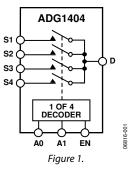


1.5 Ω On Resistance, ±15 V/12 V/±5 V, 4:1, *i*CMOS Multiplexer


Data Sheet

FEATURES

1.5 Ω on resistance 0.3 Ω on-resistance flatness 0.1 Ω on-resistance match between channels Up to 400 mA continuous current Fully specified at +12 V, ±15 V, and ±5 V No V_L supply required 3 V logic-compatible inputs Rail-to-rail operation 14-lead TSSOP and 4 mm × 4 mm, 16-lead LFCSP

FUNCTIONAL BLOCK DIAGRAM

ADG1404

APPLICATIONS

Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Audio signal routing Communication systems Relay replacement

GENERAL DESCRIPTION

The ADG1404 is a complementary metal-oxide semiconductor (CMOS) analog multiplexer, comprising four single channels designed on an *i*CMOS[®] process. *i*CMOS (industrial CMOS) is a modular manufacturing process that combines high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage devices achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The on-resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals.

*i*CMOS construction ensures ultralow power dissipation, making the device ideally suited for portable and battery-powered instruments.

The ADG1404 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines, A0, A1, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

- 1. 2.6 Ω maximum on resistance over temperature.
- 2. Minimum distortion.
- 3. Ultralow power dissipation: $<0.03 \mu$ W.
- 4. 14-lead TSSOP and 16-lead, 4 mm × 4 mm LFCSP package.

Rev. B

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1	L
Applications1	L
Functional Block Diagram1	L
General Description 1	L
Product Highlights1	L
Revision History 2	2
Specifications	3
15 V Dual Supply	3
12 V Single Supply 4	ł
5 V Dual Supply5	;

REVISION HISTORY

9/2016—Rev. A to Rev. B

Changes to Figure 3	8
Updated Outline Dimensions	6
Changes to Ordering Guide 1	6

3/2009—Rev. 0 to Rev. A

Changes to Power Requirements, IDD, Digital Inputs = 5 V
Parameter, Table 1
Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V
Parameter, Table 2
Updated Outline Dimensions

7/2008—Revision 0: Initial Version

Continuous Current, S or D	6
Absolute Maximum Ratings	7
ESD Caution	7
Pin Configurations and Function Descriptions	8
Truth Table	8
Typical Performance Characteristics	9
Terminology	
Test Circuits	13
Outline Dimensions	
Ordering Guide	

SPECIFICATIONS 15 V DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

25°C 1.5 1.8 0.1 0.18 0.3 0.36	-40°C to +85°C 2.3 0.19	-40°C to +125°C V _{DD} to V _{SS} 2.6 0.21	Unit V Ω typ Ω max Ω typ	Vs = $\pm 10 \text{ V}$, Is = -10 mA ; see Figure 22 VDD = $+13.5 \text{ V}$, Vss = -13.5 V Vs = $\pm 10 \text{ V}$, Is = -10 mA
1.8 0.1 0.18 0.3	0.19	2.6	Ω typ Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
1.8 0.1 0.18 0.3	0.19	2.6	Ω typ Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
1.8 0.1 0.18 0.3	0.19		Ωmax	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
0.1 0.18 0.3	0.19			
0.18 0.3		0.21	Ωtyp	$V_{s} = \pm 10 V$, $I_{s} = -10 mA$
0.3		0.21		
0.3		0.21		
			Ωmax	
0.36			Ωtyp	$V_{s} = \pm 10 V$, $I_{s} = -10 mA$
	0.4	0.45	Ωmax	
				$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
±0.03			nA typ	$V_s = \pm 10 V$, $V_s = \mp 10 V$; see Figure 23
+0.55	+2	+12.5	nA may	$v_5 = \pm 10 v_7 v_5 = 110 v_7 see Figure 25$
	±2	12.5	-	
				$V_{\text{S}}=\pm10$ V, $V_{\text{s}}=\mp10$ V; see Figure 23
	±4	±30	-	
			nA typ	$V_S = V_D = \pm 10 V$; see Figure 24
±2	±4	±30	nA max	
		2.0	V min	
		0.8	V max	
0.005			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
		±0.1	μA max	
3.5			pF typ	
150			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
180	220	250	ns max	$V_s = +10 V$; see Figure 29
100			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
120	145	165	ns max	$V_s = +10 V$; see Figure 31
110			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
135	165	185	ns max	$V_s = +10 V$; see Figure 31
35			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		10	ns min	$V_{S1} = V_{S2} = 10 V$; see Figure 30
-20			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
70			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 25
82			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
0.011			% typ	$R_L = 110 \Omega$, 10 V p-p, f = 20 Hz to 20 kHz; see Figure 28
55			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
-0.17			<i></i>	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
23			pF typ	$f = 1 MHz, V_s = 0 V$
90				$f = 1 MHz, V_s = 0 V$
170				$f = 1 MHz, V_s = 0 V$
			. ,.	$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
0.001			μA typ	Digital inputs = $0 \text{ V or } V_{DD}$
		1		
170				Digital inputs = 5 V
170		285		
0.001		205	-	Digital inputs = $0 \text{ V or } V_{DD}$
0.001		1		
			-	GND = 0 V
	3.5 150 180 100 120 110 135 35 -20 70 82 0.011 55 -0.17 23 90 170	±0.04 ±4 ±0.1 ±4 ±2 ±4 0.005 20 150 220 180 220 100 145 110 165 35 165 -20 70 70 82 0.011 145 55 -0.17 90 170 170 100 170 100	± 0.04 ± 4 ± 30 ± 0.55 ± 4 ± 30 ± 2 ± 4 ± 30 ± 2 ± 4 ± 30 2.0 0.8 ± 0.1 3.5 ± 0.1 150 180 220 120 145 165 165 10 165 10 165 10 -20 70 165 10 10 -20 70 10 70 82 0.011 110 55 -0.177 23 90 110 170 11 170 11	± 0.04 ± 4 ± 30 $nA typ$ ± 0.15 ± 4 ± 30 $nA max$ ± 0.1 ± 4 ± 30 $nA max$ ± 2 ± 4 ± 30 $NA max$ ± 2 ± 4 ± 30 $NA max$ ± 2 ± 4 ± 30 $V min$ 120 L 2.0 $V max$ 0.005 $ \mu A typ$ 150 220 250 $ns typ$ 180 220 250 $ns max$ 100 145 165 $ns max$ 101 $ns typ$ $ns typ$ 135 165 185 $ns max$ 35 165 185 $ns max$ 70 4 4 $9C$ 20 10 $ns typ$ 70 4 4 70 1 4 170 11 4 170 11 4 170 11 4 11 4 4 11 4 4 4 4 11 4 4 4 11 4 4 4 11 4 4 4 4 4 4 4 4 4 11 4 4 4 4 4 18 4 4 4 4 4 4 4 4 4 4 4 4 4 <

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (R _{ON})	2.8			Ωtyp	$V_s = 0 V$ to $10 V$, $I_s = -10 mA$; see Figure 22
	3.5	4.3	4.8	Ωmax	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On-Resistance Match	0.13			Ωtyp	$V_{s} = 0 V$ to 10 V, $I_{s} = -10 mA$
Between Channels (ΔR_{ON})					
	0.21	0.23	0.25	Ωmax	
On-Resistance Flatness (R _{FLAT(ON)})	0.6			Ωtyp	$V_{s} = 0V$ to 10 V, $I_{s} = -10$ mA
	1.1	1.2	1.3	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_s = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V};$ see Figure 23
	±0.55	±2	±12.5	nA max	
Drain Off Leakage, I _D (Off)	±0.03			nA typ	$V_s = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 23}$
	±0.55	±4	±30	nA max	
Channel On Leakage, I _D , I _s (On)	±0.1			nA typ	$V_s = V_D = 1 V$ or 10 V; see Figure 24
	±1.5	±4	±30	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	µA max	
Digital Input Capacitance, C _№	3.5			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	230			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	300	375	430	ns max	V _s = 8 V; see Figure 29
t _{on} (EN)	180			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	240	295	335	ns max	V _s = 8 V; see Figure 31
t _{off} (EN)	115			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	160	190	220	ns max	V _s = 8 V; see Figure 31
Break-Before-Make Time Delay, t	100			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			10	ns min	$V_{s1} = V_{s2} = 8 V$; see Figure 30
Charge Injection	30			pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
Off Isolation	80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 25
Channel-to-Channel Crosstalk	82			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
–3 dB Bandwidth	35			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
Insertion Loss	-0.3			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
C _s (Off)	39			pF typ	$f = 1 \text{ MHz}, V_s = 6 \text{ V}$
$C_{\rm D}$ (Off)	150			pF typ	$f = 1 \text{ MHz}, V_s = 6 \text{ V}$
C_D, C_S (On)	217			pF typ	$f = 1 MHz, V_s = 6 V$
POWER REQUIREMENTS			1	r: 78	V _{DD} = 13.2 V
IDD	0.001			μA typ	Digital inputs = 0 V or V_{DD}
•55	0.001		1	μA max	
l _{DD}	170		·	µA typ	Digital inputs = 5 V
00			205	μA max	
			285	IIA may	

5 V DUAL SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = –5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance (R _{ON})	3.3			Ωtyp	$V_s = \pm 4.5 V$, $I_s = -10 mA$; see Figure 22
	4	4.9	5.4	Ωmax	$V_{DD} = +4.5 \text{ V}, \text{ V}_{SS} = -4.5 \text{ V}$
On-Resistance Match	0.13			Ωtyp	$V_s = \pm 4.5 V$, $I_s = -10 mA$
Between Channels (ΔR _{on})					
	0.22	0.23	0.25	Ωmax	
On-Resistance Flatness (R _{FLAT(ON)})	0.9			Ωtyp	$V_s = \pm 4.5 V$, $I_s = -10 mA$
	1.1	1.24	1.31	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, \text{ V}_{SS} = -5.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_{s} = \pm 4.5 V, V_{D} = \mp 4.5 V;$ see Figure 23
	±0.2	±1	±12.5	nA max	$v_{s} = \pm 4.5 v, v_{D} = \pm 4.5 v, see Figure 25$
		ΞI	±12.5	-	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_s = \pm 4.5 \text{ V}, V_D = \mp 4.5 \text{ V}; \text{ see Figure 23}$
	±0.25	±1.2	±15	nA max	
Channel On Leakage, I _D , I _s (On)	±0.05			nA typ	$V_s = V_D = \pm 4.5 V$; see Figure 24
	±0.25	±1.5	±20	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, IINL or IINH	0.001			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	µA max	
Digital Input Capacitance, C _№	35			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	340			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	470	560	615	ns max	$V_{\rm s} = 3 V;$ Figure 29
t _{on} (EN)	260		0.0	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	355	430	480	ns max	$V_{\rm s} = 3 V;$ Figure 31
t _{off} (EN)	220	150	100	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	315	365	400	ns max	$V_s = 3 V$; Figure 31
Break-Before-Make Time Delay, t	100	505	400	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	100		50	ns min	$V_{s1} = V_{s2} = 3 V$; see Figure 30
Charge Injection	20		50	-	$V_{s1} = V_{s2} = 3$ V, see Figure 30 $V_s = 0$ V, $R_s = 0$ Ω , $C_L = 1$ nF; see Figure 32
Charge Injection	30			pC typ	
Off Isolation	80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 25
Channel-to-Channel Crosstalk	82			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 27
–3 dB Bandwidth	40			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 26
Insertion Loss	0.27			dB typ	$R_L = 50 \Omega_2$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$; see Figure 26
Total Harmonic Distortion + Noise	0.27			% typ	$R_L = 30 \Omega_2, C_L = 3 \beta_1, T = 1 \text{ with } 2, \text{ see Figure 20}$ $R_L = 110 \Omega, 2.5 \text{ V p-p, } f = 20 \text{ Hz to } 20 \text{ kHz;}$
					see Figure 28
Cs (Off)	33			pF typ	$V_s = 0 V$, $f = 1 MHz$
C _D (Off)	128			pF typ	$V_s = 0 V, f = 1 MHz$
C _D , C _s (On)	210			pF typ	$V_{s} = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = 5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = 0 V, 5 V, or V_{DD}
			1	μA max	
Iss	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			1	μA max	
V _{DD} /V _{ss}			±4.5/±16.5	V min/max	GND = 0 V

CONTINUOUS CURRENT, S OR D

Table 4.

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, S or D ¹					
15 V Dual Supply					$V_{DD} = +13.5 \text{ V}, \text{ V}_{SS} = -13.5 \text{ V}$
ADG1404 TSSOP	350	220	100	mA max	
ADG1404 LFCSP	450	300	140	mA max	
12 V Single Supply					$V_{DD} = 10.8 V, V_{SS} = 0 V$
ADG1404 TSSOP	300	220	100	mA max	
ADG1404 LFCSP	400	300	140	mA max	
5 V Dual Supply					$V_{DD} = +4.5 V$, $V_{SS} = -4.5 V$
ADG1404 TSSOP	300	220	100	mA max	
ADG1404 LFCSP	400	300	140	mA max	

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

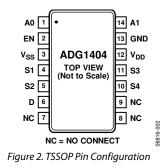
Table 5.

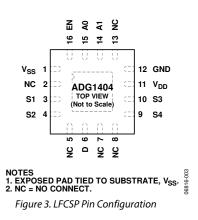
Parameter	Rating		
V _{DD} to V _{SS}	35 V		
V _{DD} to GND	–0.3 V to +25 V		
Vss to GND	+0.3 V to -25 V		
Analog Inputs ¹	$V_{SS} - 0.3 V$ to $V_{DD} + 0.3 V$ or 30 mA, whichever occurs first		
Digital Inputs	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first		
Peak Current, S or D	600 mA (pulsed at 1 ms, 10% duty cycle maximum)		
Continuous Current, S or D ²	Data + 15%		
Operating Temperature Range			
Automotive (Y Version)	-40°C to +125°C		
Storage Temperature Range	–65°C to +150°C		
Junction Temperature	150°C		
14-Lead TSSOP, θ _{JA} Thermal Impedance (4-layer board)	112°C/W		
16-Lead LFCSP, θ _{JA} Thermal Impedance	30.4°C/W		
Reflow Soldering Peak Temperature, Pb free	260(+0/-5)°C		

¹ Overvoltages at IN, S, and D are clamped by internal diodes. Current must be limited to the maximum ratings given.

² See data given in Table 4.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.


Only one absolute maximum rating can be applied at any one time.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 6. Pin Function Descriptions

Pin No. TSSOP LFCSP Mnemonic					
		Mnemonic	Description		
1	15	A0	Logic Control Input.		
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.		
3	1	Vss	Most Negative Power Supply Potential.		
4	3	S1	Source Terminal. Can be an input or an output.		
5	4	S2	Source Terminal. Can be an input or an output.		
6	6	D	Drain Terminal. Can be an input or an output.		
7 to 9	2, 5, 7, 8, 13	NC	No Connection.		
10	9	S4	Source Terminal. Can be an input or an output.		
11	10	S3	Source Terminal. Can be an input or an output.		
12	11	V _{DD}	Most Positive Power Supply Potential.		
13	12	GND	Ground (0 V) Reference.		
14	14	A1	Logic Control Input.		

TRUTH TABLE

Table 7. ΕN A1 A0 **S1 S2 S**3 **S4** 0 Х Х Off Off Off Off 1 0 0 Off Off Off On 1 0 1 Off On Off Off 0 1 1 Off Off On Off 1 1 1 Off Off Off On

TYPICAL PERFORMANCE CHARACTERISTICS

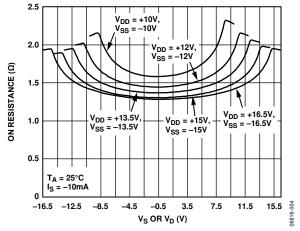


Figure 4. On Resistance as a Function of V_D (V_S), Dual Supply

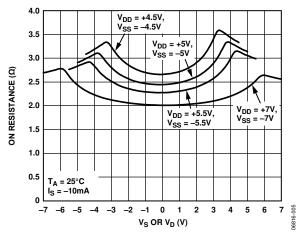


Figure 5. On Resistance as a Function of V_D (V_S), Dual Supply

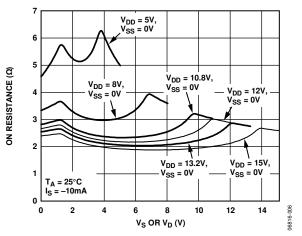


Figure 6. On Resistance as a Function of V_D (V_S), Single Supply

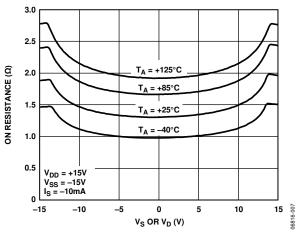


Figure 7. On Resistance as a Function of V_D (V_s) for Different Temperatures, 15 V Dual Supply

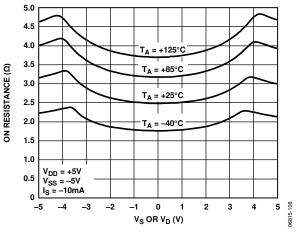


Figure 8. On Resistance as a Function of V_D (V_s) for Different Temperatures, 5 V Dual Supply

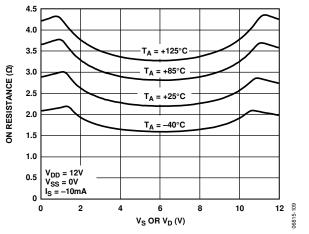


Figure 9. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Single Supply

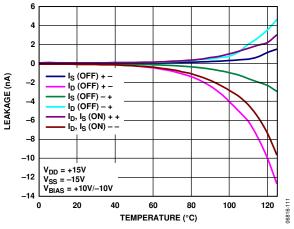


Figure 10. Leakage Currents as a Function of Temperature, 15 V Dual Supply

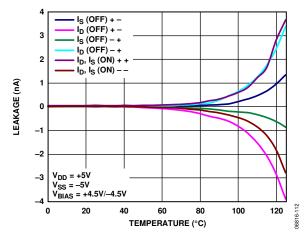


Figure 11. Leakage Currents as a Function of Temperature, 5 V Dual Supply

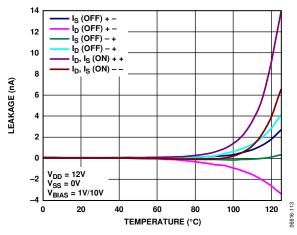
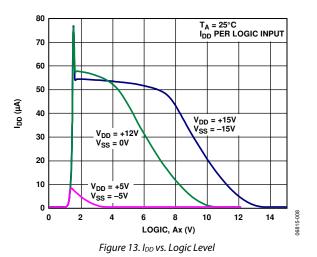
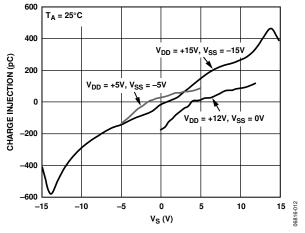
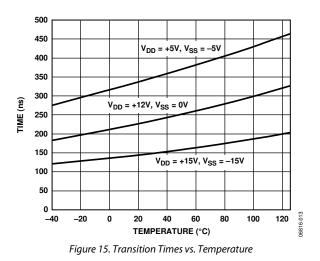
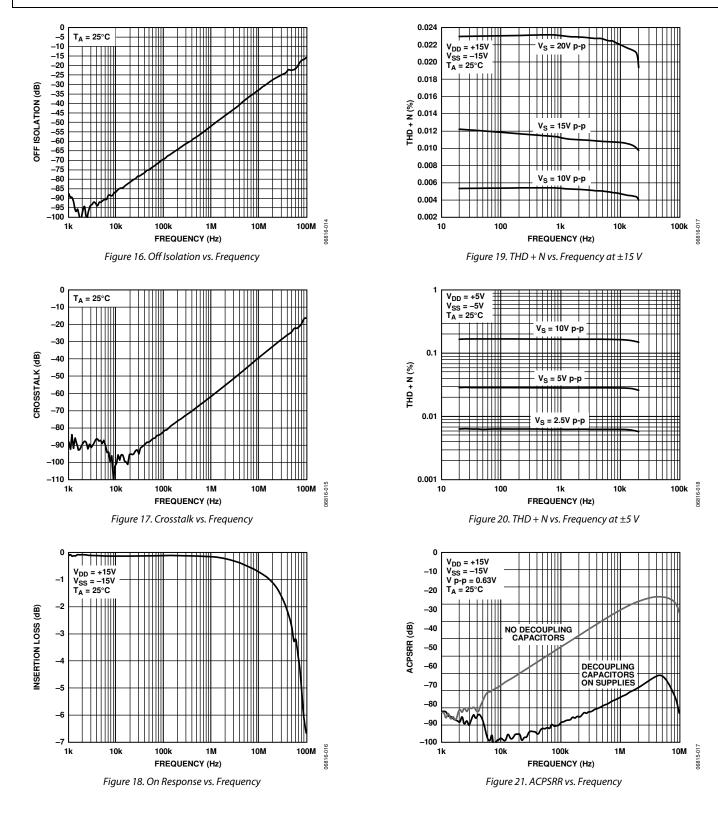





Figure 12. Leakage Currents as a Function of Temperature, 12 V Single Supply



Data Sheet

ADG1404

TERMINOLOGY

IDD

The positive supply current.

Iss

The negative supply current.

V_D (**V**_S) The analog voltage on Terminal D and Terminal S.

RON

The ohmic resistance between Terminal D and Terminal S.

R_{FLAT(ON)}

Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

 $I_{\rm D}$ (Off) The drain leakage current with the switch off.

I_D, I_s (On) The channel leakage current with the switch on.

V_{INL} The maximum input voltage for Logic 0.

 $V_{\mbox{\scriptsize INH}}$ The minimum input voltage for Logic 1.

 $I_{\rm INL} \left(I_{\rm INH} \right)$ The input current of the digital input.

Cs (Off)

The off switch source capacitance, which is measured with reference to ground.

C_D (Off)

The off switch drain capacitance, which is measured with reference to ground.

C_D , C_S (On)

The on switch capacitance, which is measured with reference to ground.

CIN

The digital input capacitance.

tTRANSITION

The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another.

ton (EN)

The delay between applying the digital control input and the output switching on. See Figure 29, Test Circuit 4.

t_{OFF} (EN) The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

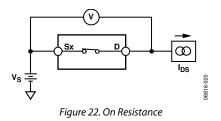
A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

Insertion Loss The loss due to the on resistance of the switch.


THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

ACPSRR (AC Power Supply Rejection Ratio)

The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

TEST CIRCUITS

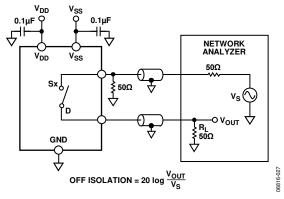
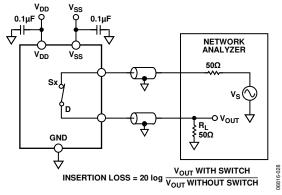
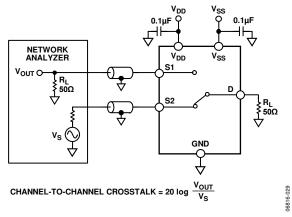
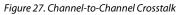
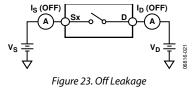
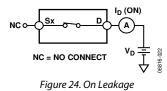
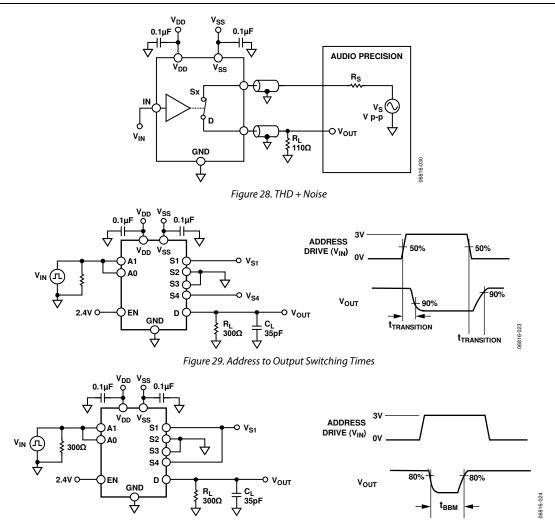
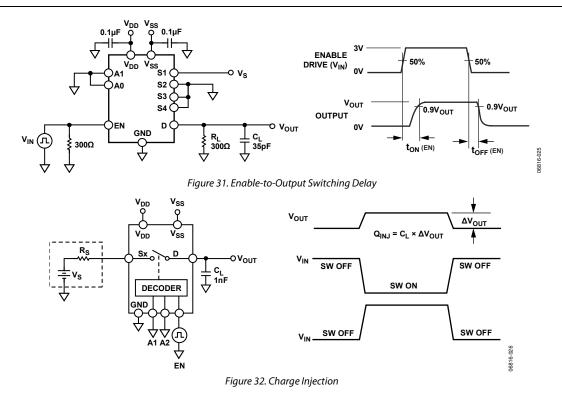
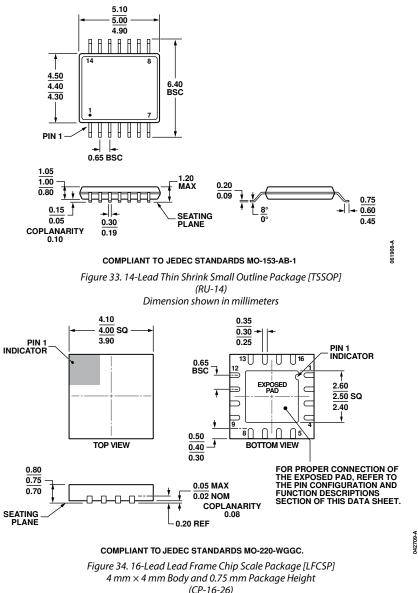


Figure 25. Off Isolation


Figure 26. Bandwidth





OUTLINE DIMENSIONS

4 mm × 4 mm body and 0.75 mm Package Heigi (CP-16-26) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG1404YRUZ	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1404YRUZ-REEL7	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG1404YCPZ-REEL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1404YCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26

 1 Z = RoHS Compliant Part.

©2008–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06841-0-9/16(B)

www.analog.com

Rev. B | Page 16 of 16