UART is used to translate data between the chip and a serial port. The UART driver simplifies reading

and writing to any of the UART peripherals on the board with multiple modes of operation and

performance. These include blocking, non-blocking, and polling as well as text/binary mode, echo and

return characters.

5.12.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

5.12.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the UART driver requires the application to initialize board-

specific portions of the UART and provide the UART driver with the UART_config structure.

5.12.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initUART() function that must be called to initialize the board-

specific UART peripheral settings. This function also calls the UART_init() to initialize the UART driver.

5.12.2.2 UART_config Structure

The <board>.c file also declare the UART_config structure. This structure must be provided to the UART

driver. It must be initialized before the UART_init() function is called and cannot be changed afterwards.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.12.3 APIs

In order to use the UART module APIs, the UART header file should be included in an application as

follows:

#include <ti/drivers/UART.h>

The following are the UART APIs:

• UART_init() initializes the UART module.

• UART_Params_init () initializes the UART_Params struct to its defaults for use in calls to

UART_open().

• UART_open() opens a UART instance.

• UART_close() closes a UART instance.

• UART_write() writes a buffer of characters to the UART.

• UART_writePolling() writes a buffer to the UART in the context of the call and returns when finished.

• UART_writeCancel() cancels the current write action and unblocks or make the callback.

• UART_read() reads a buffer of characters to the UART.

• UART_readPolling() reads a buffer to the UART in the context of the call and returns when finished.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

80 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

UART Driver www.ti.com

• UART_readCancel() cancels the current read action and unblocks or make the callback.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.12.4 Usage

The UART driver does not configure any board peripherals or pins; this must be completed before any

calls to the UART driver. The examples call Board_initUART(), which is mapped to a specific initUART()

function for the board. The board-specific initUART() functions are provided in the board .c and .h files.

For example, a sample UART setup is provided in the TMDXDOCKH52C1_initUART() function in the

TMDXDOCKH52C1.c file. This function sets up the peripheral and pins used by UART0 for operation

through the JTAG emulation connection (no extra hardware needed). The examples that use the UART

driver call the Board_initUART() function from within main().

Once the peripherals are set up, the application must initialize the UART driver by calling UART_init(). If

you add the provided board setup files to your project, you can call the Board_initUART() function within

main().

Once the UART has been initialized, you can open UART instances. Only one UART index can be used

at a time. If the index is already in use, the driver returns NULL and logs a warning. Opening a UART

requires four steps:

1. Create and initialize a UART_Params structure.

2. Fill in the desired parameters.

3. Call UART_open() passing in the index of the UART from the configuration structure and Params.

4. Save the UART handle that is returned by UART_open(). This handle will be used to read and write

to the UART you just created.

For example:

UART_Handle uart;
UART_Params uartParams;

Board_initUART(); // Calls UART_init for you

/* Create a UART with data processing off. */
UART_Params_init(&uartParams);
uartParams.writeDataMode = UART_DATA_BINARY;
uartParams.readDataMode = UART_DATA_BINARY;
uartParams.readReturnMode = UART_RETURN_FULL;
uartParams.readEcho = UART_ECHO_OFF;

uart = UART_open(Board_UART, &uartParams);

Options for the writeMode and readMode parameters are UART_MODE_BLOCKING and

UART_MODE_CALLBACK.

• UART_MODE_BLOCKING uses a semaphore to block while data is being sent. The context of the

call must be a SYS/BIOS Task.

• UART_MODE_CALLBACK is non-blocking and will return while data is being sent in the context of

a Hwi. The UART driver will call the callback function whenever a write or read finishes. In some

cases, the action might have been canceled or received a newline, so the number of bytes

sent/received are passed in. Your implementation of the callback function can use this information as

needed.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 81
Submit Documentation Feedback

www.ti.com UART Driver

Options for the writeDataMode and readDataMode parameters are UART_MODE_BINARY and

UART_MODE_TEXT. If the data mode is UART_MODE_BINARY, the data is passed as is, without

processing. If the data mode is UART_MODE_TEXT, write actions add a return before a newline

character, and read actions replace a return with a newline. This effectively treats all device line endings

as LF and all host PC line endings as CRLF.

Options for the readReturnMode parameter are UART_RETURN_FULL and

UART_RETURN_NEWLINE. These determine when a read action unblocks or returns. If the return

mode is UART_RETURN_FULL, the read action unblocks or returns when the buffer is full. If the return

mode is UART_RETURN_NEWLINE, the read action unblocks or returns when a newline character is

read.

Options for the readEcho parameter are UART_ECHO_OFF and UART_ECHO_ON. This parameter

determines whether the driver echoes data back to the UART. When echo is turned on, each character

that is read by the target is written back independent of any write operations. If data is received in the

middle of a write and echo is turned on, the characters echoed back will be mixed in with the write data.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.12.5 UART DMA Driver for TivaC Devices

For TivaC devices, the UART driver can be configured to use DMA, if desired. The <board>.c file contains

configuration for both the DMA-based UART driver and the non-DMA-based UART driver. To use the

DMA-based UART driver, compile <board>.c with the preprocessor symbol TI_DRIVERS_UARTDMA set

to 1. This can be set either in <board>.c by adding:

#define TI_DRIVERS_UART_DMA 1

or, in the CCS project settings, under the compiler flags:

--define=TI_DRIVERS_UART_DMA=1

Of the TI-RTOS UART examples, only the UART Echo example is suitable for using UART DMA.

The UART Console example calls scanf(), requiring the UART driver to inspect the data and return from

a UART_read() call when a newline character is received. The UART DMA driver does not examine input

or output data, so using UART DMA with the UART Console example causes the call to scanf(), which

calls UART_read(), to hang waiting for input.

The other UART example, UART Logging, calls UART_writePolling(), which does not use DMA; only

UART_write() and UART_read() use DMA. Although the UART Echo example can be built to use UART

DMA, it is not an interesting use case, as it reads and writes only one character at a time.

5.12.6 UART DMA Driver for SimpleLink CC32xx Devices

For CC32xx devices, the UART driver can be configured to use DMA, if desired. The <board>.c file

contains configuration for both the DMA-based UART driver, and the non-DMA-based UART driver. To

use the DMA-based UART driver, compile <board>.c with the preprocessor symbol

TI_DRIVERS_UARTDMA set to 1. This can be set either in <board>.c by adding:

#define TI_DRIVERS_UART_DMA 1

or, in the CCS project settings, under the compiler flags:

--define=TI_DRIVERS_UART_DMA=1

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

82 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

UART Driver www.ti.com

Of the TI-RTOS UART examples, only the UART Echo example is suitable for using UART DMA.

The other UART example, UART Logging, calls UART_writePolling(), which does not use DMA; only

UART_write() and UART_read() use DMA. Although the UART Echo example can be built to use UART

DMA, it is not an interesting use case, as it reads and writes only one character at a time.

5.12.7 Instrumentation

The UART module provides instrumentation data by making log calls.

5.12.7.1 Logging

The UART driver is instrumented with Log events that can be viewed with UIA and RTOS Analyzer. Diags

masks can be turned on and off to provide granularity to the information that is logged.

Use Diags_USER1 to see general Log events such as success opening a UART, number of bytes read

or written, and warnings/errors during operation.

Use Diags_USER2 to see more granularity when debugging. Each character read or written will be

logged as well as several other key events.

The UART driver makes log calls when the following actions occur:

• UART_open() success or failure

• UART_close() success

• UART interrupt triggered

• UART_write() finished

• Byte was written

• UART_read() finished

• Byte was read

• UART_write() finished, canceled or timed out

• UART_read() finished, canceled or timed out

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 83
Submit Documentation Feedback

www.ti.com USBMSCHFatFs Driver

5.13 USBMSCHFatFs Driver

The USBMSCHFatFs driver is a FatFs driver module that has been designed to be used by the FatFs

module. With the exception of the standard TI-RTOS driver APIs—_open(), _close(), and _init()—the

USBMSCHFatFs driver is exclusively used by FatFs module to handle communications to a USB flash

drive. See Chapter 7 for usage guidelines.

The USBMSCHFatFs driver is uses the USB Library, which is provided with TivaWare and MWare to

communicate with USB flash drives as a USB Mass Storage Class (MSC) host controller. Only one USB

flash drive connected directly to the USB controller at a time is supported.

Tasks that make FatFs calls can be preempted only by higher priority tasks, Swis, and Hwis.

5.13.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

To enable messages about this driver’s activity, add the following statement to your application’s *.cfg file.

var FatFs = xdc.useModule('ti.mw.fatfs.FatFS');

5.13.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the USBMSCHFatFs driver requires the application to initialize

board-specific portions of the USBMSCHFatFs and provide the USBMSCHFatFs driver with the

USBMSCHFatFs_config structure.

5.13.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initUSBMSCHFatFs() function that must be called to initialize the

board-specific USBMSCHFatFs peripheral settings. This function also calls the USBMSCHFatFs_init()

to initialize the USBMSCHFatFs driver.

5.13.2.2 USBMSCHFatFs_config Structure

The <board>.c file also declare the USBMSCHFatFs_config structure. This structure must be provided

to the USBMSCHFatFs driver. It must be initialized before the USBMSCHFatFs_init() function is called

and cannot be changed afterwards.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.13.3 APIs

In order to use the USBMSCHFatFs module APIs, the USBMSCHFatFs header file should be included

in an application as follows:

#include <ti/drivers/USBMSCHFatFs.h>

The following are the USBMSCHFatFs APIs:

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

84 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

USBMSCHFatFs Driver www.ti.com

• USBMSCHFatFs_init() initializes the USBMSCHFatFs data objects pointed by the driver’s config

structure.

• USBMSCHFatFs_open() registers the USBMSCHFatFs driver with FatFs and mounts the FatFs file

system.

• USBMSCHFatFs_close() unmounts the file system and unregisters the USBMSCHFatFs driver

from FatFs.

• USBMSCHFatFs_Params_init() initializes a USBMSCHFatFs_Params structure to its defaults.

• USBMSCHFatFs_waitForConnect() blocks a task’s execution until a USB flash drive was detected.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.13.4 Usage

Before the FatFs APIs can be used, the application needs to open the USBMSCHFatFs driver. The

USBMSCHFatFs_open() function ensures that the USBMSCHFatFs disk functions get registered with

the FatFs module. The FatFs module then mounts the FatFs volume to that particular drive.

Internally, opening the USBMSCHFatFs driver creates a high-priority Task to service the USB library. The

default priority for this task is 15 and runs every 10 SYS/BIOS system ticks. You can change the priority

of this task using the USBMSCHFatFs_Params structure.

USBMSCHFatFs_Handle usbmschfatfsHandle;
USBMSCHFatFs_Params usbmschfatfsParams;
UInt peripheralNum = 0; /* Such as USB0 */
UInt FatFsDriveNum = 0;

USBMSCHFatFs_Params_init(&usbmschfatfsParams);
usbmschfatfsHandle =
 USBMSCHFatFs_open(peripheralNum, FatFsDriveNum, &usbmschfatfsParams);
if (usbmschfatfsHandle == NULL) {
 System_abort("Error opening USBMSCHFatFs\n");
}

Similarly, the close() function unmounts the FatFs volume and unregisters the USBMSCHFatFs disk

functions.

USBMSCHFatFs_close(usbmschfatfsHandle);

The application must ensure the no FatFs or C I/O APIs are called before the USBMSCHFatFs driver has

been opened or after the USBMSCHFatFs driver has been closed.

Although the USBMSCHFatFs driver may have been opened, there is a possibility that a USB flash drive

may not be present. To ensure that a Task will wait for a USB drive to be present, the USBMSCHFatFs

driver provides the USBMSCHFatFs_waitForConnect() function to block the Task’s execution until a USB

flash drive is detected.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 85
Submit Documentation Feedback

www.ti.com USBMSCHFatFs Driver

5.13.5 Instrumentation

The USBMSCHFatFs driver logs the following actions using the Log_print() APIs provided by SYS/BIOS:

• USB MSC device connected or disconnected.

• USB drive initialized.

• USB drive read or failed to read.

• USB drive written to or failed to write.

• USB status OK or error.

Logging is controlled by the Diags_USER1 and Diags_USER2 masks. Diags_USER1 is for general

information and Diags_USER2 is for more detailed information.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

86 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

USB Reference Modules www.ti.com

5.14 USB Reference Modules

This section provides general guidelines for integrating TI’s USB Library into an RTOS environment such

as SYS/BIOS. The USB Library incorporated with TI-RTOS is a released version of TivaWare’s, MWare’s,

or MSPWare’s USB library. This document does not explain each Ware’s USB Library in detail. Instead,

it points out important design considerations to consider in application development.

The USB library is highly customizable, and it uses its associated driverlib software to access physical

registers on the device, in particular those of the USB controller. To avoid limiting its capabilities by

providing a driver that uses the library in a particular way, the TI-RTOS USB examples are structured as

reference modules with the expectation that the developer makes the necessary changes for production.

Reference modules are examples that give developers full access, so they can make changes and

modifications as needed. The goal of these modules is to provide a starting point for integrating the USB

library into a SYS/BIOS application.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 87
Submit Documentation Feedback

www.ti.com USB Reference Modules

5.14.1 USB Reference Modules in TI-RTOS

Each module handles the following items:

• Initializes the USB library and provides the necessary memory allocation, data structures, and

callback functions.

• Installs the associated USB interrupt service routine provided with the USB library as a SYS/BIOS

HWI object.

— For MSP43x devices, interrupts are installed via the configuration file (*.cfg). The interrupt

service routine was generated using the MSP43x USB Descriptor Tool.

• Provides a set of thread-safe APIs that can be used by one or more SYS/BIOS Tasks.

• Creates the necessary RTOS primitives to protect critical regions and allows Tasks to block when

possible.

• For USB Host examples, it also creates separate Task that services the USB stack.

5.14.1.1 Reference module APIs

All of the reference modules include the following APIs. Each module also includes specific APIs unique

to that particular module.

• Module_init() – This function initializes the USB library, creates RTOS primitives, and installs the

proper interrupt handler. For the host examples, it also creates a Task to service the USB controller.

• Module_waitForConnect() – This function causes a Task to block when the USB controller is not

connected.

5.14.1.2 USB Examples

TI-RTOS has six USB reference examples and one USB FatFs (MSC host) driver. (On-the-go (OTG)

examples are not available with TI-RTOS.) The reference examples and driver are as follows:

• HID Host Keyboard – Allows a USB keyboard to be connected to the target. Keys pressed on the

keyboard are registered on the target.

• HID Host Mouse – Allows a USB mouse to be connected to the target. The target registers the

overall mouse movements and button presses.

• HID Device Keyboard – Causes the target to emulate a USB keyboard. When connected to a

workstation, the target functions as another USB keyboard.

• HID Device Mouse – Causes the target to emulate a USB mouse when connected to a workstation.

• CDC Device (Serial) – The target enumerates a virtual serial COM port on a workstation. This

method of communication is commonly used to replace older RS-232 serial adapters.

• HID Mouse and CDC composite device – This example enumerates two different USB devices—

a HID mouse and a CDC serial virtual COM port.

• MSC Host (Mass Storage) – This example uses an actual driver instead of a USB reference module.

This driver is modeled after the FatFs driver APIs. This driver allows external mass storage devices

such a USB flash drives to be used with FatFs.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

88 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

USB Reference Modules www.ti.com

5.14.1.3 USB Reference Modules for MSP43x

The USB reference modules for MSP43x devices closely follow the USB examples available in

MSPWare. Here are a few items to note:

• Since USB reference modules for MSP43x are imported via TI Resource Explorer, a full copy of the

MSPWare's usblib430 USB stack and a set of pre-generated USB descriptor files are copied into the

CCS project.

• The generated USB descriptor files are considered user code. These descriptor files have been

tested to work with this version of TI-RTOS. Refer to the MSPWare USB documentation if you are

generating custom USB descriptors using the USB Descriptor Tool.

• The UsbIsr.c file, which is generated by the USB Descriptor Tool, contains the interrupt service

routine needed by MSPWare's usblib430 library. The TI-RTOS USB reference module examples use

this interrupt service routine through configuration in the project’s *.cfg file.

5.14.2 USB Reference Module Design Guidelines

This section discusses the structure of the USB reference examples.

Design considerations involved in creating these examples included:

• USB Device Specifics. Each module contains memory, data structures, and a callback function

needed to function properly with the USB library. In device mode, the reference module also includes

device descriptors that need to be sent to the USB host controller upon request.

• OS Primitives. OS primitives that implement gates, mutexes, and semaphores are used to guard

data against race-conditions and reduce unwanted processing time by blocking Tasks when needed.

• Memory Allocation. The USB library is designed so that the user application performs all required

memory allocation. In a multi-tasked / preempted environment such as SYS/BIOS, it is necessary to

protect this memory from other threads. In the reference examples, this is done using the GateMutex

module.

• Callback Functions. The USB library requires user-provided callback functions to notify the

application of events. The USB reference modules provide a set of callback functions to notify the

module of status updates. The callback functions update an internal state variable and in some cases

post Semaphores to unblock pending Tasks.

• Interrupts. Some of the events that trigger callback functions are hardware notifications about the

device being connected or disconnected from a USB host controller.

5.14.2.1 Device Mode

USB Device mode examples are rather straightforward. In device mode, the job of the USB library is to

respond to the USB host controller with its current state/status. By making USB library API calls in device

mode, the example updates information stored in the USB controller’s endpoints. This information can

be queried by the USB host controller.

5.14.2.2 Host Mode

All USB Host mode examples install a high-priority Task to service the USB controller. This Task calls the

USB library's HCDMain() function, which maintains the USB library's internal state machine. This state

machine performs actions that include enumerating devices and performing callbacks as described in the

Tiva USB library documentation.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 89
Submit Documentation Feedback

www.ti.com USB Device and Host Modules

To protect the USB library from race conditions between the service Task and other Tasks making calls

to the module’s APIs, a GateMutex is used.

5.14.2.3 On-The-Go Mode

OTG is not currently used by a USB reference module.

5.15 USB Device and Host Modules

See the USB examples for reference modules that provide support for the Human Interface Device (HID)

class (mouse and keyboard) and the Communications Device Class (CDC). This code is provided as part

of the examples, not as a separate driver.

The code for the HID keyboard device is in USBKBD.c in the USB Keyboard Device example. This file

provides the following functions:

• USBKBD_init()

• USBKBD_waitForConnect()

• USBKBD_getState()

• USBKBD_putChar()

• USBKBD_putString()

The code for the HID keyboard host is in USBKBH.c in the USB Keyboard Host example. This file

provides the following functions:

• USBKBH_init()

• USBKBH_waitForConnect()

• USBKBH_getState()

• USBKBH_setState()

• USBKBH_putChar()

• USBKBH_putString()

The code for the HID mouse device is in USBMD.c in the USB Mouse Device example. This file provides

the following functions:

• USBMD_init()

• USBMD_waitForConnect()

• USBMD_setState()

The code for the HID mouse host is in USBMH.c in the USB Mouse Host example. This file provides the

following functions:

• USBMH_init()

• USBMH_waitForConnect()

• USBMH_getState()

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

90 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

USB Device and Host Modules www.ti.com

The code for the CDC device is in USBCDCD.c in the F28M3x Demo example, the USB Serial Device

example, and the UART Console example. This file provides the following functions:

• USBCDCD_init()

• USBCDCD_waitForConnect()

• USBCDCD_sendData()

• USBCDCD_receiveData()

The code for the CDC mouse is in USBCDCMOUSE.c in the USB CDC Mouse Device example. This file

provides the following functions:

• USBCDCMOUSE_init()

• USBCDCMOUSE_receiveData()

• USBCDCMOUSE_sendData()

• USBCDCMOUSE_waitForConnect()

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 91
Submit Documentation Feedback

www.ti.com Watchdog Driver

5.16 Watchdog Driver

A watchdog timer can be used to generate a reset signal if a system has become unresponsive. The

Watchdog driver simplifies configuring and starting the watchdog peripherals. The watchdog peripheral

can be configured with resets either on or off and a user-specified timeout period.

When the watchdog peripheral is configured not to generate a reset, it can be used to cause a hardware

interrupt at a programmable interval. The driver provides the ability to specify a user-provided callback

function that is called when the watchdog causes an interrupt.

5.16.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

5.16.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the Watchdog driver requires the application to initialize board-

specific portions of the watchdog and to provide the Watchdog driver with the Watchdog_config structure.

5.16.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initWatchdog() function that must be called to initialize the board-

specific watchdog peripheral settings. This function also calls the Watchdog_init() to initialize the

Watchdog driver.

5.16.2.2 Watchdog_config Structure

The <board>.c file also declares the Watchdog_config structure. This structure must be provided to the

Watchdog driver. It must be initialized before the Watchdog_init() function is called and cannot be

changed afterwards.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.16.3 APIs

In order to use the Watchdog module APIs, the Watchdog header file should be included in an application

as follows:

#include <ti/drivers/Watchdog.h>

The following are the Watchdog APIs:

• Watchdog_init() initializes the Watchdog module.

• Watchdog_Params_init() initializes the Watchdog_Params struct to its defaults for use in calls to

Watchdog_open().

• Watchdog_open() opens a Watchdog instance.

• Watchdog_clear() clears the Watchdog interrupt flag.

• Watchdog_setReload() sets the Watchdog reload value.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

92 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

Watchdog Driver www.ti.com

5.16.4 Usage

The Watchdog driver does not configure board peripherals. This must be done before any calls to the

Watchdog driver. The examples include board-specific initWatchdog() functions in the board .c and .h

files. Once the watchdog is initialized, a Watchdog object can be created through the following steps:

1. Create and initialize the Watchdog_Params structure.

2. Assign desired values to parameters.

3. Call Watchdog_open().

4. Save the Watchdog_Handle returned by Watchdog_open(). This will be used to interact with the

Watchdog object just created.

To have a user-defined function run at the hardware interrupt caused by a watchdog timer timeout, define

a Void-type function that takes an argument of type Watchdog_Handle cast as a UArg as follows:

typedef Void (*Watchdog_Callback)(UArg);

An example of the Watchdog creation process that uses a callback function:

Watchdog_Params params;
Watchdog_Handle watchdog;

Board_initWatchdog();

/* Create and enable a Watchdog with resets enabled */
Watchdog_Params_init(¶ms);
params.resetMode = Watchdog_RESET_ON;
params.callbackFxn = UserCallbackFxn;

watchdog = Watchdog_open(Board_WATCHDOG, ¶ms);
if (watchdog == NULL) {
 /* Error opening watchdog */
}

If no Watchdog_Params structure is passed to Watchdog_open(), the default values are used. By default,

the Watchdog driver has resets turned on, no callback function specified, and stalls the timer at

breakpoints during debugging.

Options for the resetMode parameter are Watchdog_RESET_ON and Watchdog_RESET_OFF. The

latter allows the watchdog to be used like another timer interrupt. When resetMode is

Watchdog_RESET_ON, it is up to the application to call Watchdog_clear() to clear the Watchdog

interrupt flag to prevent a reset. Watchdog_clear() can be called at any time.

5.16.5 Instrumentation

The Watchdog module provides instrumentation data by both making log calls. The Watchdog driver logs

the following actions using the Log_print() APIs provided by SYS/BIOS.

• Watchdog_open() success or failure

• Reload value changed

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 93
Submit Documentation Feedback

www.ti.com WiFi Driver

5.17 WiFi Driver

The TI-RTOS WiFi driver implements many elements needed to communicate with a TI Wi-Fi device such

as the SimpleLink Wi-Fi CC3100. The WiFi driver uses the TI-RTOS SPI module and implements a state

machine to send and receive commands, data, and events to and from a Wi-Fi device.

This driver’s APIs let you open a WiFi driver instance to communicate with the Wi-Fi device's host driver

without further direct calls to the WiFi driver from the application. TI-RTOS provides host drivers for its

supported Wi-Fi devices in <tirtos_install>\products\tidrivers_<version>\packages\ti\

mw\wifi. Note that this location is different from the location for most other drivers, because this is a

middleware driver. In order to use this driver, C files should use the following #include statement:

#include <ti/mw/wifi/cc3x00/simplelink/include/simplelink.h>

You can configure the driver to allow calling the WiFi driver from a single thread or to be safe to call from

multiple threads. The multi-threaded version of host driver consumes more resources than the single-

thread version. The WiFi driver supports only one instance of the driver.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

5.17.1 Static Configuration

See Section 2.4.2 and Section 5.2.1 for information about configuring your application to use the

instrumented driver libraries, which are helpful in debugging.

To enable this driver, add the following statement to your application’s *.cfg file.

var mwConfig = xdc.useModule('ti.mw.Config');

Note that this package location is different from the location of most other drivers, because this is a

middleware driver.

By default, the WiFi library linked into the project is prebuilt with a version of the WiFi device's host driver

that is only safe to call from a single task. You can choose to allow calling the WiFi driver from multiple

threads. The multi-threaded version of host driver consumes more resources than the single-thread

version.

If you choose the multi-threaded version, internal calls by the WiFi host driver are run from within a Task

thread called SelectThread in order to allow other host driver API calls to run while the WiFi driver is

waiting for a response. You can configure the priority of the SelectThread task; the default priority is 1,

which is just above the priority of the Idle thread.

In addition to library type, the WiFi driver requires the maximum TX and RX data payload sizes to be

configured statically. These payload sizes are used by the WiFi module to create appropriately-sized

buffers for use by the WiFi driver and Wi-Fi device's host driver. They can be specified graphically as

shown in the previous image or textually as follows:

WiFi.txPayloadSize = 1468;
WiFi.rxPayloadSize = 1468;

In order to use the WiFi driver, your configuration must also include the SPI module. See Section 5.11,

SPI Driver for details.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

94 TI-RTOS Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

WiFi Driver www.ti.com

5.17.2 Runtime Configuration

As the overview in Section 5.2.2 indicates, the WiFi driver requires the application to initialize board-

specific portions of the WiFi driver and provide the WiFi driver with the WiFi _config structure. A

SPI_config structure is also required by the WiFi driver.

5.17.2.1 Board-Specific Configuration

The <board>.c files contain a <board>_initWiFi() function that must be called to initialize the board-

specific WiFi peripheral settings. This function also calls WiFi_init() and SPI_init() to initialize the WiFi

driver and its resources.

5.17.2.2 WiFi_config Structure

The <board>.c file also declares the WiFi_config structure. This structure must be provided to the WiFi

driver. It must be initialized before the WiFi_init() function is called and cannot be changed afterwards.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

Note that the SPI_config structure must also be present and initialized before the WiFi driver may be

used. See Section 5.11, SPI Driver for details.

5.17.3 APIs

In order to use the WiFi module APIs, the WiFi header file should be included in an application as follows:

#include <ti/mw/wifi/cc3x00/simplelink/include/simplelink.h>

The following are the WiFi APIs:

• WiFi_init() initializes the WiFi module.

• WiFi_Params_init() initializes the WiFi_Params struct to its defaults for use in calls to WiFi_open().

• WiFi_open() opens a WiFi instance.

• WiFi_close() closes a WiFi instance.

See the help in <tirtos_install>\products\tidrivers_<version>\docs\html\index.html for

details.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Drivers 95
Submit Documentation Feedback

www.ti.com WiFi Driver

5.17.4 Usage

Before any APIs from the Wi-Fi device's host driver can be used, the application must open the WiFi

driver. The WiFi_open() function configures the SPI driver, creates necessary interrupts, and registers a

callback to inform the application of events that may occur on the Wi-Fi device. Once WiFi_open() has

returned, host driver APIs may be used to start sending commands and data to the Wi-Fi device.

WiFi_Params params;
WiFi_Handle handle;

/* Open WiFi */
WiFi_Params_init(¶ms);
params.bitRate = 5000000; /* Set bit rate to 5 MHz */
handle = WiFi_open(Board_wifiIndex, Board_spiIndex, userCallback, ¶ms);
if (handle == NULL) {
 System_abort("Error opening WiFi\n");
}

/* Host driver APIs such as socket() may now be called. */

The WiFi_close() function should be called when use of the host driver APIs is complete.

5.17.5 Instrumentation

The WiFi driver provides instrumentation data by making Log calls.

5.17.5.1 Logging

The WiFi driver is instrumented with Log events that can be viewed with UIA and RTOS Analyzer. Diags

masks can be turned on and off to provide granularity to the information that is logged. Use

Diags_USER1 to see general Log events. The WiFi driver logs the following actions using the Log_print()

APIs provided by SYS/BIOS.

• WiFi device enabled or disabled

• Interrupts enabled or disabled

• WiFi_open() success or failure

• WiFi_close() success

• Send or receive buffer overrun

• Reads and writes to WiFi device completed

• SPI_transfer() failure

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Utilities 96
Submit Documentation Feedback

Chapter 6
SPRUHD4M—June 2016

TI-RTOS Utilities

This chapter provides information about utilities provided by TI-RTOS.

6.1 Overview

Utilities for use with TI-RTOS are provided in the <tirtos_install>\packages\ti\tirtos\utils

directory. This chapter describes such modules.

6.2 UARTMon Module

The UARTMon module (ti.tirtos.utils.UARTMon) enables host communication with a target device using

the target’s UART. The target device can respond to requests to read and write memory at specified

addresses. CCS includes features that allow you to leverage this utility to monitor the target device with

the Debug view or with GUI Composer.

The GPIO example enables the UARTMon module. See the readme file in the example project for

information about the example.

6.1 Overview . 96

6.2 UARTMon Module . 96

6.3 UART Example Implementation . 102

Topic Page

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M

SPRUHD4M—June 2016 TI-RTOS Utilities 97
Submit Documentation Feedback

www.ti.com UARTMon Module

To use UARTMon in your application, open the project’s *.cfg file with the XGCONF Configuration Editor.

Select the TIRTOS module, and choose the System Overview to see the diagram below. Right-click on

the UART Monitor module and select Use UARTMon from the drop-down to add it to your application.

No extra user code is needed on the target to use this utility.

To configure this module, select UARTMon in the Outline pane to view its configuration page.

The UART Index property is the board index of the UART peripheral to be used as a monitor. In the

Board.h file, Board_UART0 has an index of 0 and Board_UART1 has an index of 1. Other options that

can be adjusted are the baud rate for the UART and the priority and stack size for the Task that performs

the monitoring.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

98 TI-RTOS Utilities SPRUHD4M—June 2016
Submit Documentation Feedback

UARTMon Module www.ti.com

Once UARTMon is enabled in your configuration, a task called UARTMonTask is automatically created

and can be seen among your task instances in XGCONF Configuration Editor as shown below. This task

will also show up in ROV when you are debugging.

The UARTMon module has no C APIs.

The GPIO Interrupt examples for the MSP-EXP430F5529LP and Tiva EK-TM4C123GXL LaunchPad

boards have UARTMon enabled.

6.2.1 UARTMon with CCS Tools

CCS supports UART communication alongside a JTAG connection. This section explains how to create

the necessary target configuration and run the debug session.

Follow these steps to create a target configuration file that allows you to use a UART Monitor connection

in addition to your existing JTAG connection:

1. Choose File > New > Target Configuration File from the CCS menus.

2. Type a filename for this configuration, and click Finish. The target configuration will be stored in a

*.ccxml file.

3. In the Target Configuration window, select the

main connection used to communicate with

the device. For example, for Stellaris and Tiva

boards, you might use the Stellaris In-Circuit

Debug Interface.

4. To specify the device, begin typing the name

of your device. The filter field shows only

those devices that match what you type.

5. When you see your device, check the box

next to it.

6. If the device you select has a UART on its

board, you see the Alternate Communication

area to the right of the device selection.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Utilities 99
Submit Documentation Feedback

www.ti.com UARTMon Module

7. Make sure UART Communication is selected in the drop-down list. It is typically the only option.

Note: When using a driver based on the Tiva In-Circuit Debug Interface (ICDI) or an MSP430

driver, the COM Port must have the same number as one identified in the Windows

Device manager. When using a XDSv2 USB Emulator, there is no such limitation; the

emulator can create a new COM port.

8. Click the Add button and select the ComPort that is created.

9. Modify the COM Port and Baud Rate as needed.

10. Click Save to save your target configuration file.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

100 TI-RTOS Utilities SPRUHD4M—June 2016
Submit Documentation Feedback

UARTMon Module www.ti.com

To run and debug a program that has the UARTMon module enabled, follow these steps:

1. Build your application if you have not already done so.

2. Choose Run > Debug Configurations from the CCS menus.

3. Expand the Code Composer Studio - Device Debugging category and select the target

configuration you just created. (If your target configuration file is not listed under the Device

Debugging category, close this dialog, launch the target configuration, and then re-open the Debug

Configuration dialog to cause the new target configuration to be listed.)

4. In the right page of the dialog, choose the Program tab.

5. Make sure the interface or emulator used for non-UART communication is selected in the Device

drop-down list. For example, for Tiva and Stellaris boards, you might be using the Stellaris In-Circuit

Debug Interface.

6. If your project is not already selected for the non-UART interface or emulator, click Workspace in the

Project row and select the project you want to debug. Click OK.

7. Select the Load program loading option for this device.

8. Move back up to the Device drop-down list. This time, select the UARTConnection_0/ComPort

option in the Device drop-down list.

9. If your project is not already selected for the UART connection, click Workspace in the Project row

and select the project you want to debug. Click OK.

10. Select the Load symbols only loading option for this device. If you skip this step, the debugger will

attempt to program the device using the UART connection.

11. Click Debug.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 TI-RTOS Utilities 101
Submit Documentation Feedback

www.ti.com UARTMon Module

12. In the Debug view, the UARTConnection is listed among the available connections and is marked as

Running, meaning that the COM Port specified is now being listened to.

13. If you configured the project to enable UARTMon as described in the previous section, you can select

the UART connection to watch variables and expressions the same way you would with an emulator.

In this example, the count variable in the Expressions window is being watched using the UART

Connection when that item is selected. If the Stellaris In-Circuit Debug Interface is selected, that

connection is used to watch the same variable.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

102 TI-RTOS Utilities SPRUHD4M—June 2016
Submit Documentation Feedback

UART Example Implementation www.ti.com

6.2.2 GUI Composer

GUI Composer is a tool in CCS for creating custom graphical user interfaces that interact with your target

application. You can use it to create interface widgets that are bound to variables in the running target

and update themselves accordingly. With UARTMon included in your application, GUI Composer can

use the UART connection to interact with the running target.

For example, the count variable shown in the previous section can be bound to a dial widget in GUI

Composer. When the value of the count variable changes on the target, the UART connection is used to

change the reading on the dial. In addition, you can use the dial to set the value of the count variable on

the target. To learn more about GUI Composer, see the Texas Instruments Wiki.

6.3 UART Example Implementation

The UARTUtils.c file provides an example implementation using a UART. Three of the System functions

are initialized (the others default to NULL) in the uartconsole.cfg file. The example uses the

SysCallback module provided by XDCtools.

The configuration source is as follows. These statements create the same configuration as the graphical

settings shown in Section 6.2:

var SysCallback = xdc.useModule('xdc.runtime.SysCallback');
SysCallback.abortFxn = "&UARTUtils_systemAbort";
SysCallback.putchFxn = "&UARTUtils_systemPutch";
SysCallback.readyFxn = "&UARTUtils_systemReady";
System.SupportProxy = SysCallback;

In uartconsole.c, main() does the following

1. Calls the board-specific setupUART() function to initialize the UART peripheral.

2. Calls UARTUtils_systemInit() as follows to initialize the UART 0 software. After the

UARTUtils_systemInit function is called, any System_printf output will be directed to UART 0.

 /* Send System_printf to the UART 0 also */
 UARTUtils_systemInit(0);

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com
http://processors.wiki.ti.com/index.php/Category:GUI_Composer

SPRUHD4M—June 2016 Using the FatFs File System Drivers 103
Submit Documentation Feedback

Chapter 7
SPRUHD4M—June 2016

Using the FatFs File System Drivers

This chapter provides an overview of FatFs and discusses how FatFs is interconnected and used with

TI-RTOS.

7.1 Overview

FatFs is a free, 3rd party, generic File Allocation Table (FAT) file system module designed for embedded

systems. The module is available for download at http://elm-chan.org/fsw/ff/00index_e.html along with

API documentation explaining how to use the module. Details about the FatFs API are not discussed

here. Instead, this section gives a high-level explanation about how it is integrated with TI-RTOS.

The FatFs drivers provided by TI-RTOS enable you to store data on removable storage media such as

Secure Digital (SD) cards and USB flash drives (Mass Storage Class). Such storage may be a convenient

way to transfer data between embedded devices and conventional PC workstations.

7.1 Overview . 103

7.2 FatFs and TI-RTOS . 104

7.3 Using FatFs . 105

7.4 Cautionary Notes. 107

Topic Page

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://elm-chan.org/fsw/ff/00index_e.html

104 Using the FatFs File System Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

FatFs and TI-RTOS www.ti.com

7.2 FatFs and TI-RTOS

TI-RTOS provides a FatFS module and extends this module by supplying "FatFs" drivers that link into

the FatFs implementation. The FatFS module is aware of the multi-threaded environment and protects

itself with OS primitives supplied by SYS/BIOS.

Figure 7-1 FatFs data flow

From the start of this data flow to the end, the components involved behave as follows:

• Application. The top application layer calls the basic open, close, read, and write functions. Users

who are familiar with FatFs can easily use the FatFs API, which is documented at the module’s

download site. Alternatively, the application can also connect the C input/output (C I/O) runtime

support library in TI’s Code Generation Tools to FatFs. You can call familiar functions such as fopen(),

fclose(), fread(), and fwrite(). Functionally, the C I/O interface and the FatFs APIs perform the same

operations (with a few exceptions described in Section 7.3).

• FatFS module. The next layer, the ti.mw.fatfs.FatFS module, is provided as part of TI-RTOS. This

module handles the details needed to manage and use the FAT file system, including the media’s

boot sector, FAT tables, root directories, and data regions. It also protects its functions in a multi-

threaded environment. Internally, the FatFS module makes low-level data transfer requests to the

Disk IO functions described on the FatFs product web page. Implementations of this set of functions

are called "FatFs drivers" in this document.

• diskIO Function table. To allow products to provide multiple FatFs drivers, the FatFS module

contains a simple driver table. You can use this to register multiple FatFs drivers at runtime. Based

on the drive number passed by FatFs, the driver table routes FatFs calls to a particular FatFs driver.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://elm-chan.org/fsw/ff/00index_e.html
http://www.ti.com

SPRUHD4M—June 2016 Using the FatFs File System Drivers 105
Submit Documentation Feedback

www.ti.com Using FatFs

• FatFs drivers. The last layer in Figure 7-1 is the FatFs drivers. TI-RTOS comes with pre-built FatFs

drivers that plug into the FatFS module. A FatFs driver has no knowledge of the internal workings of

FatFs. Its only task is to perform disk-specific operations such as initialization, reading, and writing.

The FatFs driver performs read and write operations in data block units called sectors (commonly

512 bytes). Details about writing data to the device are left to the particular FatFs driver, which

typically accesses a peripheral’s hardware registers or uses a driver library.

7.3 Using FatFs

The subsections that follow show how to configure FatFs statically, how to prepare the FatFs drivers for

use in your application, and how to open files. For details about performing other file-based actions once

you have opened a file, see the FatFs APIs described on http://elm-chan.org/fsw/ff/00index_e.html in the

"Application Interface" section or the standard C I/O functions.

The TI-RTOS F28M3x Demo example and all 3 FatFs File Copy examples use FatFs with the SDSPI

driver. The FatSD USB Copy example uses the USBMSCHFatFs driver.

7.3.1 Static FatFS Module Configuration

To incorporate the FatFS module into an application, simply "use" this module in a configuration (.cfg)

file. You can do this by searching the Available Products list in the XGCONF Configuration Editor for

FatFS, selecting the FatFS module, and checking the Enable FAT File System in My Application box.

Or, you can add the following statement to the .cfg file.

var FatFS = xdc.useModule('ti.mw.fatfs.FatFS');

Note: The name of the product and the drivers is "FatFs" with a lowercase "s". The name of

the module is "FatFS" with an uppercase "S". If you are using a text editor to write

configuration statements, be sure to use the uppercase "S". If you are using the

XGCONF Configuration Editor to edit your configuration graphically, the correct

capitalization is used automatically.

By default, the prefix string used in C I/O fopen() calls that uses this module is "fat" and no RAM disk is

created. You can these defaults by modifying the FatFS module properties.

For example, you can change the C I/O prefix string used in fopen() calls by adding this line to the .cfg file:

FatFS.fatfsPrefix = “newPrefix”;

The application would then need to use the prefix in C I/O fopen() calls as follows:

src = fopen(“newPrefix:0:signal.dat”, "w");

See the online help for the module for more details about FatFS configuration.

You will also need to configure the FatFs driver or drivers you want to use. See Section 5.10, SDSPI

Driver and Section 5.13, USBMSCHFatFs Driver for details.

http://elm-chan.org/fsw/ff/00index_e.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

106 Using the FatFs File System Drivers SPRUHD4M—June 2016
Submit Documentation Feedback

Using FatFs www.ti.com

7.3.2 Defining Drive Numbers

Calls to the open() functions of individual FatFs drivers—for example, SDSPI_open()—require a drive

number argument. Calls to the C I/O fopen() function and the FatFs APIs also use the drive number in

the string that specifies the file path. The following C code defines driver numbers to be used in such

functions:

/* Drive number used for FatFs */
#define SD_DRIVE_NUM 0
#define USB_DRIVE_NUM 1

Here are some statements from the FatSD USB Copy example that use these drive number definitions.

Note that STR(SD_DRIVE_NUM) uses a MACRO that expands SD_DRIVE_NUM to 0.

SDSPI_Handle sdspiHandle;
SDSPI_Params sdspiParams;
FILE *src;
const Char inputfilesd[] = "fat:"STR(SD_DRIVE_NUM)":input.txt";

/* Mount and register the SD Card */
SDSPI_Params_init(&sdspiParams);
sdspiHandle = SDSPI_open(Board_SDSPI0, SD_DRIVE_NUM, &sdspiParams);

/* Open the source file */
src = fopen(inputfilesd, "r");

7.3.3 Preparing FatFs Drivers

In order to use a FatFs driver in an application, you must do the following:

• Include the header file for the driver. For example:

 #include <ti/drivers/SDSPI.h>

• Run the initialization function for the driver. All drivers have init() functions—for example,

SDSPI_init()—that need to be run in order to set up the hardware used by the driver. Typically, these

functions are run from main(). In the TI-RTOS examples, a board-specific initialization function for the

driver is run instead of running the driver’s initialization function directly. For example:

 Board_initSDSPI();

• Open the driver. The application must open the driver before the FatFs can access the drive and its

FAT file system. Similarly, once the drive has been closed, no other FatFs calls shall be made. All

drivers have open() functions—for example, SDSPI_open()—that require a drive number to be

passed in as an argument. For example:

 sdspiHandle = SDSPI_open(Board_SDSPI0, SD_DRIVE_NUM, NULL);

See Section 5.10, SDSPI Driver and Section 5.13, USBMSCHFatFs Driver for details about the FatFs

driver APIs.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Using the FatFs File System Drivers 107
Submit Documentation Feedback

www.ti.com Cautionary Notes

7.3.4 Opening Files Using FatFs APIs

Details on the FatFs APIs can be found at http://elm-chan.org/fsw/ff/00index_e.html in the "Application

Interface" section.

The drive number needs to be included as a prefix in the filename string when you call f_open() to open

a file. The drive number used in this string needs to match the drive number used to open the FatFs

driver. For example:

res = f_open(&fsrc, “SD_DRIVE_NUM:source.dat”, FA_OPEN_EXISTING | FA_READ);

res = f_open(&fdst, “USB_DRIVE_NUM:destination.dat”, FA_CREATE_ALWAYS | FA_WRITE);

A number of other FatFs APIs require a path string that should include the drive number. For example,

f_opendir(), f_mkdir(), f_unlink(), and f_chmod().

Although FatFs supports up to 10 (0-9) drive numbers, the diskIO function table supports only up to 4 (0-

3) drives. You can modify this default by changing the definition of _VOLUMES in the ffconf.h file in the

FatFS module. You will then need to rebuild TI-RTOS as described in Section 8.1.

It is important to use either the FatFs APIs or the C I/O APIs for file operations. Mixing the APIs in the

same application can have unforeseen consequences.

7.3.5 Opening Files Using C I/O APIs

The C input/output runtime implementation for FatFs works similarly to the FatFs API. However, you must

add the file name prefix configured for the FatFS module ("fat" by default) and the logical drive number

as prefixes to the filename. The file name prefix is extracted from the filename before it gets passed to

the FatFs API.

In this example, the default file name prefix is used and the drive number is 0:

fopen(“fat:0:input.txt”, "r");

It is important to use either the FatFs APIs or the C I/O APIs for file operations. Mixing the APIs in the

same application can have unforeseen consequences.

7.4 Cautionary Notes

FatFs drivers perform data block transfers to and from physical media. Depending on the FatFs driver,

writing to and reading from the disk could prevent lower-priority tasks from running during that time. If the

FatFs driver blocks for the entire transfer time, only higher-priority SYS/BIOS Tasks, Swis or Hwis can

interrupt the Task making FatFs calls. In such cases, the application developer should consider how often

and how much data needs to be read from or written to the media.

By default the FatFS module keeps a complete sector buffered for each opened file. While this requires

additional RAM, it helps mitigate frequent disk operations when operating on more than one file

simultaneously.

The FatFS implementation allows up to four unique volumes (or drives) to be registered and mounted.

http://elm-chan.org/fsw/ff/00index_e.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Rebuilding TI-RTOS 108
Submit Documentation Feedback

Chapter 8
SPRUHD4M—June 2016

Rebuilding TI-RTOS

This chapter describes how and when to rebuild TI-RTOS and components of TI-RTOS.

8.1 Rebuilding TI-RTOS . 109

8.2 Rebuilding MSPWare's driverlib for TI-RTOS and Its Drivers 111

8.3 Rebuilding Individual Components . 112

Topic Page

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M

SPRUHD4M—June 2016 Rebuilding TI-RTOS 109
Submit Documentation Feedback

www.ti.com Rebuilding TI-RTOS

8.1 Rebuilding TI-RTOS

In most cases, you will not need to rebuild the TI-RTOS libraries. Pre-built libraries for CCS, IAR, and

GCC are provided when you install TI-RTOS. However, if you want to change the compiler or linker

options, you may need to rebuild the libraries.

8.1.1 Building TI-RTOS for CCS

By default, TI-RTOS is ready to be rebuilt for use with CCS from a top-level make file called tirtos.mak.

If TI-RTOS is installed in c:\ti, you can print a list of available make rules by running the following

command from a command shell window:

To rebuild the TI-RTOS drivers and several of its included components (SYS/BIOS, NDK, and UIA), for

example, you can run the following:

If you installed CCS and TI-RTOS in a location other than c:\ti, you can edit the definition of

DEFAULT_INSTALL_DIR in tirtos.mak to point to this location. Note that all other product installation

locations are defined relative to the DEFAULT_INSTALL_DIR, but you can adjust them as necessary. You

can also pass in installation locations as necessary. For example to use a different location for XDCtools,

do the following:

The following list (from TI-RTOS for MSP43x for example) shows items you can change and sample

values. The tirtos.mak file differs for each device family. The version numbers in your copy of the

tirtos.mak file will match the versions of the components installed with TI-RTOS.

If you are rebuilding on Linux, change all of the Windows paths in the tirtos.mak file to Linux paths.

The CCS_BUILD?=true flag in the tirtos.mak file causes TI-RTOS to be rebuilt for CCS by default.

Other supported tool-chains (such as IAR) also have flags that can be turned on to build for them as well.

If these are not needed, keep them turned off for a faster build.

% cd <tirtos_install>

% ../<xdctools>/gmake –f tirtos.mak

% ../<xdctools>/gmake -f tirtos.mak all

% ../<xdctools>/gmake –f tirtos.mak XDCTOOLS_INSTALL_DIR=c:/ti/xdctools_version

CCS_BUILD ?= true

DEFAULT_INSTALL_DIR := c:/ti

ti.targets.msp430.elf.MSP430X ?=$(DEFAULT_INSTALL_DIR)/ccsv6/tools/compiler/msp430_4.4.3

XDCTOOLS_INSTALL_DIR ?= $(DEFAULT_INSTALL_DIR)/xdctools_3_31_01_33_core

export XDCTOOLS_JAVA_HOME ?= $(DEFAULT_INSTALL_DIR)/ccsv6/eclipse/jre

TIRTOS_INSTALL_DIR ?= $(DEFAULT_INSTALL_DIR)/tirtos_msp43x_2_20_00_21

TIDRIVERS_INSTALL_DIR ?= $(TIRTOS_INSTALL_DIR)/products/tidrivers_msp43x_2_15_00_15

BIOS_INSTALL_DIR ?= $(TIRTOS_INSTALL_DIR)/products/bios_6_45_00_15

UIA_INSTALL_DIR ?= $(TIRTOS_INSTALL_DIR)/products/uia_2_00_02_27

MSPWARE_INSTALL_DIR ?= $(TIRTOS_INSTALL_DIR)/products/MSPWare_2_00_00_40c

MSP430HEADERS ?= $(DEFAULT_INSTALL_DIR)/ccsv6/ccs_base/msp430/include

MSP432HEADERS ?= $(DEFAULT_INSTALL_DIR)/ccsv6/ccs_base/arm/include

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

110 Rebuilding TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Rebuilding TI-RTOS www.ti.com

8.1.2 Building TI-RTOS for IAR

By default, TI-RTOS is not rebuilt for use with IAR when you run the top-level tirtos.mak make file. To

rebuild TI-RTOS for IAR Embedded Workbench, follow these steps:

1. Edit the tirtos.mak file and find the following lines:

2. Set the IAR_BUILD flag to true in tirtos.mak. Alternately, you can pass a different value on the

make command line as follows:

3. Change the IAR compiler installation directory to match the location where you installed IAR.

Alternately, you can pass a different value on the make command line as follows:

4. Modify the installation locations as needed for the components of TI-RTOS (SYS/BIOS, NDK and

UIA) that you want to rebuild for IAR.

For a faster build, you can turn off TI-RTOS building for CCS by setting the CCS_BUILD flag to false.

8.1.3 Building TI-RTOS for GCC

By default, TI-RTOS is not rebuilt for GCC when you run the top-level tirtos.mak make file. The GCC

code generator used is the Linaro distribution gcc-arm-none-eabi-4_7-2012q4 version that ships with

CCS. To rebuild TI-RTOS with GCC, follow these steps:

1. Edit the tirtos.mak file and find the following lines:

2. Set the above GCC_BUILD flag to true in tirtos.mak. Alternately, you can pass a value on the make

command line as follows:

3. If you installed CCS in a location other than c:\ti, change the path for GCC_INSTALL_DIR to specify

the correct location. Alternately, you can pass a different value on the make command line as follows:

4. Modify the installation locations as needed for the components of TI-RTOS (SYS/BIOS, NDK and

UIA) that you want to rebuild for GCC.

For a faster build, you can turn off TI-RTOS building for CCS and IAR by setting the CCS_BUILD and

IAR_BUILD flags to false.

IAR_BUILD ?= false

IAR_MSP430_INSTALL_DIR ?= c:/iar

IAR_ARM_INSTALL_DIR ?= c:/iar

% ../<xdctools>/gmake -f tirtos.mak all IAR_BUILD=true

% ../<xdctools>/gmake -f tirtos.mak all IAR_MSP430_INSTALL_DIR=YOUR_PATH

GCC_BUILD ?= false

GCC_INSTALL_DIR := $(CCS_COMPILERS_DIR)

% ../<xdctools>/gmake -f tirtos.mak all GCC_BUILD=true

% ../<xdctools>/gmake -f tirtos.mak all GCC_INSTALL_DIR=YOUR_PATH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Rebuilding TI-RTOS 111
Submit Documentation Feedback

www.ti.com Rebuilding MSPWare's driverlib for TI-RTOS and Its Drivers

8.1.4 Rebuilding the TI-RTOS Drivers with the Debug Profile

By default, the TI-RTOS driver libraries are rebuilt with the release profile. The release profile sets

compiler flags to optimize libraries for performance. During the compilation process, this causes the

compiler to perform several operations to achieve better performance, one of which is to reorganize code.

Reorganized code is difficult to debug when stepping through code.

If you would like to step through driver library code during debugging, you can rebuild the driver libraries

without optimization by following these steps:

1. Open the tirtos.mak file and find lines similar to the following. (This example is from TI-RTOS for

SimpleLink.)

2. Change the profile parameter to 'debug':

3. Rebuild the TI-RTOS drivers as follows:

Your applications must be rebuilt to use the non-optimized TI-RTOS driver library. Once debugging is

complete, repeat the steps above setting profile='release' to return to the optimized library.

8.2 Rebuilding MSPWare's driverlib for TI-RTOS and Its Drivers

The TI-RTOS drivers for MSP43x depend on MSPWare's driverlib as an abstraction layer to access

peripheral registers. This level of abstraction promotes code reusability and scales well for TI-RTOS

drivers, because device specifics are stored in driverlib.

To reduce the build time of CCS projects and to be consistent with other TI driverlib components,

MSPWare's driverlib source files have been compiled into a library in the TI-RTOS installation.

TI-RTOS allows you to build for either MSP430, MSP432, or both. Set one of the following definitions in

the tirtos.mak file to false if you do not want to build for that target.

TI-RTOS provides prebuilt TI-RTOS drivers and prebuilt MSPWare driverlib libraries only for the

MSP430F5529, MSP430FR5969, MSP430FR5994, MSP430FR6989, and MSP432P401R. Libraries for

other MSP43x devices can be added by editing the tirtos.mak file. To build TI-RTOS drivers for other

XDCARGS= \

 profile='release' \

 CCWareDir='$(CCWARE_INSTALL_DIR)' \

XDCARGS= \

 profile='debug' \

 CCWareDir='$(CCWARE_INSTALL_DIR)' \

% cd <tirtos_install>

% ../<xdctools>/gmake -f tirtos.mak clean-drivers drivers

MSP430_BUILD ?= true

MSP432_BUILD ?= true

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

112 Rebuilding TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Rebuilding Individual Components www.ti.com

devices, add those devices to the MSP430DEVLIST or MSP432DEVLIST variable (with spaces between

the devices in the list). For example, the following modification to the tirtos.mak file causes MSPWare's

driverlib and TI-RTOS drivers to be built for the MSP430F5529, MSP430F6779, and MSP432P401R.

After updating the necessary variables, rebuild the TI-RTOS drivers as follows:

8.3 Rebuilding Individual Components

The MWare and TivaWare rebuilding mechanism is substantially different from the TI-RTOS rebuilding

mechanism. See the documentation for these products for details.

Driver libraries in the versions of MWare and TivaWare distributed with TI-RTOS have been rebuilt. For

details, see the TI-RTOS.README file in the top-level folder of the MWare and TivaWare components

within the TI-RTOS installation.

To build TI-RTOS driver libraries for other MSP430 devices; simply append the

device names to MSP430DEVLIST (separated by whitepsaces)

MSP430DEVLIST := \

MSP430F5529 \

MSP430F5527 \

MSP430F6459 \

MSP430F6989 \

etc...

MSP430DEVLIST := MSP430F5529 MSP430F6779

...

MSP432DEVLIST := MSP432P401R

% cd <tirtos_install>

% ../<xdctools>/gmake -f tirtos.mak drivers

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Memory Usage with TI-RTOS 113
Submit Documentation Feedback

Chapter 9
SPRUHD4M—June 2016

Memory Usage with TI-RTOS

This chapter provides links to information about memory usage.

9.1 Memory Footprint Reduction

Many configuration parameters impact the size (both code and data) of a TI-RTOS application. This

section discusses the approaches TI-RTOS takes to minimize the size of its examples. For a more

detailed discussion on how to reduce the size of the kernel, please refer to the SYS/BIOS User’s Guide

(SPRUEX3) appendix on "Minimizing the Application Footprint."

The TI-RTOS examples are divided into the following types of examples:

• Peripheral Examples. These examples are designed to demonstrate the usage of a peripheral or

feature. These examples are designed to have a small footprint and make use of many of the

strategies described in this section.

• Demo Examples. The demo examples are "kitchen-sink" examples; that is, they use a wide variety

of features. There is no overall design of the memory use strategy for these demos. Decisions were

made to allow the program to fit into the available memory of the target device, while still showcasing

multiple peripherals and features.

• Empty Examples. Two different "Empty" examples can be created with the New Project Wizard if

you are using CCS. These examples are intended as a starting point for new development. The two

different types of “Empty” projects are:

— Empty (Minimal) Project: Disables kernel features and debug capabilities to minimize the

footprint.

— Empty Project: Enables more kernel features and debug capabilities at the cost of a larger

footprint.

The footprint reduction approaches described in this section are generally not used in the "Empty"

examples, but are used in the "Empty (Minimal)" examples. The exceptions are that the SysMin module

and the custom BIOS library (with asserts and logging enabled) are used in the Empty examples. Any

other configuration changes described here can be made to the Empty examples if needed.

9.1 Memory Footprint Reduction . 113

9.2 Networking Stack Memory Usage . 125

Topic Page

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com/lit/pdf/spruex3

114 Memory Usage with TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Memory Footprint Reduction www.ti.com

The peripheral examples (available in TI Resource Explorer in CCS) are designed to have a small

footprint. The UART examples are exceptions to this rule, because along with UART functionality they

are intended to show various approaches for debugging an application.

The following configuration changes help reduce both the data and code footprint in the TI-RTOS

peripheral examples. You may want to use these strategies in your own applications.

For most configuration changes, both the graphical (XGCONF) and script-based methods of modifying

the configuration are shown. Use whichever method you prefer.

Non-Instrumented TI-RTOS drivers: You can use either an instrumented or non-instrumented TI-RTOS

driver library. The instrumented library contains trace statements (Log_printN() calls) and assert checking

(Assert_isTrue() calls). The non-instrumented library does not contain these statements. All the

peripheral examples use the non-instrumented TI-RTOS driver library.

An example’s *.cfg file contains statements like the following for the driver library:

var TIRTOS = xdc.useModule('ti.tirtos.TIRTOS');

TIRTOS.libType = TIRTOS.LibType_Instrumented;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Memory Usage with TI-RTOS 115
Submit Documentation Feedback

www.ti.com Memory Footprint Reduction

BIOS Custom Library: The kernel comes with both instrumented and non-instrumented libraries. In

addition, it can perform a custom build to include only functionality required by the application. The TI-

RTOS peripheral examples use the custom build. They also disable the kernel’s logging and assert

checking. See the "Compiler and Linker Optimization" section of the SYS/BIOS User’s Guide for details.

If you edit configuration scripts directly, these statements have the same effect as the XGCONF settings

above:

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.libType = BIOS.LibType_Custom;

BIOS.logsEnabled = false;

BIOS.assertsEnabled = false;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

116 Memory Usage with TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Memory Footprint Reduction www.ti.com

Minimal System Provider: The System module allows users to plug in different System Support

Proxies. Each proxy has pros and cons See Section 3.3.1, Output with printf(), page 3-28 for details about

the available System module proxies. Most TI-RTOS peripheral examples use the smaller SysMin proxy,

which uses an internal buffer to store System output. The size of the buffer is also reduced.

If you edit configuration scripts directly, these statements have the same effect as the XGCONF settings

above:

Note: The System output can be viewed in the RTOS Object Viewer (ROV) in CCS.

System Stack Size: The Hwi and Swi threads share a single System stack. Each device has a default

System stack size, which is set by the Program.stack property. Several TI-RTOS examples (especially

the MSP43x examples) do not use the default value. Instead, the Program.stack property is set in the

example’s .cfg file.

Note: The non-MSP43x examples do not reduce stack size as aggressively as the MSP43x examples.

This is because the non-MSP43x example’s source code (*.c and *.cfg) are generic and must run on

several different devices.

var System = xdc.useModule('xdc.runtime.System');

var SysMin = xdc.useModule('xdc.runtime.SysMin');

System.SupportProxy = SysMin;

SysMin.bufSize = 128;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Memory Usage with TI-RTOS 117
Submit Documentation Feedback

www.ti.com Memory Footprint Reduction

To determine the best value for this property, each example was run with the default Program.stack

setting. After an example ran under all conditions, the ROV in CCS was used to examine Hwi usage. The

"Module" tab for Hwi objects shows the stack’s peak usage. The example’s Program.stack was set to a

size higher than the peak but lower than the default. For example:

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

Program.stack = 0x200;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

118 Memory Usage with TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Memory Footprint Reduction www.ti.com

Static Tasks: The majority of the examples statically create their Tasks in their *.cfg files. This reduces

the code footprint because code is not needed for functions such Task_create().

To statically create a task, go to the Instance panel for configuring the Task module and click Add.

An example’s *.cfg file contains statements like the following to statically create an object used by the

example:

var taskParams = new Task.Params();

taskParams.instance.name = "taskFxn";

taskParams.stackSize = 0x300;

Program.global.task = Task.create("&taskFxn", task0Params);

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Memory Usage with TI-RTOS 119
Submit Documentation Feedback

www.ti.com Memory Footprint Reduction

Task Stack Size: Each Task thread in the application has its own stack. Each device has a default Task

stack size. Many examples (especially the MSP43x examples) do not use the default value. Instead, the

Task.stackSize property is set in the example’s *.cfg file.

Note: The non-MSP43x examples do not reduce stack size as aggressively as the MSP43x examples.

This is because the non-MSP43x example’s source code (*.c and *.cfg) are generic and must run on

several different devices.

To determine the best value for this property, each example was run with the default stackSize. After

letting a example run under all conditions, the ROV in CCS was used to examine Task usage. The

"Detailed" tab for Task objects shows the stack peak usage. The stackSize for each Task was set to a

size higher than the peak but lower than the default. For example:

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

taskParams.stackSize = 0x300;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

120 Memory Usage with TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Memory Footprint Reduction www.ti.com

Memory allocation: None of the TI-RTOS drivers allocate memory, except for the EMAC and

USBMSCHFatFs drivers. The examples do not allocate memory either, except for the networking (wired

and wireless) and USB examples. The examples statically create all kernel objects (such as Tasks and

Semaphores) in the *.cfg file. This is done because run-time creation of kernel object allocates memory

dynamically. Of course, for real applications, run-time object creation might be required.

Note that the networking stack allocates memory from a heap, so this approach cannot be used if the

networking stack is used.

If you edit configuration scripts directly, disable dynamic memory allocation by removing the following

statement from an example’s *.cfg file:

In addition, add the following statement to the example’s *.cfg file:

var HeapMem = xdc.useModule('ti.sysbios.heaps.HeapMem');

BIOS.heapSize = 0;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Memory Usage with TI-RTOS 121
Submit Documentation Feedback

www.ti.com Memory Footprint Reduction

No Idle Task: The kernel, by default, has an Idle task that runs if no other thread is running. The Idle task

runs low-priority functions (for example, to check for stack overflows). For the MSP43x examples, the Idle

task is not enabled. This allows the MSP43x to be placed in a power-saving mode.

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

Task.enableIdleTask = false;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

122 Memory Usage with TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Memory Footprint Reduction www.ti.com

Stack Checking: The kernel, by default, verifies that the System stack and Tasks stacks have not

overflowed. The System stack checks are performed in the Idle Task. The Task stack checks are

performed at every context switch. The top of the stack is examined to make sure it has the correct

"magic" value. Since a overflowed Task or System stack is show in ROV, the Task stack check was

removed from the MSP43x examples to reduce the code footprint. See the SYS/BIOS User’s Guide for

details about these properties.

If you edit configuration scripts directly, these statements have the same effect as the XGCONF settings

above:

Task.checkStackFlag = false;

Hwi.checkStackFlag = false;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Memory Usage with TI-RTOS 123
Submit Documentation Feedback

www.ti.com Memory Footprint Reduction

Software interrupts (Swis) disabled: The kernel, by default, enables software interrupts. For examples

that do not use Swis, this type of thread is disabled. See the SYS/BIOS User’s Guide for details about

Swis. Note the EMAC driver uses a Swi, so networking examples cannot use this trick.

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

Number of Task Priorities: The kernel allows Tasks to have different priorities. See the SYS/BIOS

User’s Guide for details about Task priorities. The TI-RTOS examples lower the maximum number of

Task priorities to 4.

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

BIOS.swiEnabled = false;

Task.numPriorities = 4;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

124 Memory Usage with TI-RTOS SPRUHD4M—June 2016
Submit Documentation Feedback

Memory Footprint Reduction www.ti.com

Number of atexit functions: The kernel allows System atexit() functions to be registered. See the

Kernel Runtime APIs and Configuration (cdoc) online help for more about the xdc.runtime.System

module’s atexit() functions. The TI-RTOS examples lower the maximum number of System atexit

functions to 2.

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

Kernel exception handling (for ARM): By default the kernel plugs in an exception handler to make

debugging an exception easier. The exception handler can be removed to reduce code footprint. It is

recommended that you leave the exception handler in place during development.

System.maxAtexitHandlers = 2;

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Memory Usage with TI-RTOS 125
Submit Documentation Feedback

www.ti.com Networking Stack Memory Usage

If you edit configuration scripts directly, these statements have the same effect as the XGCONF setting:

Strings: Since no logging or asserts are enabled for the TI-RTOS examples, the strings associated with

those facilities can be omitted. However, removing the strings for logging and asserts also removes

additional strings. See the Kernel Runtime APIs and Configuration (cdoc) online help for more about the

xdc.runtime.Text module’s isLoaded property.

If you edit configuration scripts directly, this statement has the same effect as the XGCONF setting above:

9.2 Networking Stack Memory Usage

See TI-RTOS Networking Stack Memory Usage on the Texas Instruments Wiki for details about to

adjusting memory usage of the networking stack (NDK).

var m3Hwi = xdc.useModule('ti.sysbios.family.arm.m3.Hwi');

m3Hwi.excHandlerFunc = null;

Text.isLoaded = false;

http://processors.wiki.ti.com/index.php/MCU_SDK_Networking_Stack_Memory_Usage
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Revision History 126
Submit Documentation Feedback

Appendix A
SPRUHD4M—June 2016

Revision History

Table A–1 lists the significant changes made in recent versions of this document.

Table A–1. Revision History

Revision Chapter Location Additions/Modifications/Deletions

SPRUHD4M Preface Current software version number is v2.20.

Instrumentation Section 2.3.1 The directory name containing the examples has been

simplified.

Board-Specific Section 4.1 Support for the MSP430FR5994 Launchpad has been added.

SPRUHD4L Preface Current software version number is v2.16.

Overview Section 1.6 The chapter on the Network Services API has been removed.

See the documentation in the following location instead:

<tirtos_install>/products/ns_<version>/docs/
NS_Users_Guide.html.

Board-Specific Section 4.1 Support for several CC13xx/CC26xx boards has been added.

SPRUHD4K Preface Current software version number is v2.15.

Overview Chapter 1 The IPC component has been removed from TI-RTOS.

Overview Section 1.8.1 The Doxygen-based API help has been moved to

<tirtos_install>/products/tidrivers_<version>/
docs/html.

Overview and

Drivers

Section 1.8

and

Section 5.1

The location of the driver files has changed from the

<tirtos_install>/packages/ti/drivers directory to
<tirtos_install>/products/tidrivers_<version>/

packages/ti/drivers. In addition, board files have

been moved to <tirtos_install>/products/

tidrivers_<version>/packages/ti/boards.

Drivers Section 5.2.1 A new ti.drivers.Config module has been added. This is the only

module that needs to be configured. The configuration state-

ments of the form xdc,useModule("ti.drivers.UART) and the

TIRTOS.useDRIVER properties are no longer needed and have

been deprecated.

Drivers TI-RTOS drivers no longer provide data to ROV.

Drivers Section 5.5.1.3 The GPIO callback function takes an integer parameter that

identifies the GPIO that caused the interrupt.

Drivers Section 5.8 The LCD driver is now documented. This is a middleware driver.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M

SPRUHD4M—June 2016 Revision History 127
Submit Documentation Feedback

www.ti.com

Drivers Section 5.17 The WiFi driver has been moved to the middleware directory.

FatFS Chapter 7 The FatFS module files have been moved from the SYS/BIOS

installation to the driver product. The module path is now

ti.mw.fatfs.FatFS.

SPRUHD4J Preface Current software version number is v2.14.

Overview Section 1.10 Added a description of the wolfSSL embedded SSL library.

Board-Specific Section 4.1 Removed the MSP-EXP430F5529 Experimenter Board,

DK-TM4C123G Evaluation Kit, and EKS-LM4F232 Evaluation

Kit from the supported board list.

Added MSP-EXP430FR6989LP to the supported board list.

Drivers Section 5.2.8

and

Section 5.5.1.5

Added information about MSP430 driver implementation for

GPIO.

Rebuilding Section 8.2 Added MSP-EXP430FR6989LP to the supported board list.

SPRUHD4I Preface Current software version number is v2.12.

Board-Specific Section 4.1 Support for MSP432 has been added.

Drivers Section 5.3 and

Section 5.7
Added Camera driver and I2S driver.

Section 5.5 GPIO driver has been modified significantly.

SPRUHD4H Preface Current software version number is v2.11.

Section 1.1 and

Section 1.8.5

CCWare support is provided in TI-RTOS for SimpleLink

Wireless MCUs.

Instrumentation

and Drivers

Section 2.4.2

and Section

5.2.1

Configuring instrumented or non-instrumented drivers has been

moved from individual driver modules to the TIRTOS module.

Debugging Section 3.1.1 A section on debugging applications by stepping through TI-

RTOS code has been added.

Board-Specific Section 4.1 Support for SimpleLink boards has been added.

Drivers Section 5.2.6

and Section

5.2.7

Information about driver implementations for SimpleLink

devices has been added.

Section 5.9 The PWM driver has been added.

Section 5.12.5

and Section

5.12.6

Added information about configuring the UART driver to use

DMA.

Rebuilding Section 8.1.4 Information about rebuilding the drivers with the debug profile

has been added.

Table A–1. Revision History

Revision Chapter Location Additions/Modifications/Deletions

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

128 Revision History SPRUHD4M—June 2016
Submit Documentation Feedback

www.ti.com

SPRUHD4F Preface Current software version number is v2.00.

About Section 1.1 TI-RTOS now has separate installers for various device

families. There is a separate TI-RTOS Getting Started Guide for

each installer.

Section 1.2 TI-RTOS has several components with TI-RTOS component

names. For example, SYS/BIOS is also called the TI-RTOS

Kernel.

Instrumentation Section 2.1 System Analyzer also includes the views available from the

Tools > RTOS Analyzer menu.

Section 2.2 and

Section 2.3.3

The configuration properties for LoggingSetup have changed.

Section 2.5 The menu commands and dialogs used to open System

Analyzer views have changed.

Board-Specific Section 4.1 TI-RTOS examples have been added for the MSP-

EXP430FR5969LP LaunchPad and EK-TM4C1294XL Evalu-

ation Kit.

Drivers Section 5.2.8 EUSCI versions of the MSP430 driver have been added.

Memory Section 9.1 Pictures of configuration settings made in XGCONF are

included to supplement the script-based statements. Also,

instructions for removing the kernel exception handler have

been added.

SPRUHD4E Preface Current software version number is v1.21.

About Section 1.1 and

Section 4.1

Added MSP-EXP430F5529 Experimenter Board.

Debugging Section 3.1 ROV also available in IAR Embedded Workbench.

Rebuilding Section 8.1.3 Added section on building TI-RTOS for the GCC code

generator.

Memory Usage Section 9.1 Two versions of the Empty example are now provided. The new

one uses minimal memory. Also added removal of HeapMem

enabling statement to description of how to disable dynamic

memory allocation.

SPRUHD4D Preface Current software version number is v1.20.

About Section 1.1 Several new boards added to the table.

Section 1.8.3 New section added for MSP430Ware.

Section 1.11 Links added for MSP430Ware, MSP430 boards, and

BoosterPacks.

Table A–1. Revision History

Revision Chapter Location Additions/Modifications/Deletions

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Revision History 129
Submit Documentation Feedback

www.ti.com

Examples Chapter 2 Details about individual examples moved to the readme files

within the example projects. Other information previously in

Chapter 2 moved to the TI-RTOS Getting Started Guide.

Instrumentation Section 2.3 to

Section 2.3.3

New section added on converting an example to perform run-

time uploading of instrumentation data.

Boards Section 4.1 Several new boards added to the table.

Drivers Section 5.2.8 New section added on Hwi objects and ISRs for MSP430

devices.

Section 5.14.1.3 New section added on USB reference modules for MSP430.

Section 5.17 to

Section 5.17.1

WiFi driver can now be configured to support calling it from

multiple threads.

Utilities -- The SysFlex module has been deprecated.

Section 6.2 to

Section 6.2.2

The UARTMon module has been added.

Rebuilding Section 8.1.1 The contents of tirtos.mak have changed.

Section 8.1.2 New section added for building TI-RTOS for IAR.

Section 8.2 New section added for rebuilding MSP430Ware libraries.

Memory Section 9.1 New section added to discuss ways to reduce the memory

footprint.

Table A–1. Revision History

Revision Chapter Location Additions/Modifications/Deletions

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

SPRUHD4M—June 2016 Index 130
Submit Documentation Feedback

Index
SPRUHD4M—June 2016

Index

A
APIs

common 42
EMAC driver 50
GPIO driver 54
I2C driver 56
LCD driver 67
SDSPI driver 71
UART driver 79
USB device and host modules 89
USBMSCHFatFs driver 83
Watchdog driver 91

assert handling 26
Available Products list 15

B
board.c files 34
build flow 32

C
C28x

support 34
Camera driver 37, 48
CC1310 Development Kit 33
CC1310 LaunchPad 33
CC1350 LaunchPad 33
CC1350 SensorTag 33
CC2650 Development Kit 34
CC2650 LaunchPad 33
CC2650 SensorTag 34
CC3200-LAUNCHXL 34
ccxml file 35
CDC device 37
COM Port 99
components 8
Concerto 34
configuration

build flow 32
configuro tool 32
controlSUITE 11

other documentation 11
CyaSSL 13

D
debugging 25
Demo examples 113
DK-TM4C129X 33
drivers 11, 37

E
EK-LM4F120XL 33
EK-TM4C123GXL 33
EK-TM4C1294XL 33
EK-TM4C129EXL 33
EMAC driver 37, 50
Empty example 113
Ethernet driver 37, 50
exception handling 26

F
F28M35H52C1 33
F28M36P63C2 33
FatFs driver 71, 83
flash drives 37, 83

G
GPIO driver 37, 52
GPIO pin

configuration 34
GUI Composer 102

H
HID device 37

I
I2C driver 37, 56
I2S driver 37, 63
instrumentation 14
instrumented libraries 22

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M

SPRUHD4M—June 2016 Index 131
Submit Documentation Feedback

www.ti.com

K
keyboard

device 89
host 89

L
LCD driver 37
LEDs

configuration 34
linker command file 35
LM4F120H5QR 33
Load logging 16
Log module 22

EMAC driver 51
GPIO driver 55
I2C driver 62
UART driver 82
USBMSCHFatFs driver 85
viewing messages 23
Watchdog driver 92, 95

logging 16
LoggingSetup module 15

M
M3 microcontroller 34
memory reduction 113
mouse

device 89, 90
host 89

MSC device 37
MSC host 83
MSP430F5529 33
MSP430FR5969 33
MSP430FR5994 33
MSP430FR6989 33
MSP432P401RLP 33
MSP-EXP430F5529LP 33
MSP-EXP430FR5969LP 33
MSP-EXP430FR5994LP 33
MSP-EXP430FR6989LP 33
MSP-EXP432P401RLP 33
MSPWare 8, 12
MWare 8, 9, 11

other documentation 11, 12

N
NDK 8, 10, 50

other documentation 10
non-instrumented libraries 22

P
Peripheral examples 113
PIN driver 37

printf() function 28
Printf-style output 26, 28
products directory 8
PWM driver 37

R
rebuilding

TI-RTOS 109
ROV tool 24, 25, 28
RTOS Analyzer

debugging with 23
RTOS Object View (ROV) 25

S
SD cards 71
SDSPI driver 37, 71
serial devices 90
simulator, debugging with 35
SPI (SSI) bus 71
SPI driver 37
SSL library 13
static configuration 32
StellarisWare 8
SYS/BIOS 8, 9

logging 16
other documentation 9

SysCallback module 28
SysMin module 28

configuration 29
SysStd module 28
System Analyzer 9, 14, 26
System module 28

configuration 29
System_printf() function 28

T
Target Configuration File 35
TI-RTOS 7
TivaWare 12
TLS library 13
TM4C123GH6PM 33
TM4C1294NCPDT 33
TM4C129ENCPDT 33
TM4C129XNCZAD 33
TMDXDOCK28M36 33
TMDXDOCKH52C1 33
TMDXDOCKH52C1.c file 34

U
UART driver 37, 79
UARTMon module 96
UIA 8, 9, 14

other documentation 9
USB controller 83

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

132 Index SPRUHD4M—June 2016
Submit Documentation Feedback

www.ti.com

USB Descriptor Tool 87, 88
USB driver 89
USBMSCHFatFs driver 37, 83

W
Watchdog driver 37, 91

APIs 91

WiFi driver 37
wolfSSL 13

X
XDCtools 8, 13

build settings 32
other documentation 13

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHD4M
http://www.ti.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and
other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service
per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such
information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty
in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each
component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products
and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services
are used. Information published by TI regarding third-party products or services does not constitute a license to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the
patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or
service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related require-
ments concerning its products, and any use of TI components in its applications, notwithstanding any applications-related infor-
mation or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and
implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen
the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its
representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s
goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety
standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of
the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended
for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use
of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for
compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case
of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303 Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

	TI-RTOS 2.20 User's Guide
	Contents
	Read This First
	About This Manual
	Notational Conventions
	Trademarks

	About TI-RTOS
	1.1 What is TI-RTOS?
	1.2 What are the TI-RTOS Components?
	1.3 SYS/BIOS: The TI-RTOS Kernel
	1.4 UIA: TI-RTOS Instrumentation
	1.5 NDK: TI-RTOS Networking
	1.6 TI-RTOS Network Services
	1.7 FatFS Module: TI-RTOS File System
	1.8 TI-RTOS Drivers and Board Initialization
	1.8.1 Drivers
	1.8.2 MWare
	1.8.3 MSPWare
	1.8.4 TivaWare
	1.8.5 C26xxWare and the CC3200 Driverlib

	1.9 XDCtools
	1.10 wolfSSL Embedded SSL Library

	Instrumentation with TI-RTOS
	2.1 Overview
	2.2 Adding Logging to a Project
	2.3 Modifying an Example to Upload Logging Data at Runtime
	2.3.1 Project Changes
	2.3.2 Code Changes
	2.3.3 Configuration Changes

	2.4 Using Log Events
	2.4.1 Adding Log Events to your Code
	2.4.2 Using Instrumented or Non-Instrumented Libraries

	2.5 Viewing the Logs
	2.5.1 Using RTOS Analyzer and System Analyzer
	2.5.2 Viewing Log Records in ROV

	Debugging TI-RTOS Applications
	3.1 Using CCS Debugging Tools
	3.1.1 Stepping Through TI-RTOS Code

	3.2 Using IAR Debugging Tools
	3.3 Generating printf Output
	3.3.1 Output with printf()
	3.3.2 Output with System_printf()

	3.4 Controlling Software Versions for Use with TI-RTOS
	3.5 Understanding the Build Flow

	Board-Specific Files
	4.1 Overview
	4.2 Board-Specific Code Files
	4.3 Linker Command Files
	4.4 Target Configuration Files

	TI-RTOS Drivers
	5.1 Overview
	5.2 Driver Framework
	5.2.1 Static Configuration
	5.2.2 Driver Object Declarations
	5.2.2.1 Driver Interface
	5.2.2.2 Driver Implementations

	5.2.3 Dynamic Configuration and Common APIs
	5.2.4 TI-RTOS Driver Implementations for Concerto Devices
	5.2.5 TI-RTOS Driver Implementations for TivaC Devices
	5.2.6 TI-RTOS Driver Implementations for CC26xx Devices
	5.2.7 TI-RTOS Driver Implementations for CC3200 Devices
	5.2.8 TI-RTOS Driver Hwis for MSP43x Devices

	5.3 Camera Driver
	5.3.1 Static Configuration
	5.3.2 Runtime Configuration
	5.3.2.1 Board-Specific Configuration
	5.3.2.2 Camera_Params Structure

	5.3.3 Camera Modes
	5.3.4 APIs
	5.3.4.1 Opening the Camera driver
	5.3.4.2 Writing Data

	5.3.5 Examples

	5.4 EMAC Driver
	5.4.1 Static Configuration
	5.4.2 Runtime Configuration
	5.4.2.1 Board-Specific Configuration
	5.4.2.2 EMAC_config Structure

	5.4.3 APIs
	5.4.4 Usage
	5.4.5 Instrumentation

	5.5 GPIO Driver
	5.5.1 Static Configuration
	5.5.1.1 GPIO_Config Structure
	5.5.1.2 GPIO_pinConfig Array
	5.5.1.3 GPIO_callbackFxn Array
	5.5.1.4 intPriority
	5.5.1.5 MSP430 GPIO Interrupts

	5.5.2 Runtime Configuration
	5.5.2.1 Board-Specific Configuration

	5.5.3 APIs
	5.5.4 Usage
	5.5.5 Instrumentation
	5.5.6 Examples

	5.6 I2C Driver
	5.6.1 Static Configuration
	5.6.2 Runtime Configuration
	5.6.2.1 Board-Specific Configuration
	5.6.2.2 I2C_config Structure

	5.6.3 APIs
	5.6.4 Usage
	5.6.4.1 I2C Parameters
	5.6.4.2 I2C Transaction
	5.6.4.3 I2C Callback Function Prototype

	5.6.5 I2C Modes
	5.6.5.1 Opening in Blocking Mode
	5.6.5.2 Opening in Callback Mode
	5.6.5.3 Specifying an I2C Bus Frequency

	5.6.6 I2C Transactions
	5.6.6.1 Write Transaction (Blocking Mode)
	5.6.6.2 Read Transaction (Blocking Mode)
	5.6.6.3 Write/Read Transaction (Blocking Mode)
	5.6.6.4 Write/Read Transaction (Callback Mode)
	5.6.6.5 Queuing Multiple I2C Transactions

	5.6.7 Instrumentation

	5.7 I2S Driver
	5.7.1 Static Configuration
	5.7.2 Runtime Configuration
	5.7.2.1 Board-Specific Configuration
	5.7.2.2 I2S_Params Structure

	5.7.3 I2S Modes
	5.7.4 APIs
	5.7.4.1 Opening the I2S driver
	5.7.4.2 Writing Data
	5.7.4.3 Reading Data

	5.8 LCD Driver
	5.8.1 Static Configuration
	5.8.2 Runtime Configuration
	5.8.2.1 LCD_config Structure

	5.8.3 APIs
	5.8.4 Usage
	5.8.5 Instrumentation

	5.9 PWM Driver
	5.9.1 Static Configuration
	5.9.2 Runtime Configuration
	5.9.2.1 Board-Specific Configuration
	5.9.2.2 PWM_config Structure

	5.9.3 APIs
	5.9.4 Usage
	5.9.4.1 PWM Parameters

	5.9.5 PWM Modes
	5.9.5.1 Opening the PWM driver

	5.9.6 Instrumentation

	5.10 SDSPI Driver
	5.10.1 Static Configuration
	5.10.2 Runtime Configuration
	5.10.2.1 Board-Specific Configuration
	5.10.2.2 SDSPI_config Structure

	5.10.3 APIs
	5.10.4 Usage
	5.10.5 Instrumentation

	5.11 SPI Driver
	5.11.1 Static Configuration
	5.11.2 Runtime Configuration
	5.11.2.1 Board-Specific Configuration
	5.11.2.2 SPI_config Structure

	5.11.3 APIs
	5.11.4 Usage
	5.11.4.1 SPI Parameters
	5.11.4.2 SPI Frame Formats, Transactions, and Data Sizes
	5.11.4.3 SPI Callback Function Prototype

	5.11.5 Callback and Blocking Modes
	5.11.5.1 Opening a SPI Driver in Blocking Mode
	5.11.5.2 Opening a SPI Driver in Callback Mode

	5.11.6 SPI Transactions
	5.11.7 Master/Slave Modes
	5.11.8 Instrumentation

	5.12 UART Driver
	5.12.1 Static Configuration
	5.12.2 Runtime Configuration
	5.12.2.1 Board-Specific Configuration
	5.12.2.2 UART_config Structure

	5.12.3 APIs
	5.12.4 Usage
	5.12.5 UART DMA Driver for TivaC Devices
	5.12.6 UART DMA Driver for SimpleLink CC32xx Devices
	5.12.7 Instrumentation
	5.12.7.1 Logging

	5.13 USBMSCHFatFs Driver
	5.13.1 Static Configuration
	5.13.2 Runtime Configuration
	5.13.2.1 Board-Specific Configuration
	5.13.2.2 USBMSCHFatFs_config Structure

	5.13.3 APIs
	5.13.4 Usage
	5.13.5 Instrumentation

	5.14 USB Reference Modules
	5.14.1 USB Reference Modules in TI-RTOS
	5.14.1.1 Reference module APIs
	5.14.1.2 USB Examples
	5.14.1.3 USB Reference Modules for MSP43x

	5.14.2 USB Reference Module Design Guidelines
	5.14.2.1 Device Mode
	5.14.2.2 Host Mode
	5.14.2.3 On-The-Go Mode

	5.15 USB Device and Host Modules
	5.16 Watchdog Driver
	5.16.1 Static Configuration
	5.16.2 Runtime Configuration
	5.16.2.1 Board-Specific Configuration
	5.16.2.2 Watchdog_config Structure

	5.16.3 APIs
	5.16.4 Usage
	5.16.5 Instrumentation

	5.17 WiFi Driver
	5.17.1 Static Configuration
	5.17.2 Runtime Configuration
	5.17.2.1 Board-Specific Configuration
	5.17.2.2 WiFi_config Structure

	5.17.3 APIs
	5.17.4 Usage
	5.17.5 Instrumentation
	5.17.5.1 Logging

	TI-RTOS Utilities
	6.1 Overview
	6.2 UARTMon Module
	6.2.1 UARTMon with CCS Tools
	6.2.2 GUI Composer

	6.3 UART Example Implementation

	Using the FatFs File System Drivers
	7.1 Overview
	7.2 FatFs and TI-RTOS
	7.3 Using FatFs
	7.3.1 Static FatFS Module Configuration
	7.3.2 Defining Drive Numbers
	7.3.3 Preparing FatFs Drivers
	7.3.4 Opening Files Using FatFs APIs
	7.3.5 Opening Files Using C I/O APIs

	7.4 Cautionary Notes

	Rebuilding TI-RTOS
	8.1 Rebuilding TI-RTOS
	8.1.1 Building TI-RTOS for CCS
	8.1.2 Building TI-RTOS for IAR
	8.1.3 Building TI-RTOS for GCC
	8.1.4 Rebuilding the TI-RTOS Drivers with the Debug Profile

	8.2 Rebuilding MSPWare's driverlib for TI-RTOS and Its Drivers
	8.3 Rebuilding Individual Components

	Memory Usage with TI-RTOS
	9.1 Memory Footprint Reduction
	9.2 Networking Stack Memory Usage

	Revision History
	Index

