

STW29NK50Z

N-CHANNEL 500 V - 0.105Ω - 31A TO-247 Zener-Protected SuperMESH™ MOSFET

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	I _D	Pw
STW29NK50Z	500 V	< 0.13 Ω	31 A	350 W

- TYPICAL $R_{DS}(on) = 0.105 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- GATE CHARGE MINIMIZED
- VERY LOW INTRINSIC CAPACITANCES
- VERY GOOD MANUFACTURING REPEATIBILITY

DESCRIPTION

The SuperMESH™ series is obtained through an extreme optimization of ST's well established strip-based PowerMESH™ layout. In addition to pushing on-resistance significantly down, special care is taken to ensure a very good dv/dt capability for the most demanding application. Such series complements ST full range of high vltage MOSFETs including revolutionary MDmesh™ products.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- IDEAL FOR OFF-LINE POWER SUPPLIES
- WELDING MACHINES
- LIGHTING

Figure 1: Package

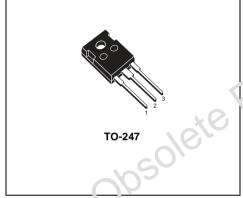
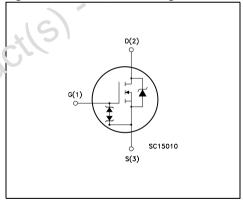



Figure 2: Internal Cohematic Diagram

Table 2: Order Codes

PART NUMBER	MARKING	PACKAGE	PACKAGING
STW29NK50Z	W29NK50Z	TO-247	TUBE

October 2004 1/10

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit		
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500	V		
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ K}\Omega$)	500	V		
V _G S	Gate- source Voltage	± 30	V		
I _D	Drain Current (continuous) at T _C = 25°C	31	А		
I _D	Drain Current (continuous) at T _C = 100°C	19.5	А		
I _{DM} (*)	Drain Current (pulsed)	124	А		
P _{TOT}	Total Dissipation at T _C = 25°C	350	W		
	Derating Factor	2.77	W/°C		
V _{ESD(G-S)}	Gate source ESD (HBM-C = 100pF, R = 1.5 K Ω)	6000	V		
dv/dt (1)	Peak Diode Recovery voltage slope	4.5	V/ns		
T _{stg} T _j	Storage Temperature Operating Junction Temperature				

^(*) Pulse width limited by safe operating area

Table 4: Thermal Data

Rthj-case	Thermal Resistance Junction-case Max	0.36	°C/W
Rthj-amb T _l	Thermal Resistance Junction-ambient Max Maximum Lead Temperature For Soldering Purpose	7,71	°C/W

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	31	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	550	mJ

Table 6: Gate-Source Zener Dioce

Symbol	Parameter	Test Condition	Min.	Тур.	Max	Unit
BV _{GSO}	Gate-Source Brศ ส่ห ร่วงกา Voltage	Igs= ± 1mA (Open Drain)	30			Α

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in 'back to-back Zener diodes have specifically been designed to enhance not only the device's ESD capatility, but also to make them safely absorb possible voltage transients that may occasionally be applied froin gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

2/10

⁽¹⁾ $I_{SD} \le 31$ A, $di/dt \le 200$ A/ μ s, $V_{DD} \le V_{(BR)DSS}$, $T_J \le T_{JMAX}$

TABLE 7: ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) On /Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1 \text{ mA}, V_{GS} = 0$	500			S
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating, T _C = 125°C			1 50	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 10	μА
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 150 \mu\text{A}$	3	3.75	4.5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 15.5 A		0.105	0.13	Ω

Table 8: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V, I _D = 15.5 A		24		s
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0		6110 697 100	7/8	pF pF pF
$t_{d(on)} \ t_r \ t_{d(off)} \ t_f$	Turn-on Delay Time Rise Time Turn-off-Delay Time Fall Time	$\begin{split} &V_{DD} = 250 \text{ V, } I_D = 15 \text{ A,} \\ &R_G = 4.7 \Omega, V_{GS} = 10 \text{ V} \\ &(\text{Resistive Load see Figure 17}) \end{split}$	O	4.5 41 129 33		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 400 V, I _D = 30 A, V _{GS} = 10 V		190 35.5 111	266	nC nC nC

Table 9: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (puls ad)				31 124	A A
V _{SD} (1)	Forward On Voi. 19.	I _{SD} = 31 A, V _{GS} = 0			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse 'e sovery Time Reverse Repovery Charge Reverse 'kecovery Current	I_{SD} = 30 A, di/dt = 100 A/ μ s V_{DD} = 44.8V, T_j = 25°C (see test circuit Figure 5)		436 6.1 28		ns μC A
t. Q _{rr}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 30 A, di/dt = 100 A/ μ s V_{DD} = 44.8V, T_{j} = 150°C (see test circuit Figure 5)		500 7.5 30		ns μC A

⁽¹⁾ Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %. (2) Pulse width limited by safe operating area.

Figure 3: Safe Operating Area

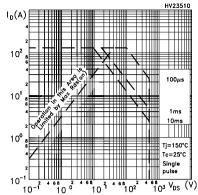


Figure 4: Output Characteristics

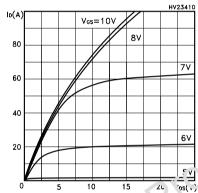


Figure 5: Transconductance

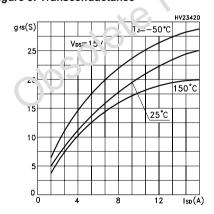


Figure 6: Thermal Impedance

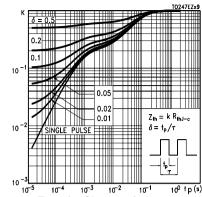


Figure 7: Transfer Characteristics

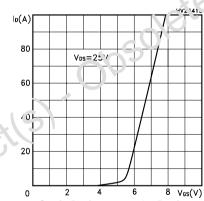
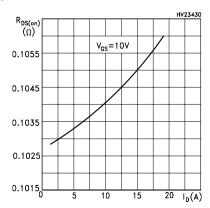



Figure 8: Static Drain-source On Resistance

47/

Figure 9: Gate Charge vs Gate-source Voltage

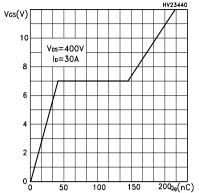


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

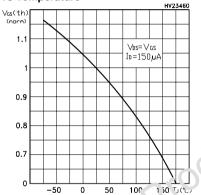


Figure 11: Dource-Drain Diode F ward Characteristics

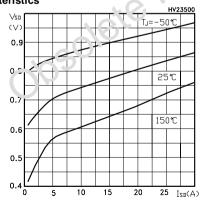


Figure 12: Capacitance Variations

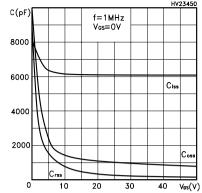


Figure 13: Normalized On Resistance vs Temperature

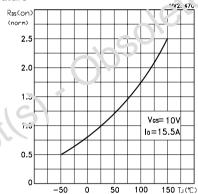


Figure 14: Normalized BV_{DSS} vs Temperature

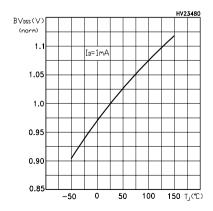
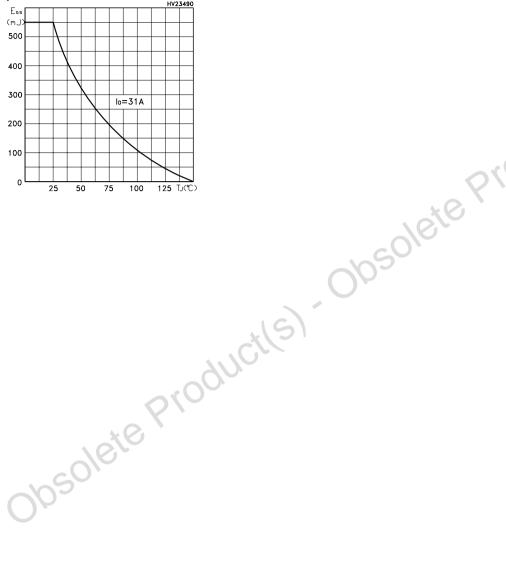



Figure 15: Maximum Avalanche Energy vs Temperature

577.

Figure 16: Unclamped Inductive Load Test Circuit

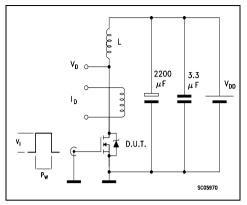


Figure 17: Switching Times Test Circuit For Resistive Load

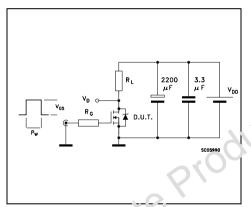


Figure 18: Test Circuit You Inductive Load Switching and Diode Recovery Times

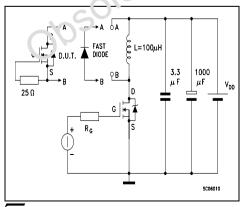
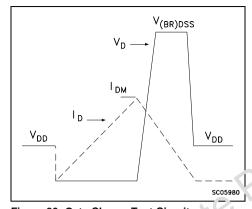
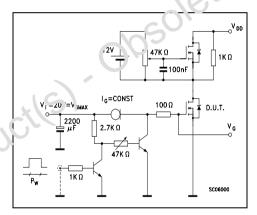
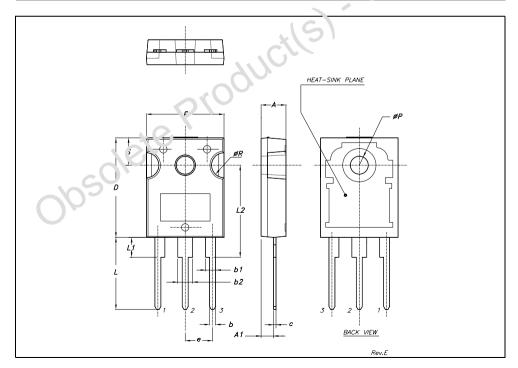


Figure 19: Unclamped Inductive Wafeform


Figure 20: Gate Charge Test Circuit

▲▼//

TO-247 MECHANICAL DATA

DIM.		mm.			inch	
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0		2.40	0.079		0.094
b2	3.0		3.40	0.118		0.134
С	0.40		0.80	0.015		0.03
D	19.85		20.15	0.781		0.793
E	15.45		15.75	0.608		0.620
е		5.45			0.214	
L	14.20		14.80	0.560		(35.7
L1	3.70		4.30	0.14		0.17
L2		18.50			0.728	773
øΡ	3.55		3.65	0.140	105	0.143
øR	4.50		5.50	0.177	70-	0.216
S		5.50			0.216	

577.

Table 10: Revision History

Date	Revision	Description of Changes
19-Oct-2004	1	First Release.

Obsolete Product(s). Obsolete Product(s).

Information for ising discolor is sold in the consequences of use of such a such a such a such as a such a

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

Obsolete P