Not Recommended for New Designs This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains available for existing users. A Maxim replacement or an industry second-source may be available. Please see the QuickView data sheet for this part or contact technical support for assistance. For further information, contact Maxim's Applications Tech Support. #### **General Description** The OP07 is a precision operational amplifier with very low input offset voltage $(10\mu V \text{ typ.}, 25\mu V \text{ max.})$ for the OP07A), input offset drift of $0.2\mu V/^{\circ}C$ and low input bias current of 0.7nA. The wide input common mode range of $\pm 14V$ combined with high CMRR of 110dB minimum (OP07A), plus high input impedance and high open-loop gain make these devices particularly useful for high-gain instrumentation applications. The excellent linearity and gain accuracy are maintained at high open-loop gains, over both time and temperature. The OP07 has become an industry standard and Maxim's reliability and quality are added advantages. #### Applications **Precision Amplifiers** Thermocouple Amplifiers Low Level Signal Processing Medical Instrumentation Strain Gauge Amplifiers High Accuracy Data Acquisition #### Pin Configuration ## Features - Ultra Low Offset Voltage: 10µV - Ultra Low Offset Voltage Drift: 0.2 µV/°C - Ultra Stable vs. Time: 0.2 µV/Month - Ultra Low Noise: 0.35µV_{p-p} - Wide Supply Voltage: ±3V to ±18V - High Common Mode Input: ±14V - **No External Components Required** - ♦ Fits AD510, 725, 108A/308A, 741 Sockets ## **Ordering Information** | PART | TEMP. RANGE | PACKAGE | |----------|-----------------|----------------------| | OP07AJ | -55°C to +125°C | TO-99 | | OP07J | -55°C to +125°C | TO-99 | | OP07EJ | 0°C to +70°C | TO-99 | | OP07CJ | 0°C to +70°C | TO-99 | | OP07DJ | 0°C to +70°C | TO-99 | | OP07EP | 0°C to +70°C | 8 Lead Plastic Dip | | OP07CP | 0°C to +70°C | 8 Lead Plastic Dip | | OP07DP | 0°C to +70°C | 8 Lead Plastic Dip | | OP07AZ | -55°C to +125°C | 8 Lead Hermetic Dip | | OP07Z | -55°C to +125°C | 8 Lead Hermetic Dip | | OP07EZ | 0°C to +70°C | 8 Lead Hermetic Dip | | OP07CZ | 0°C to +70°C | 8 Lead Hermetic Dip | | OP07ECSA | 0°C to +70°C | 8 Lead Small Outline | | OP07CCSA | 0°C to +70°C | 8 Lead Small Outline | | OP07DCSA | 0°C to +70°C | 8 Lead Small Outline | | OP07D/D | 0°C to +70°C | Dice | ^{*} Contact factory for dice specifications. #### **Typical Operating Circuit** ### **ABSOLUTE MAXIMUM RATINGS** | Total Supply Voltage (V ⁺ to V ⁻) ±22 | | |--|--| | Internal Power Dissipation 500ml | V Operating Temperature Range | | TO-99(J) — derate at 7.1mW/°C above +80°C | OP07AJ, OP07AZ, OP07J and OP07Z55°C to +125°C | | Hermetic Dip(Z) — derate at 6.7mW/°C above +75°C | All Other Parts 0°C to +70°C | | Plastic Dip(P) — derate at 5.6mW/°C above +36°C | Lead Temperature (Soldering, 10 sec) +300°C | | Small Outline — derate at 5mW/°C above +55°C | Duration of Output Short Circuit Indefinite | | Differential Input Voltage ±30 | V Junction Temperature (T _J)65°C to +160°C | | Input Voltage (Note 1) +22 | v | Note 1: For supply voltages less than ±22V, the absolute maximum input voltage is equal to the supply voltage. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ELECTRICAL CHARACTERISTICS** $(V_S = \pm 15V, T_A = +25^{\circ}C, unless otherwise noted.)$ | DAD A METER | SYMBOL | CONDITIONS | | OP07A | | | UNITS | | | |---|-----------------------|---|-------------------------|-------------------------|----------------------|-------------------------|-------------------------|------------------------|-------------------| | PARAMETER | | | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Input Offset Voltage | Vos | (Note 2) | | 10 ' | 25 | | 30 | 75 | μV | | Long Term Input
Offset Voltage Stability | V _{OS} /Time | (Note 3) | | 0.2 | 1.0 | | 0.2 | 1.0 | μV/
Month | | Input Offset Current | los | | | 0.3 | 2.0 | | 0.4 | 2.8 | nA | | Input Bias Current | I _B | | | ±0.7 | ±2.0 | | ±1.0 | ±3.0 | nA | | Input Noise Voltage | e _{NP-P} | 0.1Hz to 10Hz (Note 4) | | 0.35 | 0.6 | · | 0.35 | 0.6 | μV _{P-P} | | Input Noise Voltage
Density | e _N | f _O = 10Hz (Note 4)
f _O = 100Hz (Note 4)
f _O = 1000Hz (Note 4) | | 10.3
10.0
9.6 | 18.0
13.0
11.0 | | 10.3
10.0
9.6 | 18.0
13.0
11.0 | nV/√Hz | | Input Noise Current | I _{N P-P} | 0.1Hz to 10Hz (Note 4) | | 14 | 30 | | 14 | 30 | pA _{P-P} | | Input Noise
Current Density | IN | f _O = 10Hz (Note 4)
f _O = 100Hz (Note 4)
f _O = 1000Hz (Note 4) | | 0.32
0.14
0.12 | 0.80
0.23
0.17 | | 0.32
0.14
0.12 | 0.80
0.23
. 0.17 | p A ∕√H: | | Input Resistance
Differential-Mode | R _{IN} | (Note 5) | 30 | 80 | | 20 | 60 | | МΩ | | Input Resistance
Common-Mode | R _{INCM} | | | 200 | | | 200 | | GΩ | | Input Voltage Range | IVR | | ±13 | ±14 | | ±13 | ±14 | | V | | Common-Mode
Rejection Ratio | CMRR | V _{CM} = ±13V | 110 | 126 | | 110 | 126 | | dB | | Power Supply
Rejection Ratio | PSRR | V _S = ±3V to ±18V | | 4 | 10 | | 4 | 10 | μV/V | | Large Signal
Voltage Gain | A _{vo} | $R_L \ge 2k\Omega$, $V_O = \pm 10V$
$R_L \ge 500\Omega$, $V_O = \pm 0.5V$
$V_S = \pm 3V$ (Note 5) | 300
150 | 500
400 | | 200
150 | 500
400 | | V/mV | | Output Voltage Swing | ٠٧o | $\begin{aligned} R_L &\geq 10k\Omega \\ R_L &\geq 2k\Omega \\ R_1 &\geq 1k\Omega \end{aligned}$ | ±12.5
±12.0
±10.5 | ±13.0
±12.8
±12.0 | _ | ±12.5
±12.0
±10.5 | ±13.0
±12.8
±12.0 | · | v | - Note 2: OP07A grade V_{OS} is measured one minute after application of power. For all other grades V_{OS} is measured approximately 0.5 seconds after application of power. - Note 3: Long-Term Input Offset Voltage Stability refers to the average trend line of V_{OS} vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically 2.5 µV. Parameter is sample tested. - Note 4: Sample tested. - Note 5: Guaranteed by design. ## ELECTRICAL CHARACTERISTICS (continued) $(V_S = \pm 15V, T_A = +25$ °C, unless otherwise noted.) | PARAMETER | | CONDITIONS | | OP07A | | | | UNITS | | |--------------------------------|----------------|---|-----|---------|----------|-----|---------|----------|-------| | | SYMBOL | | MIN | TYP | MAX | MIN | TYP | MAX | UNIIS | | Slew Rate | SR | $R_L \ge 2k\Omega$ (Note 6) | 0.1 | 0.3 | | 0.1 | 0.3 | | V/μS | | Closed-Loop
Bandwidth | BW | A _{VCL} = +1V (Note 6) | 0.4 | 0.6 | | 0.4 | 0.6 | | MHz | | Open-Loop Output
Resistance | Ro | V _O = 0V, I _O = 0 | | 60 | | | 60 | | Ω | | Power Consumption | P _D | $V_S = \pm 15V$, No Load
$V_S = \pm 3V$, No Load | | 75
4 | 120
6 | | 75
4 | 120
6 | mW | | Offset Adjustment
Range | | R _P = 20kΩ | | ±4 | | | ±4 | | mV | Note 6: Sample tested. **ELECTRICAL CHARACTERISTICS** (V_S = \pm 15V, -55°C \leq T_A \leq +125°C, unless otherwise noted.) | | | CONDITIONS | | OP07A | | | UNITS | | | |---|-------------------|--------------------------------------|-------|-------|------|-------|-------|------|-------| | PARAMETER | SYMBOL | | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Input Offset Voltage | Vos | (Note 7) | | 25 | 60 | | 60 | 200 | μV | | Average Temperature
Coefficient of Input
Offset Voltage | TCV _{os} | (Note 8) | | 0.2 | 0.6 | | 0.3 | 1.3 | μV/°C | | Input Offset Current | Ios | | | 0.8 | 4.0 | | 1.2 | 5.6 | nA | | Average Input Offset
Current Drift | TCIOS | (Note 8) | | 5 | 25 | | 8 | 50 | pA/°C | | Input Bias Current | I _B | | | ±1.0 | ±4.0 | | ±2.0 | ±6.0 | nA | | Average Input Bias
Current Drift | TCIB | (Note 8) | | 8 | 25 | | 13 | 50 | pA/°C | | Input Voltage Range | IVR | | ±13 | ±13.5 | | ±13 | ±13.5 | | V | | Common-Mode
Rejection Ratio | CMRR | V _{CM} = ±13V | 106 | 123 | | 106 | 123 | | dB | | Power Supply
Rejection Ratio | PSRR | V _S = ±3V to ±18V | | 5 | 20 | | 5 | 20 | μV/V | | Large Signal
Voltage Gain | A _{vo} | $R_L \ge 2k\Omega$, $V_O = \pm 10V$ | 200 | 400 | | 150 | 400 | | V/mV | | Output Voltage Swing | V _o | $R_L \ge 2k\Omega$ | ±12.0 | ±12.6 | | ±12.0 | ±12.6 | | V | Note 7: OP07A grade Offset Voltage is measured one minute after application of power. For all other grades Vos is measured 0.5 seconds after power on. Note 8: Sample tested. ### **ELECTRICAL CHARACTERISTICS** ($V_S = \pm 15V$, $T_A = +25$ °C, unless otherwise noted.) | DADAMETER | OVMDC: | CONDITIONS | OP07E | | | OP07C | | | OP07D | | | | |--|-----------------------|---|------------|-------------------------|----------------------|----------------|-------------------------|----------------------|----------------|-------------------------|----------------------|-------------------| | PARAMETER | SYMBOL | CONDITIONS | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | 1 | | Input Offset Voltage | Vos | (Note 1) | | 30 | 75 | | 60 | 150 | | 60 | 150 | μV | | Long Term
Input Offset
Voltage Stability | V _{OS} /Time | (Note 2) | | 0.3 | 1.5 | | 0.4 | 2.0 | | 0.5 | 3.0 | μV/
Month | | Input Offset Current | los | | | 0.5 | 3.8 | | 0.8 | 6.0 | | 8.0 | 6.0 | nA | | Input Bias Current | I _B | | | ±1.2 | ±4.0 | | ±1.8 | ±7.0 | | ±2.0 | ±12.0 | nA | | Input Noise Voltage | e _{N P-P} | 0.1Hz to 10Hz (Note 3) | | 0.35 | 0.6 | | 0.38 | 0.65 | | 0.38 | 0.65 | μV _{P-P} | | Input Noise
Voltage Density | e _N | f _O = 10Hz (Note 3)
f _O = 100Hz (Note 3)
f _O = 1000Hz (Note 3) | | 10.3
10.0
9.6 | 18.0
13.0
11.0 | | 10.5
10.2
9.8 | 20.0
13.5
11.5 | | 10.5
10.3
9.8 | 20.0
13.5
11.5 | nV/√Hz | | Input Noise Current | I _{N P-P} | 0.1Hz to 10Hz
(Note 3) | | 14 | 30 | | 15 | 35 | | 15 | 35 | pA _{P-P} | | Input Noise
Current Density | IN | f _O = 10Hz (Note 3)
f _O = 100Hz (Note 3)
f _O = 1000Hz (Note 3) | | 0.32
0.14
0.12 | 0.80
0.23
0.17 | | 0.35
0.15
0.13 | 0.90
0.27
0.18 | | 0.35
0.15
0.13 | 0.90
0.27
0.18 | pA∕√Hz | | Input Resistance
Differential-Mode | R _{IN} | (Note 4) | 15 | 50 | | 8 | 33 | | 7 | 31 | | МΩ | | Input Resistance
Common-Mode | R _{INCM} | | | 160 | | | 120 | | | 120 | | GΩ | | Input Voltage Range | IVR | | ±13 | ±14 | | ±13 | ±14 | | ±13 | ±14 | | V | | Common-Mode
Rejection Ratio | CMRR | V _{CM} = ±13V | 106 | 123 | | 100 | 120 | | 94 | 110 | | dB | | Power Supply
Rejection Ratio | PSRR | V _S = ±3V to ±18V | | 5 | 20 | | 7 | 32 | | 7 | 32 | μV/V | | Large Signal
Voltage Gain | A _{vo} | $R_L \ge 2k\Omega$, $V_O = \pm 10V$
$R_L \ge 500\Omega$, $V_O = \pm 0.5V$
$V_S = \pm 3V$ (Note 5) | 200
150 | 500
400 | | 120
100 | 400
400 | | 120 | 400
400 | | V/mV | | Output Voltage Swing | v _o | $\begin{aligned} R_L &\geq 10k\Omega \\ R_L &\geq 2k\Omega \\ R_L &\geq 1k\Omega \end{aligned}$ | ±12.0 | ±13.0
±12.8
±12.0 | | ±12.0
±11.5 | ±13.0
±12.8
±12.0 | | ±12.0
±11.5 | ±13.0
±12.8
±12.0 | | V | | Slew Rate | SR | $R_L \ge 2k\Omega$ (Note 3) | 0.1 | 0.3 | | 0.1 | 0.3 | | 0.1 | 0.3 | | V/µS | | Closed-Loop
Bandwidth | BW | A _{VCL} = +1V (Note 3) | 0.4 | 0.6 | | 0.4 | 0.6 | | 0.4 | 0.6 | | MHz | | Open-Loop Output
Resistance | Ro | V _O = 0V, I _O = 0 | | 60 | | | 60 | | | 60 | | Ω | | Power Consumption | Pd | $V_S = \pm 15V$, No Load $V_S = \pm 3V$, No Load | | 75
4 | 120
6 | | 80
4 | 150
8 | | 80
4 | 150
8 | mW | | Offset Adjustment
Range | | R _P = 20kΩ | | ±4 | | | ±4 | | | ±4 | | mV | Note 1: Input Offset Voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of Note 2. Note 2. Note 3. Note 4. Note 4. Note 4. Note 4. Note 5. Note 6. Note 6. Note 6. Note 6. Note 7. Note 7. Note 8. Note 8. Note 9. Not ### **ELECTRICAL CHARACTERISTICS** (V_S = ± 15 V, 0°C \leq T_A \leq +70°C, unless otherwise noted.) | PARAMETER | CVMDOL | CONDITIONS | OP07E | | | OP07C | | | OP07D | | | | |---|-----------------|--------------------------------------|-------|-------|------|-------|-------|------|-------|-------|------|-------| | | SYMBOL | CONDITIONS | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | 1 | | Input Offset Voltage | Vos | (Note 5) | | 45 | 130 | | 85 | 250 | | 85 | 250 | μV | | Average Temperature
Coefficient of Input
Offset Voltage | TCVos | (Note 6) | | 0.3 | 1.3 | | 0.4 | 1.8 | | 0.7 | 2.5 | μV/°C | | Input Offset Current | Ios | | | 0.9 | 5.3 | | 1.6 | 8.0 | | 1.6 | 8.0 | nA | | Average Input Offset
Current Drift | TCIOS | (Note 6) | | 8 | 35 | | 12 | 50 | | 12 | 50 | pA/°C | | Input Bias Current | I _B | | | ±1.5 | ±5.5 | | ±2.2 | ±9.0 | | ±3.0 | ±14 | nA | | Average Input Bias
Current Drift | TCIB | (Note 6) | | 13 | 35 | | 18 | 50 | | 18 | 50 | pA/°C | | Input Voltage Range | IVR | | ±13.0 | ±13.5 | | ±13.0 | ±13.5 | | ±13.0 | ±13.5 | | ٧ | | Common-Mode
Rejection Ratio | CMRR | V _{CM} = ±13V | 103 | 123 | | 97 | 120 | | 94 | 106 | | dB | | Power Supply
Rejection Ratio | PSRR | V _S = ±3V to ±18V | | 7 | 32 | | 10 | 51 | | 10 | 51 | μV/V | | Large Signal
Voltage Gain | A _{vo} | $R_L \ge 2k\Omega$, $V_O = \pm 10V$ | 180 | 400 | | 100 | 400 | | 100 | 400 | | V/mV | | Output Voltage Swing | V _o | $R_L \ge 2k\Omega$ | ±12.0 | ±12.6 | | ±11.0 | ±12.6 | | ±11.0 | ±12.6 | | V | Input Offset Voltage is measured 0.5 seconds after application of power. Sample tested. Note 5: Note 6: Figure 1. Optional Offset Nulling Circuit. Figure 2. Low Frequency Noise Test Circuit. ## Package Information ## Package Information (continued) Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.