General Description

Applications

The MAX7457 4-channel video switch is ideal for antialiasing and DAC-smoothing video applications or wherever analog video is reconstructed from a digital data stream such as cable/satellite/terrestrial set-top boxes (STBs), DVD players, hard disk recorders (HDRs), and personal video recorders (PVRs). The MAX7457 filters and buffers CVBS and RGB video signals, making it ideal for dual SCART (peritelevision) STBs with an auxiliary CVBS input. The MAX7457 operates from a single +5V supply and has a flat passband out to 5MHz with a stopband attenuation of 43dB at 27MHz, making it ideal for NTSC, PAL, and standard-definition digital TV (SDTV) video systems.

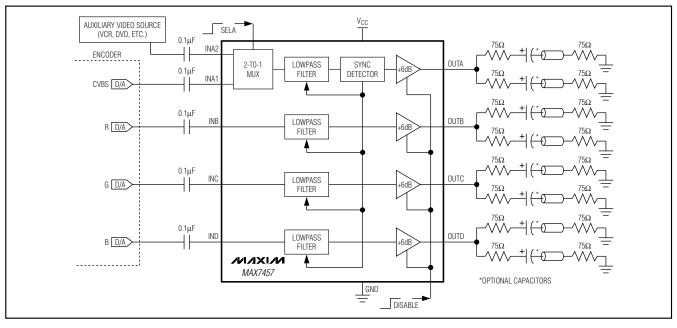
The MAX7457 output buffers have a fixed gain of +6dB and are capable of driving two standard 150 Ω video loads. The channel for CVBS video has high-frequency boost circuitry that enhances picture sharpness with up to +1.2dB of gain boost without degradation in the stopband. The video output drivers can be disabled by an external control input.

The MAX7457 is available in a 16-pin, 5mm x 5mm x 0.8mm TQFN package, and is specified over the extended (-40°C to $+85^{\circ}$ C) temperature range.

STBs/HDRs DVD Players Game Consoles Digital VCRs Desktop Video Editors

_Features

- 4-Channel Video Filter/Buffer for RGB and CVBS Signals with Auxiliary Input
- Allows Auxiliary Input for CVBS Video Loop-Through Applications
- Filter Response Ideal for NTSC, PAL, and Interlaced SDTV Video Signals
- ♦ 43dB (typ) Stopband Attenuation at 27MHz
- ♦ ±0.75dB (max) Passband Ripple Out to 5MHz
- Blanking Level Voltage on Cable <1V</p>
- Each Channel Drives Two 150Ω Video Loads
- ♦ +5V Single-Supply Operation
- Available in 5mm x 5mm x 0.8mm, 16-Pin TQFN


_Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX7457ETE	-40°C to +85°C	16 TQFN-EP*	T1655-2

*EP = Exposed pad.

Pin Configuration appears at end of data sheet.

Typical Operating Circuit

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND0.3V to +6V
INA1, INA2, INB, INC, IND to GND0.3V to (V _{CC} + 0.3V)
OUTA, OUTB, OUTC, OUTD to GND0.3V to (V _{CC} + 0.3V)
SELA, DISABLE to GND0.3V to (V _{CC} + 0.3V)
Maximum Current into Any Pin Except V _{CC} and GND±50mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
16-Pin TQFN (derate 20.8mW/°C
above +70°C)1666.7mW

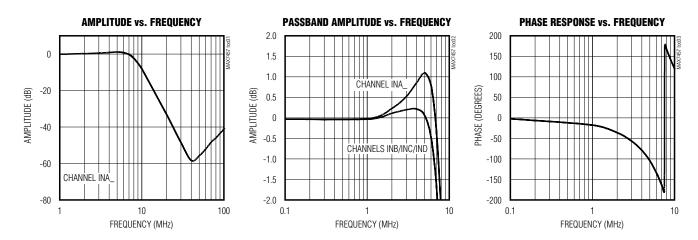
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

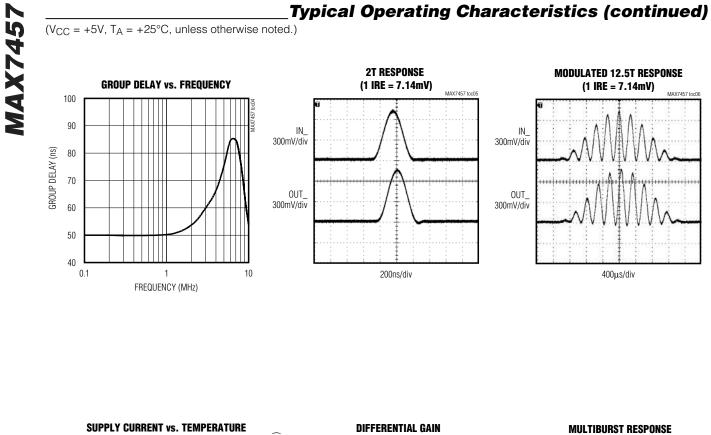
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

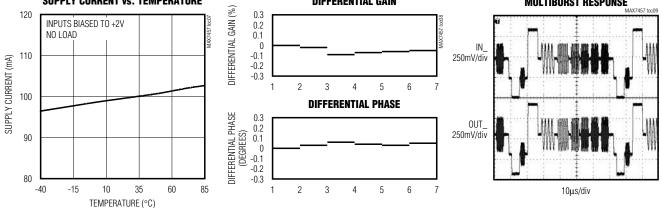
ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +5V \pm 5\%, C_L = 0 \text{ to } 20\text{pF}, R_L = 75\Omega \text{ to GND for DC-coupled load}, R_L = 75\Omega \text{ to } V_{CC}/2 \text{ for AC-coupled load}, T_A = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
		f = 100kHz to 5MHz.	Channel INA_	+0.9	+1.2	+1.5	
Passband Flatness	Passband Flatness f = rela		Channels INB, INC, IND	-0.75	+0.15	+0.75	dB
Stopband Attenuation	A _{SB}	f ≥ 27MHz		40	43		dB
Differential Gain	dG	5-step modulated stairca	se		0.15	0.5	%
Differential Phase	dθ	5-step modulated stairca	se		0.15	0.5	Degrees
Signal-to-Noise Ratio	SNR	Peak signal (2V _{P-P}) to RMS noise, f = 100Hz to 50MHz			80		dB
		Deviation from 100kHz to 4.1MHz Channel	Channel INA_		17	30	
Group Delay Deviation	Δt_g		Channels INB, INC, IND		11	20	ns
Line-Time Distortion	HDIST	18µs, 100 IRE bar				0.3	%
Field-Time Distortion	VDIST	130 lines, 18µs, 100 IRE bar				0.5	%
Clamp Settling Time	t _{CLAMP}	To ±1%			300		Lines
		Channel INA_		0.6	0.9	1.1	V
Output DC Clamp Level		Channel INB, INC, IND		1.1	1.5	1.8	v
Low-Frequency Gain Accuracy	Av	f = 100kHz, relative to gain of +6dB		-3		+3	%
Low-Frequency Gain Matching	AV(MATCH)	Low-frequency channel-to-channel matching, f = 100kHz				4	%
Group Delay Matching	^t g(MATCH)	Low-frequency channel-to-channel matching, f = 100kHz			2		ns
Channel-to-Channel Crosstalk	X _{TALK}	f = 100kHz to 3.58MHz			-60		dB
Disabled Output Impedance	ZDISABLE	At 5MHz			2		kΩ
Output Short-Circuit Current	Isc	OUT_ shorted to GND or V _{CC}			70		mA


ELECTRICAL CHARACTERISTICS (continued)


 $(V_{CC} = +5V \pm 5\%, C_L = 0 \text{ to } 20\text{pF}, R_L = 75\Omega \text{ to GND for DC-coupled load}, R_L = 75\Omega \text{ to } V_{CC}/2 \text{ for AC-coupled load}, T_A = T_{MIN} \text{ to } T_{MAX}$, unless otherwise noted. Typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$.)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input Leakage Current	I _{IN}				10	μΑ
		Channel INA_			1.2	\/
Input Dynamic Swing		Channels INB, INC, IND			0.9	VP-P
Mux Crosstalk		f = 100kHz to 4.1MHz		-60		dB
SUPPLY						
Supply Voltage Range	Vcc		4.75		5.25	V
Supply Current	ICC	No load		100	140	mA
Power-Supply Rejection Ratio	PSRR	$V_{IN} = 100mV_{P-P}$, f = 0 to 3.5MHz		40		dB
LOGIC INTERFACE						
Logic Input High Voltage	VIH		2.0			V
Logic Input Low Voltage	VIL				0.8	V
Logic Input Current		$V_{IL} = 0$ (sink), $V_{IH} = V_{CC}$ (source)			±10	μΑ

 $(V_{CC} = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

PIN	NAME	FUNCTION	
1	INB	Channel INB Video Input. Use channel INB for the red (R) signal. AC-couple INB with a series 0.1μ F capacitor.	
2	INC	Channel INC Video Input. Use channel INC for the green (G) signal. AC-couple INC with a series 0.1μ F capacitor.	
3	IND	Channel IND Video Input. Use channel IND for the blue (B) signal. AC-couple IND with a series 0.1µF capacitor.	
4	DISABLE	Disable Logic Input. A logic low on DISABLE enables the output buffers. A logic high on DISABLE disables all buffer outputs and puts them in a high-impedance state.	
5	SELA	Select A Input. A logic low on SELA selects INA1 and a logic high on SELA selects INA2.	
6, 8, 14	N.C.	No Connection. Not internally connected.	
7	GND	Ground	
9	Vcc	+5V Supply Input	
10	OUTD	Channel D Video Output. OUTD can be either AC- or DC-coupled.	
11	OUTC	Channel C Video Output. OUTC can be either AC- or DC-coupled.	
12	OUTB	Channel B Video Output. OUTB can be either AC- or DC-coupled.	
13	OUTA	Channel A Video Output. OUTA can be either AC- or DC-coupled.	
15	INA2	Channel INA2 Video Input. Connect auxiliary CVBS to INA2. AC-couple INA2 with a series 0.1 μ F capacitor.	
16	INA1	Channel INA1 Video Input. Connect CVBS to INA1. AC-couple INA1 with a series 0.1µF capacitor.	
	EP	Exposed Pad. Connect to GND for improved thermal heat sinking.	

Detailed Description

The MAX7457 4-channel video switch filters and buffers video encoder DAC outputs in applications such as STBs, HDRs, DVD players, and digital VCRs. The MAX7457 offers an auxiliary CVBS loop-through feature required in dual SCART applications. Audio and video switching in SCART STBs utilize a costly integrated A/V switch offering high-end features such as volume control and high audio-drive capability. A more cost-effective solution uses the MAX7457 for the video switching along with low-cost standard passive analog switches for the audio switching.

The MAX7457 reconstructs and cleans up analog video signals from the video encoder's DAC output. Each channel consists of a lowpass filter and an output video buffer that drives two standard 150 Ω video loads. The MAX7457 operates from a single +5V supply and has a nominal cutoff frequency of 5MHz, optimized for NTSC, PAL, and SDTV.

Filter

Filter Response

The reconstruction filter consists of two 2nd-order Sallen-Key stages. The Butterworth-type response features a maximally flat passband for NTSC and PAL bandwidths. The stopband offers at least 43dB (typ) of attenuation at the video encoder's DAC sampling frequency of 27MHz (see the *Typical Operating Characteristics*).

High-Frequency Boost

INA1/INA2 have +1.2dB of high-frequency boost that increases image sharpness by compensating for signal degradation and rolloff in the video encoder. Channels INB/INC/IND (RGB) do not boost high-frequency signals and have a flat response over the video bandwidth.

MAX7457

Output Buffers

Each output buffer has a fixed gain of +6dB and can drive two 150Ω video loads with a 2V_{P-P} signal. The MAX7457 can drive an AC-coupled load or drive a DCcoupled load, eliminating the large coupling capacitors. The output buffers drive DC loads with an output blanking level of less than 1V.

Output Clamp Level

The video signal processed by channel INA (CVBS video signal) must include a sync pulse. This sync pulse provides the required timing to all four channels. When channel INA_ detects a sync pulse, the DC restore loop is activated. The function of the loop is to set the DC level of the video signal to a specified voltage. See Table 1 for clamp levels.

Table 1. Output Clamp Level

CHANNEL	CLAMP LEVEL (V)
А	0.9
В	1.5
С	1.5
D	1.5

Input Multiplexer

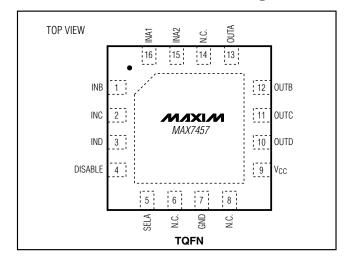
The MAX7457 has a 2-to-1 input multiplexer at channel INA_. The input to the CVBS channel comes from either a DAC output or from a CVBS source and is selected by SELA. Pull SELA low to select INA1 or high to select INA2.

Applications Information

Input Considerations

Use 0.1µF ceramic capacitors to AC-couple the inputs. The input capacitors store a DC level so the outputs are clamped to an appropriate DC voltage level.

Output Considerations

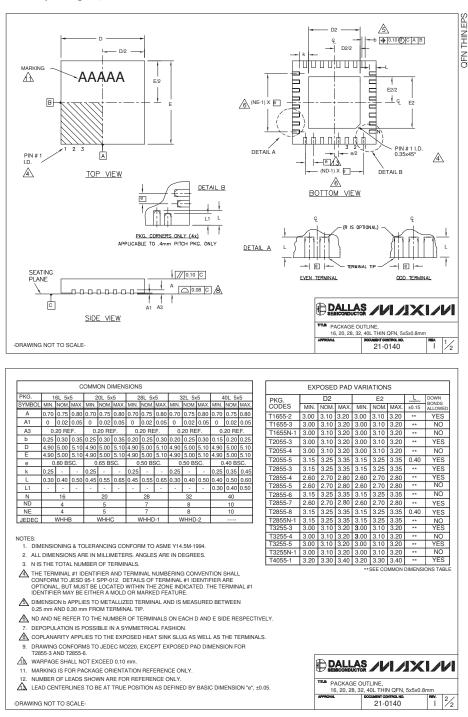

The outputs are typically connected to a 75Ω series back-match resistor followed by the video cable. Because of the inherent divide-by-two of this configuration, the voltage on the video cable is always less than 1V, complying with industry-standard video requirements such as the European SCART standard (which allows up to 2V of DC on the video cable). The video buffer can also drive an AC-coupled video load. An output capacitor as low as 220µF provides good video performance.

Power-Supply Bypassing and Layout

The MAX7457 operates from a single +5V supply. Bypass V_{CC} to GND with a 0.1µF capacitor. Place all external components as close to the device as possible.

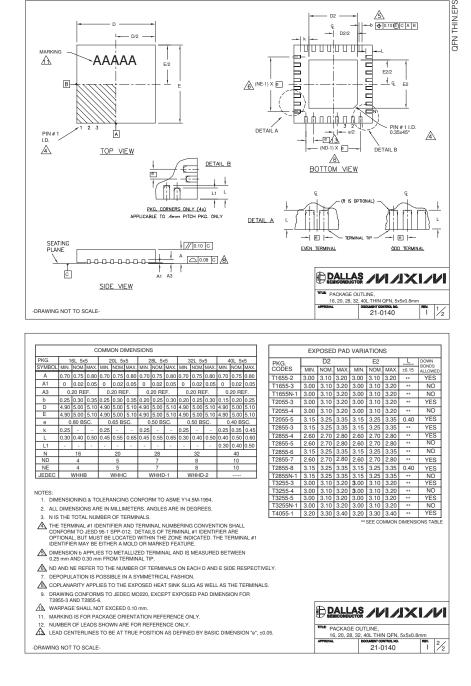
Exposed Pad

The TQFN package has an exposed pad on the bottom of the package. This pad is electrically connected to GND and should be connected to the ground plane for improved thermal conductivity. Do not route signals under this package.


Pin Configuration

Chip Information

TRANSISTOR COUNT: 4579 PROCESS: BICMOS


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2005 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products, Inc.