

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

74AHC241; 74AHCT241

Octal buffer/line driver; 3-state
Rev. 01 — 11 January 2010

Product data sheet

General description 1.

The 74AHC241 and 74AHCT241 are 8-bit buffer/line drivers with 3-state outputs. These devices can be used as two 4-bit buffers or one 8-bit buffer. They feature two output enables (10E and 20E), each controlling four of the 3-state outputs. A HIGH on 10E or LOW on 2OE causes the associated outputs to assume a high-impedance OFF-state. Inputs are over voltage tolerant. This feature allows the use of these devices as translators in mixed voltage environments.

2. **Features**

- Balanced propagation delays
- All inputs have a Schmitt-trigger action
- Inputs accepts voltages higher than V_{CC}
- For 74AHC241 only: operates with CMOS input levels
- For 74AHCT241 only: operates with TTL input levels
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - CDM JESD22-C101D exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

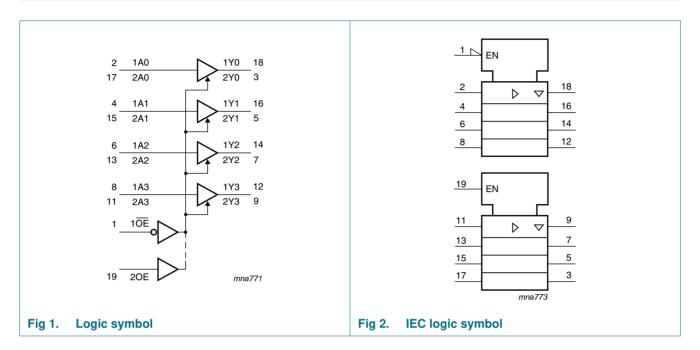
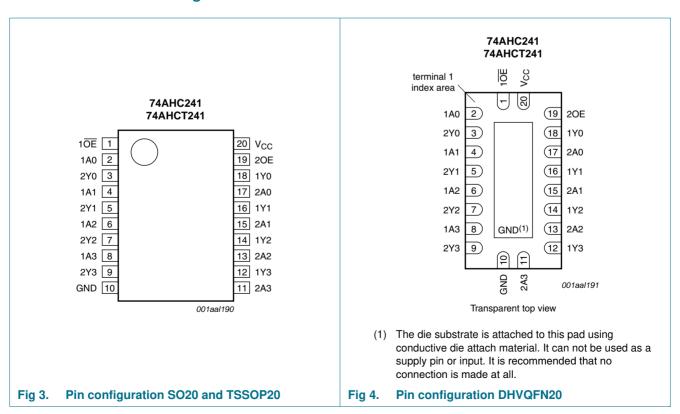

Ordering information 3.

Table 1. **Ordering information**

Type number	Package									
	Temperature range	Name	Description	Version						
74AHC241D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads;	SOT163-1						
74AHCT241D		body width 7.5 mm								
74AHC241PW	-40 °C to +125 °C TSSOP20		plastic thin shrink small outline package; 20 leads;	SOT360-1						
74AHCT241PW			body width 4.4 mm							
74AHC241BQ	–40 °C to +125 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced	SOT764-1						
74AHCT241BQ			very thin quad flat package; no leads; 20 terminals; body 2.5 \times 4.5 \times 0.85 mm							



4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1 OE	1	output enable input (active LOW)
20E	19	output enable input (active HIGH)
1A0, 1A1, 1A2, 1A3	2, 4, 6, 8	data input
2A0, 2A1, 2A2, 2A3	17, 15, 13, 11	data input
1Y0, 1Y1, 1Y2, 1Y3	18, 16, 14, 12	data output
2Y0, 2Y1, 2Y2, 2Y3	3, 5, 7, 9	data output
GND	10	ground (0 V)
V _{CC}	20	power supply

6. Functional description

Table 3. Function table[1]

Input		Output	Input		Output
1OE	1An	1Yn	20E	2An	2Yn
L	L	L	Н	L	L
L	Н	Н	Н	Н	Н
Н	Χ	Z	L	Χ	Z

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_1 < -0.5 V$	<u>[1]</u> –20	-	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> _	±20	mA
lo	output current	$V_{O} = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$	-	±25	mA
I _{CC}	supply current		-	75	mA
I_{GND}	ground current		−75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2] _	500	mW

^[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^[2] For SO20 package: above 70 °C the value of P_{tot} derates linearly with 8.0 mW/K. For TSSOP20 package: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K. For DHVQFN20 package: above 60 °C the value of P_{tot} derates linearly with 4.5 mW/K.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
74AHC24	1					
V _{CC}	supply voltage		2.0	5.0	5.5	V
V_{I}	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	V_{CC} = 3.3 V \pm 0.3 V	-	-	100	ns/V
		V_{CC} = 5 V \pm 0.5 V	-	-	20	ns/V
74AHCT2	41					
V _{CC}	supply voltage		4.5	5.0	5.5	V
V_{I}	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
Δt/ΔV	input transition rise and fall rate	V_{CC} = 5 V \pm 0.5 V	-	-	20	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C 1	to +85 °C	-40 °C t	o +125 °C	Unit
74AHC241 V _{IH} HIC inp			Min	Тур	Max	Min	Max	Min	Max	
74AHC2	41				'	'				
V_{IH}	HIGH-level	$V_{CC} = 2.0 \text{ V}$	1.5	-	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 3.0 V	2.1	-	-	2.1	-	2.1	-	V
		V _{CC} = 5.5 V	3.85	-	-	3.85	-	3.85	-	V
V_{IL}	LOW-level	V _{CC} = 2.0 V	-	-	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 3.0 V	-	-	0.9	-	0.9	-	0.9	V
		V _{CC} = 5.5 V	-	-	1.65	-	1.65	-	1.65	V
V_{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_{O} = -50 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -50 \mu A; V_{CC} = 3.0 V$	2.9	3.0	-	2.9	-	2.9	-	V
		$I_O = -50 \mu A$; $V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
		$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.80	-	3.70	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = 50 \mu A; V_{CC} = 2.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 3.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
	$\begin{tabular}{ll} \begin{tabular}{ll} \beg$	$I_{O} = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V

Table 6. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C	to +85 °C	-40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
l _l	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	-	0.1	-	1.0	-	2.0	μА
l _{oz}	OFF-state output current	$V_{I} = V_{IH}$ or V_{IL} ; $V_{O} = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.25	-	±2.5	-	±10.0	μА
I _{CC}	supply current	V_{I} = V_{CC} or GND; I_{O} = 0 A; V_{CC} = 5.5 V	-	-	4.0	-	40	-	80	μΑ
Cı	input capacitance	$V_I = V_{CC}$ or GND	-	3	10	-	10	-	10	pF
Co	output capacitance		-	4	-	-	-	-	-	pF
74AHCT	241									
V_{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	2.0	-	V
V_{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_O = -50 \mu A$	4.4	4.5	-	4.4	-	4.4	-	٧
		$I_{O} = -8.0 \text{ mA}$	3.94	-	-	3.80	-	3.70	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	$I_O = 50 \mu A$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 8.0 \text{ mA}$	-	-	0.36	-	0.44	-	0.55	V
l _l	input leakage current	$V_I = 5.5 \text{ V or GND};$ $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	0.1	-	1.0	-	2.0	μА
l _{OZ}	OFF-state output current	$\begin{split} &V_{I}=V_{IH} \text{ or } V_{IL};\\ &V_{O}=V_{CC} \text{ or GND per input}\\ &\text{pin; other inputs at}\\ &V_{CC} \text{ or GND; } I_{O}=0 \text{ A;}\\ &V_{CC}=5.5 \text{ V} \end{split}$	-	-	±0.25	-	±2.5	-	±10.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	4.0	-	40	-	80	μА
Δl _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V};$ other pins at V_{CC} or GND; $I_O = 0 \text{ A}; V_{CC} = 4.5 \text{ V}$ to 5.5 V	-	-	1.35	-	1.5	-	1.5	mA
Cı	input capacitance	$V_I = V_{CC}$ or GND	-	3	10	-	10	-	10	pF
Co	output capacitance		-	4	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8.

Symbol	Parameter	Conditions			25 °C		-4	0 °C to +	125 °C	Unit
				Min	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	_
74AHC2	41									
t _{pd}	propagation	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 50 \text{ pF}$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 15 \text{ pF}$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 50 \text{ pF}$ $2\text{OE to } 2\text{Yn; see } \frac{\text{Figure } 7}{\text{V_{CC}}} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 15 \text{ pF}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 50 \text{ pF}$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 15 \text{ pF}$ $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 50 \text{ pF}$ $1\overline{\text{OE}} \text{ to } 1\text{Yn; see } \frac{\text{Figure } 6}{\text{V_{CC}}} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 15 \text{ pF}$ $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 50 \text{ pF}$	[2]							
	delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 15 \text{ pF}$		-	4.5	8.4	1.0	9.7	11.5	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 50 \text{ pF}$		-	6.5	12.2	1.0	14.5	16.9	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; C_L = 15 \text{ pF}$		-	3.2	5.4	1.0	6.2	7.8	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; C_L = 50 \text{ pF}$		-	3.2	7.9	1.0	9.2	11.2	ns
t _{en}	enable time	1OE to 1Yn; see Figure 6	[2]							
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 15 \text{ pF}$		-	8.9	10.4	1.0	12.2	14.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 50 \text{ pF}$		-	5.5	14.8	1.0	17.8	19.6	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; C_L = 15 \text{ pF}$		-	6.1	6.6	1.0	7.6	9.1	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; C_L = 50 \text{ pF}$		-	3.9	9.4	1.0	11.0	12.2	ns
		2OE to 2Yn; see Figure 7	[2]							
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; C_L = 15 \text{ pF}$		-	6.5	10.4	1.0	12.2	14.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; C_L = 50 \text{ pF}$		-	5.6	14.8	1.0	17.8	19.6	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; C_L = 15 \text{ pF}$		-	3.2	6.6	1.0	7.6	9.1	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; C_L = 50 \text{ pF}$		-	4.0	9.4	1.0	11.0	12.2	ns
t _{dis}	disable time	1OE to 1Yn; see Figure 6	[2]							
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; C_L = 15 \text{ pF}$		-	5.1	10.2	1.0	11.8	13.3	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; C_L = 50 \text{ pF}$		-	7.2	14.4	1.0	15.8	19.2	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; C_L = 15 \text{ pF}$		-	3.6	7.3	1.0	8.2	9.2	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; C_L = 50 \text{ pF}$		-	5.1	9.9	1.0	10.8	13.0	ns
		2OE to 2Yn; see Figure 7	[2]							
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; C_L = 15 \text{ pF}$		-	5.0	10.2	1.0	11.8	13.3	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}; C_L = 50 \text{ pF}$		-	7.1	14.4	1.0	15.8	19.2	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; C_L = 15 \text{ pF}$		-	3.6	7.3	1.0	8.2	9.2	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}; C_L = 50 \text{ pF}$		-	5.1	9.9	1.0	10.8	13.0	ns
C_{PD}	power dissipation capacitance	V_{I} = GND to V_{CC} ; C_{L} = 50 pF; f_{i} = 1 MHz	[3]	-	9	-	-	-	-	pF
74AHCT	241									
t _{pd}	propagation	nAn to nYn; see Figure 5	[2]							
	delay	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 15 \text{ pF}$		-	3.5	5.7	1.0	6.5	7.9	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 50 \text{ pF}$		-	5.1	7.9	1.0	9.2	11.2	ns

Table 7. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8.

t _{en} e	Parameter	Conditions		25 °C			-4	0 °C to +1	25 °C	Unit
				Min	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	
t _{en}	enable time	1OE to 1Yn; see Figure 6	[2]							
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 15 \text{ pF}$		-	3.7	6.6	1.0	7.8	9.2	ns
		V_{CC} = 4.5 V to 5.5 V; C_L = 50 pF		-	5.4	9.5	1.0	11.1	12.4	ns
		2OE to 2Yn; see Figure 7	[2]							
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 15 \text{ pF}$		-	3.7	6.6	1.0	7.8	9.2	ns
		V_{CC} = 4.5 V to 5.5 V; C_L = 50 pF		-	5.4	9.5	1.0	11.1	12.4	ns
t _{dis}	disable time	1OE to 1Yn; see Figure 6	[2]							
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 15 \text{ pF}$		-	4.8	7.8	1.0	8.8	9.7	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 50 \text{ pF}$		-	7.1	10.5	1.0	11.4	13.5	ns
		2OE to 2Yn; see Figure 7	[2]							
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 15 \text{ pF}$		-	4.8	7.8	1.0	8.8	9.7	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V; } C_L = 50 \text{ pF}$		-	7.1	10.5	1.0	11.4	13.5	ns
C_{PD}	power dissipation capacitance	V_I = GND to V_{CC} ; C_L = 50 pF; f_i = 1 MHz	[3]	-	9	-	-	-	-	pF

- [1] Typical values are measured at nominal supply voltage ($V_{CC} = 3.3 \text{ V}$ and $V_{CC} = 5.0 \text{ V}$).
- [2] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{en} is the same as t_{PZH} and t_{PZL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- [3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

11. Waveforms

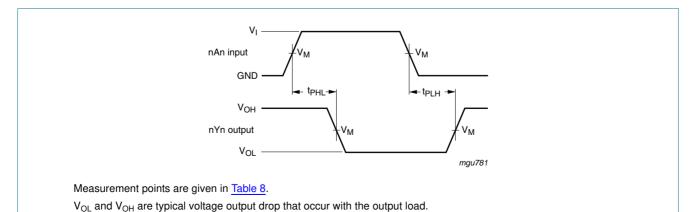


Fig 5. Propagation delay input (nAn) to output (nYn)

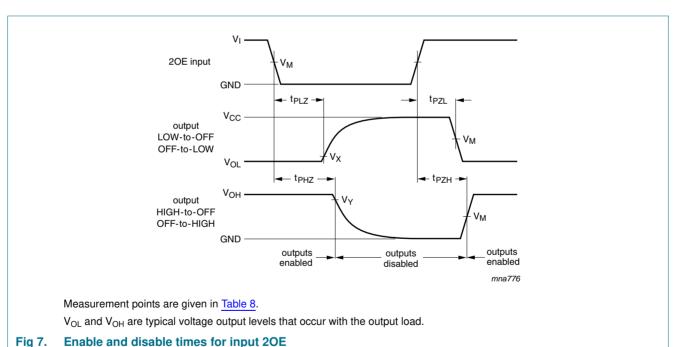
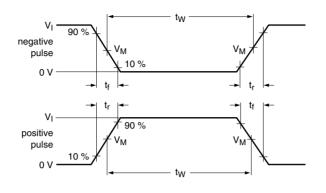
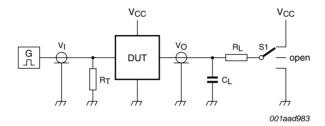




Table 8. Measurement points

Туре	Input	Output		
	V _M	V _M	V _X	V _Y
74AHC241	0.5V _{CC}	0.5V _{CC}	$V_{OL} + 0.3 V$	$V_{OH}-0.3\ V$
74AHCT241	1.5 V	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} – 0.3 V

Test data is given in Table 9.

Definitions test circuit:

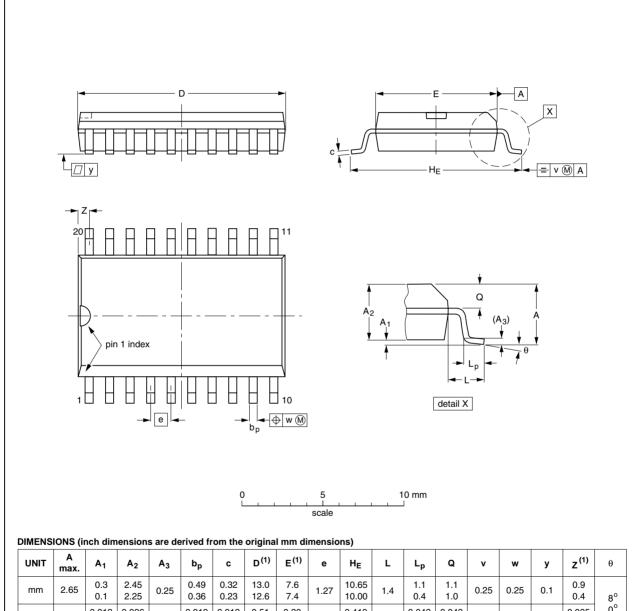
 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

R_L = Load resistance.

S1 = Test selection switch.

Fig 8. Load circuitry for switching times


Table 9. Test data

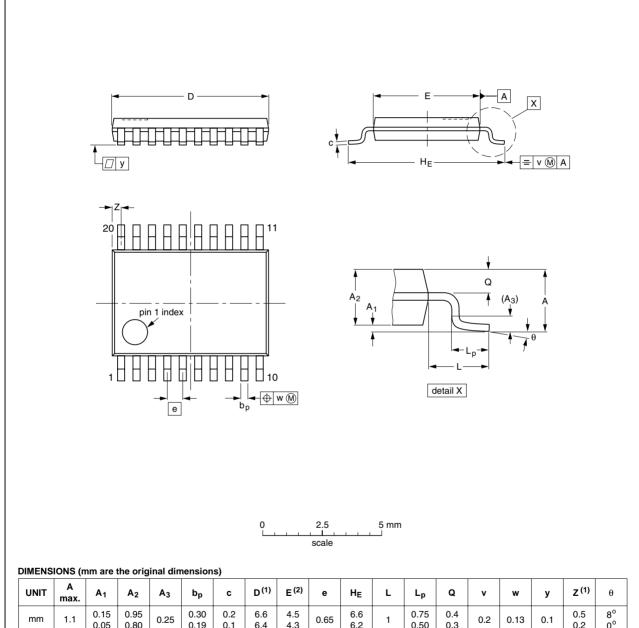
Туре	Input		Load		S1 position		
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74AHC241	V_{CC}	3.0 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}
74AHCT241	3.0 V	3.0 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

12. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

SOT163-1

U	NIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
n	nm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
ind	ches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°


1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT163-1	075E04	MS-013				99-12-27 03-02-19

Package outline SOT163-1 (SO20)

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT360-1		MO-153				99-12-27 03-02-19

Fig 10. Package outline SOT360-1 (TSSOP20)

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

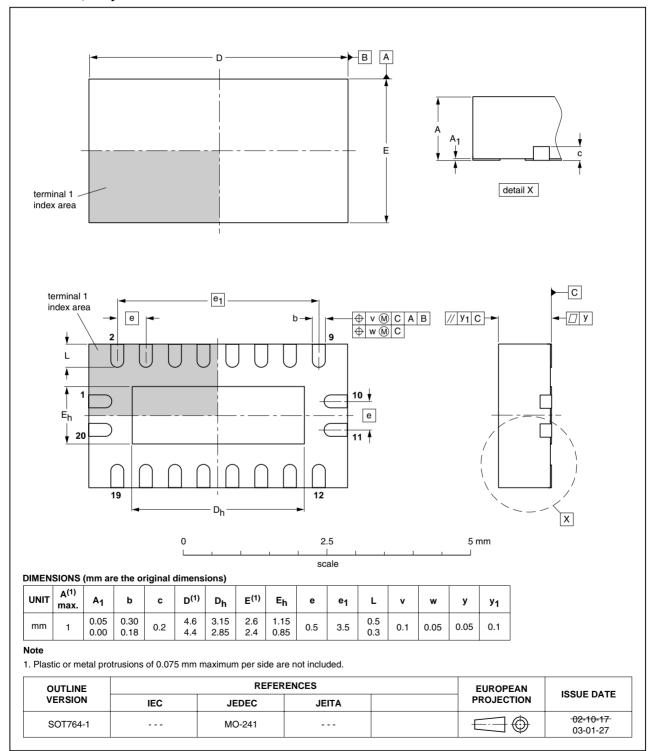


Fig 11. Package outline SOT764-1 (DHVQFN20)

9 NXP B.V. 2010. All rights reserved.

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charge Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AHC_AHCT241_1	20100111	Product data sheet	-	-

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

17. Contents

1	General description 1
2	Features
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 2
5.1	Pinning
5.2	Pin description
6	Functional description 3
7	Limiting values 3
8	Recommended operating conditions 4
9	Static characteristics 4
10	Dynamic characteristics 6
11	Waveforms
12	Package outline
13	Abbreviations
14	Revision history
15	Legal information14
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks14
16	Contact information
17	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

Document identifier: 74AHC_AHCT241_1