General Description

The MAX13342E/MAX13345E USB-compliant transceivers are designed to minimize the area and external components required to interface low-voltage ASICs to USB. The devices comply with USB 2.0 specification for full-speed-only (12Mbps) operation. The transceivers include an internal 3.3V regulator, an internal 1.5k Ω D+ pullup resistor, and built-in ±15kV ESD protection circuitry to protect the USB I/0 ports (D+,D-). The MAX13345E also has internal series resistors, allowing it to be wired directly to a USB connector.

These devices operate with logic-supply voltages as low as +2.3V, ensuring compatibility with low-voltage ASICs. A low-power mode reduces current consumption to less than 45 μ A. An enumerate function controls the D+ pullup resistor, allowing devices to logically disconnect while remaining plugged in.

The MAX13342E has controlled output impedance of 2Ω (max) on D+/D-, allowing the use of external switches to multiplex two different USB devices onto a single USB connector. The MAX13345E has 43.5 Ω (max) internal resistors on D+/D- for direct connection to the USB connector.

The MAX13342E/MAX13345E are equipped with DAT and SE0 interface signals. These transceivers provide a USB detection function that monitors the presence of USB V_{BUS} and signals the event.

These devices operate over the extended -40°C to +85°C temperature range and are available in UCSPTM 2.0mm x 1.5mm and 14-pin TDFN (3mm x 3mm) packages. UCSPTM is a trademark of Maxim Integrated Products, Inc.

Applications

PDAs PC Peripherals Cellular Telephones Data Cradles MP3 Players

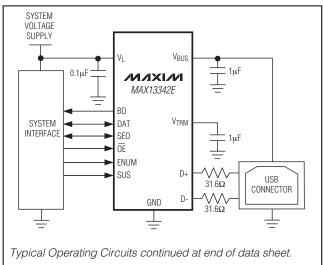
Pin Configurations and Selector Guide appear at end of data sheet.

- USB 2.0 (Full-Speed, 12Mbps)-Compliant Transceiver
- Internal Pullup
- VBUS Detection
- Internal Series Resistors (MAX13345E)
- ♦ ±15kV (HBM) ESD Protection on D+, D-, and VBUS

///XI///

- Enumeration Input Controls D+ Pullup Resistor
- Supports 3-Wire DAT/SE0 Interface
- ♦ +2.3V to +3.6V Interface Voltage (VL)
- No Power-Supply Sequencing Required
- Low USB Output Impedance (MAX13342E)

_Ordering Information


PART	PIN- TOP PACKAGE MARK		PKG CODE
MAX13342EETD+	14 TDFN-EP (3mm x 3mm)	ACZ	T1433-2
MAX13342EEBC+*	12 UCSP (2.0mm x 1.5mm)	ACU	B12-3
MAX13345EETD+	14 TDFN-EP (3mm x 3mm)	ADA	T1433-2
MAX13345EEBC+*	12 UCSP (2.0mm x 1.5mm)	ACX	B12-3

*Future product—contact factory for availability.

+Denotes lead-free package.

EP = Exposed pad.

Typical Operating Circuits

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

(All voltages refer to GND unless otherwis	se noted.)
Supply Voltage (VBUS)	-0.3V to +6V
System Supply Voltage (VL)	
Output of Internal Regulator (VTRM)	-0.3V to (V _{BUS} + 0.3V)
Input Voltage (D+, D-)	0.3V to +6V
SUS, BD	0.3V to (V _L + 0.3V)
ENUM, SEO, DAT	0.3V to (V _L + 0.3V)
Short-Circuit Current to VBUS or GND (D-	-, D-)±150mA
Maximum Continuous Current (all other p	ins)±15mA

Continuous Power Dissipation ($T_A = +70^{\circ}C$)
14-Pin TDFN (derate 18.5mW/°C above +70°C)1482mW
4mm x 3mm UCSP
(derate 6.5mW/°C above +70°C)518mW
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Bump Soldering+235°C
Lead Soldering (10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{BUS} = +4.0V to +5.5V, V_L = +2.3V to +3.6V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{BUS} = +5.0V, V_L = +2.5V, T_A = +25°C.) (Note 1)

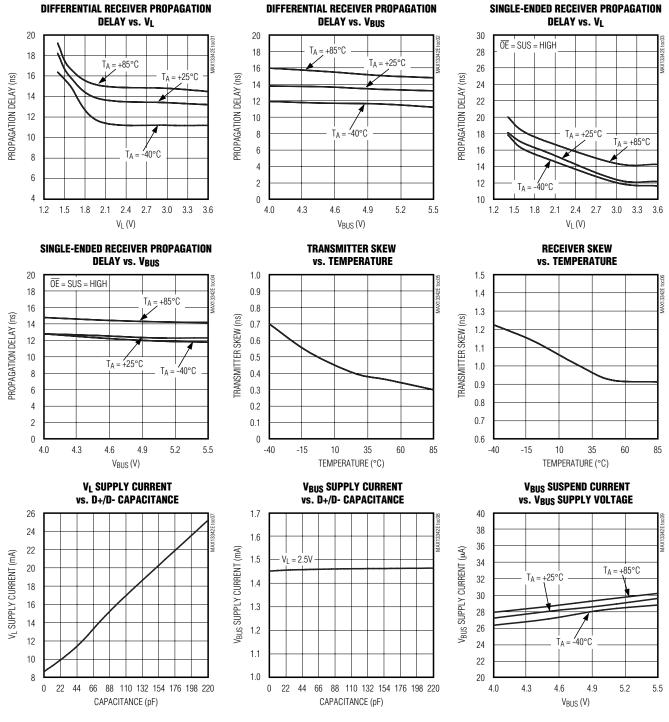
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
SUPPLY INPUTS (VBUS, VTRM, V	/L)					•	
V _{BUS} Input Range	VBUS		4.0		5.5	V	
V _L Input Range	VL		2.3		3.6	V	
Regulated Supply-Voltage Output	VTRM		3.0	3.3	3.6	V	
Operating V_{BUS} Supply Current	IVBUS	Full-speed transmitting/receiving at 12Mbps, $C_L = 50pF$ on D+ and D-			10	mA	
Operating V_L Supply Current	IVL	Full-speed transmitting/receiving at 12Mbps, $C_L = 15pF$ receiver outputs, $V_L = 2.5V$		1.5		mA	
Full-Speed Idle and SE0 Supply		Full-speed idle, V_{D+} >2.7V, V_{D-} <0.3V			500		
Current	IVBUS(IDLE)	SE0: V _{D-} <0.3V, V _{D+} <0.3			500	- μΑ	
Static V _L Supply Current	IVL(STATIC)	Full-speed idle, SE0 or suspend mode			10	μA	
Suspend Supply Current	IVBUS(SUSP)	SE0 = DAT= open; SUS = OE = high		30	45	μA	
Disable-Mode Supply Current	IVBUS(DIS)	V _L = GND or open			25	μΑ	
Sharing-Mode V_L Supply Current	IVL(SHARING)	$V_{BUS} = GND$ or open, $\overline{OE} = low$, SE0 = DAT = low or high, SUS = high			5	μA	
D+/D- Supply Current	I _{D+/D-}	V _{BUS} = GND or open			20	μA	
V _{BUS} Power-Supply Detection Threshold	V _{TH_VBUS}	V _L > 2.3V	0.8		3.6	V	
V _{BUS} Power-Supply Detection Hysteresis	VVBUSHYS			100		mV	
V _L Power-Supply Threshold	V _{TH_VL}			850		mV	

ELECTRICAL CHARACTERISTICS (continued)

(V_{BUS} = +4.0V to +5.5V, V_L = +2.3V to +3.6V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{BUS} = +5.0V, V_L = +2.5V, T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DIGITAL INPUTS AND OUTPUTS	(DAT, SE0,	OE, ENUM, SUS, BD)					
Input-High Voltage	VIH		$0.7 \times V_L$			V	
Input-Low Voltage	VIL				$0.3 \times V_L$	V	
Output-Voltage High	VOH	ISOURCE = 2mA	VL - 0.4			V	
Output-Voltage Low	Vol	I _{SINK} = 2mA			0.4	V	
Input Leakage Current	I _{LKG}		-1		+1	μA	
Input Capacitance		Measured from input to GND		10		pF	
ANALOG INPUTS AND OUTPUT	S (D+/D-)						
Differential Input Sensitivity	VID	IV _{D+} - V _{D-} I	200			mV	
Differential Common-Mode Voltage Range	V _{CM}	Includes V _{ID} range	0.8		2.5	V	
Single-Ended Input Voltage High	VIHSE		2.0			V	
Single-Ended Input Voltage Low	VILSE				0.8	V	
Receiver Single-Ended Hysteresis	V _{HYS}			200		mV	
Output-Voltage Low	Vold	$R_L = 1.5 k\Omega$ from D+ or D- to 3.6V			0.3	V	
Output-Voltage High	Vohd	$R_L = 15k\Omega$ from D+ or D- to GND	2.8		3.6	V	
Off-State Leakage Current		Tri-state driver	-1		+1	μA	
Transceiver Capacitance	CIND	Measured from D+ or D- to GND		20		рF	
Driver Output Impedance	Rout	MAX13342E	4		14	Ω	
		MAX13345E	28		43	22	
Internal Pullup Resistor	R _{PU}		1.425	1.500	1.575	kΩ	
Input Impedance	Z _{IN}	Drivers off, tri-state driver, ENUM = 0, V_{D+} , V_{D-} = 0 OR +3.6V	1			MΩ	
LINEAR REGULATOR							
External Capacitor	Cout	Compensation of linear regulator	1			μF	
ESD PROTECTION (D+, D-)							
Human Body Model				±15		kV	
IEC 61000-4-2 Air-Gap Discharge				±8		kV	
IEC 61000-4-2 Contact Discharge				±8		kV	

TIMING CHARACTERISTICS


(V_{BUS} = +4V to +5.5V, V_L = +2.3V to +3.6V, ENUM = V_L, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at V_{BUS} = +5V, V_L = +2.5V, T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
TRANSMITTER ($C_L = 50 pF$)	·						·
Rise Time	tFR	10% to 90% of IV _{OHD} -V _{OLD} I with an external 31.6 Ω series resistor (MAX13342E), Figures 3, 8		4		20	ns
Fall Time	tFF	10% to 90% of IV _{OHD} -V _{OLD} I with an external 31.6 Ω series resistor (MAX13342E), Figures 3, 8		4		20	ns
Rise-and-Fall Time Matching (Note 1)	t _{LR} /t _{LF}	Figures 3, 8		90		110	%
Output Signal Crossover (Note 2)	V _{CRS_L} , V _{CRS_F}	Figure 4		1.3		2	V
Driver	^t PLH_DRV	Low-to-high transition, Figures 4, 8	VL > 2.3V			20	20
Propagation Delay	^t PHL_DRV	High-to-low transition, Figures 4, 8	VL > 2.3V			20	ns
Driver-Enabled Delay Time	^t PZH_DRV	Off-to-high transition, Figures 5, 8	V _L > 2.3V			18	ns
	tpzl_drv	Off-to-low transition, Figures 5, 8	V _L > 2.3V			18	115
	^t PHZ_DRV	High-to-off transition, Figure 5, 9	V _L > 2.3V			18	ns
Driver Disable Delay	tplz_drv	Low-to-off transition, Figures 5, 9	V _L > 2.3V			18	
RECEIVER (C _L = 15pF)			1				
Differential Receiver	tplh_rcv	Low-to-high transition, Figures 6,10	$V_{L} > 2.3V$			20	ns
Propagation Delay	tphl_RCV	High-to-low transition, Figures 6,10	VL > 2.3V			20	
Single-Ended Receiver	^t PLH_SE	Low-to-high transition, Figures 6,10				18	ns
Propagation Delay	^t PHL_SE	High-to-low transition, Figures 6,10				18	
Single-Ended Receiver Disable Delay	^t PHZ_SE	High-to-off transition, Figure 7	VL > 2.3V			20	
	tplz_se	Low-to-off transition, Figure 7	V _L > 2.3V			20	ns
Single-Ended Receiver Enable	tpzh_se	Off-to-high transition, Figure 7	V _L > 2.3V			22	- ns
Delay	tpzl_se	Off-to-low transition, Figure 7	V _L > 2.3V			22	

Note 1: Parameters are 100% production tested at +25°C, unless otherwise noted. Limits over temperature are guaranteed by design.

Typical Operating Characteristics

(V_{BUS} = +5V, V_L = +3.3V, T_A = $+25^{\circ}$ C, unless otherwise noted.)

MAX13342E/MAX13345E

5

(V_{BUS} = +5V, V_L = +3.3V, T_A = +25°C, unless otherwise noted.) MAX13342E/MAX13345E MAX13342E/MAX13345E TRANSMITTING RECEIVING D-2V/div SE0 2V/div D+ 2V/div DAT 2V/div DAT 2V/div D+ SE0 (2V/div) 2V/div D-20ns/div 100ns/div MAX13342E/MAX13345E **BUS DETECTION** EYE DIAGRAM Ĥ 4 VBUS 3 2V/div D+ AND D- (V) 2 1 ΒD 1V/div 0

4µs

-1

0 10 20 30 40 50 60 70 80

TIME (ns)

Typical Operating Characteristics (continued)

Pin Description

TDFN UCSP	NAME	FUNCTION
1 B1		
	V _{TRM}	Regulated Output Voltage. V _{TRM} provides a 3.3V output derived from V _{BUS} . Bypass V _{TRM} to GND with a 1 μ F (min) low-ESR capacitor, such as ceramic or plastic film types. V _{TRM} provides power to internal circuitry and the internal D+ pullup resistor. Do not use V _{TRM} to power external circuitry. These USB transceivers can also be powered by an externally regulated 3.3V supply connected to both V _{BUS} and V _{TRM} .
2 A1	VL	System-Side Power-Supply Input. Connect V_L to the systems logic-level power supply. Bypass V_L to GND with a $0.1\mu F$ (min) low-ESR ceramic capacitor.
3 A2	SE0	Logic-Side Data Input/Output. SE0 operates as an input when \overline{OE} is low and as an output when \overline{OE} is high. As an input, when SE0 is active high, D+ and D- are both driven low. As an output, SE0 goes active high when both D+ and D- are low. (See Tables 3 and 4.)
4 A3	DAT	Logic-Side Data Input/Output. DAT operates as an input for data on D+/D- when \overline{OE} is low. DAT operates as the output of the differential receiver on D+/D- when \overline{OE} is high. (See Tables 3 and 4.)
5, 12 —	N.C.	No Connection. Leave N.C. unconnected. N.C. is not internally connected.
6 B3	SUS	Suspend Input. Drive SUS low for normal transceiver operation. Drive SUS high for low-power state.
7 A4	BD	USB Detector Output. A high on BD indicates that V _{BUS} is present.
8 B4	ŌĒ	Output Enable. \overline{OE} controls the USB transmitter outputs (D+/D-) and the interface signals (DAT, SE0) when in USB mode. Drive \overline{OE} high to operate D+/D- as inputs and to operate the logic interface signals as outputs. Drive \overline{OE} low to operate D+/D- as outputs and to operate the logic interface signals as inputs.
9 C4	GND	Ground
10 C3	D-	Negative USB Differential Data Input/Output. D- is wired to the USB connector directly (MAX13345E) or through a series resistor (MAX13342E). D- operates as an input when \overline{OE} is high and as an output when \overline{OE} is low.
11 C2	D+	Positive USB Differential Data Input/Output. D+ is wired to the USB connector directly (MAX13345E) or through a series resistor (MAX13342E). D+ operates as an input when \overline{OE} is high and as an output when \overline{OE} is low.
13 B2	ENUM	Enumerate. Drive ENUM high to connect the internal 1.5k Ω resistor from D+ to V _{TRM} . Drive ENUM low to disconnect the internal 1.5k Ω resistor.
14 C1	V _{BUS}	USB-Side Power-Supply Input. Connect V_{BUS} to the incoming USB power supply. Bypass V_{BUS} to GND with a $1\mu F$ ceramic capacitor.
EP —	EP	Exposed Paddle. Connect EP to GND.

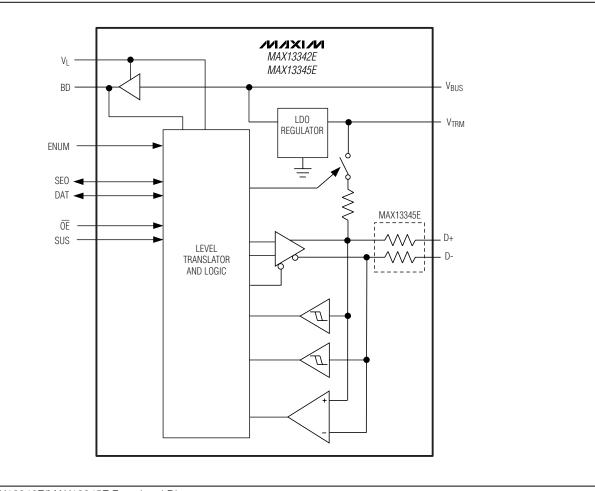


Figure 1. MAX13342E/MAX13345E Functional Diagram

Detailed Description

The MAX13342E/MAX13345E USB-compliant transceivers are designed to minimize the area and external components required to interface low-voltage ASICs to USB. The devices comply with the USB 2.0 specification for full-speed (12Mbps) operation. The transceivers include an internal 3.3V regulator, an internal 1.5k Ω D+ pullup resistor, and built-in ±15kV (HBM) ESD protection circuitry to protect D+, D-. Figure 1 is the MAX13342E/MAX13345E functional diagram.

The MAX13342E has controlled output impedance of 12Ω (max) on D+/D-, allowing the use of external switches to multiplex two different USB devices onto a single USB connector.

The MAX13345E uses internal series resistors on D+/Dto allow direct interface to the USB connector. A lowpower mode reduces current consumption to less than 45 μ A. An enumerate function controls connection of the internal D+ pullup resistor.

The MAX13342E/MAX13345E are equipped with DAT and SE0 interface signals and support the 3-wire USB tranceiver interface. Although the 3-wire interface is commonly associated with USB On-the-Go transceivers, the MAX13342E/MAX13345E support USB peripherals only. These transceivers provide a USB VBUS detection function that monitors the presence of USB VBUS and signals the event.

(See Table 2.)

45µA of supply current. The single-ended D+ and D-

Connect V_L to a system power supply and leave V_{BUS}

(or VBUS and VTRM) unconnected or connected to

GND. D+ and D- are tri-stated, allowing other circuitry

to share the USB D+ and D- line. V_L consumes less than 5µA of supply current. When operating the trans-

ceivers in sharing mode, the SUS input is ignored, and

Connect V_{BUS} to a system power supply and leave V_L unconnected or connect to ground. In disable mode,

D+ and D- are tri-stated, and VBUS and/or VTRM (or

VBUS and VTRM) consume less than 25µA. When oper-

ating the transceivers in disable mode, OE, SUS, and

inputs to the interface control signals are ignored.

the interface signals (SEO, DAT) are high impedance.

receivers are still active when driving SUS high.

Interface

The MAX13342E/MAX13345E control signals are used to control the USB D+/D- lines. V_L powers the logic-side interface and sets the input and output thresholds of these signals. The control signals for the MAX13342E and MAX13345E are DAT, SE0, and $\overline{\text{OE}}$.

Power-Supply Configuration

Normal Operating Mode

See Table 1 for various power-supply configurations.

V_{BUS} supplies power to the USB transceivers. Connect V_{BUS} to a +4V to +5.5V supply. Connect V_L to a +2.3V to +3.6V supply. V_{BUS} is typically connected directly to the USB connector. An internal regulator provides 3.3V to internal circuitry, and a regulated 3.3V output at V_{TRM}, in addition to powering the internal D+ pullup resistor. The MAX13342E and MAX13345E can be powered by connecting both V_{BUS} and V_{TRM} to a 3.3V external regulator.

Low-Power Mode

Operate the transceivers in low-power mode by asserting SUS high. In low-power mode, the USB differential receiver is turned off and V_{BUS} consumes less than

Table 1. Power-Supply Configuration

V _{BUS} (V)	V _{TRM} (V)	V _L (V)	CONFIGURATION	NOTES
+4.0 to +5.5	+3.0 to +3.6 output	+2.3 to +3.6	Normal mode	—
+4.0 to +5.5	+3.0 to +3.6 output	GND or floating	Disable mode	Table 2
GND or Floating	High Z	+2.3 to +3.6	Sharing mode	Table 2

Table 2. Disable-Mode and Sharing-Mode Connection

INPUTS/OUTPUTS	DISABLE MODE	SHARING MODE
V _{BUS} / V _{TRM}	4V to 5.5V	Floating or connected to GND
VL	Floating or connected to GND	2.3V to 3.6V input
D+ and D-	High impedance	High impedance
DAT, SEO	High impedance	High impedance
SUS	High impedance	High impedance
BD	Low	Low

Sharing Mode

Disable Mode

MAX13342E/MAX13345E

3-Wire DAT/SE0 Interface

The MAX13342E/MAX13345E use DAT and SE0 to drive data or a single-ended zero onto the D+/D- lines. When \overline{OE} is low, SE0 is an input and functions as a single-ended zero driver. When SE0 is high, both D+ and D- are driven low. When SE0 is driven low, the D+/D- outputs are controlled by DAT.

DAT is used to send data on D+/D- when both $\overline{\text{OE}}$ and SE0 are low. When DAT is high, D+ is driven high and D- is driven low. When DAT is low, D+ is driven low and D- is driven high.

In receive mode (\overline{OE} = high), DAT is the output of the differential receiver connected to D+ and D-. SE0 only goes active high when both D+ and D- are low.

Control Signals USB Detection

OE

The MA13342E/MAX13345E USB detection function indicates that V_{BUS} is present. The MAX13342E/MAX13345E push-pull bus detection output (BD) monitors V_{BUS} , and asserts high when V_{BUS} and V_L are present. BD asserts low if V_{BUS} is less than +3.6V and enters sharing mode.

 $\overline{\text{OE}}$ controls the direction of communication when VL and V_{BUS} are both present. When $\overline{\text{OE}}$ is low, DAT and SE0 operate as logic inputs and D+/D - are outputs. When $\overline{\text{OE}}$ is high, DAT and SE0 operate as logic outputs and D+/D- are inputs.

nterface

SUS determines whether the MAX13342E/MAX13345E operate in normal mode or in suspend mode. Drive SUS low for normal operation. Drive SUS high to enable suspend mode. In suspend mode, the single-ended receivers (D+/D-) are active to detect a wake-up event. Supply current decreases to less than 45µA in suspend mode.

The MAX13342E/MAX13345E can transmit data on D+ and D- while in suspend mode. This function is used to signal a remote wake-up event.

ENUM

SUS

A 1.5k Ω pullup resistor on D+ is used to indicate fullspeed (12Mbps) operation. Drive ENUM high to connect the internal pullup resistor from D+ to V_{TRM}. Drive ENUM low to disconnect the internal pullup resistor from D+ to V_{TRM}.

D+ and D-

D+ and D- are bidirectional signals and are ESD protected to ± 15 kV (HBM). \overline{OE} controls the direction of D+ and D- when in USB normal mode (Tables 3 and 4).

VTRM

An internal linear regulator generates the V_{TRM} voltage (+3.3V typ). V_{TRM} derives power from V_{BUS} (see the *Power-Supply Configuration* section). V_{TRM} powers the internal USB circuitry and provides the pullup voltage for the internal 1.5k Ω resistor. Bypass V_{TRM} to GND with a 1µF ceramic capacitor as close to the device as possible. Do not use V_{TRM} to provide power to external circuitry.

Table 3. Transmit Truth Table

$(\overline{OE} = 0, SUS = 0)$					
INP	UTS	OUTPUTS			
DAT	SE0	D+	D-		
0	0	0	1		
0	1	0	0		
1	0	1	0		
1	1	0	0		

Applications Information

USB Data Transfer

Transmitting Data

The MAX13342E/MAX13345E transmit USB data to the USB differentially on D+ and D- when \overline{OE} is low. The D+ and D- outputs are determined by SE0 and DAT (see Table 3).

Receiving Data

Drive \overline{OE} high and SUS low to receive data on $\overline{D+/D-}$. Differential data received on D+ and D- appear at DAT. SE0 goes high only when both D+ and D- are low (Table 4).

External Resistors (MAX13342E)

The MAX13342E provides low internal resistance on D+/D-. Two external series resistors for impedance matching are required for USB. Place the resistors in between the MAX13342E and the USB connector (see Figure 2).

Table 4. Receive Truth Table

(OE = 1, SUS = 0)					
INPUTS OUTPUTS					
D+	D-	DAT SE			
0	0	*DAT	1		
0	1	**0	0		
1	0	**1	0		
1	1	Х	0		

*Last state

**D+/D- differential receiver output X = Undefined

External Capacitors

Use three external capacitors for proper operation. Bypass V_L to GND with a 0.1μ F ceramic capacitor. Bypass VBUS to GND with a 1µF ceramic capacitor. Bypass VTRM to GND with a 1µF (min) ceramic or plastic capacitor. Place all capacitors as close to the device as possible.

UCSP Application Information

For the latest application details on UCSP construction, dimensions, tape carrier information, printed circuit board (PCB) techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to Application Note 1891: UCSP-A Wafer-Level Chip-Scale Package available on Maxim's website at www.maxim-ic.com/ucsp.

ESD Protection

The MAX13342E/MAX13345E feature \pm 15kV (HBM) ESD protection on D+ and D-. The ESD structures withstand high ESD in all states: normal operation, suspend, and powered down. For the \pm 15kV ESD structures to work correctly, a 1µF or greater capacitor must be connected from V_{TRM} to GND. V_{BUS} and D+/D- are characterized for protection to the following limits:

- ±15kV using the Human Body Model
- ±8kV using the IEC 61000-4-2 Contact Discharge Method
- ±8kV using the IEC 61000-4-2 Air-Gap Method

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 11 shows the Human Body Model, and Figure 12 shows the current waveform it generates when discharged into a low impedance. This model consists of

a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5k\Omega$ resistor.

IEC 61000-4-2

The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX13342E/ MAX13345E help the user design equipment that meets level 4 of IEC 61000-4-2, without the need for additional ESD-protection components. The major difference between tests done using the Human Body Model and IEC 61000-4-2 is a higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Hence, the ESD withstand voltage measured to IEC 61000-4-2 is generally lower than that measured using the Human Body Model. Figure 13 shows the IEC 61000-4-2 model. The Air-Gap Discharge Method involves approaching the device with a charged probe. The Contact Discharge Method connects the probe to the device before the probe is energized.

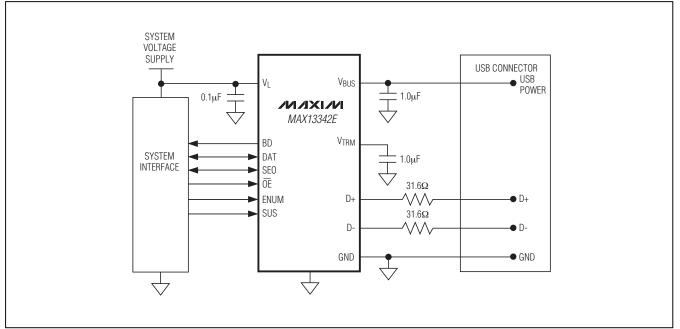


Figure 2. Adding External Resistors to the USB Connector for the MAX13342E

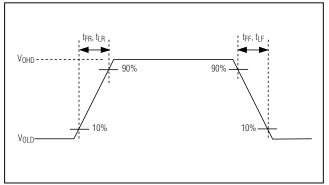


Figure 3. Rise and Fall Times

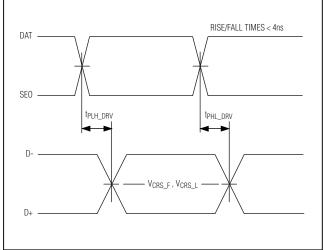


Figure 4. Timing of DAT, SE0 to D+ and D-

0E DAT CONNECTED TO GND, SE0 CONNECTED TO GND. D+ PULLED TO 3.0V WITH 150Ω. D+ tPZL_DRV tplz_drv D+ DAT CONNECTED TO V_I, SE0 CONNECTED TO GND. D+ PULLED TO GND WITH 150Ω. t_{PHZ_DRV} tpzh_drv DAT CONNECTED TO VL, SE0 CONNECTED TO GND. D- PULLED TO V_L WITH 150Ω. Dtplz_drv tpzl_drv DAT CONNECTED TO GND, SEO CONNECTED D-TO GND D- PULLED TO GND WITH 150 Ω t_{PHZ_DRV} tpzh_drv

Timing Diagrams/Test Circuits

Figure 5. Enable and Disable Timing, Transmitter

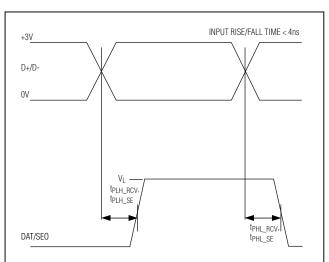


Figure 6. D+/D- to DAT, SE0 Propagation Delays

MAX13342E/MAX13345E

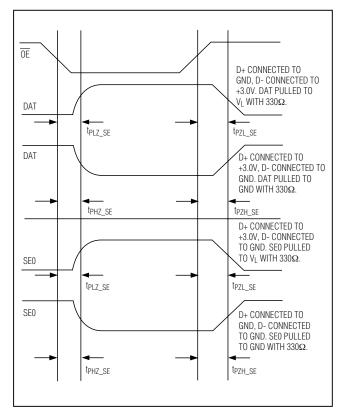


Figure 7. Receiver Enable and Disable Timing

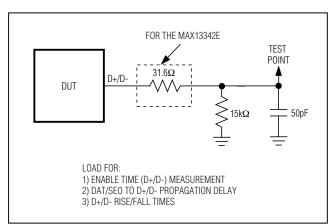


Figure 8. Load for Transmitter Propagation Delay, Enable Time, Transmitter Rise/Fall Times

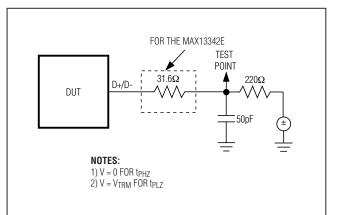


Figure 9. Load for Disable Time Measurements

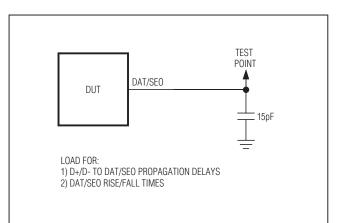


Figure 10. Load for Receiver Propagation Delay and Receiver Rise/Fall Times

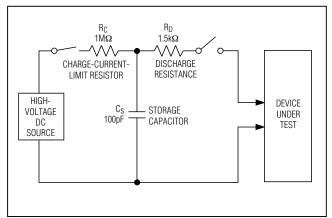


Figure 11. Human Body ESD Test Model

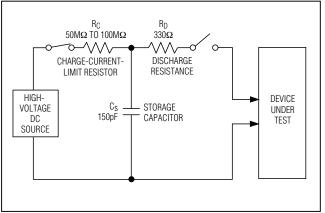


Figure 13. IEC 61000-4-2 ESD Test Model

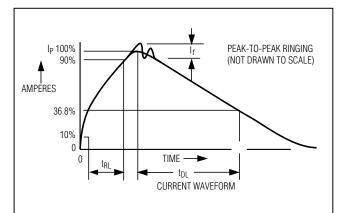
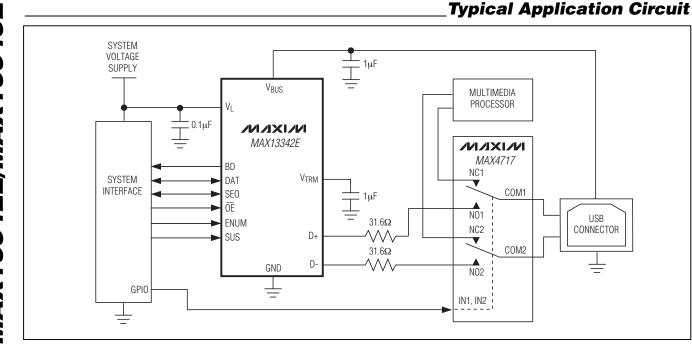
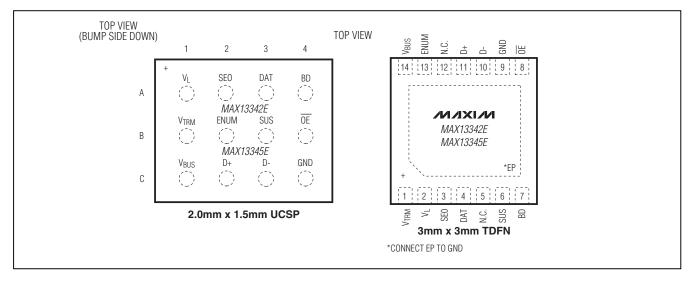
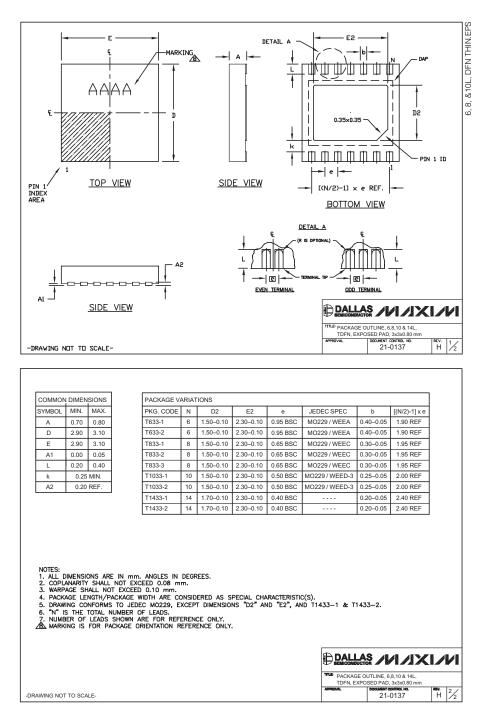




Figure 12. Human Body Model Current Waveform

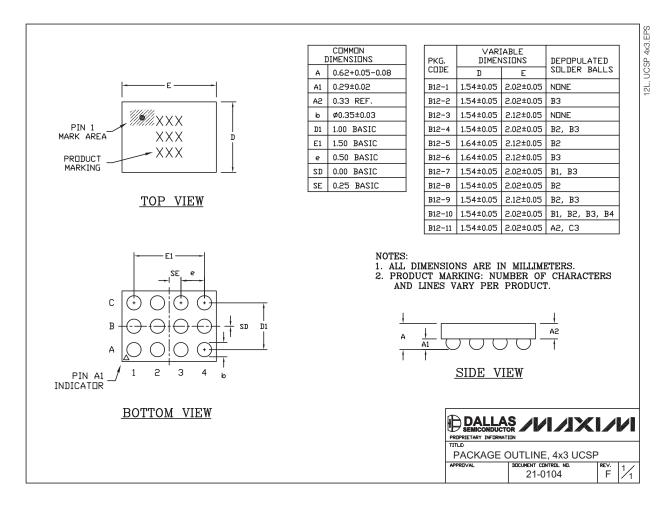
MAX13342E/MAX13345E

Pin Configurations


Chip Information

PROCESS: BiCMOS

M/IXI/M


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

18

_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA $\,$ 94086 408-737-7600

is a registered trademark of Maxim Integrated Products, Inc.