NCV8851B Automotive Grade Synchronous Buck Controller Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Description

The NCV8851B Evaluation Board provides a convenient way to evaluate and integrate a complete high-efficiency synchronous buck converter design. No additional components are required, other than dc supplies for the input voltage and enable pin. The board also can be connected to an external clock source to synchronize the switching frequency or for spread spectrum operation. The board is configured for a 5.0 V output with a 170 kHz switching frequency and a 4 A current limit, intended for applications requiring over 3 A of current.

Additionally, modifying the NCV8851B Evaluation Board for different output voltage, switching frequency or current limit is straightforward, requiring minimal component changes.

Key Features

- 5.0 V Output Voltage
- 91% Efficiency at 3 A
- 4 A Average Current Limit (ACL)
- 170 kHz Switching Frequency
- Average Current Mode Control
- Automotive Grade for up to $T_A = 105^{\circ}C$
- Wide Input Voltage Range of 4.5 V to 40 V
- Regulates through Load Dump Conditions
- 1.0 µA Maximum Quiescent Current in Sleep Mode
- Programmable Fixed Frequency 170 kHz to 500 kHz
- External Clock Synchronization up to 600 kHz
- Easy to Modify for Other Applications

Figure 1. NCV8851B Evaluation Board

Table 1. EVALUATION BOARD TERMINAL DESCRIPTIONS

Terminal	Function					
V _{IN} Positive dc input voltage.						
GND Common dc return.						
V _{OUT} Regulated dc output voltage.						
SYNC	Input for external clock synchronization.					
EN Enable input. When disabled, the part enters sleep mode.						

Table 2. ABSOLUTE MAXIMUM RATINGS (Voltages are with respect to GND)

Rating	Value	Unit
Dc Supply Voltage (VIN, EN) Peak Transient Voltage (Load Dump)	–0.3 to 40 45	V
Dc Supply Voltage (SYNC)	–0.3 to 7	V
Junction Temperature (NCV8851B)	-40 to 150	°C
Ambient Temperature (Demo board)	-40 to 105	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. ELECTRICAL CHARACTERISTICS (T_A = 25°C, 4.5 V $\leq V_{IN} \leq$ 40 V, I_{OUT} \leq 4 A, unless otherwise specified)

Characteristic	Conditions	Typical Value	Unit
OUTPUT VOLTAGE			•
Output Voltage	-	5.00	V
Voltage Accuracy	-	4	%
Line Regulation	I _{OUT} = 0 A	0.02	%
Load Regulation	V _{IN} = 13.2 V	0.04	%
SWITCHING REGULATOR			
Switching Frequency	V _{IN} = 13.2 V, I _{OUT} = 0 A	170	kHz
Soft-start Time	V _{IN} = 13.2 V, I _{OUT} = 100 mA, 10-90%	14	ms
SYNC Frequency	-	170 to 600	kHz
Duty Cycle Range	-	5 to 95	%
CURRENT LIMIT			
Average Current Limit	-	4	А
Cycle-by-cycle Overcurrent Protection	-	6.4	А
GENERAL			
Input Undervoltage Lockout (UVLO)	V _{IN} increasing	4.3	V
Efficiency		70.7 93.2 90.9	%
Maximum Shutdown Current	-	1.0	μΑ
Thermal Shutdown	-	180	°C

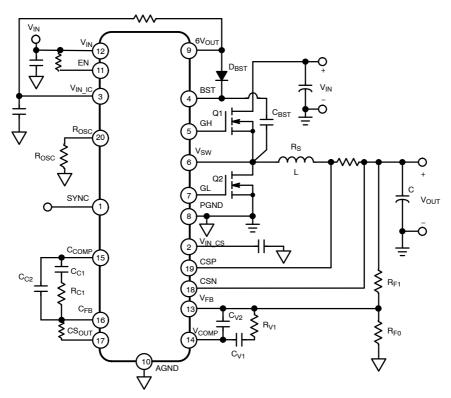


Figure 2. NCV8851B Application Diagram

Operational Guidelines

- 1. Connect a dc input voltage, 4.5 V \leq V_{BATT} \leq 40 V, between "V_{IN}" and "GND".
- 2. Connect a load impedance between " V_{OUT} " and "GND".
- 3. Connect a dc enable voltage, $4.5 \text{ V} \le \text{EN} \le \text{V}_{\text{BATT}} \le 20 \text{ V}$, between "EN" and "GND". If EN must be tied to a higher voltage, a current limiting resistor is required (see below).
- 4. Optionally, for external clock synchronization, connect a pulse source, SYNC, between "SYNC" and "GND". The positive amplitude should be $1.0 \text{ V} \leq \text{SYNC} \leq 7.0 \text{ V}$ and negative amplitude should be -0.3 V \leq GND \leq 0.8 V. SYNC pulse duty cycle may range from 10% to 90%, and frequency may range from the programmed frequency (170 kHz by default) to 600 kHz.

Figure 3. Evaluation Board Connections

TYPICAL WAVEFORMS

Figure 4. Startup at 170 kHz, 13.2 V to 5 V Output

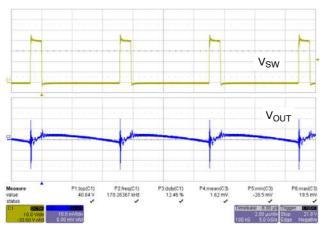


Figure 6. Minimum Duty Cycle at 170 kHz, 5 V Output

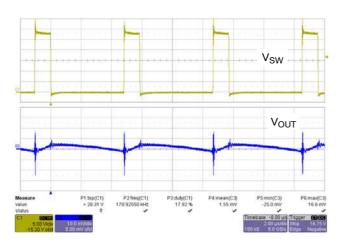


Figure 8. SWN, V_{OUT} at 170 kHz, 28 V to 5 V Output

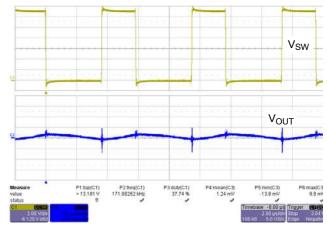


Figure 5. SWN, V_{OUT} at 170 kHz, 13.2 V to 5 V Output



Figure 7. Maximum Duty Cycle at 170 kHz, 5 V Output

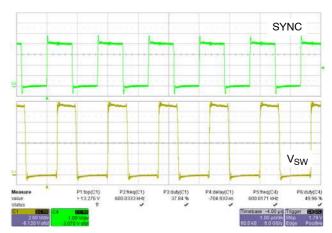


Figure 9. SYNC from 170 to 600 kHz, 13.2 V to 5 V Output

TYPICAL PERFORMANCE

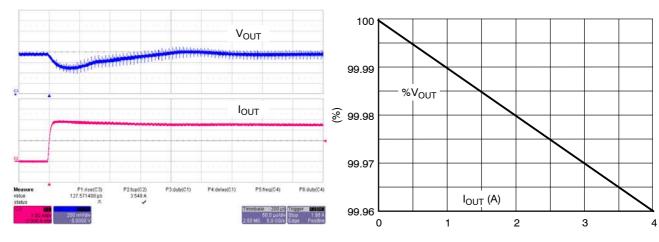
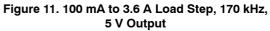



Figure 10. 100 mA to 3.6 A Load Step, 170 kHz, 5 V Output

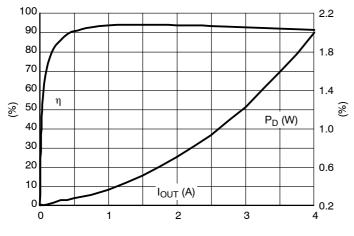


Figure 12. Efficiency at 170 kHz, 13.2 V to 5 V Output

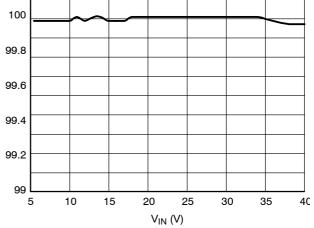
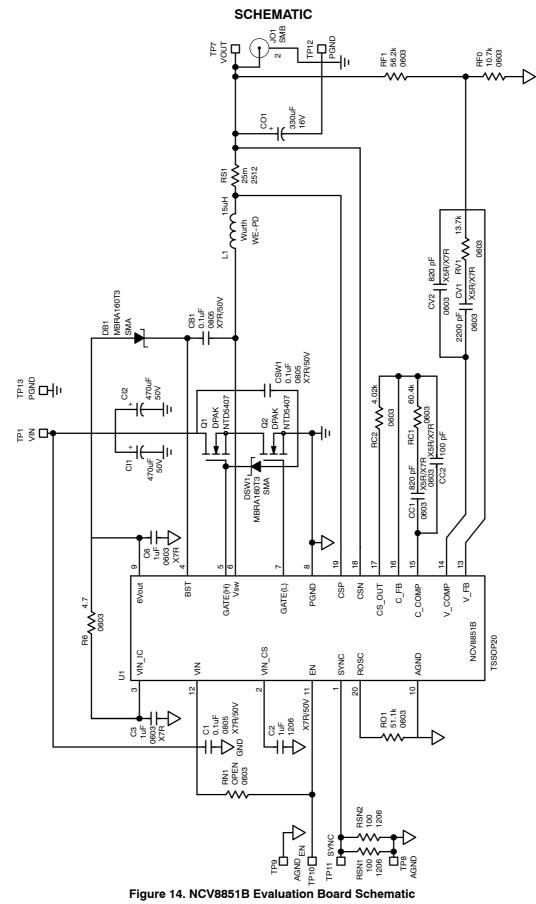



Figure 13. Line Regulation at 170 kHz, 13.2 V to 5 V Output

Table 4. BILL OF MATERIALS

Qty	Ref	Part	Part Description	Manufacturer	Part Number		
3	CSW1	0.1µF	0.1µF 50V 10% 0805 X7R ceramic SMD capacitor	Kemet	C0805C104K5RACTU		
	CB1	0.1µF	0.1µF 50V 10% 0805 X7R ceramic SMD capacitor	Kemet	C0805C104K5RACTU		
	C1	0.1µF	0.1µF 50V 10% 0805 X7R ceramic SMD capacitor	Kemet	C0805C104K5RACTU		
2	CC1	820pF	820pF 10% 0603 X7R ceramic SMD capacitor	Murata Electronics North America	GRM188R71H821KA01D		
	CV2	820pF	820pF 10% 0603 X7R ceramic SMD capacitor	Murata Electronics North America	GRM188R71H821KA01D		
1	CC2	100pF	820pF 10% 0603 X7R ceramic SMD capacitor	Murata Electronics North America	GCM1885C1H101JA16D		
2	CI1	470μF	470μF 63V FK electrolytic SMD capacitor	Panasonic - ECG	EEVFK1J471M		
	CI2	470μF	470μF 63V FK electrolytic SMD capacitor	Panasonic - ECG	EEVFK1J471M		
1	CO1	330µF	330μF 10V 20% polymer electrolytic SMD capacitor	Sanyo Electronic Components Co.	10TPE330M		
1	CV1	2200pF	2200pF 10% 0603 X7R ceramic SMD capacitor	Panasonic - ECG	ECJ-1VB1H222K		
1	C2	1μF	1μF 50V 10% 1206 X7R ceramic SMD capacitor	Murata Electronics North America	GCM31MR71H105KA55L		
2	C3	1μF	1μF 16V 10% 0603 X7R ceramic SMD capacitor	Taiyo Yuden	EMK107BJ105KA-TR		
	C6	1μF	1μF 16V 10% 0603 X7R ceramic SMD capacitor	Taiyo Yuden	EMK107BJ105KA-TR		
2	DSW1	MBRA160T3	1A, 60 V Schottky SMD rectifier	ON Semiconductor	MBRA160T3G		
	DB1	MBRA160T3	1A, 60 V Schottky SMD rectifier	ON Semiconductor	MBRA160T3G		
1	JO1	SMB	Vertical PCB mount gold RF connector jack	Emerson Network Power Connectivity Solutions	131-3701-261		
1	L1	15μΗ	15μH SMD power inductor	Wurth	7447709150		
2	Q1	NTD5407	40V, 38A N-channel power MOSFET	ON Semiconductor	NTD5407NG		
	Q2	NTD5407	40V, 38A N-channel power MOSFET	ON Semiconductor	NTD5407NG		
1	RC1	60.4k	60.4kΩ 1% 0.1W 0603 Thick-film SMD resistor	Yageo Corporation	RC0603FR-0760K4L		
1	RC2	4.02k	4.02kΩ 1% 0.1W 0603 Thick-film SMD resistor	Yageo Corporation	RC0603FR-074K02L		
1	RF0	10.7k	10.7kΩ 1% 0.1W 0603 Thick-film SMD resistor	Yageo Corporation	RC0603FR-0710K7L		
1	RF1	56.2k	56.2kΩ 1% 0.1W 0603 Thick-film SMD resistor	Yageo Corporation	RC0603FR-0756K2L		
1	RN1	OPEN	1% 0.1W 0603 Thick-film SMD resistor				
1	RO1	51.1k	51.1kΩ 1% 0.1W 0603 Thick-film SMD resistor	Yageo Corporation	RC0603FR-0751K1L		
2	RSN1	100	100Ω 1% 0.25W 1206 Thick-film SMD resistor	Yageo Corporation	RC1206FR-07100RL		
	RSN2	100	100Ω 1% 0.25W 1206 Thick-film SMD resistor	Yageo Corporation	RC1206FR-07100RL		

Qty	Ref	Part	Part Description	Manufacturer	Part Number		
1	RS1	25m	$25m\Omega$ 1% 2512 Thick-film SMD current sense resistor	Vishay/Dale	WSL2512R0250FEA		
1	RV1	13.7k	13.7kΩ 1% 0.1W 0603 Thick-film SMD Yageo Corporation RC0603Ff resistor				
1	R6	4.7	4.75Ω 1% 0.1W 0603 Thick-film SMD resistor	RC0603FR-074R75L			
4	TP1	VCC	0.291" X 0.109" Solder terminal turret Ag over Cu	Mill-Max Manufacturing Corporation	2501-2-00-44-00-00-07-0		
	TP7	VOUT	0.291" X 0.109" Solder terminal turret Ag over Cu	Mill-Max Manufacturing Corporation	2501-2-00-44-00-00-07-0		
	TP12	PGND	0.291" X 0.109" Solder terminal turret Ag over Cu	Mill-Max Manufacturing Corporation	2501-2-00-44-00-00-07-0		
	TP13	PGND	0.291" X 0.109" Solder terminal turret Ag over Cu	Mill-Max Manufacturing Corporation	2501-2-00-44-00-00-07-0		
4	TP8	AGND	0.042" Inboard pin	Vector Electronics	K24C		
	TP9	AGND	0.042" Inboard pin	Vector Electronics	K24C		
	TP10	EN	0.042" Inboard pin	Vector Electronics	K24C		
	TP11	SYNC	0.042" Inboard pin	Vector Electronics	K24C		
1	U1	NCV8851B	Automotive synchronous buck controller	ON Semiconductor	NCV8851BG		

Table 4. BILL OF MATERIALS

EVALUATION BOARD MODIFICATIONS

Connecting EN to a Higher Voltage or VBATT

Typically, EN is tied to a logic output or low-voltage supply. However, EN can be tied to a higher voltage or to V_{BATT} . In either case, if the supply that EN is tied to is expected to go above 20 V, a current limiting resistor is required.

For convenience, RN1 is unpopulated, disconnecting EN from V_{BATT} (via V_{IN}) by default. To connect EN to V_{BATT} , populate RN1 with a current limiting resistor. To connect EN to a separate higher voltage supply from V_{BATT} , place a current limiting resistor in series with the supply. Consult the data sheet, NCV8851B/D, for selecting a current limiting resistor.

Programming the Switching Frequency to a Different Value

The switching frequency is programmed with a resistor, RO1, from the R_{OSC} pin to GND. By default, the switching frequency is set to 170 kHz with a 51.1 k Ω resistor used for RO1. The frequency can be programmed to a different value by replacing RO1. Consult the data sheet, NCV8851B/D, for selecting a different frequency program resistor. Changing the switching frequency may impact dynamic characteristics. Typically, increasing the switching frequency allows the dynamic response to improve by further optimization of the compensators; however, it is advised to analyze dynamic response results of simulation whenever the switching frequency is modified.

Synchronizing to a Higher Frequency

When connecting the SYNC input to a significantly higher frequency than that set by the program resistor, dynamic performance could be impaired. Based on empirical results, it is advised to analyze dynamic response results of simulation whenever SYNC is more than 33% higher than the programmed switching frequency.

Adjusting the Current Limit

The current limit can be adjusted by using a different sense resistor for RS1. Consult the data sheet, NCV8851B/D, for selecting a different current limit.

Changing the sense resistor may impact dynamic characteristics. It is advised to analyze dynamic response results of simulation whenever the sense resistor is modified.

Table 5. BOM VARIATIONS

The following list of BOM variations on output voltage and switching frequency have been tested.

	1						-			
	3.3 V, 4 A			5 V, 4 A			8 V, 4 A			
Part	170kHz	360 kHz	500 kHz	170kHz	360 kHz	500 kHz	170 kHz	360 kHz	500 kHz	Unit
RO1	51.1	23.2	16.2	51.1	23.2	16.2	51.1	23.2	16.2	kΩ
L1	15	10	10	15	15	10	22	15	15	μH
CO1	330	330	330	330	330	330	330	330	330	μF
RS1	25	25	25	25	25	25	25	25	25	mΩ
RC1	60.4	60.4	60.4	60.4	60.4	60.4	60.4	60.4	60.4	kΩ
RC2	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02	kΩ
CC1	820	820	820	820	820	820	820	820	820	pF
CC2	100	100	100	100	100	100	100	100	100	pF
RV1	13.7	27.4	27.4	13.7	27.4	27.4	13.7	13.7	13.7	kΩ
RF0	17.4	17.4	8.66	10.7	5.36	3.57	10.0	4.99	3.32	kΩ
RF1	54.9	54.9	27.4	56.2	28	18.7	90.9	45.3	30.1	kΩ
CV1	2200	2200	2200	2200	2200	2200	2200	2200	2200	pF
CV2	820	820	820	820	820	820	820	820	820	pF

Selection of components for different operational configurations than those listed above is beyond the scope of this document and the data sheet, NCV8851B/D, should

be consulted. Additionally, it is advised to analyze dynamic response results of simulation whenever variant components are used.

LAYOUT PLOTS

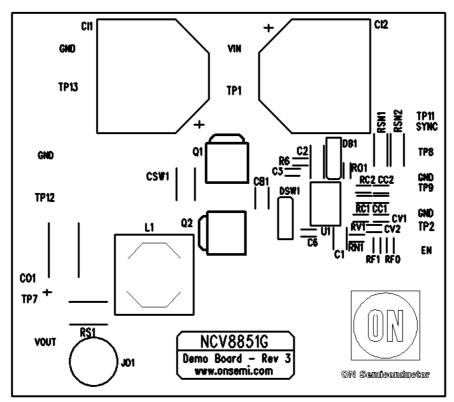


Figure 15. Top Silk Screen

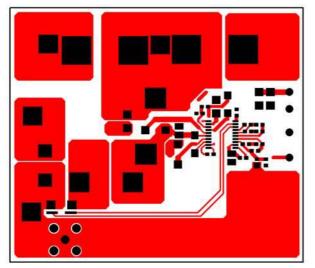


Figure 16. Top Copper

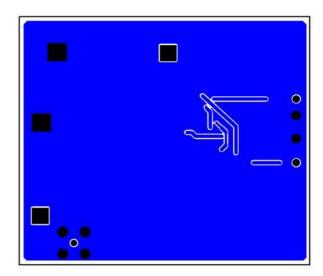


Figure 17. Bottom Copper

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persores that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

EVBUM2119/D