

74F10

Triple 3-Input NAND Gate

This device contains three independent gates, each of which performs the logic NAND function.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

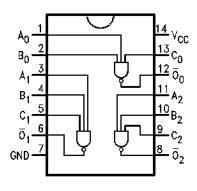
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

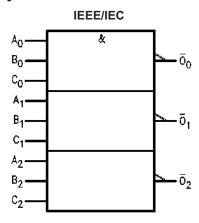
May 2007

74F10 Triple 3-Input NAND Gate

General Description


This device contains three independent gates, each of which performs the logic NAND function.

Ordering Information


Order Number	Package Number	Package Description
74F10SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74F10SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.

Connection Diagram

Logic Symbol

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} , Output I _{OH} /I _{OL}		
A _n , B _n , C _n	Inputs	1.0 / 1.0	20μA / –0.6mA		
\overline{O}_n	Outputs	50 / 33.3	–1mA / 20mA		

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating		
T _{STG}	Storage Temperature	−65°C to +150°C		
T _A	Ambient Temperature Under Bias	–55°C to +125°C		
TJ	Junction Temperature Under Bias	–55°C to +150°C		
V _{CC}	V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V		
V _{IN}	Input Voltage ⁽¹⁾	-0.5V to +7.0V		
I _{IN}	Input Current ⁽¹⁾	-30mA to +5.0mA		
Vo	Voltage Applied to Output in HIGH State (with V _{CC} = 0V)			
	Standard Output	–0.5V to V _{CC}		
	3-STATE Output	-0.5V to 5.5V		
	Current Applied to Output in LOW State (Max.)	twice the rated I _{OL} (mA)		

Note:

1. Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating		
T _A	Free Air Ambient Temperature	0°C to +70°C		
V _{CC}	Supply Voltage	+4.5V to +5.5V		

DC Electrical Characteristics

Symbol	Parameter		V _{CC}	Conditions	Min.	Тур.	Max.	Units
V_{IH}	Input HIGH Voltage			Recognized as a HIGH Signal	2.0			V
V _{IL}	Input LOW Voltage			Recognized as a LOW Signal			0.8	V
V _{CD}	Input Clamp Diode Voltage		Min.	$I_{IN} = -18mA$			-1.2	V
V _{OH}	Output HIGH Voltage	10% V _{CC}	Min.	$I_{OH} = -1mA$	2.5			V
		5% V _{CC}		$I_{OH} = -1mA$	2.7			
V _{OL}	Output LOW Voltage	10% V _{CC}	Min.	I _{OL} = 20mA			0.5	V
I _{IH}	Input HIGH Current		Max.	V _{IN} = 2.7V			5.0	μA
I _{BVI}	Input HIGH Current Breakdown Test		Max.	V _{IN} = 7.0V			7.0	μA
I _{CEX}	Output HIGH Leakage Current		Max.	$V_{OUT} = V_{CC}$			50	μA
V _{ID}	Input Leakage Test		0.0	$I_{\text{ID}} = 1.9 \mu\text{A}$, All other pins grounded	4.75			V
I _{OD}	Output Leakage Circuit Current		0.0	V _{IOD} = 150mV, All other pins grounded			3.75	μA
I _{IL}	Input LOW Current		Max.	V _{IN} = 0.5V			-0.6	mA
los	Output Short-Circuit Current		Max.	V _{OUT} = 0V	-60		-150	mA
I _{CCH}	Power Supply Current		Max.	V _O = HIGH		1.4	2.1	mA
I _{CCL}	Power Supply Current		Max.	$V_O = LOW$		5.1	7.7	mA

AC Electrical Characteristics

		$T_{A} = +25^{\circ}\text{C},$ $V_{CC} = +5.0\text{V},$ $C_{L} = 50\text{pF}$			$T_A = -55^{\circ}\text{C to } +125^{\circ}\text{C},$ $V_{CC} = +5.0\text{V},$ $C_L = 50 \text{ pF}$		$T_A = 0$ °C to +70°C, $V_{CC} = +5.0$ V, $C_L = 50$ pF		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	Units
t _{PLH}	Propagation Delay,	2.4	3.7	5.0	2.0	7.0	2.4	6.0	ns
t _{PHL}	A_n , B_n , C_n to O_n	1.5	3.2	4.3	1.5	6.5	1.5	5.3	

Physical Dimensions
Dimensions are in millimeters unless otherwise noted.

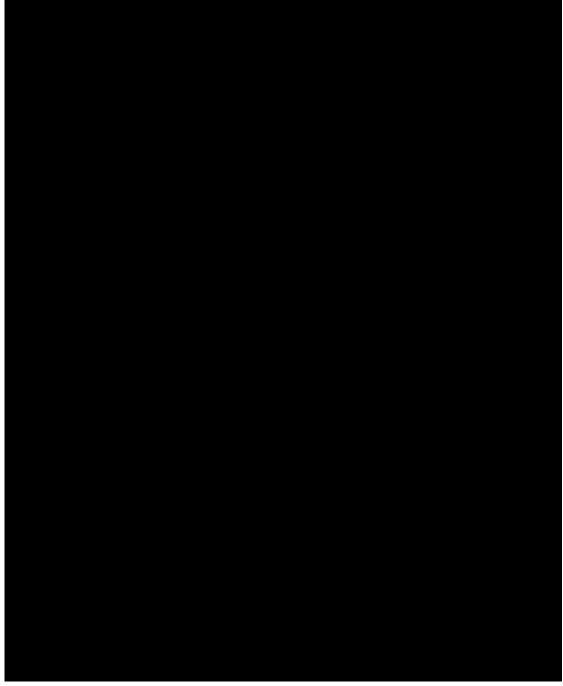


Figure 1. 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

Physical Dimensions (Continued) Dimensions are in millimeters unless otherwise noted.

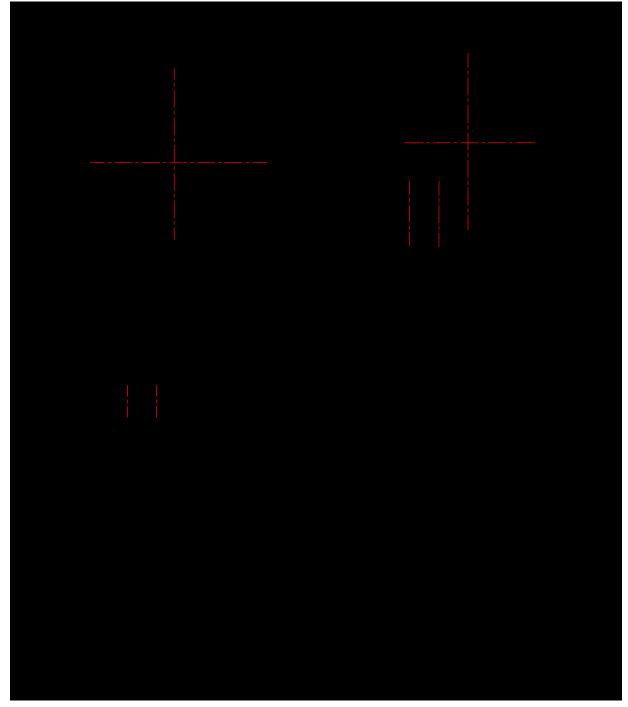
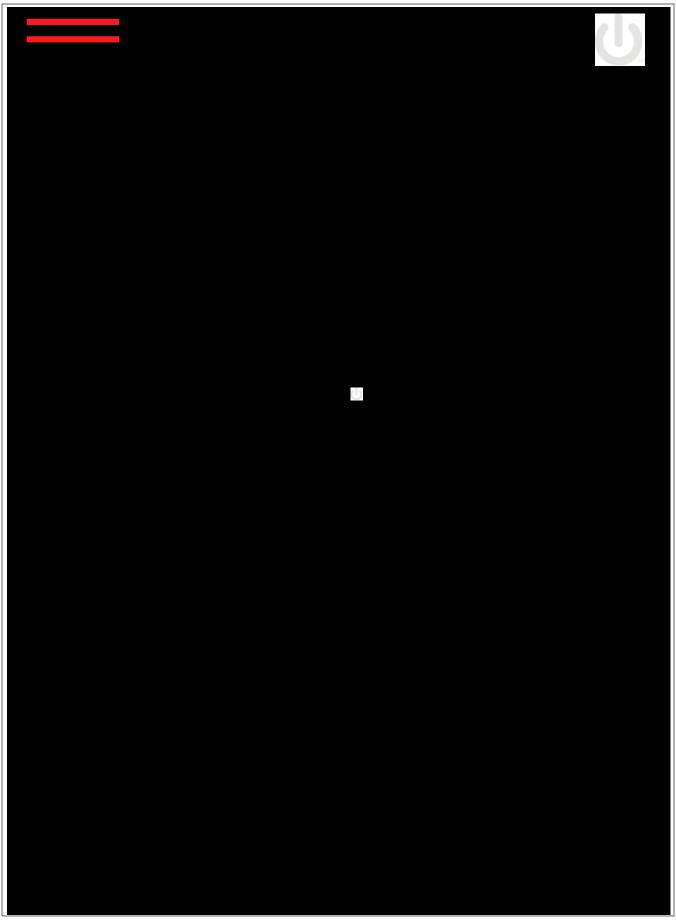



Figure 2. 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M14D

