

Low-voltage translating 16-bit I²C-bus/SMBus I/O expander with interrupt output, reset, and configuration registers

Rev. 6.2 — 7 April 2017

Product data sheet

1. General description

The PCAL6416A is a 16-bit general-purpose I/O expander that provides remote I/O expansion for most microcontroller families via the I^2 C-bus interface.

NXP I/O expanders provide a simple solution when additional I/Os are needed while keeping interconnections to a minimum, for example, in battery-powered mobile applications for interfacing to sensors, push buttons, keypad, etc. In addition to providing a flexible set of GPIOs, it simplifies interconnection of a processor running at one voltage level to I/O devices operating at a different (usually higher) voltage level. The PCAL6416A has built-in level shifting feature that makes these devices extremely flexible in mixed signal environments where communication between incompatible I/O voltages is required. Its wide V_{DD} range of 1.65 V to 5.5 V on the dual power rail allows seamless communications with next-generation low voltage microprocessors and microcontrollers on the interface side (SDA/SCL) and peripherals at a higher voltage on the port side.

There are two supply voltages for PCAL6416A: $V_{DD(I2C-bus)}$ and $V_{DD(P)}$. $V_{DD(I2C-bus)}$ provides the supply voltage for the interface at the master side (for example, a microcontroller) and the $V_{DD(P)}$ provides the supply for core circuits and Port P. The bidirectional voltage level translation in the PCAL6416A is provided through $V_{DD(I2C-bus)}$. $V_{DD(I2C-bus)}$ should be connected to the V_{DD} of the external SCL/SDA lines. This indicates the V_{DD} level of the I²C-bus to the PCAL6416A, while the voltage level on Port P of the PCAL6416A is determined by the $V_{DD(P)}$.

The PCAL6416A contains the PCA6416A register set of four pairs of 8-bit Configuration, Input, Output, and Polarity Inversion registers and additionally, the PCAL6416A has Agile I/O, which are additional features specifically designed to enhance the I/O. These additional features are: programmable output drive strength, latchable inputs, programmable pull-up/pull-down resistors, maskable interrupt, interrupt status register, programmable open-drain or push-pull outputs. The PCAL6416A is a pin-to-pin replacement to the PCA6416A, however, the PCAL6416A powers up with all I/O interrupts masked. This mask default allows for a board bring-up free of spurious interrupts at power-up.

At power-on, the I/Os are configured as inputs. However, the system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each input or output is kept in the corresponding input or output register. The polarity of the Input Port register can be inverted with the Polarity Inversion register, saving external logic gates. Programmable pull-up and pull-down resistors eliminate the need for discrete components.

The system master can reset the PCAL6416A in the event of a time-out or other improper operation by asserting a LOW in the RESET input. The power-on reset puts the registers in their default state and initializes the I²C-bus/SMBus state machine. The RESET pin causes the same reset/initialization to occur without depowering the part.

The PCAL6416A open-drain interrupt (\overline{INT}) output is activated when any input state differs from its corresponding Input Port register state and is used to indicate to the system master that an input state has changed.

INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C-bus. Thus, the PCAL6416A can remain a simple slave device. The input latch feature holds or latches the input pin state and keeps the logic values that created the interrupt until the master can service the interrupt. This minimizes the host's interrupt service response for fast moving inputs.

The device Port P outputs have 25 mA sink capabilities for directly driving LEDs while consuming low device current.

One hardware pin (ADDR) can be used to program and vary the fixed I²C-bus address and allow up to two devices to share the same I²C-bus or SMBus.

2. Features and benefits

- I²C-bus to parallel port expander
- Operating power supply voltage range of 1.65 V to 5.5 V
- Allows bidirectional voltage-level translation and GPIO expansion between:
 - 1.8 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
 - 2.5 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
 - 3.3 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
 - ◆ 5 V SCL/SDA and 1.8 V, 2.5 V, 3.3 V or 5 V Port P
- Low standby current consumption:
 - 1.5 μA typical at 5 V V_{DD}
 - 1.0 μA typical at 3.3 V V_{DD}
- Schmitt trigger action allows slow input transition and better switching noise immunity at the SCL and SDA inputs
 - V_{hys} = 0.18 V (typical) at 1.8 V
 - V_{hvs} = 0.25 V (typical) at 2.5 V
 - V_{hvs} = 0.33 V (typical) at 3.3 V
 - $V_{hys} = 0.5 V$ (typical) at 5 V
- 5 V tolerant I/O ports
- Active LOW reset input (RESET)
- Open-drain active LOW interrupt output (INT)
- 400 kHz Fast-mode l²C-bus
- Internal power-on reset
- Power-up with all channels configured as inputs
- No glitch on power-up
- Noise filter on SCL/SDA inputs

- Latched outputs with 25 mA drive maximum capability for directly driving LEDs
- Latch-up performance exceeds 100 mA per JESD 78, Class II
- ESD protection exceeds JESD 22
 - 2000 V Human-Body Model (A114-A)
 - 1000 V Charged-Device Model (C101)
- Packages offered: TSSOP24, HWQFN24, UFBGA24, VFBGA24, XFBGA24, X2QFN24 (LGA, Land Grid Array)

2.1 Agile I/O features

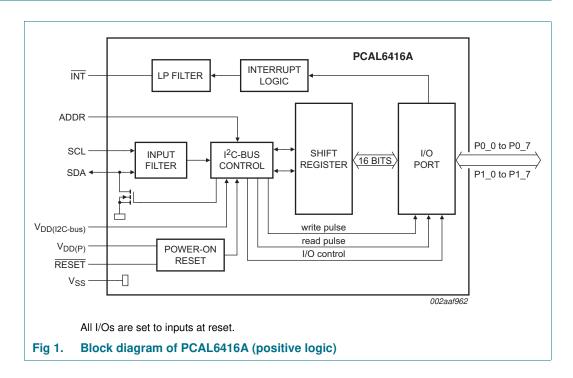
- Software backward compatible with PCA6416A with interrupts disabled at power-up
- Pin-to-pin drop-in replacement with PCA6416A
- Output port configuration: bank selectable push-pull or open-drain output stages
- Interrupt status: read-only register identifies the source of an interrupt
- Bit-wise I/O programming features:
 - Output drive strength: four programmable drive strengths to reduce rise and fall times in low-capacitance applications
 - Input latch: Input Port register values changes are kept until the Input Port register is read
 - Pull-up/pull-down enable: floating input or pull-up/pull-down resistor enable
 - Pull-up/pull-down selection: 100 kΩ pull-up/pull-down resistor selection
 - Interrupt mask: mask prevents the generation of the interrupt when input changes state to prevent spurious interrupts

3. Ordering information

Table 1.Ordering information

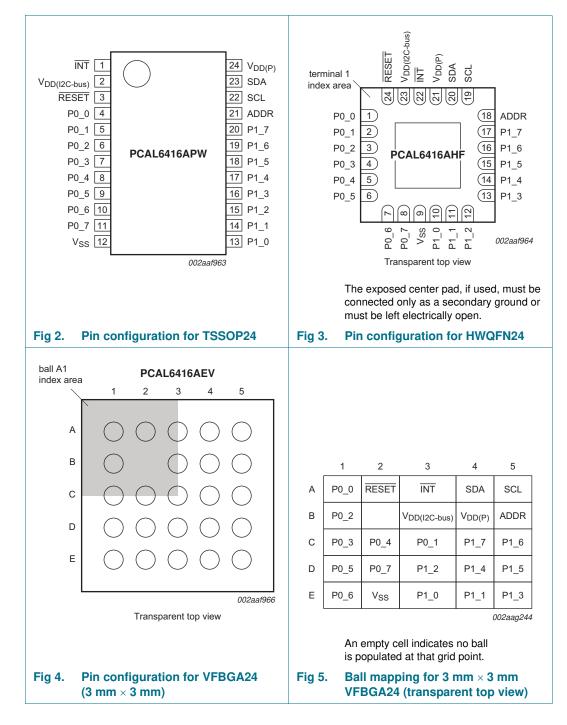
Type number	Topside	Package							
	mark	Name	Description	Version					
PCAL6416AEV	L16A	VFBGA24	plastic very thin fine-pitch ball grid array package; 24 balls; body $3 \times 3 \times 0.85$ mm	SOT1199-1					
PCAL6416AEX	L6X[1]	XFBGA24 ^[2]	plastic, extremely thin fine-pitch ball grid array package; 24 balls; body $2 \times 2 \times 0.5$ mm	SOT1342-1					
PCAL6416AEX1	16X ^[1]	X2QFN24	plastic, thermal enhanced super thin land grid array or quad flat package; no leads; 24 terminals; body 2.0 \times 2.0 \times 0.35 mm	SOT1895-1					
PCAL6416AER	S6X[1]	UFBGA24 ^[2]	plastic, ultra thin fine-pitch ball grid array package; 24 balls; body $2 \times 2 \times 0.65$ mm	SOT1361-1					
PCAL6416AHF	L16A	HWQFN24	plastic thermal enhanced very very thin quad flat package; no leads; 24 terminals; body $4 \times 4 \times 0.75$ mm	SOT994-1					
PCAL6416APW	PCAL6416A	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1					

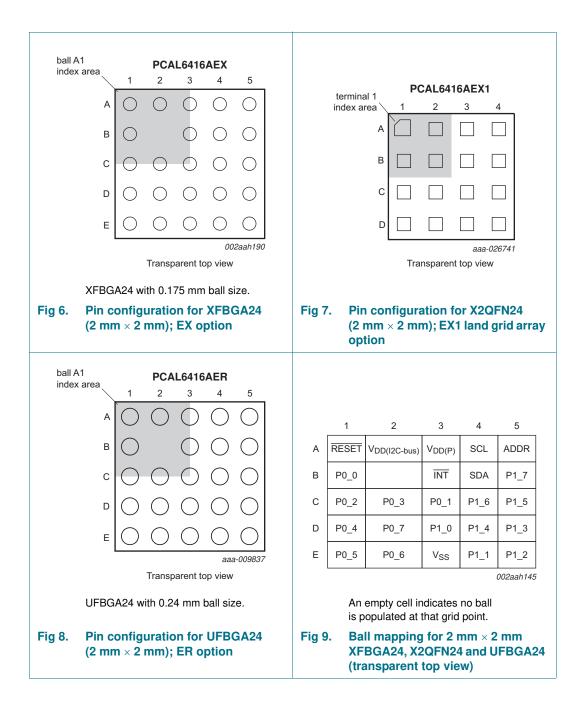
[1] 'X' rotates from 1 to 5 and indicates the work week of the indicated month


[2] XFBGA24/UFBGA24 packages are discontinued with lifetime buy March 2017; new designs must use X2QFN24 package

3.1 Ordering options

Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature range
PCAL6416AEV	PCAL6416AEVJ	VFBGA24	Reel 13" Q1/T1 *Standard mark SMD	6000	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$
PCAL6416AEX	PCAL6416AEXX	XFBGA24[1]	Reel 7" Q1/T1 *Standard mark SMD	5000	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$
PCAL6416AEX1	PCAL6416AEX1Z	X2QFN24	Reel 7" Q2/T3 *Standard mark SMD	5000	$T_{amb} = -40 \text{ °C to } +85 \text{ °C}$
PCAL6416AER	PCAL6416AERJ	UFBGA24[1]	Reel 13" Q1/T1 *Standard mark SMD	10000	$T_{amb} = -40 \text{ °C to } +85 \text{ °C}$
	PCAL6416AERX	UFBGA24[1]	Reel 7" Q1/T1 *Standard mark SMD	3000	$T_{amb} = -40 \text{ °C to } +85 \text{ °C}$
PCAL6416AHF	PCAL6416AHF,128	HWQFN24	Reel 13" Q2/T3 *Standard mark SMD	6000	$T_{amb} = -40 \text{ °C to } +85 \text{ °C}$
PCAL6416APW	PCAL6416APW,118	TSSOP24	Reel 13" Q1/T1 *Standard mark SMD	2500	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$


[1] XFBGA24/UFBGA24 packages are discontinued with lifetime buy March 2017; new designs must use X2QFN24 package


4. Block diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 3. Pin description	
--------------------------	--

Symbol	Pin				Description				
	TSSOP24 HWQFN24		VFBGA24 UFBGA24, XFBGA24, X2QFN24						
INT	1	22	A3	B3	Interrupt output. Connect to $V_{DD(I2C-bus)}$ or $V_{DD(P)}$ through a pull-up resistor.				
V _{DD(I2C-bus)}	2	23	В3	A2	Supply voltage of I ² C-bus. Connect directly to the V _{DD} of the external I ² C master. Provides voltage-level translation.				
RESET	3	24	A2	A1	Active LOW reset input. Connect to V _{DD(I2C-bus)} through a pull-up resistor if no active connection is used.				
P0_0 ^[1]	4	1	A1	B1	Port 0 input/output 0.				
P0_1 ^[1]	5	2	C3	C3	Port 0 input/output 1.				
P0_2 ^[1]	6	3	B1	C1	Port 0 input/output 2.				
P0_3 ^[1]	7	4	C1	C2	Port 0 input/output 3.				
P0_4 ^[1]	8	5	C2	D1	Port 0 input/output 4.				
P0_5 <mark>11</mark>	9	6	D1	E1	Port 0 input/output 5.				
P0_6 ^[1]	10	7	E1	E2	Port 0 input/output 6.				
P0_7 <mark>11</mark>	11	8	D2	D2	Port 0 input/output 7.				
V _{SS}	12	9	E2	E3	Ground.				
P1_0 ^[2]	13	10	E3	D3	Port 1 input/output 0.				
P1_1 ²	14	11	E4	E4	Port 1 input/output 1.				
P1_2 ^[2]	15	12	D3	E5	Port 1 input/output 2.				
P1_3 ^[2]	16	13	E5	D5	Port 1 input/output 3.				
P1_4 ^[2]	17	14	D4	D4	Port 1 input/output 4.				
P1_5 ²	18	15	D5	C5	Port 1 input/output 5.				
P1_6 ^[2]	19	16	C5	C4	Port 1 input/output 6.				
P1_7 ^[2]	20	17	C4	B5	Port 1 input/output 7.				
ADDR	21	18	B5	A5	Address input. Connect directly to $V_{DD(P)}$ or ground.				
SCL	22	19	A5	A4	Serial clock bus. Connect to $V_{\text{DD}(I2C-bus)}$ through a pull-up resistor.				
SDA	23	20	A4	B4	Serial data bus. Connect to $V_{\text{DD}(\text{I2C-bus})}$ through a pull-up resistor.				
V _{DD(P)}	24	21	B4	A3	Supply voltage of PCAL6416A for Port P.				

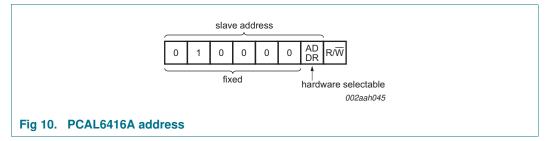
[1] Pins P0_0 to P0_7 correspond to bits P0.0 to P0.7. At power-on, all I/O are configured as input.

[2] Pins P1_0 to P1_7 correspond to bits P1.0 to P1.7. At power-on, all I/O are configured as input.

6. Voltage translation

<u>Table 4</u> shows how to set up V_{DD} levels for the necessary voltage translation between the I²C-bus and the PCAL6416A.

Table 4.Voltage translation


$V_{DD(I2C-bus)}$ (SDA and SCL of I ² C master)	V _{DD(P)} (Port P)
1.8 V	1.8 V
1.8 V	2.5 V
1.8 V	3.3 V
1.8 V	5 V
2.5 V	1.8 V
2.5 V	2.5 V
2.5 V	3.3 V
2.5 V	5 V
3.3 V	1.8 V
3.3 V	2.5 V
3.3 V	3.3 V
3.3 V	5 V
5 V	1.8 V
5 V	2.5 V
5 V	3.3 V
5 V	5 V

7. Functional description

Refer to Figure 1 "Block diagram of PCAL6416A (positive logic)".

7.1 Device address

The address of the PCAL6416A is shown in Figure 10.

ADDR is the hardware address package pin and is held to either HIGH (logic 1) or LOW (logic 0) to assign one of the two possible slave addresses. The last bit of the slave address (R/\overline{W}) defines the operation (read or write) to be performed. A HIGH (logic 1) selects a read operation, while a LOW (logic 0) selects a write operation.

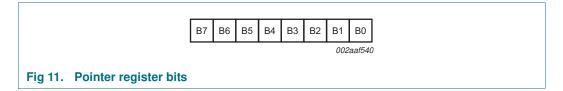

7.2 Interface definition

Table 5. Interface definition

Byte		Bit									
	7 (MSB)	6	5	4	3	2	1	0 (LSB)			
I ² C-bus slave address	L	Н	L	L	L	L	ADDR	R/W			
I/O data bus	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0			
	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0			

7.3 Pointer register and command byte

Following the successful acknowledgement of the address byte, the bus master sends a command byte, which is stored in the Pointer register in the PCAL6416A. The lower three bits of this data byte state the operation (read or write) and the internal registers (Input, Output, Polarity Inversion, or Configuration) that will be affected. Bit 6 in conjunction with the lower three bits of the Command byte are used to point to the extended features of the device (Agile IO). This register is write only.

Table 6.	Command byte
----------	--------------

		Poin	ter re	gister	bits			Command byte	Register	Protocol	Power-up
B7	B 6	B5	B 4	B3	B2	B1	B0	(hexadecimal)			default
0	0	0	0	0	0	0	0	00h	Input port 0	read byte	xxxx xxxx ^[1]
0	0	0	0	0	0	0	1	01h	Input port 1	read byte	XXXX XXXX
0	0	0	0	0	0	1	0	02h	Output port 0	read/write byte	1111 1111
0	0	0	0	0	0	1	1	03h	Output port 1	read/write byte	1111 1111
0	0	0	0	0	1	0	0	04h	Polarity Inversion port 0	read/write byte	0000 0000
0	0	0	0	0	1	0	1	05h	Polarity Inversion port 1	read/write byte	0000 0000
0	0	0	0	0	1	1	0	06h	Configuration port 0	read/write byte	1111 1111
0	0	0	0	0	1	1	1	07h	Configuration port 1	read/write byte	1111 1111
0	1	0	0	0	0	0	0	40h	Output drive strength register 0	read/write byte	1111 1111
0	1	0	0	0	0	0	1	41h	Output drive strength register 0	read/write byte	1111 1111
0	1	0	0	0	0	1	0	42h	Output drive strength register 1	read/write byte	1111 1111
0	1	0	0	0	0	1	1	43h Output drive strength read/v register 1		read/write byte	1111 1111
0	1	0	0	0	1	0	0	44h	Input latch register 0	read/write byte	0000 0000
0	1	0	0	0	1	0	1	45h	Input latch register 1	read/write byte	0000 0000
0	1	0	0	0	1	1	0	46h	Pull-up/pull-down enable register 0	read/write byte	0000 0000
0	1	0	0	0	1	1	1	47h	Pull-up/pull-down enable register 1	read/write byte	0000 0000
0	1	0	0	1	0	0	0	48h	Pull-up/pull-down selection register 0	read/write byte	1111 1111
0	1	0	0	1	0	0	1	49h	Pull-up/pull-down selection register 1	read/write byte	1111 1111
0	1	0	0	1	0	1	0	4Ah	Interrupt mask register 0	read/write byte	1111 1111
0	1	0	0	1	0	1	1	4Bh	Interrupt mask register 1	read/write byte	1111 1111
0	1	0	0	1	1	0	0	4Ch	Interrupt status register 0	read byte	0000 0000
0	1	0	0	1	1	0	1	4Dh	Interrupt status register 1	read byte	0000 0000
0	1	0	0	1	1	1	1	4Fh	Output port configuration register	read/write byte	0000 0000

[1] Undefined.

7.4 Register descriptions

7.4.1 Input port register pair (00h, 01h)

The Input port registers (registers 0 and 1) reflect the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the Configuration register. The Input port registers are read only; writes to these registers have no effect. The default value 'X' is determined by the externally applied logic level. An Input port register read operation is performed as described in Section 8.2.

Table 7. Input port 0 register (address 00h)

Bit	7	6	5	4	3	2	1	0
Symbol	10.7	10.6	10.5	10.4	10.3	10.2	10.1	10.0
Default	Х	Х	Х	Х	Х	Х	Х	Х

Table 8. Input port 1 register (address 01h)

		•		,				
Bit	7	6	5	4	3	2	1	0
Symbol	l1.7	l1.6	l1.5	11.4	l1.3	l1.2	11.1	l1.0
Default	Х	Х	Х	Х	Х	Х	Х	Х

7.4.2 Output port register pair (02h, 03h)

The Output port registers (registers 2 and 3) shows the outgoing logic levels of the pins defined as outputs by the Configuration register. Bit values in these registers have no effect on pins defined as inputs. In turn, reads from these registers reflect the value that was written to these registers, **not** the actual pin value. A register pair write operation is described in Section 8.1. A register pair read operation is described in Section 8.2.

Table 9. Output port 0 register (address 02h)

Bit	7	6	5	4	3	2	1	0
Symbol	O0.7	O0.6	O0.5	O0.4	O0.3	O0.2	O0.1	O0.0
Default	1	1	1	1	1	1	1	1

Table 10. Output port 1 register (address 03h)

Bit	7	6	5	4	3	2	1	0
Symbol	01.7	O1.6	O1.5	O1.4	O1.3	01.2	01.1	01.0
Default	1	1	1	1	1	1	1	1

7.4.3 Polarity inversion register pair (04h, 05h)

The Polarity inversion registers (registers 4 and 5) allow polarity inversion of pins defined as inputs by the Configuration register. If a bit in these registers is set (written with '1'), the corresponding port pin's polarity is inverted in the input register. If a bit in this register is cleared (written with a '0'), the corresponding port pin's polarity is retained. A register pair write operation is described in <u>Section 8.1</u>. A register pair read operation is described in <u>Section 8.2</u>.

Table 11. Polarity inversion port 0 register (address 04h)

	· · · · · · · · · · · · · · · · · · ·				,			
Bit	7	6	5	4	3	2	1	0
Symbol	N0.7	N0.6	N0.5	N0.4	N0.3	N0.2	N0.1	N0.0
Default	0	0	0	0	0	0	0	0

Table 12. Polarity inversion port 1 register (address 05h)

				(
Bit	7	6	5	4	3	2	1	0
Symbol	N1.7	N1.6	N1.5	N1.4	N1.3	N1.2	N1.1	N1.0
Default	0	0	0	0	0	0	0	0

7.4.4 Configuration register pair (06h, 07h)

The Configuration registers (registers 6 and 7) configure the direction of the I/O pins. If a bit in these registers is set to 1, the corresponding port pin is enabled as a high-impedance input. If a bit in these registers is cleared to 0, the corresponding port pin is enabled as an output. A register pair write operation is described in <u>Section 8.1</u>. A register pair read operation is described in <u>Section 8.2</u>.

Table 13. Configuration port 0 register (address 06h)

Bit	7	6	5	4	3	2	1	0
Symbol	C0.7	C0.6	C0.5	C0.4	C0.3	C0.2	C0.1	C0.0
Default	1	1	1	1	1	1	1	1

Table 14. Configuration port 1 register (address 07h)

Bit	7	6	5	4	3	2	1	0
Symbol	C1.7	C1.6	C1.5	C1.4	C1.3	C1.2	C1.1	C1.0
Default	1	1	1	1	1	1	1	1

7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h)

The Output drive strength registers control the output drive level of the GPIO. Each GPIO can be configured independently to a certain output current level by two register control bits. For example Port 0.7 is controlled by register 41 CC0.7 (bits [7:6]), Port 0.6 is controlled by register 41 CC0.6 (bits [5:4]). The output drive level of the GPIO is programmed 00b = $0.25\times$, 01b = $0.5\times$, 10b = $0.75\times$ or 11b = $1\times$ of the drive capability of the I/O. See Section 9.2 "Output drive strength control" for more details. A register pair write operation is described in Section 8.1. A register pair read operation is described in Section 8.2.

Bit	7	6	5	4	3	2	1	0
Symbol	CC0.3		CC	0.2	CC0.1 CC0.0		0.0	
Default	1	1	1	1	1	1	1	1

Table 15. Current control port 0 register (address 40h)

Table 16. Current control port 0 register (address 41h)

Bit	7	6	5	4	3	2	1	0
Symbol	CC	0.7	CC	0.6	CC	0.5	CC	0.4
Default	1	1	1	1	1	1	1	1

Table 17. Current control port 1 register (address 42h)

Bit	7	6	5	4	3	2	1	0
Symbol	CC	1.3	CC	1.2	CC		CC	1.0
Default	1	1	1	1	1	1	1	1

Table 18. Current control port 1 register (address 43h)

Bit	7	6	5	4	3	2	1	0
Symbol	CC	1.7	CC	1.6	CC	1.5	CC	1.4
Default	1	1	1	1	1	1	1	1

7.4.6 Input latch register pair (44h, 45h)

The input latch registers (registers 44 and 45) enable and disable the input latch of the I/O pins. These registers are effective only when the pin is configured as an input port. When an input latch register bit is 0, the corresponding input pin state is not latched. A state change in the corresponding input pin generates an interrupt. A read of the input register clears the interrupt. If the input goes back to its initial logic state before the input port register is read, then the interrupt is cleared.

When an input latch register bit is 1, the corresponding input pin state is latched. A change of state of the input generates an interrupt and the input logic value is loaded into the corresponding bit of the input port register (registers 0 and 1). A read of the input port register clears the interrupt. If the input pin returns to its initial logic state before the input port register is read, then the interrupt is not cleared and the corresponding bit of the input port register keeps the logic value that initiated the interrupt. See Figure 18.

For example, if the P0_4 input was as logic 0 and the input goes to logic 1 then back to logic 0, the input port 0 register will capture this change and an interrupt is generated (if unmasked). When the read is performed on the input port 0 register, the interrupt is

cleared, assuming there were no additional input(s) that have changed, and bit 4 of the input port 0 register will read '1'. The next read of the input port register bit 4 register should now read '0'.

An interrupt remains active when a non-latched input simultaneously switches state with a latched input and then returns to its original state. A read of the input register reflects only the change of state of the latched input and also clears the interrupt. The interrupt is not cleared if the input latch register changes from latched to non-latched configuration.

If the input pin is changed from latched to non-latched input, a read from the input port register reflects the current port logic level. If the input pin is changed from non-latched to latched input, the read from the input register reflects the latched logic level. A register pair write operation is described in <u>Section 8.1</u>. A register pair read operation is described in <u>Section 8.2</u>.

Bit	7	6	5	4	3	2	1	0
Symbol	L0.7	L0.6	L0.5	L0.4	L0.3	L0.2	L0.1	L0.0
Default	0	0	0	0	0	0	0	0

Table 19. Input latch port 0 register (address 44h)

Table 20. Input latch port 1 register (address 45h)

Bit	7	6	5	4	3	2	1	0
Symbol	L1.7	L1.6	L1.5	L1.4	L1.3	L1.2	L1.1	L1.0
Default	0	0	0	0	0	0	0	0

7.4.7 Pull-up/pull-down enable register pair (46h, 47h)

These registers allow the user to enable or disable pull-up/pull-down resistors on the I/O pins. Setting the bit to logic 1 enables the selection of pull-up/pull-down resistors. Setting the bit to logic 0 disconnects the pull-up/pull-down resistors from the I/O pins. Also, the resistors will be disconnected when the outputs are configured as open-drain outputs (see <u>Section 7.4.11</u>). Use the pull-up/pull-down registers to select either a pull-up or pull-down resistor. A register pair write operation is described in <u>Section 8.1</u>. A register pair read operation is described in <u>Section 8.2</u>.

Table 21. Pull-up/pull-down enable port 0 register (address 46h)

				•	•			
Bit	7	6	5	4	3	2	1	0
Symbol	PE0.7	PE0.6	PE0.5	PE0.4	PE0.3	PE0.2	PE0.1	PE0.0
Default	0	0	0	0	0	0	0	0

Table 22. Pull-up/pull-down enable port 1 register (address 47h)

					(,		
Bit	7	6	5	4	3	2	1	0
Symbol	PE1.7	PE1.6	PE1.5	PE1.4	PE1.3	PE1.2	PE1.1	PE1.0
Default	0	0	0	0	0	0	0	0

7.4.8 Pull-up/pull-down selection register pair (48h, 49h)

The I/O port can be configured to have pull-up or pull-down resistor by programming the pull-up/pull-down selection register. Setting a bit to logic 1 selects a 100 k Ω pull-up resistor for that I/O pin. Setting a bit to logic 0 selects a 100 k Ω pull-down resistor for that I/O pin. If the pull-up/down feature is disconnected, writing to this register will have no effect on I/O pin. Typical value is 100 k Ω with minimum of 50 k Ω and maximum of 150 k Ω . A register pair write operation is described in Section 8.1. A register pair read operation is described in Section 8.2.

				3		/		
Bit	7	6	5	4	3	2	1	0
Symbol	PUD0.7	PUD0.6	PUD0.5	PUD0.4	PUD0.3	PUD0.2	PUD0.1	PUD0.0
Default	1	1	1	1	1	1	1	1

Table 23. Pull-up/pull-down selection port 0 register (address 48h)

Table 24. Pull-up/pull-down selection port 1 register (address 49h)

				•		,		
Bit	7	6	5	4	3	2	1	0
Symbol	PUD1.7	PUD1.6	PUD1.5	PUD1.4	PUD1.3	PUD1.2	PUD1.1	PUD1.0
Default	1	1	1	1	1	1	1	1

7.4.9 Interrupt mask register pair (4Ah, 4Bh)

Interrupt mask registers are set to logic 1 upon power-on, disabling interrupts during system start-up. Interrupts may be enabled by setting corresponding mask bits to logic 0.

If an input changes state and the corresponding bit in the Interrupt mask register is set to 1, the interrupt is masked and the interrupt pin will not be asserted. If the corresponding bit in the Interrupt mask register is set to 0, the interrupt pin will be asserted.

When an input changes state and the resulting interrupt is masked (interrupt mask bit is 1), setting the input mask register bit to 0 will cause the interrupt pin to be asserted. If the interrupt mask bit of an input that is currently the source of an interrupt is set to 1, the interrupt pin will be de-asserted. A register pair write operation is described in <u>Section 8.1</u>. A register pair read operation is described in <u>Section 8.2</u>.

Bit 7 6 5 4 3 2 1 0 M0.7 M0.6 M0.4 M0.1 Symbol M0.5 M0.3 M0.2 M0.0 Default 1 1 1 1 1 1 1 1

Table 25. Interrupt mask port 0 register (address 4Ah) bit description

Table 26. Interrupt mask port 1 register (address 4Bh) bit description

Bit	7	6	5	4	3	2	1	0
Symbol	M1.7	M1.6	M1.5	M1.4	M1.3	M1.2	M1.1	M1.0
Default	1	1	1	1	1	1	1	1

7.4.10 Interrupt status register pair (4Ch, 4Dh)

These read-only registers are used to identify the source of an interrupt. When read, a logic 1 indicates that the corresponding input pin was the source of the interrupt. A logic 0 indicates that the input pin is not the source of an interrupt.

When a corresponding bit in the interrupt mask register is set to 1 (masked), the interrupt status bit will return logic 0. A register pair write operation is described in <u>Section 8.1</u>. A register pair read operation is described in <u>Section 8.2</u>.

	Table 27.	Interrupt status	port 0 register	(address 4Ch) b	oit description
--	-----------	------------------	-----------------	-----------------	-----------------

Bit	7	6	5	4	3	2	1	0
Symbol	S0.7	S0.6	S0.5	S0.4	S0.3	S0.2	S0.1	S0.0
Default	0	0	0	0	0	0	0	0

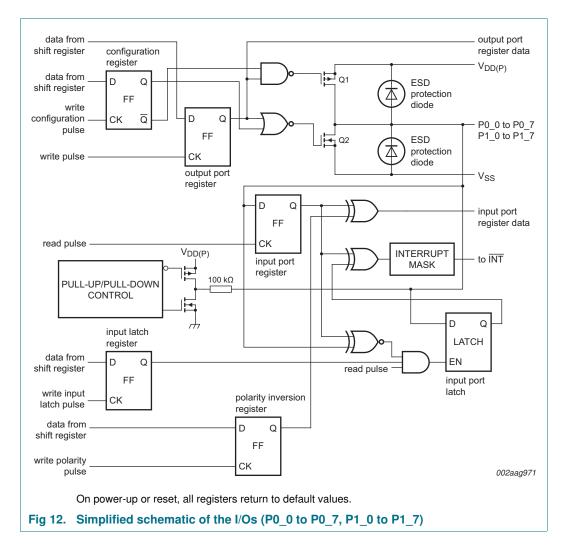
Table 28.	Interrupt	status port	1 register	(address	4Dh) bit description	
-----------	-----------	-------------	------------	----------	-----	-------------------	--

Bit	7	6	5	4	3	2	1	0
Symbol	S1.7	S1.6	S1.5	S1.4	S1.3	S1.2	S1.1	S1.0
Default	0	0	0	0	0	0	0	0

7.4.11 Output port configuration register (4Fh)

The output port configuration register selects port-wise push-pull or open-drain I/O stage. A logic 0 configures the I/O as push-pull (Q1 and Q2 are active, see <u>Figure 12</u>). A logic 1 configures the I/O as open-drain (Q1 is disabled, Q2 is active) and the recommended command sequence is to program this register (4Fh) before the configuration register (06h and 07h) sets the port pins as outputs.

ODEN0 configures Port 0_x and ODEN1 configures Port 1_x.


Table 29. Output port configuration register (address 4Fh)

Bit	7	6	5	4	3	2	1	0
Symbol			rese	rved			ODEN1	ODEN0
Default	0	0	0	0	0	0	0	0

7.5 I/O port

When an I/O is configured as an input, FETs Q1 and Q2 are off, which creates a high-impedance input. The input voltage may be raised above $V_{DD(P)}$ to a maximum of 5.5 V.

If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the Output port register. In this case, there are low-impedance paths between the I/O pin and either $V_{DD(P)}$ or V_{SS} . The external voltage applied to this I/O pin should not exceed the recommended levels for proper operation.

7.6 Power-on reset

When power (from 0 V) is applied to $V_{DD(P)}$, an internal power-on reset holds the PCAL6416A in a reset condition until $V_{DD(P)}$ has reached V_{POR} . At that time, the reset condition is released and the PCAL6416A registers and I²C-bus/SMBus state machine initializes to their default states. After that, $V_{DD(P)}$ must be lowered to below V_{POR} and back up to the operating voltage for a power-reset cycle. See <u>Section 9.3 "Power-on reset requirements"</u>.

7.7 Reset input (RESET)

The RESET input can be asserted to initialize the system while keeping the $V_{DD(P)}$ at its operating level. A reset can be accomplished by holding the RESET pin LOW for a minimum of $t_{w(rst)}$. The PCAL6416A registers and I²C-bus/SMBus state machine are changed to their default state once RESET is LOW (0). When RESET is HIGH (1), the I/O levels at the P port can be changed externally or through the master. This input requires a pull-up resistor to $V_{DD(I2C-bus)}$ if no active connection is used.

7.8 Interrupt output (INT)

An interrupt is generated by any rising or falling edge of the port inputs in the Input mode. After time $t_{v(INT)}$, the signal INT is valid. The interrupt is reset when data on the port changes back to the original value or when data is read from the port that generated the interrupt (see Figure 18). Resetting occurs in the Read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal. Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Any change of the I/Os after resetting is detected and is transmitted as INT.

A pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur, if the state of the pin does not match the contents of the Input Port register.

The INT output has an open-drain structure and requires pull-up resistor to $V_{DD(P)}$ or $V_{DD(I2C-bus)}$, depending on the application. INT should be connected to the voltage source of the device that requires the interrupt information.

When using the input latch feature, the input pin state is latched. The interrupt is reset only when data is read from the port that generated the interrupt. The reset occurs in the Read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal.

8. Bus transactions

The PCAL6416A is an I²C-bus slave device. Data is exchanged between the master and PCAL6416A through write and read commands using I²C-bus. The two communication lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

8.1 Write commands

Data is transmitted to the PCAL6416A by sending the device address and setting the Least Significant Bit (LSB) to a logic 0 (see <u>Figure 10</u> for device address). The command byte is sent after the address and determines which register receives the data that follows the command byte.

Twenty-two registers within the PCAL6416A are configured to operate as eleven register pairs. The eleven pairs are input port, output port, polarity inversion, configuration, output drive strength (two 16-bit registers), input latch, pull-up/pull-down enable, pull-up/pull-down selection, interrupt mask, and interrupt status registers. After sending data to one register, the next data byte is sent to the other register in the pair (see Figure 13 and Figure 14). For example, if the first byte is sent to Output Port 1 (register 3), the next byte is stored in Output Port 0 (register 2).

There is no limit on the number of data bytes sent in one write transmission. In this way, the host can continuously update a register pair independently of the other registers.

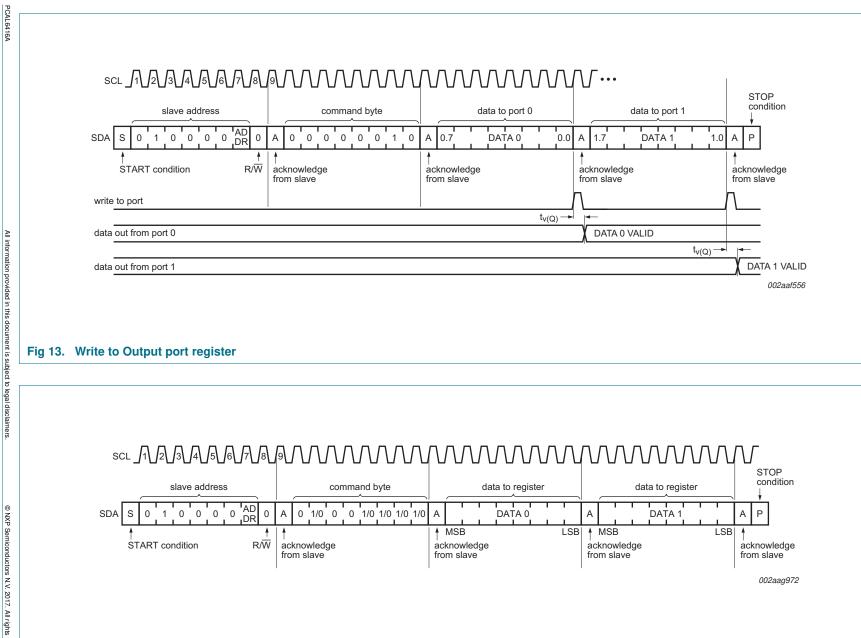
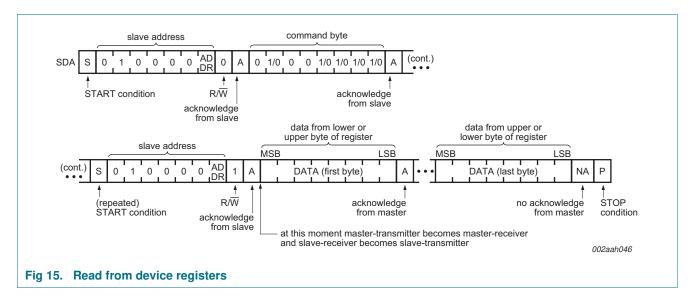


Fig 14. Write to device registers

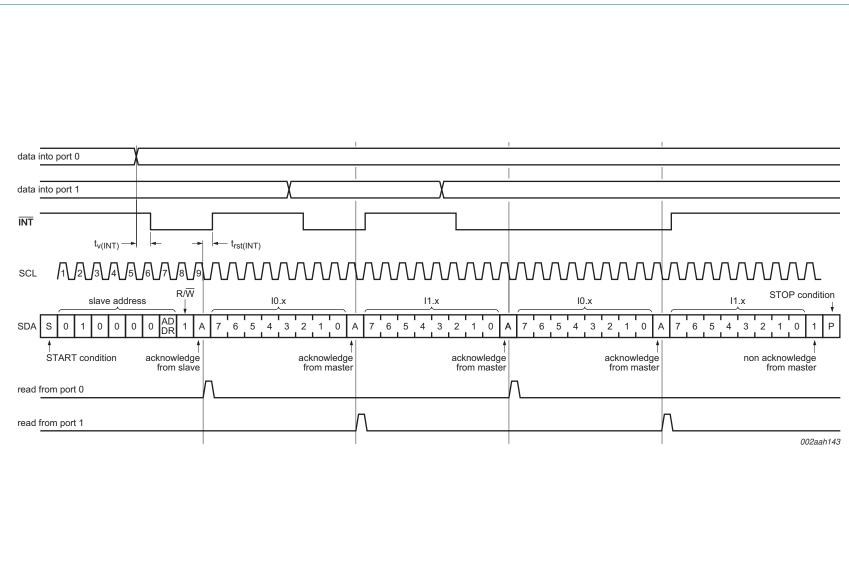
Product data sheet

Rev. 6.2 — 7 April 2017


PCAL6416A

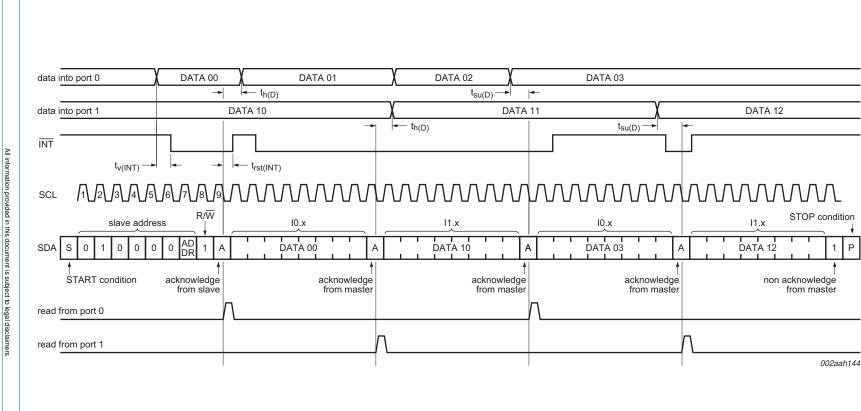
8.2 Read commands

To read data from the PCAL6416A, the bus master must first send the PCAL6416A address with the least significant bit set to a logic 0 (see <u>Figure 10</u> for device address). The command byte is sent after the address and determines which register is to be accessed.


After a restart, the device address is sent again, but this time the least significant bit is set to a logic 1. Data from the register defined by the command byte is sent by the PCAL6416A (see Figure 15 and Figure 18). Data is clocked into the register on the rising edge of the ACK clock pulse. After the first byte is read, additional bytes may be read, but the data now reflects the information in the other register in the pair. For example, if Input Port 1 is read, the next byte read is Input Port 0. There is no limit on the number of data bytes received in one read transmission, but on the final byte received the bus master must not acknowledge the data.

After a subsequent restart, the command byte contains the value of the next register to be read in the pair. For example, if Input Port 1 was read last before the restart, the register that is read after the restart is the Input Port 0.

CAL6416A


Remark: Transfer of data can be stopped at any moment by a STOP condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It is assumed that the command byte has previously been set to '00' (read input port register).

This figure eliminates the command byte transfers and a restart between the initial slave address call and actual data transfer from P port (see Figure 15).

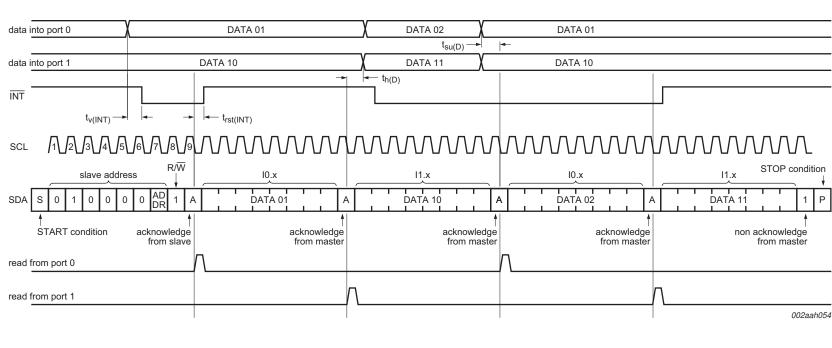
Fig 16. Read input port register (non-latched), scenario 1

NXP Semiconductors

Р

Remark: Transfer of data can be stopped at any moment by a STOP condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It is assumed that the command byte has previously been set to '00' (read input port register).

This figure eliminates the command byte transfers and a restart between the initial slave address call and actual data transfer from P port (see Figure 15).


Fig 17. Read input port register (non-latched), scenario 2

PCAL6416A Product data sheet

> Rev. 6.2 ---7 April 2017

PCAL6416A Product data sheet

All information provided in this document is subject to legal disclaimers Rev. 6.2 — 7 April 2017

Remark: Transfer of data can be stopped at any moment by a STOP condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It is assumed that the command byte has previously been set to '00' (read input port register).

This figure eliminates the command byte transfers and a restart between the initial slave address call and actual data transfer from P port (see Figure 15).

Fig 18. Read input port register (latch enabled), scenario 3

CAL6416A

V_{DD}(I2C-bus) V_{DD}(P) 10 kΩ (×7) ALARM⁽¹⁾ $V_{DD(I2C-bus)} = 1.8 V$ SUBSYSTEM 1 10 kΩ 10 kΩ 10 kΩ 10 kΩ (e.g., alarm system) Vdd V_{DD(I2C-bus)} V_{DD(P)} Α MASTER P0 0 CONTROLLER controlled enable P0 1 SCL SCI switch SDA SDA PCAL6416A INT INT В RESET RESET P0_2 P0 3 GND P0 4 P0 5 P0_6 P0_7 P1_0 KEYPAD P1_1 P1_2 P1_3 ADDR P1_4 P1_5 P1_6 P1_7 GND \mathcal{H} 002aaf965 Device address configured as 0100 000x for this example. P0 0 and P0 2 through P1 0 are configured as inputs. P0 1 and P1 1 through P1 7 are configured as outputs. (1) External resistors are required for inputs (on P port) that may float. Also, internal pull-up or pull-down may be used to eliminate the need for external components. If a driver to an input will never let the input float, a resistor is not needed. If an output in the P port is configured as a push-pull output there is no need for external pull-up resistors. If an output in the P port is configured as an open-drain output, external pull-up resistors are required.

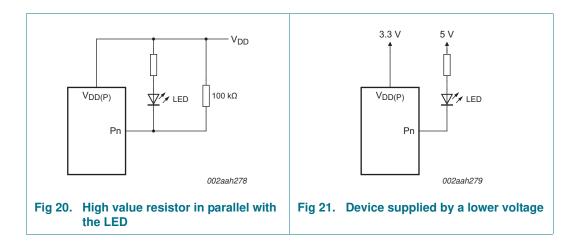
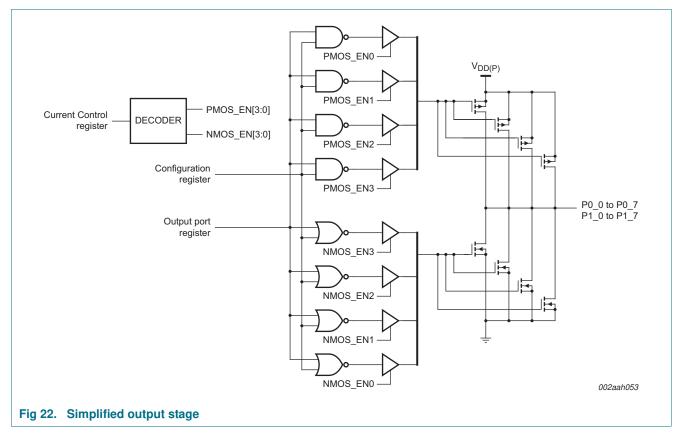

9. Application design-in information

Fig 19. Typical application

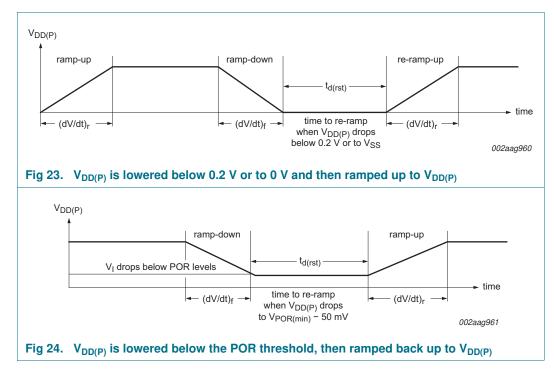
9.1 Minimizing I_{DD} when the I/Os are used to control LEDs

When the I/Os are used to control LEDs, they are normally connected to V_{DD} through a resistor as shown in Figure 19. Since the LED acts as a diode, when the LED is off the I/O V_I is about 1.2 V less than V_{DD(P)}. The supply current, I_{DD(P)}, increases as V_I becomes lower than V_{DD(P)}.


Designs needing to minimize current consumption, such as battery power applications, should consider maintaining the I/O pins greater than or equal to V_{DD} when the LED is off. Figure 20 shows a high value resistor in parallel with the LED. Figure 21 shows $V_{DD(P)}$ less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V_I at or above $V_{DD(P)}$ and prevents additional supply current consumption when the LED is off.

9.2 Output drive strength control

The Output drive strength registers allow the user to control the output drive level of the GPIO. Each GPIO can be configured independently to one of the four possible output current levels. By programming these bits the user is changing the number of transistor pairs or 'fingers' that drive the I/O pad.


<u>Figure 22</u> shows a simplified output stage. The behavior of the pad is affected by the Configuration register, the output port data, and the current control register. When the Current Control register bits are programmed to 10b, then only two of the fingers are active, reducing the current drive capability by 50 %.

Reducing the current drive capability may be desirable to reduce system noise. When the output switches (transitions from H/L), there is a peak current that is a function of the output drive selection. This peak current runs through V_{DD} and V_{SS} package inductance and will create noise (some radiated, but more critically Simultaneous Switching Noise (SSN)). In other words, switching many outputs at the same time will create ground and supply noise. The output drive strength control through the Output Drive Strength registers allows the user to mitigate SSN issues without the need of additional external components.

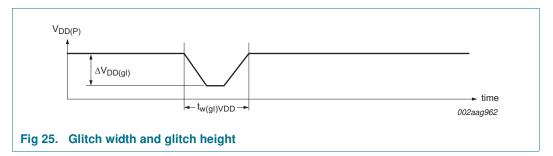
9.3 Power-on reset requirements

In the event of a glitch or data corruption, PCAL6416A can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

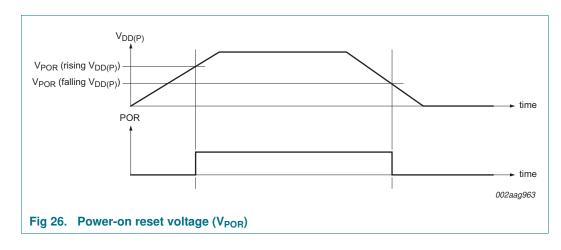
The two types of power-on reset are shown in Figure 23 and Figure 24.

<u>Table 30</u> specifies the performance of the power-on reset feature for PCAL6416A for both types of power-on reset.

Symbol	Parameter	Condition		Min	Тур	Max	Unit
(dV/dt) _f	fall rate of change of voltage	Figure 23		0.1	-	2000	ms
(dV/dt) _r	rise rate of change of voltage	Figure 23		0.1	-	2000	ms
t _{d(rst)}	reset delay time	$\frac{\text{Figure 23}}{V_{\text{DD}(\text{P})} \text{ drops below 0.2 V or to V}_{\text{SS}}}$		1	-	-	μS
		$\label{eq:product} \frac{\text{Figure 24}}{\text{drops to } V_{\text{POR}(\text{min})}-50 \text{ mV})}$		1	-	-	μS
$\Delta V_{DD(gl)}$	glitch supply voltage difference	Figure 25	<u>[1]</u>	-	-	1.0	V
t _{w(gl)VDD}	supply voltage glitch pulse width	Figure 25	[2]	-	-	10	μS
V _{POR(trip)}	power-on reset trip voltage	falling $V_{DD(P)}$		0.7	-	-	V
		rising V _{DD(P)}		-	-	1.4	V


Table 30. Recommended supply sequencing and ramp rates

 $T_{amb} = 25 \ ^{\circ}C$ (unless otherwise noted). Not tested; specified by design.


[1] Level that $V_{DD(P)}$ can glitch down to with a ramp rate = 0.4 μ s/V, but not cause a functional disruption when $t_{w(gl)VDD} < 1 \mu$ s.

[2] Glitch width that will not cause a functional disruption when $\Delta V_{DD(gI)} = 0.5 \times V_{DD(P)}$.

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width $(t_{w(gl)VDD})$ and glitch height $(\Delta V_{DD(gl)})$ are dependent on each other. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. Figure 25 and Table 30 provide more information on how to measure these specifications.

 V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I²C-bus/SMBus state machine are initialized to their default states. The value of V_{POR} differs based on the $V_{DD(P)}$ being lowered to or from 0 V. Figure 26 and Table 30 provide more details on this specification.

27 of 63

9.4 Device current consumption with internal pull-up and pull-down resistors

The PCAL6416A integrates programmable pull-up and pull-down resistors to eliminate external components when pins are configured as inputs and pull-up or pull-down resistors are required (for example, nothing is driving the inputs to the power supply rails. Since these pull-up and pull-down resistors are internal to the device itself, they contribute to the current consumption of the device and must be considered in the overall system design.

The pull-up or pull-down function is selected in registers 48h and 49h, while the resistor is connected by the enable registers 46h and 47h. The configuration of the resistors is shown in Figure 12.

If the resistor is configured as a pull-up, that is, connected to V_{DD} , a current will flow from the $V_{DD(P)}$ pin through the resistor to ground when the pin is held LOW. This current will appear as additional I_{DD} upsetting any current consumption measurements.

In the same manner, if the resistor is configured as a pull-down and the pin is held HIGH, current will flow from the power supply through the pin to the V_{SS} pin. While this current will not be measured as part of I_{DD}, one must be mindful of the 200 mA limiting value through V_{SS}.

The pull-up and pull-down resistors are simple resistors and the current is linear with voltage. The resistance specification for these devices spans from 50 k Ω with a nominal 100 k Ω value. Any current flow through these resistors is additive by the number of pins held HIGH or LOW and the current can be calculated by Ohm's law. See Figure 30 for a graph of supply current versus the number of pull-up resistors.

9.5 I²C-bus error recovery techniques

There are a number of techniques to recover from error conditions on the I²C-bus. Slave devices like the PCAL6416A use a state machine to implement the I²C protocol and expect a certain sequence of events to occur to function properly. Unexpected events at the I²C master can wreak havoc with the slaves connected on the bus. However, it is usually possible to recover deterministically to a known bus state with careful protocol manipulation.

A hard slave reset, either through power-on reset or by activating the RESET pin, will set the device back into the default state. Of course, this means the input/output pins and their configuration will be lost, which might cause some system issues.

A STOP condition, which is only initiated by the master, will reset the slave state machine into a known condition where SDA is not driven LOW by the slave and logically, the slave is waiting for a START condition. A STOP condition is defined as SDA transitioning from LOW to HIGH while SCL is HIGH.

If the master is interrupted during a packet transmission, the slave may be sending data or performing an Acknowledge, driving the I²C-bus SDA line LOW. Since SDA is LOW, it effectively blocks any other I²C-bus transaction. A deterministic method to clear this situation, once the master recognizes a 'stuck bus' state, is for the master to blindly transmit nine clocks on SCL. If the slave was transmitting data or acknowledging, nine or

more clocks ensures the slave state machine returns to a known, idle state since the protocol calls for eight data bits and one ACK bit. It does not matter when the slave state machine finishes its transmission, extra clocks will be recognized as STOP conditions.

The PCAL6416A SCL pin is an input only. If SCL is stuck LOW, then only the bus master or a slave performing a clock stretch operation can cause this condition.

With careful design of the bus master error recovery firmware, many l²C-bus protocol problems can be avoided.

10. Limiting values

Table 31. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{DD(I2C-bus)}	I ² C-bus supply voltage			-0.5	+6.5	V
V _{DD(P)}	supply voltage port P			-0.5	+6.5	V
VI	input voltage		<u>[1]</u>	-0.5	+6.5	V
V _O	output voltage		<u>[1]</u>	-0.5	+6.5	V
I _{IK}	input clamping current	ADDR, $\overline{\text{RESET}}$, SCL; V _I < 0 V		-	±20	mA
I _{OK}	output clamping current	INT ; V _O < 0 V		-	±20	mA
I _{IOK}	input/output clamping current	P port; $V_O < 0$ V or $V_O > V_{DD(P)}$		-	±20	mA
		SDA; $V_O < 0$ V or $V_O > V_{DD(I2C-bus)}$		-	±20	mA
I _{OL}	LOW-level output current	continuous; P port; $V_0 = 0$ V to $V_{DD(P)}$		-	50	mA
		continuous; SDA, \overline{INT} ; V _O = 0 V to V _{DD(I2C-bus)}		-	25	mA
I _{OH}	HIGH-level output current	continuous; P port; $V_O = 0$ V to $V_{DD(P)}$		-	25	mA
I _{DD}	supply current	continuous through V _{SS}		-	200	mA
I _{DD(P)}	supply current port P	continuous through $V_{DD(P)}$		-	160	mA
DD(I2C-bus)	I ² C-bus supply current	continuous through $V_{DD(I2C-bus)}$		-	10	mA
T _{stg}	storage temperature			-65	+150	°C
T _{j(max)}	maximum junction temperature			-	125	°C

[1] The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

11. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD(I2C-bus)}	I ² C-bus supply voltage		1.65	5.5	V
V _{DD(P)}	supply voltage port P		1.65	5.5	V
V _{IH}	HIGH-level input voltage	SCL, SDA, RESET	$0.7 \times V_{DD(I2C\text{-bus})}$	5.5	V
		ADDR, P1_7 to P0_0	$0.7 \times V_{DD(P)}$	5.5	V
V _{IL}	LOW-level input voltage	SCL, SDA, RESET	-0.5	$0.3 \times V_{DD(I2C\text{-}bus)}$	V
		ADDR, P1_7 to P0_0	-0.5	$0.3 \times V_{\text{DD}(\text{P})}$	V
I _{OH}	HIGH-level output current	P1_7 to P0_0	-	10	mA
l _{OL}	LOW-level output current	P1_7 to P0_0	-	25	mA
T _{amb}	ambient temperature	operating in free air	-40	+85	°C

12. Thermal characteristics

Table 33. Thermal characteristics

Symbol	Parameter	Conditions		Max	Unit
Z _{th(j-a)}	transient thermal impedance from junction to ambient	TSSOP24 package	[1]	88	K/W
		HWQFN24 package	[1]	66	K/W
		VFBGA24 package	[1]	171	K/W

[1] The package thermal impedance is calculated in accordance with JESD 51-7.

PCAL6416A

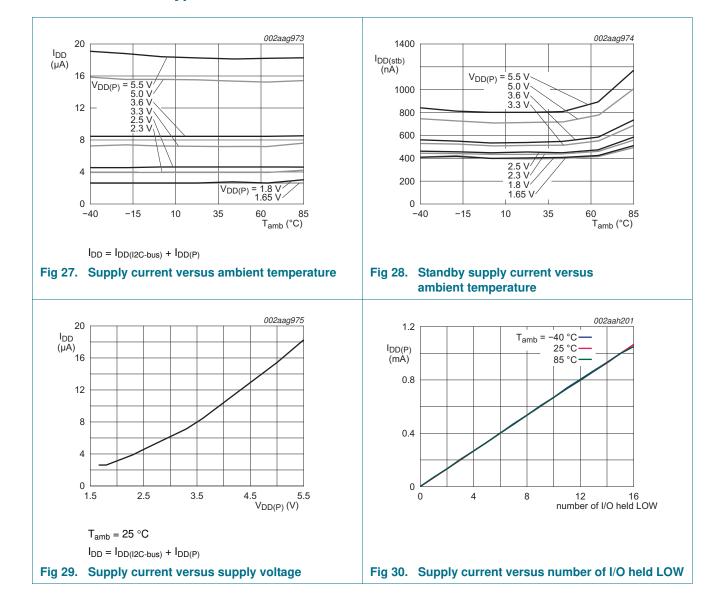
13. Static characteristics

Table 34. Static characteristics

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; V_{DD(l2C-bus)} = 1.65 \text{ V to } 5.5 \text{ V}; unless otherwise specified.}$

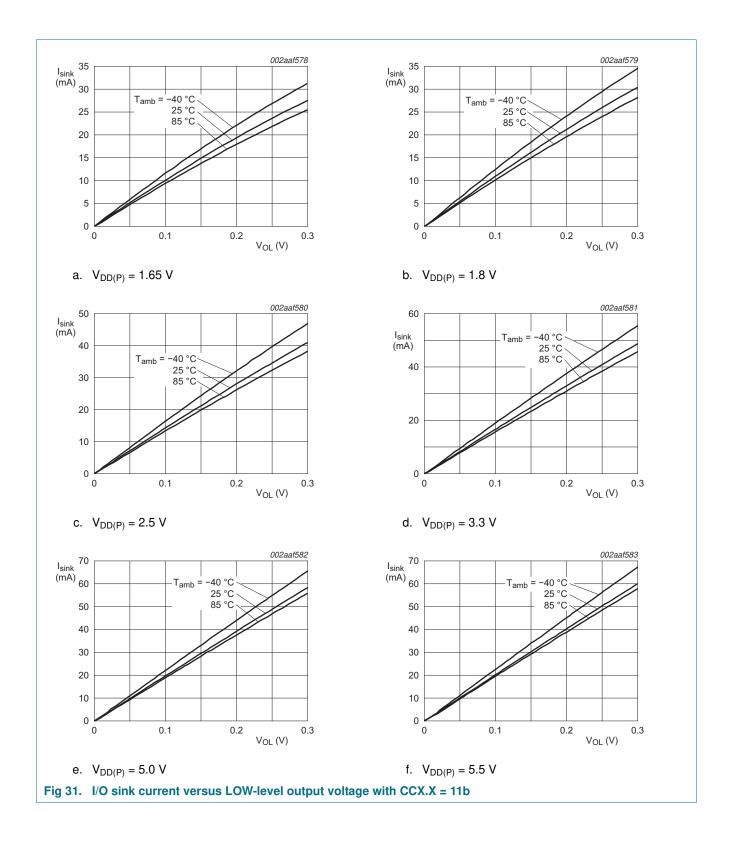
Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
V _{IK}	input clamping voltage	I _I = -18 mA	-1.2	-	-	V
V _{POR}	power-on reset voltage	$V_I = V_{DD(P)}$ or V_{SS} ; $I_O = 0$ mA	-	1.1	1.4	V
V _{OH}	HIGH-level output voltage ^[2]	P port; I _{OH} = -8 mA; CCX.X = 11b				
		V _{DD(P)} = 1.65 V	1.2	-	-	V
		V _{DD(P)} = 2.3 V	1.8	-	-	V
		$V_{DD(P)} = 3 V$	2.6	-	-	V
		$V_{DD(P)} = 4.5 V$	4.1	-	-	V
		P port; $I_{OH} = -2.5$ mA and CCX.X = 00b; $I_{OH} = -5$ mA and CCX.X = 01b; $I_{OH} = -7.5$ mA and CCX.X = 10b; $I_{OH} = -10$ mA and CCX.X = 11b;				
		$V_{DD(P)} = 1.65 \text{ V}$	1.1	-	-	V
		$V_{DD(P)} = 2.3 V$	1.7	-	-	V
		$V_{DD(P)} = 3 V$	2.5	-	-	V
		V _{DD(P)} = 4.5 V	4.0	-	-	V
V _{OL}	LOW-level output voltage ^[2]	P port; I _{OL} = 8 mA; CCX.X = 11b		·		
		V _{DD(P)} = 1.65 V	-	-	0.45	V
		V _{DD(P)} = 2.3 V	-	-	0.25	V
		V _{DD(P)} = 3 V	-	-	0.25	V
		V _{DD(P)} = 4.5 V	-	-	0.2	V
		P port; I_{OL} = 2.5 mA and CCX.X = 00b; I_{OL} = 5 mA and CCX.X = 01b; I_{OL} = 7.5 mA and CCX.X = 10b; I_{OL} = 10 mA and CCX.X = 11b;				
		V _{DD(P)} = 1.65 V	-	-	0.5	V
		V _{DD(P)} = 2.3 V	-	-	0.3	V
		V _{DD(P)} = 3 V	-	-	0.25	V
		V _{DD(P)} = 4.5 V	-	-	0.2	V
OL	LOW-level output current ^[3]	$V_{OL} = 0.4 \text{ V}; V_{DD(P)} = 1.65 \text{ V}$ to 5.5 V				
		SDA	3	-	-	mA
		INT	3	15 <mark>4</mark>	-	mA
Ιı	input current	$V_{DD(P)} = 1.65 \text{ V to } 5.5 \text{ V}$				
		SCL, SDA, $\overline{\text{RESET}}$; $V_I = V_{DD(I2C-bus)}$ or V_{SS}	-	-	±1	μA
		ADDR; $V_I = V_{DD(P)}$ or V_{SS}	-	-	±1	μA
IIH	HIGH-level input current	P port; $V_I = V_{DD(P)}$; $V_{DD(P)} = 1.65$ V to 5.5 V	-	-	1	μA
IIL	LOW-level input current	P port; V _I = V _{SS} ; V _{DD(P)} = 1.65 V to 5.5 V	-	-	1	μA

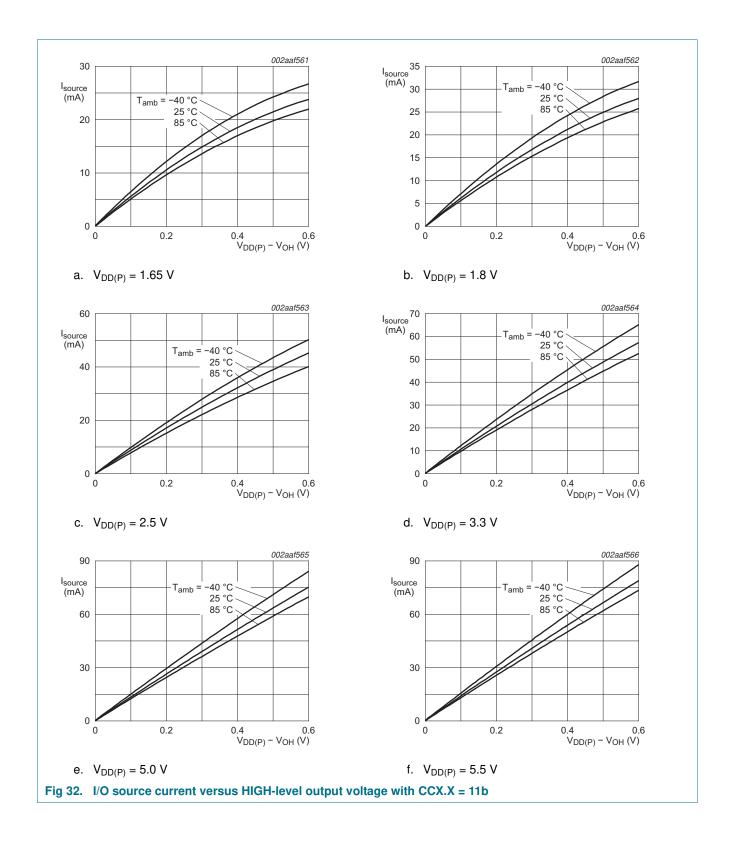
Table 34. Static characteristics ... continued

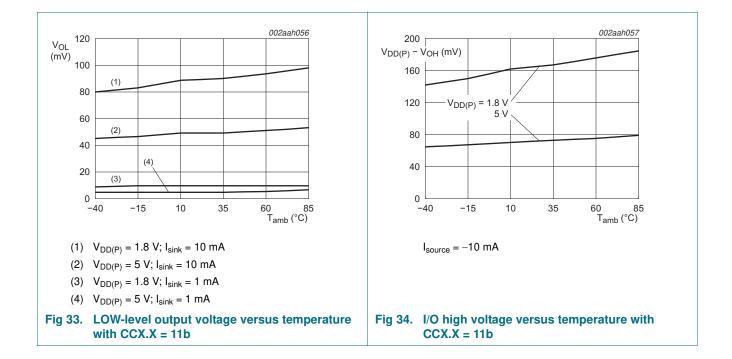

 $T_{amb} = -40$ °C to +85 °C; $V_{DD(l2C-bus)} = 1.65$ V to 5.5 V; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
IDD	supply current	$\label{eq:ldc-bus} \begin{array}{l} I_{DD(I2C\text{-}bus)} + I_{DD(P)};\\ \text{SDA, P port, ADDR, RESET};\\ V_I \text{ on SDA and RESET} = V_{DD(I2C\text{-}bus)} \text{ or } V_{SS};\\ V_I \text{ on P port and ADDR} = V_{DD(P)};\\ I_O = 0 \text{ mA}; I/O = \text{ inputs}; f_{SCL} = 400 \text{ kHz} \end{array}$				
		V _{DD(P)} = 3.6 V to 5.5 V	-	10	25	μA
		$V_{DD(P)} = 2.3 \text{ V to } 3.6 \text{ V}$	-	6.5	15	μA
		$V_{DD(P)} = 1.65 \text{ V to } 2.3 \text{ V}$	-	4	9	μA
		$\label{eq:ldc-bus} \begin{array}{l} I_{DD(I2C\text{-}bus)} + I_{DD(P)};\\ \text{SCL, SDA, P port, ADDR, } \overline{\text{RESET}};\\ \text{V}_{I} \text{ on SCL, SDA and } \overline{\text{RESET}} = \text{V}_{DD(I2C\text{-}bus)} \text{ or } \text{V}_{SS};\\ \text{V}_{I} \text{ on P port and } \text{ADDR} = \text{V}_{DD(P)};\\ \text{I}_{O} = 0 \text{ mA}; \text{ I/O} = \text{inputs}; f_{SCL} = 0 \text{kHz} \end{array}$				
		V _{DD(P)} = 3.6 V to 5.5 V	-	1.5	7	μA
		V _{DD(P)} = 2.3 V to 3.6 V	-	1	3.2	μA
		V _{DD(P)} = 1.65 V to 2.3 V	-	0.5	1.7	μA
		Active mode; $I_{DD(I2C-bus)} + I_{DD(P)}$; P port, ADDR, RESET; V _I on RESET = V _{DD(I2C-bus)} ; V _I on P port and ADDR = V _{DD(P)} ; I _O = 0 mA; I/O = inputs; f _{SCL} = 400 kHz, continuous register read				
		$V_{DD(P)} = 3.6 \text{ V to } 5.5 \text{ V}$	-	60	125	μA
		V _{DD(P)} = 2.3 V to 3.6 V	-	40	75	μA
		V _{DD(P)} = 1.65 V to 2.3 V	-	20	45	μA
		with pull-ups enabled (PCAL6416A only); $I_{DD(I2C-bus)} + I_{DD(P)}$; P port, ADDR, RESET; V_I on SCL, SDA and RESET = $V_{DD(I2C-bus)}$ or V_{SS} ; V_I on ADDR = V_{SS} ; V_I on ADDR = $V_{DD(I2C-bus)}$ or V_{SS} ; $I_O = 0$ mA; I/O = inputs with pull-up enabled; $f_{SCL} = 0$ kHz				
		V _{DD(P)} = 1.65 V to 5.5 V	-	1.1	1.5	mA
ΔI _{DD}	additional quiescent supply current ^[5]	SCL, SDA, $\overline{\text{RESET}}$; one input at $V_{DD(I2C-bus)} - 0.6 \text{ V}$, other inputs at $V_{DD(I2C-bus)}$ or V_{SS} ; $V_{DD(P)} = 1.65 \text{ V}$ to 5.5 V	-	-	25	μA
		P port, ADDR; one input at $V_{DD(P)} - 0.6$ V, other inputs at $V_{DD(P)}$ or V_{SS} ; $V_{DD(P)} = 1.65$ V to 5.5 V	-	-	80	μA
Ci	input capacitance	$V_{I} = V_{DD(I2C-bus)}$ or V_{SS} ; $V_{DD(P)} = 1.65$ V to 5.5 V	-	6	7	pF
C _{io}	input/output capacitance	$V_{I/O} = V_{DD(I2C-bus)}$ or V_{SS} ; $V_{DD(P)} = 1.65$ V to 5.5 V	-	7	8	pF
		$V_{I/O} = V_{DD(P)} \text{ or } V_{SS}; V_{DD(P)} = 1.65 \text{ V to } 5.5 \text{ V}$	-	7.5	8.5	pF
R _{pu(int)}	internal pull-up resistance	input/output	50	100	150	kΩ
R _{pd(int)}	internal pull-down resistance	input/output	50	100	150	kΩ

NXP Semiconductors


Low-voltage translating 16-bit I²C-bus/SMBus I/O expander


- [1] For I_{DD}, all typical values are at nominal supply voltage (1.8 V, 2.5 V, 3.3 V, 3.6 V or 5 V V_{DD}) and $T_{amb} = 25 \text{ °C}$. Except for I_{DD}, the typical values are at V_{DD(P)} = V_{DD(I2C-bus)} = 3.3 V and $T_{amb} = 25 \text{ °C}$.
- [2] The total current sourced by all I/Os must be limited to 160 mA.
- [3] Each I/O must be externally limited to a maximum of 25 mA and each octal (P0_0 to P0_7 and P1_0 to P1_7) must be limited to a maximum current of 100 mA, for a device total of 200 mA.
- $[4] \quad \text{Typical value for } T_{amb} = 25 \text{ °C}. \text{ } V_{OL} = 0.4 \text{ V and } V_{DD(I2C-bus)} = V_{DD(P)} = 3.3 \text{ V}. \text{ Typical value for } V_{DD(I2C-bus)} = V_{DD(P)} < 2.5 \text{ V}, \text{ } V_{OL} = 0.6 \text{ V}.$
- [5] Internal pull-up/pull-down resistors disabled.



13.1 Typical characteristics

33 of 63

14. Dynamic characteristics

Table 35. I²C-bus interface timing requirements

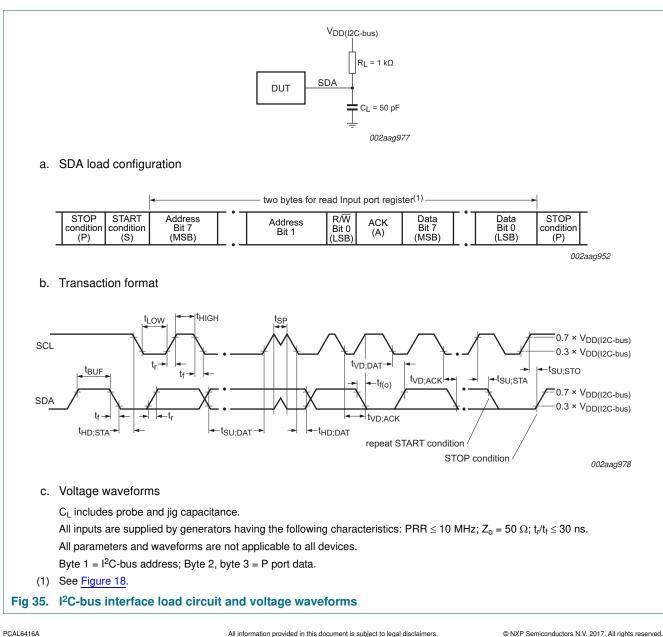
Over recommended operating free air temperature range, unless otherwise specified. See Figure 36.

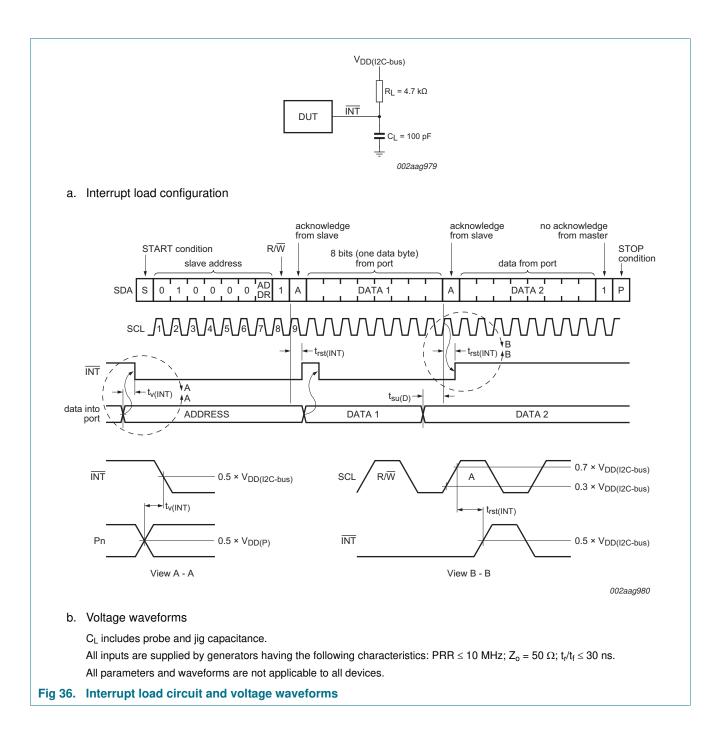
Symbol	Parameter	Conditions		rd-mode ·bus	Fast-mode I ² C-bus		Unit
			Min	Max	Min	Max	
f _{SCL}	SCL clock frequency		0	100	0	400	kHz
t _{HIGH}	HIGH period of the SCL clock		4	-	0.6	-	μS
t _{LOW}	LOW period of the SCL clock		4.7	-	1.3	-	μS
t _{SP}	pulse width of spikes that must be suppressed by the input filter		0	50	0	50	ns
t _{SU;DAT}	data set-up time		250	-	100	-	ns
t _{HD;DAT}	data hold time		0	-	0	-	ns
t _r	rise time of both SDA and SCL signals		-	1000	20	300	ns
t _f	fall time of both SDA and SCL signals		-	300	20 × (V _{DD} / 5.5 V)	300	ns
t _{BUF}	bus free time between a STOP and START condition		4.7	-	1.3	-	μS
t _{SU;STA}	set-up time for a repeated START condition		4.7	-	0.6	-	μS
t _{HD;STA}	hold time (repeated) START condition		4	-	0.6	-	μS
t _{SU;STO}	set-up time for STOP condition		4	-	0.6	-	μS
t _{VD;DAT}	data valid time	SCL LOW to SDA output valid	-	3.45	-	0.9	μS
t _{VD;ACK}	data valid acknowledge time	ACK signal from SCL LOW to SDA (out) LOW	-	3.45	-	0.9	μS

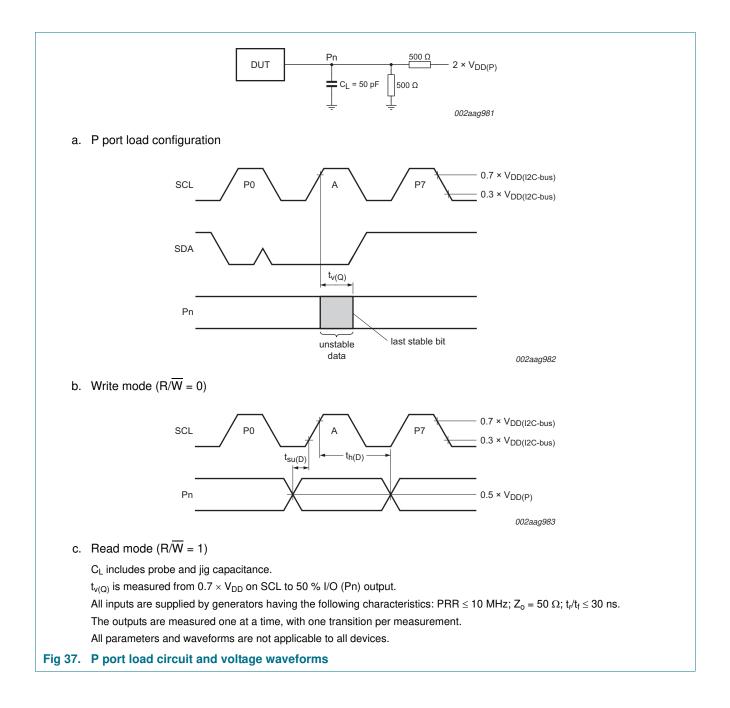
Table 36. Reset timing requirements

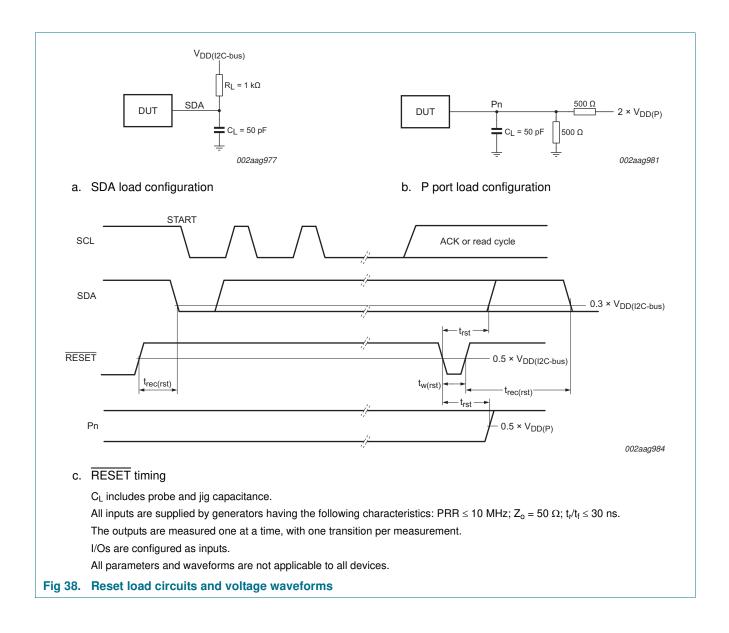
Over recommended operating free air temperature range, unless otherwise specified. See Figure 38.

Symbol	Parameter	Conditions	Standard-mode I ² C-bus		Fast-mode I ² C-bus		Unit
			Min	Max	Min	Max	
t _{w(rst)}	reset pulse width		30	-	30	-	ns
t _{rec(rst)}	reset recovery time		200	-	200	-	ns
t _{rst}	reset time	[1]	600	-	600	-	ns


[1] Minimum time for SDA to become HIGH or minimum time to wait before doing a START.


Table 37. Switching characteristics


Over recommended operating free air temperature range; $C_L \le 100 \text{ pF}$; unless otherwise specified. See Figure 37.


Symbol	Parameter	Conditions		Standard-mode I ² C-bus		Fast-mode I ² C-bus	
			Min	Max	Min	Max	
t _{v(INT)}	valid time on pin INT	from P port to INT	-	1	-	1	μS
t _{rst(INT)}	reset time on pin INT	from SCL to INT	-	1	-	1	μS
t _{v(Q)}	data output valid time	from SCL to P port	-	400	-	400	ns
t _{su(D)}	data input set-up time	from P port to SCL	0	-	0	-	ns
t _{h(D)}	data input hold time	from P port to SCL	300	-	300	-	ns

15. Parameter measurement information

16. Package outline

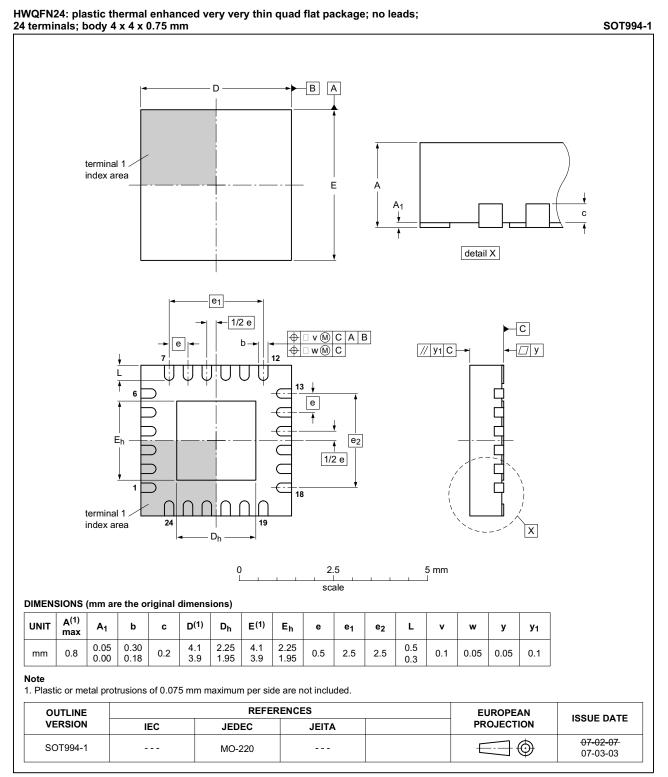
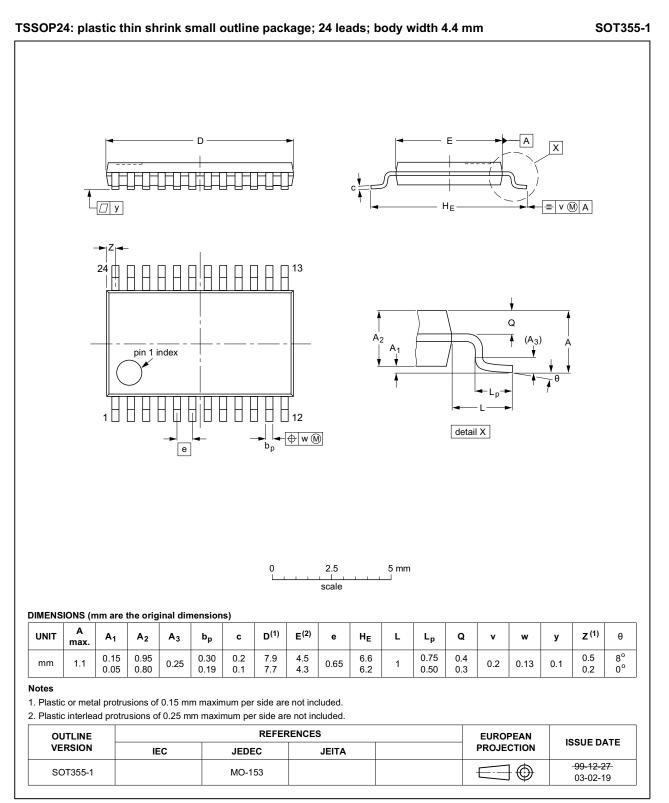
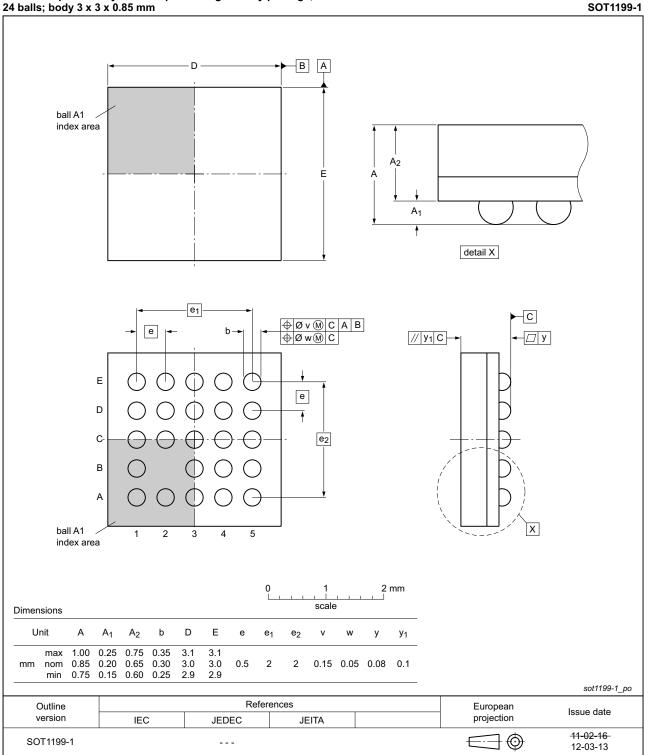
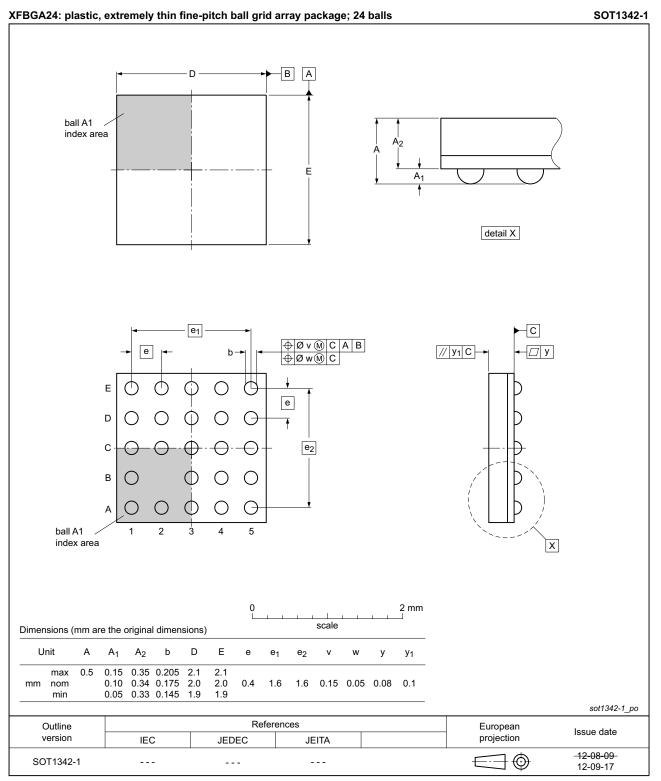




Fig 39. Package outline SOT994-1 (HWQFN24)

PCAL6416A


Fig 40. Package outline SOT355-1 (TSSOP24)

VFBGA24: plastic very thin fine-pitch ball grid array package; 24 balls; body 3 x 3 x 0.85 mm

Fig 41. Package outline SOT1199-1 (VFBGA24)

PCAL6416A

Fig 42. Package outline SOT1342-1 (XFBGA24); EX option

PCAL6416A

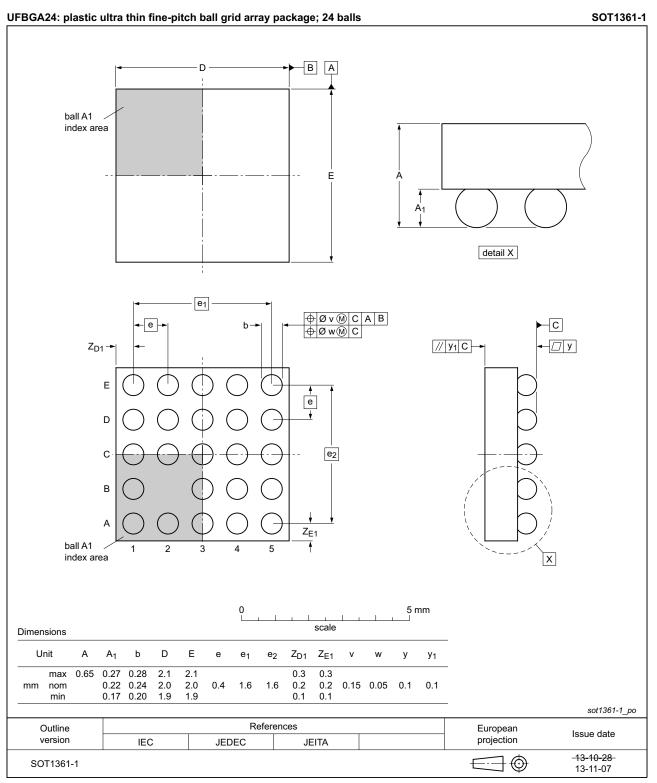
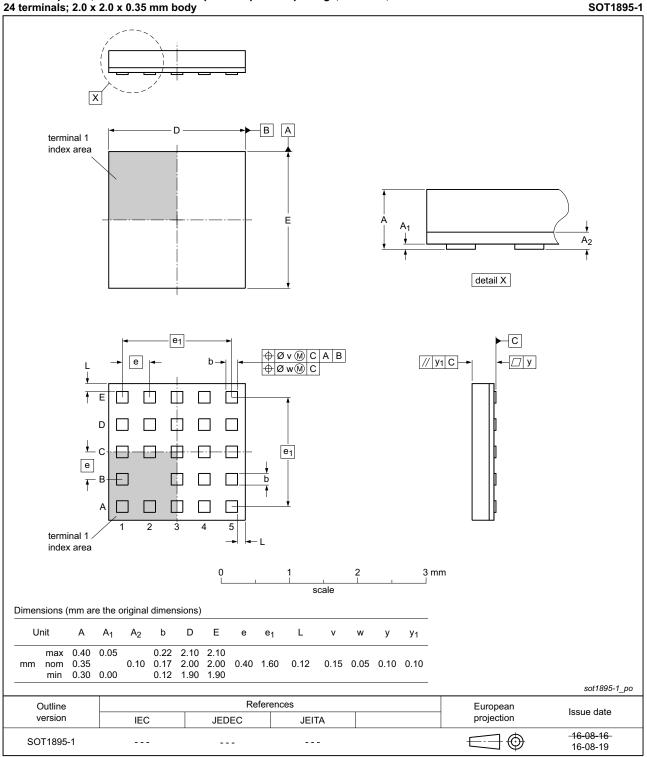



Fig 43. Package outline SOT1361-1 (UFBGA24); ER option

PCAL6416A

X2QFN24: plastic, thermal enhanced super thin quad flat package; no leads; 24 terminals; 2.0 x 2.0 x 0.35 mm body

Fig 44. Package outline SOT1895-1 (X2QFN24)

17. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

17.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

17.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- · Package placement
- · Inspection and repair
- Lead-free soldering versus SnPb soldering

17.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

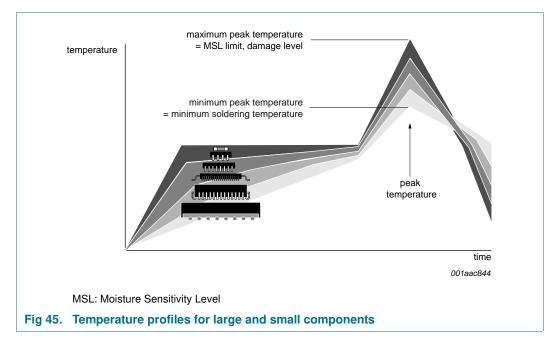
17.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 45</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 38 and 39

Package thickness (mm)	Package thickness (mm) Package reflow temperature (°C)			
	Volume (mm ³)			
	< 350	≥ 350		
< 2.5	235	220		
≥ 2.5	220	220		

Table 38. SnPb eutectic process (from J-STD-020D)


Table 39. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temperature (°C)						
	Volume (mm ³)	olume (mm³)					
	< 350	350 to 2000	> 2000				
< 1.6	260	260	260				
1.6 to 2.5	260	250	245				
> 2.5	250	245	245				

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 45.

Low-voltage translating 16-bit I²C-bus/SMBus I/O expander

For further information on temperature profiles, refer to Application Note *AN10365 "Surface mount reflow soldering description"*.

18. Soldering: PCB footprints

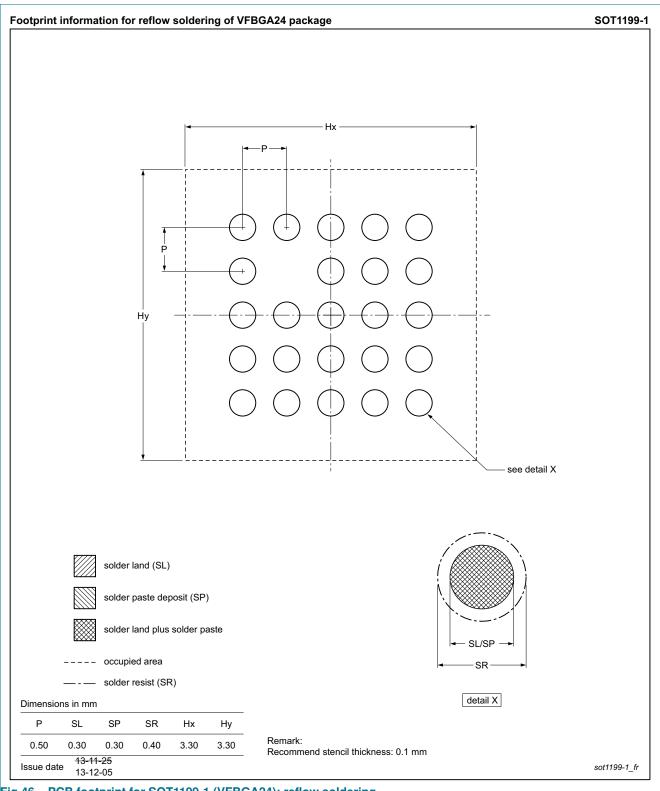


Fig 46. PCB footprint for SOT1199-1 (VFBGA24); reflow soldering

Low-voltage translating 16-bit I²C-bus/SMBus I/O expander

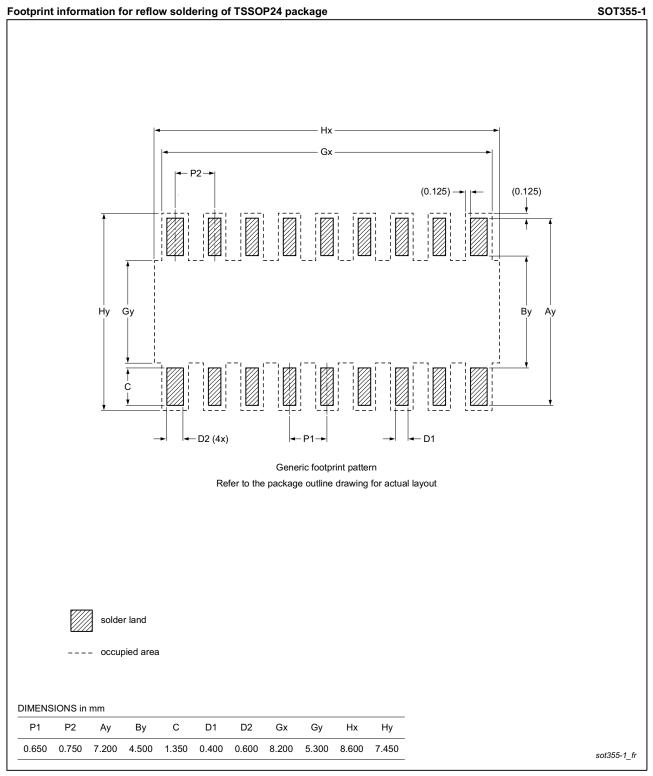


Fig 47. PCB footprint for SOT355-1 (TSSOP24); reflow soldering

Low-voltage translating 16-bit I²C-bus/SMBus I/O expander

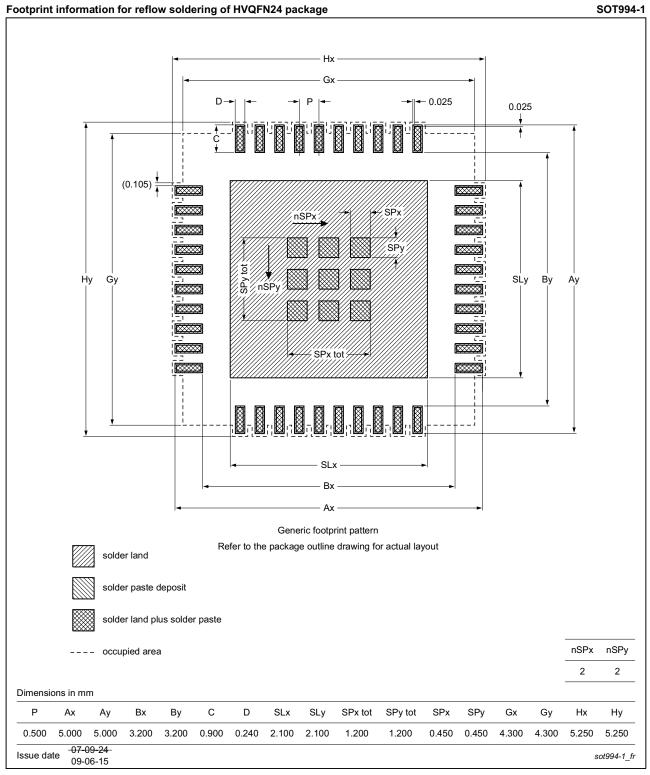
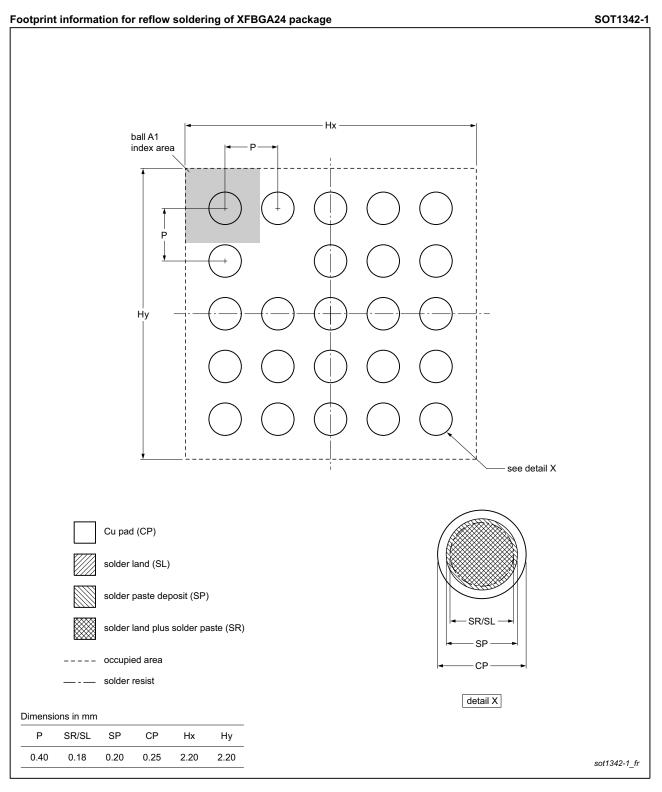
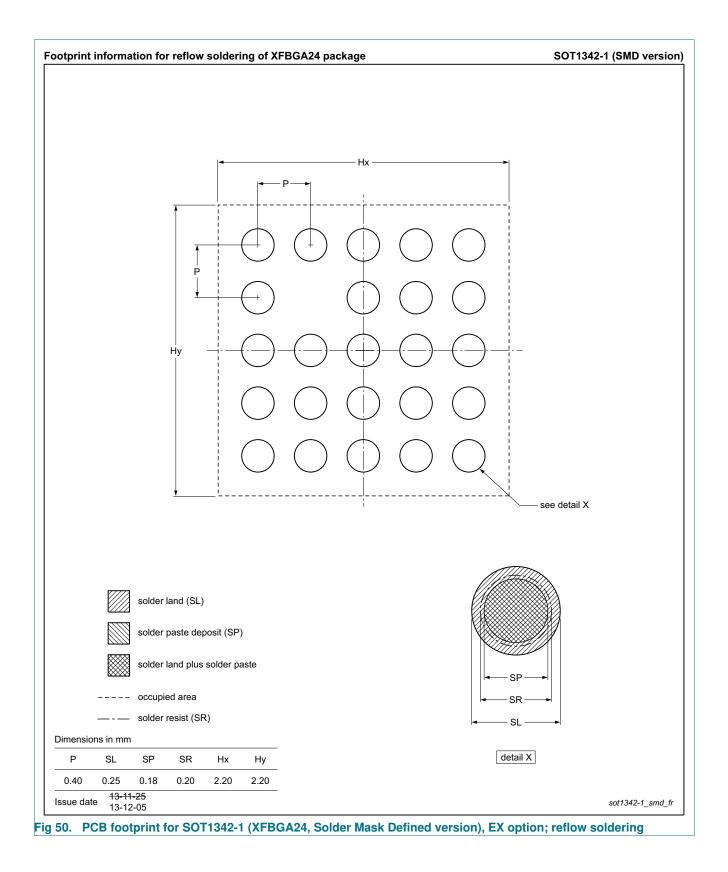
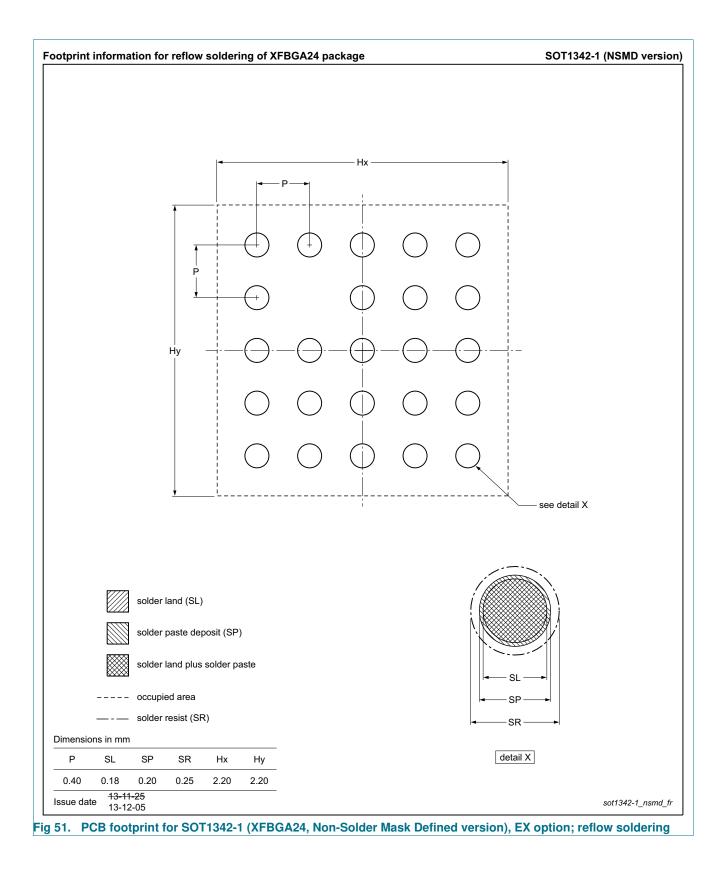
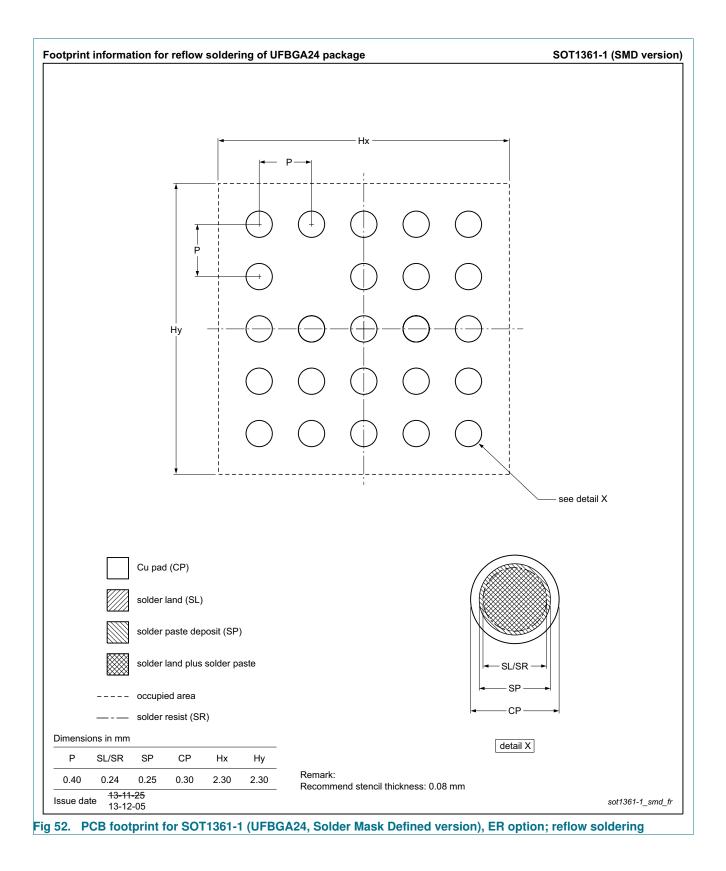
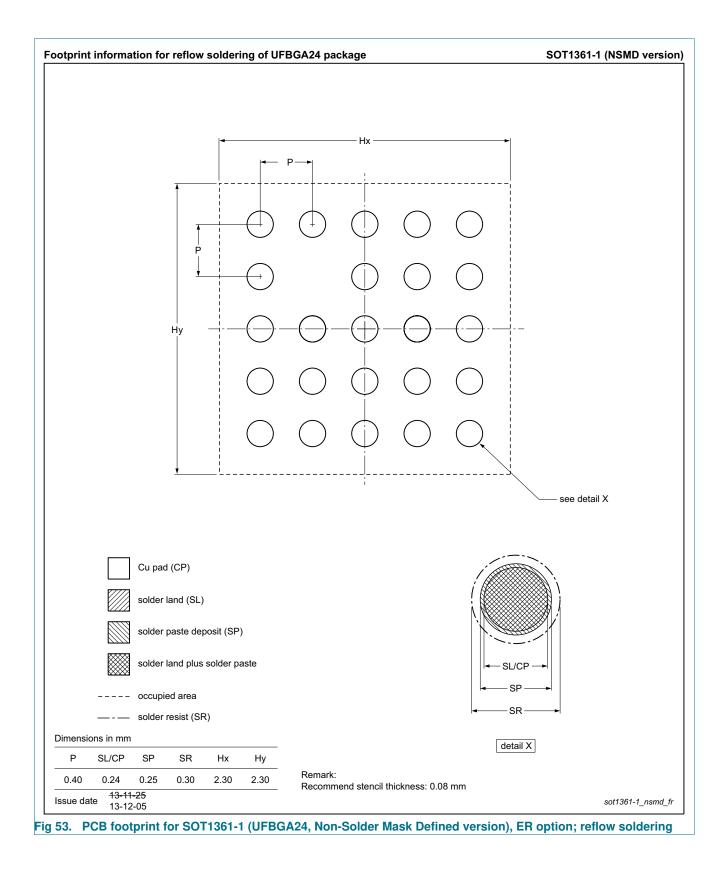



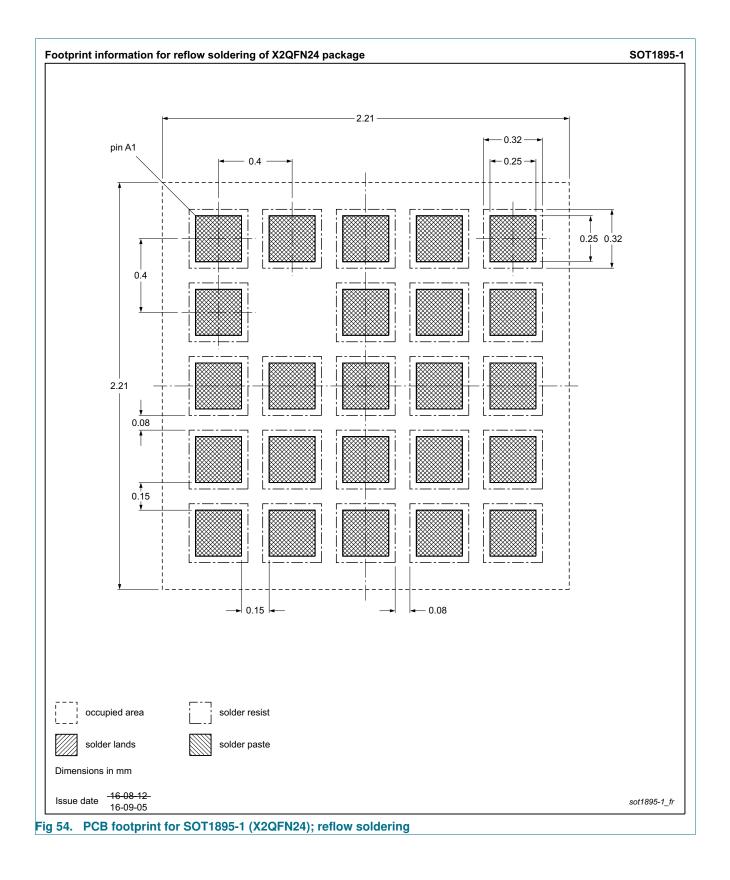
Fig 48. PCB footprint for SOT994-1 (HWQFN24); reflow soldering


PCAL6416A


NXP Semiconductors


Low-voltage translating 16-bit I²C-bus/SMBus I/O expander




Fig 49. PCB footprint for SOT1342-1 (XFBGA24); reflow soldering

19. Abbreviations

Table 40. Abbre	viations
Acronym	Description
ESD	ElectroStatic Discharge
FET	Field-Effect Transistor
GPIO	General Purpose Input/Output
I ² C-bus	Inter-Integrated Circuit bus
I/O	Input/Output
LED	Light-Emitting Diode
LSB	Least Significant Bit
MSB	Most Significant Bit
PCB	Printed-Circuit Board
POR	Power-On Reset
SMBus	System Management Bus

20. Revision history

Table 41.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes			
PCAL6416A v.6.2	20170407	Product data sheet	-	PCAL6416A v.6.1			
Modifications:	Added "land	grid array" to description of X2	QFN24	<u>.</u>			
		 Removed "PCAL6416AEX1/X2QFN16" from Figure 6 "Pin configuration for XFBGA24 (2 mm ² 2 mm); EX option" 					
	 Added Figur 	e 7 "Pin configuration for X2QF	N24 (2 mm ´ 2 mm)	; EX1 land grid array option"			
PCAL6416A v.6.1	20161103	Product data sheet	-	PCAL6416A v.6			
Modifications:	Added PCAL	_6416AEX1					
PCAL6416A v.6	20141009	Product data sheet	-	PCAL6416A v.5			
Modifications:	Table 1 "Ord	ering information": PCAL6416A	EX topside mark ch	anged from "L16" to "L6X"			
PCAL6416A v.5	20131210	Product data sheet	-	PCAL6416A v.4			
PCAL6416A v.4	20130506	Product data sheet	-	PCAL6416A v.3			
PCAL6416A v.3	20121224	Product data sheet	-	PCAL6416A v.2			
PCAL6416A v.2	20121005	Product data sheet	-	PCAL6416A v.1			
PCAL6416A v.1	20120808	Product data sheet	-	-			

21. Legal information

21.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

21.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

21.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

21.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I²C-bus — logo is a trademark of NXP B.V.

22. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Product data sheet

Low-voltage translating 16-bit I²C-bus/SMBus I/O expander

23. Contents

2 Features and benefits 2 2.1 Agile I/O features 3 3 Ordering information 3 3.1 Ordering options 4 4 Block diagram 4 5 Pinning information 5 5.1 Pinning information 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (04h, 05h) 13 7.4.5 Output drive strength register pair (44h, 45h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down selection register pair (48h, 49h)	2.1 Agile I/O features 3 3 Ordering information 3 3.1 Ordering options 4 4 Block diagram 4 5 Pinning information 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 12 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (04h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (44h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.1 Input tatch register pair (4Ah, 45h) 15 7.4.9 Interrupt mask register pair (4Ch,	1	General description 1
3 Ordering information 3 3.1 Ordering options 4 4 Block diagram 4 5 Pinning information 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (04h, 05h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (42h, 45h) 15 7.4.10 Int	3 Ordering information 3 3.1 Ordering options 4 4 Block diagram 4 5 Pinning information 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.7 Pull-up/pull-down selection register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (42h, 48h) 15 7.4.10	2	Features and benefits 2
3.1 Ordering options. 4 4 Block diagram 4 5 Pinning information. 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation. 8 7 Functional description 9 7.1 Device address. 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (04h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.7 Pull-up/pull-down selection register pair (48h, 49h) 13 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.9 Interrupt tatlus register pair (4Ch, 4Dh) 16 <td>3.1 Ordering options. 4 4 Block diagram 4 5 Pinning information 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address. 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pair (46h, 47h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down selection register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6</td> <td>2.1</td> <td>Agile I/O features 3</td>	3.1 Ordering options. 4 4 Block diagram 4 5 Pinning information 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address. 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pair (46h, 47h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down selection register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6	2.1	Agile I/O features 3
3.1 Ordering options. 4 4 Block diagram 4 5 Pinning information. 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation. 8 7 Functional description 9 7.1 Device address. 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (04h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.7 Pull-up/pull-down selection register pair (48h, 49h) 13 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.9 Interrupt tatlus register pair (4Ch, 4Dh) 16 <td>3.1 Ordering options. 4 4 Block diagram 4 5 Pinning information 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address. 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pair (46h, 47h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down selection register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6</td> <td>3</td> <td>Ordering information</td>	3.1 Ordering options. 4 4 Block diagram 4 5 Pinning information 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address. 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pair (46h, 47h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down selection register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6	3	Ordering information
4 Block diagram 4 5 Pinning information 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (04h, 05h) 12 7.4.5 Output drive strength register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (4 Block diagram 4 5 Pinning information 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (04h, 05h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.5 I/O port 16	3.1	-
5 Pinning information 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (00h, 01h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (04h, 05h) 12 7.4.5 Output drive strength register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Inte	5 Pinning information 5 5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down selection register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (46h, 47h) 15 7.4.9 Interrupt mask register pair (4Ch, 4Bh) 15 7.4.10 Interrupt status register pair (4Ch, 4Bh) 16 7.5 I/O port <t< td=""><td>4</td><td></td></t<>	4	
5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (00h, 07h) 12 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pair (46h, 45h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down selection register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (46h, 47h) 14 7.4.9 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6 Power-on reset 17	5.1 Pinning 5 5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pair (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 7.4.1 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.4.1 Output port configuration register (4Fh) 16 7.5 I/O port 16	5	•
5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 12 7.4.4 Configuration register pair (04h, 05h) 12 7.4.5 Output drive strength register pair (04h, 05h) 12 7.4.6 Input latch register pair (04h, 05h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 <t< td=""><td>5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 16 7.5.1 Interrupt mask register pair (4Ch, 4Dh) 16 7.5.1 Iop port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18</td><td>-</td><td>-</td></t<>	5.2 Pin description 7 6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 16 7.5.1 Interrupt mask register pair (4Ch, 4Dh) 16 7.5.1 Iop port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18	-	-
6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT	6 Voltage translation 8 7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (46h, 47h). 14 7.4.9 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (5.2	0
7 Functional description 9 7.1 Device address. 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (46h, 47h). 14 7.4.9 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transaction	7 Functional description 9 7.1 Device address 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (46h, 47h). 14 7.4.9 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8	6	
7.1 Device address. 9 7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands <td>7.1 Device address</td> <td>7</td> <td></td>	7.1 Device address	7	
7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ch, 4Dh) 15 7.4.9 Interrupt status register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 20 9 Application desi	7.2 Interface definition 9 7.3 Pointer register and command byte 9 7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1	7.1	-
7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 25 <t< td=""><td>7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 14 7.4.8 Pull-up/pull-down selection register pair (46h, 47h). 14 14 7.4.7 Pull-up/pull-down selection register pair (46h, 47h). 14 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh). 15 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 20 9 Application design-in information 24</td><td>7.2</td><td></td></t<>	7.4 Register descriptions 11 7.4.1 Input port register pair (00h, 01h) 11 7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 14 7.4.8 Pull-up/pull-down selection register pair (46h, 47h). 14 14 7.4.7 Pull-up/pull-down selection register pair (46h, 47h). 14 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh). 15 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 20 9 Application design-in information 24	7.2	
7.4.1 Input port register pair (00h, 01h)	7.4.1 Input port register pair (00h, 01h)	7.3	Pointer register and command byte
7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h)	7.4.2 Output port register pair (02h, 03h) 11 7.4.3 Polarity inversion register pair (04h, 05h) 12 7.4.4 Configuration register pair (06h, 07h) 12 7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h) 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 25 9.3 Power-on reset requirements 26		Register descriptions 11
7.4.3 Polarity inversion register pair (04h, 05h)	7.4.3 Polarity inversion register pair (04h, 05h)12 7.4.4 Configuration register pair (06h, 07h)		
7.4.4 Configuration register pair (06h, 07h)	7.4.4 Configuration register pair (06h, 07h)		
7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques <td>7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 20 9 Application design-in information 24 9.1 Minimizing I_{DD} when the I/Os are used to control LEDs 25 9.2 Output drive strength control 25 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I²C-bus error recovery techniques 28 10 Limiting values 29 </td> <td></td> <td></td>	7.4.5 Output drive strength register pairs (40h, 41h, 42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 25 9.2 Output drive strength control 25 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29		
42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 7.4.10 Interrupt mask register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29 <td>42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 20 9 Application design-in information 24 9.1 Minimizing I_{DD} when the I/Os are used to control LEDs 25 9.2 Output drive strength control 25 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I²C-bus error recovery techniques 28 10 Limiting values 29</td> <td></td> <td></td>	42h, 43h) 13 7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 25 9.2 Output drive strength control 25 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29		
7.4.6 Input latch register pair (44h, 45h) 13 7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h)	7.4.6 Input latch register pair (44h, 45h)	7.4.5	
7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 7.4.10 Interrupt status register pair (4Ch, 4Dh) 7.4.10 Interrupt oct configuration register (4Fh) 7.4.11 Output port configuration register (4Fh) 7.5 I/O port 7.6 Power-on reset 7.7 Reset input (RESET) 7.8 Interrupt output (INT) 8 Bus transactions 8.1 Write commands 8.2 Read commands 9 Application design-in information 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 12.5 Power-on reset requirements 9.4 Device current consumption with internal pull-up and pull-down resistors 9.5 I ² C-bus error recovery techniques 9.6 Limiting values	7.4.7 Pull-up/pull-down enable register pair (46h, 47h). 14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 7.4.9 Interrupt mask register pair (4Ah, 4Bh). 7.4.10 Interrupt status register pair (4Ch, 4Dh) 7.4.10 Interrupt status register pair (4Ch, 4Dh) 7.4.11 Output port configuration register (4Fh) 7.5 I/O port 7.6 Power-on reset 7.7 Reset input (RESET) 7.8 Interrupt output (INT) 18 Bus transactions 8.1 Write commands 8.2 Read commands 9 Application design-in information 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 25 9.3 Power-on reset requirements 9.4 Device current consumption with internal pull-up and pull-down resistors 9.5 I ² C-bus error recovery techniques 28 10	7.4.6	Input latch register pair (44h, 45h) 13
14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 8.1 Write commands 8.2 Read commands 9 Application design-in information 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 12.0 Output drive strength control 25 9.3 9.4 Device current consumption with internal pull-up and pull-down resistors 9.5 I ² C-bus error recovery techniques 12 Limiting values 28 10	14 7.4.8 Pull-up/pull-down selection register pair (48h, 49h) 7.4.9 Interrupt mask register pair (4Ah, 4Bh) 15 Interrupt status register pair (4Ch, 4Dh) 7.4.10 Interrupt status register pair (4Ch, 4Dh) 7.4.11 Output port configuration register (4Fh) 7.5 I/O port 7.6 Power-on reset 7.7 Reset input (RESET) 7.8 Interrupt output (INT) 18 Bus transactions 8.1 Write commands 8.2 Read commands 9 Application design-in information 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 24 9.2 Output drive strength control 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	7.4.7	
49h) 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh). 15 7.4.10 Interrupt status register pair (4Ch, 4Dh). 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 18 8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	49h) 15 7.4.9 Interrupt mask register pair (4Ah, 4Bh). 15 7.4.10 Interrupt status register pair (4Ch, 4Dh). 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 18 8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29		
7.4.9 Interrupt mask register pair (4Ah, 4Bh). 15 7.4.10 Interrupt status register pair (4Ch, 4Dh). 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 18 8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	7.4.9 Interrupt mask register pair (4Ah, 4Bh)	7.4.8	
7.4.10 Interrupt status register pair (4Ch, 4Dh)	7.4.10 Interrupt status register pair (4Ch, 4Dh) 16 7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port		
7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 18 8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 24 9.2 Output drive strength control 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	7.4.11 Output port configuration register (4Fh) 16 7.5 I/O port	-	
7.5 I/O port 16 7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 18 8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 24 9.2 Output drive strength control 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	7.5 I/O port	-	
7.6 Power-on reset 17 7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 18 8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 24 9.2 Output drive strength control 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	7.6 Power-on reset		
7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 18 8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 24 9.2 Output drive strength control 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	7.7 Reset input (RESET) 17 7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 18 8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 25 9.2 Output drive strength control 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29		
7.8 Interrupt output (INT) 18 8 Bus transactions 18 8.1 Write commands 18 8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 24 9.2 Output drive strength control 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	7.8Interrupt output (INT)188Bus transactions188.1Write commands188.2Read commands209Application design-in information249.1Minimizing I _{DD} when the I/Os are used to control LEDs249.2Output drive strength control259.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors2810Limiting values29	-	
8 Bus transactions 18 8.1 Write commands 18 8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 24 9.2 Output drive strength control 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	8Bus transactions188.1Write commands188.2Read commands209Application design-in information249.1Minimizing I _{DD} when the I/Os are used to control LEDs249.2Output drive strength control259.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors289.5I²C-bus error recovery techniques2810Limiting values29		
 8.1 Write commands	 8.1 Write commands	-	
8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control LEDs 24 9.2 Output drive strength control 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	8.2 Read commands 20 9 Application design-in information 24 9.1 Minimizing I _{DD} when the I/Os are used to control 24 9.2 Output drive strength control 25 9.3 Power-on reset requirements 26 9.4 Device current consumption with internal pull-up and pull-down resistors 28 9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	-	
9Application design-in information249.1Minimizing I _{DD} when the I/Os are used to control LEDs249.2Output drive strength control259.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors289.5I²C-bus error recovery techniques2810Limiting values29	9Application design-in information249.1Minimizing I _{DD} when the I/Os are used to control LEDs.249.2Output drive strength control259.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors.289.5I²C-bus error recovery techniques2810Limiting values.29	-	
9.1Minimizing I _{DD} when the I/Os are used to control LEDs.9.2Output drive strength control259.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors.289.5I²C-bus error recovery techniques2810Limiting values.29	9.1Minimizing I _{DD} when the I/Os are used to control LEDs.9.2Output drive strength control259.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors.289.5I²C-bus error recovery techniques2810Limiting values.29	-	
LEDs.249.2Output drive strength control259.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors289.5I²C-bus error recovery techniques2810Limiting values29	LEDs.249.2Output drive strength control259.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors.289.5I²C-bus error recovery techniques2810Limiting values.29	•	
9.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors289.5I²C-bus error recovery techniques2810Limiting values29	9.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors289.5I²C-bus error recovery techniques2810Limiting values29	9.1	0 00
9.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors289.5I²C-bus error recovery techniques2810Limiting values29	9.3Power-on reset requirements269.4Device current consumption with internal pull-up and pull-down resistors289.5I²C-bus error recovery techniques2810Limiting values29	9.2	Output drive strength control
and pull-down resistors	and pull-down resistors.289.5l²C-bus error recovery techniques2810Limiting values.29	9.3	•
9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	9.5 I ² C-bus error recovery techniques 28 10 Limiting values 29	9.4	
10 Limiting values 29	10 Limiting values 29		
-	-	9.5	
11 Recommended operating conditions 20		10	-
neconinenceu operating conditions 30	11 Recommended operating conditions 30	11	Recommended operating conditions 30

12	Thermal characteristics	30
13	Static characteristics	31
13.1	Typical characteristics	33
14	Dynamic characteristics	37
15	Parameter measurement information	38
16	Package outline	42
17	Soldering of SMD packages	48
17.1	Introduction to soldering	48
17.2	Wave and reflow soldering	48
17.3	Wave soldering	48
17.4	Reflow soldering	49
18	Soldering: PCB footprints	51
19	Abbreviations	60
20	Revision history	60
21	Legal information	61
21.1	Data sheet status	61
21.2	Definitions	61
21.3	Disclaimers	61
21.4	Trademarks	62
22	Contact information	62
23	Contents	63

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2017.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 7 April 2017 Document identifier: PCAL6416A