
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Description

The Atmel® | SMART SAM4E series of Flash microcontrollers is based on the

high-performance 32-bit ARM® Cortex®-M4 RISC processor and includes a

floating point unit (FPU). It operates at a maximum speed of 120 MHz and

features up to 1024 Kbytes of Flash, 2 Kbytes of cache memory and up to

128 Kbytes of SRAM.

The SAM4E offers a rich set of advanced connectivity peripherals including

10/100 Mbps Ethernet MAC supporting IEEE 1588 and dual CAN. With a single-

precision FPU, advanced analog features, as well as a full set of timing and

control functions, the SAM4E is the ideal solution for industrial automation, home

and building control, machine-to-machine communications, automotive

aftermarket and energy management applications.

The peripheral set includes a full-speed USB device port with embedded

transceiver, a 10/100 Mbps Ethernet MAC supporting IEEE 1588, a high-speed

MCI for SDIO/SD/MMC, an external bus interface featuring a static memory

controller providing connection to SRAM, PSRAM, NOR Flash, LCD Module and

NAND Flash, a parallel I/O capture mode for camera interface, hardware

acceleration for AES256, 2 USARTs, 2 UARTs, 2 TWIs, 3 SPIs, as well as a 4-

channel PWM, 3 three-channel general-purpose 32-bit timers (with stepper motor

and quadrature decoder logic support), a low-power RTC, a low-power RTT, 256-

bit General Purpose Backup Registers, 2 Analog Front End interfaces (16-bit

ADC, DAC, MUX and PGA), one 12-bit DAC (2-channel) and an analog

comparator.

The SAM4E devices have three software-selectable low-power modes: Sleep,

Wait and Backup. In Sleep mode, the processor is stopped while all other

functions can be kept running. In Wait mode, all clocks and functions are stopped

but some peripherals can be configured to wake up the system based on

predefined conditions.

The Real-time Event Managment allows peripherals to receive, react to and send

events in Active and Sleep modes without processor intervention.

SAM4E Series

Atmel | SMART ARM-based Flash MCU

DATASHEET

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

2

1. Features

 Core

̶ ARM Cortex-M4 with 2 Kbytes Cache running at up to 120 MHz(1)

̶ Memory Protection Unit (MPU)

̶ DSP Instruction

̶ Floating Point Unit (FPU)

̶ Thumb®-2 Instruction Set

 Memories

̶ Up to 1024 Kbytes Embedded Flash

̶ 128 Kbytes Embedded SRAM

̶ 16 Kbytes ROM with Embedded Boot Loader Routines (UART) and IAP Routines

̶ Static Memory Controller (SMC): SRAM, NOR, NAND Support

̶ NAND Flash Controller

 System

̶ Embedded Voltage Regulator for Single Supply Operation

̶ Power-on-Reset (POR), Brown-out Detector (BOD) and Dual Watchdog for Safe Operation

̶ Quartz or Ceramic Resonator Oscillators: 3 to 20 MHz Main Power with Failure Detection and Optional Low-

power 32.768 kHz for RTC or Device Clock

̶ RTC with Gregorian and Persian Calendar Mode, Waveform Generation in Backup mode

̶ RTC counter calibration circuitry compensates for 32.768 kHz crystal frequency inaccuracy

̶ High Precision 4/8/12 MHz Factory Trimmed Internal RC Oscillator with 4 MHz Default Frequency for Device

Startup. In-application Trimming Access for Frequency Adjustment

̶ Slow Clock Internal RC Oscillator as Permanent Low-power Mode Device Clock

̶ One PLL up to 240 MHz for Device Clock and for USB

̶ Temperature Sensor

̶ Low-power tamper detection on two inputs, anti-tampering by immediate clear of general-purpose backup

registers (GPBR)

̶ Up to 2 Peripheral DMA Controllers (PDC) with up to 33 Channels

̶ One 4-channel DMA Controller

 Low-power Modes

̶ Sleep, Wait and Backup modes, down to 0.9 µA in Backup mode with RTC, RTT, and GPBR

 Peripherals

̶ Two USARTs with USART1 (ISO7816, IrDA®, RS-485, SPI, Manchester and Modem Modes)

̶ USB 2.0 Device: Full Speed (12 Mbits), 2668 byte FIFO, up to 8 Endpoints. On-chip Transceiver

̶ Two 2-wire UARTs

̶ Two 2-wire Interfaces (TWI)

̶ High-speed Multimedia Card Interface (SDIO/SD Card/MMC)

̶ One Master/Slave Serial Peripheral Interface (SPI) with Chip Select Signals

̶ Three 3-channel 32-bit Timer/Counter blocks with Capture, Waveform, Compare and PWM Mode. Quadrature

Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor

̶ 32-bit low-power Real-time Timer (RTT) and low-power Real-time Clock (RTC) with calendar and alarm features

̶ 256-bit General Purpose Backup Registers (GPBR)

̶ One Ethernet MAC (GMAC) 10/100 Mbps in MII mode only with dedicated DMA and Support for IEEE1588,

Wake-on-LAN

̶ Two CAN Controllers with eight Mailboxes

̶ 4-channel 16-bit PWM with Complementary Output, Fault Input, 12-bit Dead Time Generator Counter for Motor

Control

̶ Real-time Event Management

3SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 Cryptography

̶ AES 256-bit Key Algorithm compliant with FIPS Publication 197

 Analog

̶ AFE (Analog Front End): 2x16-bit ADC, up to 24-channels, Differential Input Mode, Programmable Gain Stage,

Auto Calibration and Automatic Offset Correction

̶ One 2-channel 12-bit 1 Msps DAC

̶ One Analog Comparator with Flexible Input Selection, Selectable Input Hysteresis

 I/O

̶ Up to 117 I/O Lines with External Interrupt Capability (Edge or Level Sensitivity), Debouncing, Glitch Filtering

and On-die Series Resistor Termination

̶ Bidirectional Pad, Analog I/O, Programmable Pull-up/Pull-down

̶ Five 32-bit Parallel Input/Output Controllers, Peripheral DMA Assisted Parallel Capture Mode

 Packages

̶ 144-ball LFBGA, 10x10 mm, pitch 0.8 mm

̶ 100-ball TFBGA, 9x9 mm, pitch 0.8 mm

̶ 144-lead LQFP, 20x20 mm, pitch 0.5 mm

̶ 100-lead LQFP, 14x14 mm, pitch 0.5 mm

Note: 1. 120 MHz: -40/+105°C, VDDCORE = 1.2V

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

4

1.1 Configuration Summary

The SAM4E series devices differ in memory size, package and features. Table 1-1 summarizes the configurations

of the device family.

Notes: 1. ADC is 12-bit, up to 16 bits with averaging.

For details, please refer to Section 46. “SAM4E Electrical Characteristics”.

2. AFE0 is 16 channels and AFE1 is 8 channels. The total number of AFE channels is 24.

One channel is reserved for the internal temperature sensor.

3. AFE0 is 6 channels and AFE1 is 4 channels. The total number of AFE channels is 10.

One channel is reserved for the internal temperature sensor.

4. Nine TC channels are accessible through PIO.

5. Three TC channels are accessible through PIO and 6 channels are reserved for internal use.

6. Full Modem support on USART1.

Table 1-1. Configuration Summary

Feature SAM4E16E SAM4E8E SAM4E16C SAM4E8C

Flash 1024 Kbytes 512 Kbytes 1024 Kbytes 512 Kbytes

SRAM 128 Kbytes 128 Kbytes

CMCC 2 Kbytes 2 Kbytes

Package
LFBGA 144

LQFP 144

TFBGA 100

LQFP 100

Number of PIOs 117 79

External Bus Interface 8-bit Data, 4 Chip Selects, 24-bit Address –

Analog Front End

(AFE0\AFE1)

Up to 16 bits(1)

16 ch. / 8 ch. (2)

Up to 16 bits(1)

6 ch. / 4 ch. (3)

GMAC 10/100 Mbps 10/100 Mbps

CAN 2 1

12-bit DAC 2 ch. 2 ch.

Timer 9(4) 9(5)

PDC Channels 24 +9 21 +9

USART/ UART 2/2(6) 2/2(6)

USB Full Speed Full Speed

HSMCI 1 port, 4 bits 1 port, 4 bits

TWI 2 2

5
S

A
M

4
E

 S
e

rie
s
 [D

A
T

A
S

H
E

E
T

]
A

tm
e
l-1

1
1

5
7

H
-A

T
A

R
M

-S
A

M
4
E

1
6
-S

A
M

4
E

8
-D

a
ta

s
h

e
e

t_
3

1
-M

a
r-1

6

2
.

B
lo

c
k

 D
ia

g
ra

m

S
e

e
 T

a
b

le
 1

-1
 fo

r d
e

ta
ile

d
 c

o
n

fig
u
ra

tio
n

s
 o

f m
e
m

o
ry

 s
iz

e
, p

a
c
k
a

g
e

 a
n

d
 fe

a
tu

re
s
 o

f th
e

 S
A

M
4
E

 d
e

v
ic

e
s
.

F
ig

u
re

 2
-1

.
S

A
M

4
E

 1
4
4
-p

in
 B

lo
c
k
 D

ia
g

ra
m

7-layer Bus Matrix

f
MAX

 120 MHz

PCK[2:0]

XIN32

XOUT32

VDDCORE

TC
K
/S

W
C
LK

TD
I
TD

O
JT

A
G
S
E
L

V
D
D
IN

V
D
D
O
U
T

JTAG and Serial Wire

Voltage

Regulator

TST

In-Circuit Emulator

DSP

Cortex-M4 Processor

fMAX 120 MHz
NVIC

WKUP[15:0]

24-bit SysTick

Counter

VDDIO

XIN

XOUT

VDDPLL

RTCOUT0

RTCOUT1

MSS SMM M

System Controller

ERASE

UART1

U
R
X
D
1

U
TX

D
1

PDC

NVIC

FPUMPU

DI

S

S

SS M M

PDC1

NRST

PIOA/B/C/D/E

TM
S
/S

W
D
IO

4-channel

DMA

HCACHE (CMCC)

SRAM
128 Kbytes

Flash
1024 Kbytes

512 Kbytes

Flash

Unique ID

USB

Transceiver

External Bus Interface

Static Memory

NAND Flash

FIFO

128 byte TX

128 byte RX

UART0
2 x

TWI

2 x

USART
PWM

2 x

12-bit

AFEC
ACC

12-bit

DACC
PIO HSMCI SPI

PDC

Peripheral Bridge 0

U
R
X
D
0

U
TX

D
0

R
X
D
0.

.1

S
C
K
0.

.1

R
TS

0.
.1

TX
D
0.

.1

C
TS

0.
.1

D
S
R
1,

 D
TR

1

R
I1

, D
C
D
1

P
IO

D
C
C
LK

P
IO

D
C
E
N
1.

.2

P
IO

D
0.

.7

M
C
D
A
0.

.3

M
C
C
D
A

M
C
C
K

N
P
C
S
0.

.3

M
IS

O

M
O
S
I

S
P
C
K

P
W

M
H
0.

.3

P
W

M
L0

..3

P
W

M
C
x_

P
W

M
FI

0

A
FE

_A
D
TR

G

A
FE

x_
A
D
0.

.1
4

D
A
C
0.

.1

D
AT

R
G

TW
D
0.

.1

TW
C
K
0.

.1

D
P

D
M

A
[2

3:
0]

, D
[1

5:
0]

A
21

/N
A
N
D
A
LE

A
22

/N
A
N
D
C
LE

N
A
N
D
O
E
, N

A
N
D
W

E

A
0/

N
LB

, N
U
B

N
W

A
IT
, N

C
S
0.

.3
, N

R
D
, N

W
E

A
16

/S
D
B
A
0,

 A
17

/S
D
B
A
1

R
A
S
, C

A
S
, D

Q
M

x,
 S

D
C
K
, S

D
C
K
E
, S

D
A
10

Temp

Sensor

TI
O
B
0.

.9

TC
LK

0.
.9

TI
O
A
0.

.9

PDC PDCPDCPDCPDCPDCPDCPDC

DMA

PDC

2 x

CAN
AES

A
D
V
R
E
FN

A
D
V
R
E
FP

C
A
N
R
X
0.

.1

C
A
N
TX

0.
.1

3 x

TC

Peripheral Bridge 1

Ethernet MAC

MIIROM
16 Kbytes

PDC0

G
TX

C
K
–G

R
X
C
K

G
C
R
S
–G

C
O
L

G
TX

0–
G
TX

3

G
M

D
C

G
M

D
IO

G
R
X
0–

G
R
X
3

G
R
X
E
R
–G

R
X
D
V

G
TX

E
R

DMA DMADMA DMADMA

PMC

RC Osc
4/8/12 MHz

RSTC

SM

POR

32.768k

Crystal Osc.

32k typ.

RC Osc.

SUPC

RTTRTC

WDT

PLLA

3–20 MHz

Oscillator

256-bit

GPBR

Tamper Detection

Backup

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

6

3. Signal Description

Table 3-1 gives details on signal names classified by peripheral.

Table 3-1. Signal Description List

Signal Name Function Type

Active

Level

Voltage

Reference Comments

Power Supplies

VDDIO Peripherals I/O Lines Power Supply Power – – 1.62V to 3.6V

VDDIN
Voltage Regulator Input, DAC and Analog

Comparator Power Supply
Power – – 1.62V to 3.6V(1)

VDDOUT Voltage Regulator Output Power – – 1.2V Output

VDDPLL Oscillator and PLL Power Supply Power – – 1.08 V to 1.32V

VDDCORE
Power the core, the embedded memories

and the peripherals
Power – – 1.08V to 1.32V

GND Ground Ground – – –

Clocks, Oscillators and PLLs

XIN Main Oscillator Input Input –

VDDIO

Reset State:

- PIO Input

- Internal Pull-up disabled

- Schmitt Trigger enabled(2)

XOUT Main Oscillator Output Output –

XIN32 Slow Clock Oscillator Input Input –

XOUT32 Slow Clock Oscillator Output Output –

PCK0–PCK2 Programmable Clock Output Output –

Reset State:

- PIO Input

- Internal Pull-up enabled

- Schmitt Trigger enabled(2)

Real-time Clock

RTCOUT0 Programmable RTC waveform output Output –

VDDIO

Reset State:

- PIO Input

- Internal Pull-up enabled

- Schmitt Trigger enabled(2)

RTCOUT1 Programmable RTC waveform output Output –

Serial Wire/JTAG Debug Port - SWJ-DP

TCK/SWCLK Test Clock/Serial Wire Clock Input –

VDDIO

Reset State:

- SWJ-DP Mode

- Internal Pull-up disabled(3)

- Schmitt Trigger enabled(2)

TDI Test Data In Input –

TDO/TRACESWO
Test Data Out / Trace Asynchronous Data

Out
Output –

TMS/SWDIO Test Mode Select /Serial Wire Input/Output Input / I/O –

JTAGSEL JTAG Selection Input High
Permanent Internal

Pull-down

Flash Memory

ERASE
Flash and NVM Configuration Bits Erase

Command
Input High VDDIO

Reset State:

- Erase Input

- Internal Pull-down

enabled

- Schmitt Trigger enabled(2)

7SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Reset/Test

NRST Synchronous Microcontroller Reset I/O Low
VDDIO

Permanent Internal

Pull-up

TST Test Select Input –
Permanent Internal

Pull-down

Wake-up

WKUP[15:0] Wake-up Inputs Input – VDDIO –

Universal Asynchronous Receiver Transceiver - UARTx

URXDx UART Receive Data Input – – –

UTXDx UART Transmit Data Output – – –

PIO Controller - PIOA - PIOB - PIOC - PIOD - PIOE

PA0–PA31 Parallel IO Controller A I/O –

VDDIO

Reset State:

- PIO or System IOs(4)

- Internal Pull-up enabled

- Schmitt Trigger enabled(2)

PB0–PB14 Parallel IO Controller B I/O –

PC0–PC31 Parallel IO Controller C I/O –

PD0–PD31 Parallel IO Controller D I/O – Reset State:

- PIO or System IOs(4)

- Internal Pull-up enabled

- Schmitt Trigger enabled(2)

PE0–PE5 Parallel IO Controller E I/O –

PIO Controller - Parallel Capture Mode

PIODC0–PIODC7 Parallel Capture Mode Data Input –

VDDIO –PIODCCLK Parallel Capture Mode Clock Input –

PIODCEN1–2 Parallel Capture Mode Enable Input –

High Speed Multimedia Card Interface - HSMCI

MCCK Multimedia Card Clock I/O – – –

MCCDA Multimedia Card Slot A Command I/O – – –

MCDA0–MCDA3 Multimedia Card Slot A Data I/O – – –

Universal Synchronous Asynchronous Receiver Transmitter USARTx

SCKx USARTx Serial Clock I/O – – –

TXDx USARTx Transmit Data I/O – – –

RXDx USARTx Receive Data Input – – –

RTSx USARTx Request To Send Output – – –

CTSx USARTx Clear To Send Input – – –

DTR1 USART1 Data Terminal Ready I/O – – –

DSR1 USART1 Data Set Ready Input – – –

DCD1 USART1 Data Carrier Detect Output – – –

RI1 USART1 Ring Indicator Input – – –

Table 3-1. Signal Description List (Continued)

Signal Name Function Type

Active

Level

Voltage

Reference Comments

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

8

Timer/Counter - TC

TCLKx TC Channel x External Clock Input Input – – –

TIOAx TC Channel x I/O Line A I/O – – –

TIOBx TC Channel x I/O Line B I/O – – –

Serial Peripheral Interface - SPI

MISO Master In Slave Out I/O – – –

MOSI Master Out Slave In I/O – – –

SPCK SPI Serial Clock I/O – – –

SPI_NPCS0 SPI Peripheral Chip Select 0 I/O Low – –

SPI_NPCS1–

SPI_NPCS3
SPI Peripheral Chip Select Output Low – –

Two-Wire Interface - TWIx

TWDx TWIx Two-wire Serial Data I/O – – –

TWCKx TWIx Two-wire Serial Clock I/O – – –

Analog

ADVREF
ADC, DAC and Analog Comparator

Reference
Analog – –(1) –

12-bit Analog-Front-End - AFEx

AFE0_AD0–

AFE0_AD14
Analog Inputs

Analog,

Digital
– –(1) –

AFE1_AD0–

AFE1_AD7
Analog Inputs

Analog,

Digital
– –(1) –

ADTRG Trigger Input – VDDIO –

12-bit Digital-to-Analog Converter - DAC

DAC0–DAC1 Analog output
Analog,

Digital
– –(1) –

DATRG DAC Trigger Input – VDDIO –

Fast Flash Programming Interface - FFPI

PGMEN0-PGMEN1 Programming Enable Input

VDDIO

–

PGMM0-PGMM3 Programming Mode Input –

PGMD0-PGMD15 Programming Data I/O –

PGMRDY Programming Ready Output High –

PGMNVALID Data Direction Output Low –

PGMNOE Programming Read Input Low –

PGMCK Programming Clock Input –

PGMNCMD Programming Command Input Low –

External Bus Interface

D0–D7 Data Bus I/O – – –

A0–A23 Address Bus Output – – –

NWAIT External Wait Signal Input Low – –

Table 3-1. Signal Description List (Continued)

Signal Name Function Type

Active

Level

Voltage

Reference Comments

9SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Notes: 1. See Section 5.4 “Typical Powering Schematics” for restrictions on voltage range of Analog Cells and USB.

2. Schmitt Triggers can be disabled through PIO registers.

Static Memory Controller - SMC

NCS0–NCS3 Chip Select Lines Output Low – –

NRD Read Signal Output Low – –

NWE Write Enable Output Low – –

NAND Flash Logic

NANDOE NAND Flash Output Enable Output Low – –

NANDWE NAND Flash Write Enable Output Low – –

Pulse Width Modulation Controller - PWMC

PWMH PWM Waveform Output High for channel x Output – – –

PWML PWM Waveform Output Low for channel x Output – –

Only output in

complementary mode when

dead time insertion is

enabled.

PWMFI0 PWM Fault Input Input – – –

 Ethernet MAC 10/100 - GMAC

GTXCK Transmit Clock Input – – –

GRXCK Receive Clock Input – – –

GTXEN Transmit Enable Output – – –

GTX0–GTX3 Transmit Data Output – – –

GTXER Transmit Coding Error Output – – –

GRXDV Receive Data Valid Input – – –

GRX0–GRX3 Receive Data Input – – –

GRXER Receive Error Input – – –

GCRS Carrier Sense Input – – –

GCOL Collision Detected Input – – –

GMDC Management Data Clock Output – – –

GMDIO Management Data Input/Output I/O – – –

Controller Area Network - CAN (x=[0:1])

CANRXx CAN Receive Input – – –

CANTXx CAN Transmit Output – – –

USB Full Speed Device

DDM DDM USB Full Speed Data -

Analog,

Digital

– –(1)

Reset State:

- USB Mode

- Internal Pull-down

DDP DDP USB Full Speed Data + – –(1)

Reset State:

- USB Mode

- Internal Pull-down

Table 3-1. Signal Description List (Continued)

Signal Name Function Type

Active

Level

Voltage

Reference Comments

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10

3. TDO pin is set in input mode when the Cortex-M4 Core is not in debug mode. Thus the internal pull-up corresponding to this

PIO line must be enabled to avoid current consumption due to floating input.

4. Some PIO lines are shared with System I/Os.

11SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

4. Package and Pinout

The SAM4E is available in TFBGA100, LFBGA144, LQFP100, and LQFP144 and packages described in Section

47. “SAM4E Mechanical Characteristics”.

4.1 100-ball TFBGA Package and Pinout

4.1.1 100-ball TFBGA Package Outline

The 100-ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Refer to Section 47.1 “100-

ball TFBGA Package Drawing” for details.

4.1.2 100-ball TFBGA Pinout

Table 4-1. SAM4E 100-ball TFBGA Pinout

A1 PB9 C6 PD29 F1 PA19/PGMD7 H6 PA14/PGMD2

A2 PB8 C7 PA30 F2 PA20/PGMD8 H7 PA25/PGMD13

A3 PB14 C8 PB5 F3 PD23 H8 PA27/PGMD15

A4 PB10 C9 PD10 F4 GND H9 PA5/PGMRDY

A5 PD4 C10 PA1/PGMEN1 F5 GND H10 PA4/PGMNCMD

A6 PD7 D1 ADVREF F6 GND J1 PA21/PGMD9

A7 PA31 D2 PD1 F7 TST J2 PA7/PGMNVALID

A8 PA6/PGMNOE D3 GND F8 PB12 J3 PA22/PGMD10

A9 PA28 D4 GND F9 PA3 J4 PD22

A10 JTAGSEL D5 PD5 F10 PD14 J5 PA16/PGMD4

B1 PD31 D6 VDDCORE G1 PA17/PGMD5 J6 PA15/PGMD3

B2 PB13 D7 VDDCORE G2 PA18/PGMD6 J7 PD28

B3 VDDPLL D8 PA0/PGMEN0 G3 PD26 J8 PA11/PGMM3

B4 PB11 D9 PD11 G4 PD24 J9 PA9/PGMM1

B5 PD3 D10 PA2 G5 PA13/PGMD1 J10 PD17

B6 PD6 E1 PB0 G6 VDDCORE K1 PD30

B7 PD8 E2 PB1 G7 VDDIO K2 PA8/PGMM0

B8 PD9 E3 PD2 G8 PB6 K3 PD20

B9 PB4 E4 GND G9 PD16 K4 PD19

B10 PD15 E5 VDDIO G10 NRST K5 PA23/PGMD11

C1 PD0 E6 VDDIO H1 PB2 K6 PD18

C2 VDDIN E7 GND H2 PB3 K7 PA24/PGMD12

C3 VDDOUT E8 PD13 H3 PD25 K8 PA26/PGMD14

C4 GND E9 PB7 H4 PD27 K9 PA10/PGMM2

C5 PA29 E10 PD12 H5 PD21 K10 PA12/PGMD0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

12

4.2 144-ball LFBGA Package and Pinout

4.2.1 144-ball LFBGA Package Outline

The 144-ball LFBGA package has a 0.8 mm ball pitch and respects Green Standards. Refer to Section 47.2 “144-

ball LFBGA Package Drawing” for details.

4.2.2 144-ball LFBGA Pinout

Table 4-2. SAM4E 144-ball LFBGA Pinout

A1 PE1 D1 ADVREF G1 PC15 K1 PE4

A2 PB9 D2 GND G2 PC13 K2 PA21/PGMD9

A3 PB8 D3 PD31 G3 PB1 K3 PA22/PGMD10

A4 PB11 D4 PD0 G4 GND K4 PC2

A5 PD2 D5 GNDPLL G5 GND K5 PA16/PGMD4

A6 PA29 D6 PD4 G6 GND K6 PA14/PGMD2

A7 PC21 D7 PD5 G7 GND K7 PC6

A8 PD6 D8 PC19 G8 VDDIO K8 PA25/PGMD13

A9 PC20 D9 PD9 G9 PD13 K9 PD20

A10 PA30 D10 PD29 G10 PD12 K10 PD28

A11 PD15 D11 PC16 G11 PC9 K11 PD16

A12 PB4 D12 PA1/PGMEN1 G12 PB12 K12 PA4/PGMNCMD

B1 PE2 E1 PC31 H1 PA19/PGMD7 L1 PE5

B2 PB13 E2 PC27 H2 PA18/PGMD6 L2 PA7/PGMNVALID

B3 VDDPLL E3 PE3 H3 PA20/PGMD8 L3 PC3

B4 PB10 E4 PC0 H4 PB0 L4 PA23/PGMD11

B5 PD1 E5 GND H5 VDDCORE L5 PA15/PGMD3

B6 PC24 E6 GND H6 VDDIO L6 PD26

B7 PD3 E7 VDDIO H7 VDDIO L7 PA24/PGMD12

B8 PD7 E8 VDDCORE H8 VDDCORE L8 PC5

B9 PA6/PGMNOE E9 PD8 H9 PD21 L9 PA10/PGMM2

B10 PC18 E10 PC14 H10 PD14 L10 PA12/PGMD0

B11 JTAGSEL E11 PD11 H11 TEST L11 PD17

B12 PC17 E12 PA2 H12 NRST L12 PC28

C1 VDDIN F1 PC30 J1 PA17/PGMD5 M1 PD30

C2 PE0 F2 PC26 J2 PB2 M2 PA8/PGMM0

C3 VDDOUT F3 PC29 J3 PB3 M3 PA13/PGMD1

C4 PB14 F4 PC12 J4 PC1 M4 PC7

C5 PC25 F5 GND J5 PC4 M5 PD25

C6 PC23 F6 GND J6 PD27 M6 PD24

C7 PC22 F7 GND J7 VDDCORE M7 PD23

C8 PA31 F8 VDDIO J8 PA26/PGMD14 M8 PD22

C9 PA28 F9 PB7 J9 PA11/PGMM3 M9 PD19

C10 PB5 F10 PC10 J10 PA27/PGMD15 M10 PD18

C11 PA0/PGMEN0 F11 PC11 J11 PB6 M11 PA5/PGMRDY

C12 PD10 F12 PA3 J12 PC8 M12 PA9/PGMM1

13SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

4.3 100-lead LQFP Package and Pinout

4.3.1 100-lead LQFP Package Outline

The 100-lead LQFP package has a 0.5 mm ball pitch and respects Green Standards. Please refer to Section 47.3

“100-lead LQFP Package Drawing” for details.

4.3.2 100-lead LQFP Pinout

Table 4-3. SAM4E 100-lead LQFP Pinout

1 PD0 26 PA22/PGMD10 51 PD28 76 PD29

2 PD31 27 PA13/PGMD1 52 PA5/PGMRDY 77 PB5

3 GND 28 VDDIO 53 PD17 78 PD9

4 VDDOUT 29 GND 54 PA9/PGMM1 79 PA28

5 VDDIN 30 PA16/PGMD4 55 PA4/PGMNCMD 80 PD8

6 GND 31 PA23/PGMD11 56 PD16 81 PA6/PGMNOE

7 GND 32 PD27 57 PB6 82 PA30

8 GND 33 PA15/PGMD3 58 NRST 83 PA31

9 ADVREF 34 PA14/PGMD2 59 PD14 84 PD7

10 GND 35 PD25 60 TST 85 PD6

11 PB1 36 PD26 61 PB12 86 VDDCORE

12 PB0 37 PD24 62 PD13 87 PD5

13 PA20/PGMD8 38 PA24PGMD12 63 PB7 88 PD4

14 PA19/PGMD7 39 PD23 64 PA3 89 PD3

15 PA18/PGMD6 40 PA25/PGMD13 65 PD12 90 PA29

16 PA17/PGMD5 41 PD22 66 PA2 91 PD2

17 PB2 42 PA26/PGMD14 67 GND 92 PD1

18 VDDCORE 43 PD21 68 VDDIO 93 VDDIO

19 VDDIO 44 PA11/PGMM3 69 PD11 94 PB10

20 PB3 45 PD20 70 PA1/PGMEN1 95 PB11

21 PA21/PGMD9 46 PA10/PGMM2 71 PD10 96 VDDPLL

22 VDDCORE 47 PD19 72 PA0/PGMEN0 97 PB14

23 PD30 48 PA12/PGMD0 73 JTAGSEL 98 PB8

24 PA7/PGMNVALID 49 PD18 74 PB4 99 PB9

25 PA8/PGMM0 50 PA27/PGMD15 75 PD15 100 PB13

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

14

4.4 144-lead LQFP Package and Pinout

4.4.1 144-lead LQFP Package Outline

The 144-lead LQFP package has a 0.5 mm ball pitch and respects Green Standards. Please refer to Section 47.4

“144-lead LQFP Package Drawing” for details.

4.4.2 144-lead LQFP Pinout

Table 4-4. SAM4E 144-lead LQFP Pinout

1 PD0 37 PA22/PGMD10 73 PA5/PGMRDY 109 PB5

2 PD31 38 PC1 74 PD17 110 PD9

3 VDDOUT 39 PC2 75 PA9/PGMM1 111 PC18

4 PE0 40 PC3 76 PC28 112 PA28

5 VDDIN 41 PC4 77 PA4/PGMNCMD 113 PD8

6 PE1 42 PA13/PGMD1 78 PD16 114 PA6/PGMNOE

7 PE2 43 VDDIO 79 PB6 115 GND

8 GND 44 GND 80 VDDIO 116 PA30

9 ADVREFP 45 PA16/PGMD4 81 VDDCORE 117 PC19

10 PE3 46 PA23/PGMD11 82 PC8 118 PA31

11 PC0 47 PD27 83 NRST 119 PD7

12 PC27 48 PC7 84 PD14 120 PC20

13 PC26 49 PA15/PGMD3 85 TEST 121 PD6

14 PC31 50 VDDCORE 86 PC9 122 PC21

15 PC30 51 PA14/PGMD2 87 PB12 123 VDDCORE

16 PC29 52 PD25 88 PD13 124 PC22

17 PC12 53 PD26 89 PB7 125 PD5

18 PC15 54 PC6 90 PC10 126 PD4

19 PC13 55 PD24 91 PA3 127 PC23

 20 PB1 56 PA24/PGMD12 92 PD12 128 PD3

 21 PB0 57 PD23 93 PA2 129 PA29

 22 PA20/PGMD8 58 PC5 94 PC11 130 PC24

 23 PA19/PGMD7 59 PA25/PGMD13 95 GND 131 PD2

 24 PA18/PGMD6 60 PD22 96 VDDIO 132 PD1

 25 PA17/PGMD5 61 GND 97 PC14 133 PC25

 26 PB2 62 PA26/PGMD14 98 PD11 134 VDDIO

 27 PE4 63 PD21 99 PA1/PGMEN1 135 GND

 28 PE5 64 PA11/PGMM3 100 PC16 136 PB10

 29 VDDCORE 65 PD20 101 PD10 137 PB11

 30 VDDIO 66 PA10/PGMM2 102 PA0/PGMEN0 138 GND

 31 PB3 67 PD19 103 PC17 139 VDDPLL

 32 PA21/PGMD9 68 PA12/PGMD0 104 JTAGSEL 140 PB14

 33 VDDCORE 69 PD18 105 PB4 141 PB8

 34 PD30 70 PA27/PGMD15 106 PD15 142 PB9

 35 PA7/PGMNVALID 71 PD28 107 VDDCORE 143 VDDIO

 36 PA8/PGMM0 72 VDDIO 108 PD29 144 PB13

15SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

5. Power Considerations

5.1 Power Supplies

The SAM4E has several types of power supply pins:

 VDDCORE pins: power the core, the first flash rail, the embedded memories and the peripherals.

Voltage ranges from 1.08V to 1.32V.

 VDDIO pins: power the peripheral I/O lines (Input/Output Buffers), the second flash rail, the backup part, the

USB transceiver, 32 kHz crystal oscillator and oscillator pads.

Voltage ranges from 1.62V to 3.6V.

 VDDIN pins: voltage regulator input, DAC and Analog Comparator power supply.

Voltage ranges from 1.62V to 3.6V.

 VDDPLL pin: powers the PLL, the Fast RC and the 3 to 20 MHz oscillator.

Voltage ranges from 1.08V to 1.32V.

5.2 Power-up Considerations

5.2.1 VDDIO Versus VDDCORE

VDDIO must always be higher than or equal to VDDCORE.

VDDIO must reach its minimum operating voltage (1.62 V) before VDDCORE has reached VDDCORE(min). The minimum

slope for VDDCORE is defined by (VDDCORE(min) - VT+) / tRST.

If VDDCORE rises at the same time as VDDIO, the VDDIO rising slope must be higher than or equal to 8.8 V/ms.

If VDDCORE is powered by the internal regulator, all power-up considerations are met

Figure 5-1. VDDCORE and VDDIO Constraints at Startup

Supply (V)

Time (t)
t
RST

VDDIO

V
T+

VDDCORE
V

DDIO(min)

V
DDCORE(min)

Core supply POR output

SLCK

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

16

5.2.2 VDDIO Versus VDDIN

At power-up, VDDIO needs to reach 0.6 V before VDDIN reaches 1.0 V.

VDDIO voltage needs to be equal to or below (VDDIN voltage + 0.5 V).

5.3 Voltage Regulator

The SAM4E embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is designed to supply the internal core of SAM4E. It features two operating modes:

 In Normal mode, the voltage regulator consumes less than 500 µA static current and draws 80 mA of output

current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load

current. In Wait Mode quiescent current is only 5 µA.

 In Backup mode, the voltage regulator consumes less than 1.5 µA while its output (VDDOUT) is driven

internally to GND. The default output voltage is 1.20V and the start-up time to reach Normal mode is less

than 300 µs.

For adequate input and output power supply decoupling/bypassing, refer to Table 46-3, “1.2V Voltage Regulator

Characteristics,” on page 1357.

5.4 Typical Powering Schematics

The SAM4E supports a 1.62–3.6 V single supply mode. The internal regulator input is connected to the source and

its output feeds VDDCORE. Figure 5-2 shows the power schematics.

As VDDIN powers the voltage regulator, the DAC and the analog comparator, when the user does not want to use

the embedded voltage regulator, it can be disabled by software via the SUPC (note that this is different from

Backup mode).

Figure 5-2. Single Supply

Note: Restrictions:

- For USB, VDDIO needs to be greater than 3.0V

- For AFEC, DAC, and Analog Comparator, VDDIN needs to be greater than 2.4V

Main Supply

(1.62–3.6 V) AFEC, DAC,

Analog Comp.

USB

Transceivers

VDDIN

Voltage

Regulator

VDDOUT

VDDCORE

VDDIO

VDDPLL

17SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 5-3. Core Externally Supplied

Note: Restrictions:

- For USB, VDDIO needs to be greater than 3.0V

- For AFEC, DAC, and Analog Comparator, VDDIN needs to be greater than 2.4V

5.5 Active Mode
Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal

oscillator or the PLLA. The power management controller can be used to adapt the frequency and to disable the

peripheral clocks.

5.6 Low-power Modes

The SAM4E has the following low-power modes: Backup mode, Wait mode and Sleep mode.

Note: The Wait For Event instruction (WFE) of the Cortex-M4 core can be used to enter any of the low-power modes, how-

ever, this may add complexity in the design of application state machines. This is due to the fact that the WFE

instruction goes along with an event flag of the Cortex core (cannot be managed by the software application). The

event flag can be set by interrupts, a debug event or an event signal from another processor. Since it is possible for an

interrupt to occur just before the execution of WFE, WFE takes into account events that happened in the past. As a

result, WFE prevents the device from entering wait mode if an interrupt event has occurred.

Atmel has made provision to avoid using the WFE instruction. The workarounds to ease application design are as fol-

lows:

- For backup mode, switch off the voltage regulator and configure the VROFF bit in the Supply Controller Control Reg-

ister (SUPC_CR).

- For wait mode, configure the WAITMODE bit in the PMC Clock Generator Main Oscillator Register of the Power

Management Controller (PMC)

- For sleep mode, use the Wait for Interrupt (WFI) instruction.

Complete information is available in Table 5-1 “Low-power Mode Configuration Summary”.

5.6.1 Backup Mode

The purpose of Backup mode is to achieve the lowest power consumption possible in a system which is

performing periodic wake-ups to perform tasks but not requiring fast startup time. Total current consumption is

1 µA typical (VDDIO = 1.8 V at 25°C).

The Supply Controller, zero-power power-on reset, RTT, RTC, backup registers and 32 kHz oscillator (RC or

crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are

off.

The SAM4E can be woken up from this mode using the pins WKUP0–15, the supply monitor (SM), the RTT or

RTC wake-up event.

Main Supply

(1.62–3.6 V)

Can be the

same supply

VDDCORE Supply

(1.08–1.32 V)

AFEC, DAC, Analog

Comparator Supply

(2.0–3.6 V)

AFEC, DAC,

Analog Comp.

USB

Transceivers

VDDIN

Voltage

Regulator

VDDOUT

VDDCORE

VDDIO

VDDPLL

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

18

Backup mode is entered by writing a 1 to the VROFF bit of the Supply Controller Control Register (SUPC_CR) (A

key is needed to write the VROFF bit, refer to Section 18. “Supply Controller (SUPC)”) and with the SLEEPDEEP

bit in the Cortex-M4 System Control Register set to 1. (See the power management description in Section 11.

“ARM Cortex-M4 Processor”).

To enter Backup mode using the VROFF bit:

 Write a 1 to the VROFF bit of SUPC_CR.

To enter Backup mode using the WFE instruction:

 Write a 1 to the SLEEPDEEP bit of the Cortex-M4 processor.

 Execute the WFE instruction of the processor.

In both cases, exit from Backup mode happens if one of the following enable wake-up events occurs:

 Level transition, configurable debouncing on pins WKUPEN0–15

 Supply Monitor alarm

 RTC alarm

 RTT alarm

5.6.2 Wait Mode

The purpose of Wait mode is to achieve very low power consumption while maintaining the whole device in a

powered state for a startup time of less than 10 µs. Current consumption in Wait mode is typically 32 µA (total

current consumption) if the internal voltage regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and

memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered by setting the WAITMODE bit to 1 in the PMC Clock Generator Main Oscillator Register

(CKGR_MOR) in conjunction with FLPM = 0 or FLPM = 1 bits of the PMC Fast Startup Mode Register

(PMC_FSMR) or by the WFE instruction.

The Cortex-M4 is able to handle external or internal events in order to wake-up the core. This is done by

configuring the external lines WKUP0–15 as fast startup wake-up pins (refer to Section 5.8 “Fast Start-up”). RTC

or RTT Alarm and USB wake-up events can be used to wake up the CPU.

To enter Wait mode with WAITMODE bit:

1. Select the 4/8/12 MHz fast RC oscillator as Main Clock.

2. Set the FLPM field in the PMC_FSMR.

3. Set Flash Wait State to 0.

4. Set the WAITMODE bit = 1 in CKGR_MOR.

5. Wait for Master Clock Ready MCKRDY = 1 in the PMC Status Register (PMC_SR).

To enter Wait mode with WFE:

1. Select the 4/8/12 MHz fast RC oscillator as Main Clock.

2. Set the FLPM field in the PMC_FSMR.

3. Set Flash Wait State to 0.

4. Set the LPM bit in the PMC_FSMR.

5. Execute the Wait-For-Event (WFE) instruction of the processor.

In both cases, depending on the value of the field FLPM, the Flash enters one of three different modes:

 FLPM = 0 in Standby mode (low consumption)

 FLPM = 1 in Deep power-down mode (extra low consumption)

 FLPM = 2 in Idle mode. Memory ready for Read access

Table 5-1 summarizes the power consumption, wake-up time and system state in Wait mode.

19SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

5.6.3 Sleep Mode

The purpose of Sleep mode is to optimize power consumption of the device versus response time. In this mode,

only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is

application dependent.

This mode is entered via Wait for Interrupt (WFI) or WFE instructions with bit LPM = 0 in PMC_FSMR.

The processor can be woken up from an interrupt if the WFI instruction of the Cortex-M4 is used or from an event

if the WFE instruction is used.

5.6.4 Low-power Mode Summary Table

The modes detailed above are the main low-power modes. Each part can be set to on or off separately and wake-

up sources can be configured individually. Table 5-1 provides the configuration summary of the low-power modes.

S
A

M
4
E

 S
e
rie

s
 [D

a
ta

s
h
e

e
t]

A
tm

e
l-1

1
1
5

7
H

-A
T

A
R

M
-S

A
M

4
E

1
6

-S
A

M
4
E

8
-D

a
ta

s
h
e

e
t_

3
1
-M

a
r-1

6

2
0

Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12 MHz fast RC

oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first

instruction is fetched.

2. The external loads on PIOs are not taken into account in the calculation.

3. Supply Monitor current consumption is not included.

4. Total consumption is 1 μA typical (VDDIO = 1.8 V at 25°C).

5. Power consumption on VDDCORE. For total current consumption, please refer to Section 46. “SAM4E Electrical Characteristics”.

6. Depends on MCK frequency.

7. In this mode the core is supplied and not clocked but some peripherals can be clocked.

Table 5-1. Low-power Mode Configuration Summary

Mode

SUPC, 32 kHz Osc.,

RTC, RTT, GPBR, POR

(Backup Region) Regulator

Core

Memory

Peripherals Mode Entry

Potential

Wake-Up Sources

Core at

Wake-Up

PIO State

while in Low-

Power Mode

PIO State at

Wake Up

Consumption
(2) (3)

Wake-up

Time(1)

Backup Mode ON OFF
OFF

(Not powered)

VROFF = 1

or

WFE +

SLEEPDEEP = 1

WKUP0–15 pins

SM alarm

RTC alarm

RTT alarm

Reset
Previous state

saved

PIOA &

PIOB &

PIOC &

PIOD &

PIOE

Inputs with

pull-ups

1 µA typ(4) < 1 ms

Wait Mode

w/Flash in

Standby Mode

ON ON
Powered

(Not clocked)

WAITMODE = 1

+ FLPM = 0

or

WFE +

SLEEPDEEP = 0

+ LPM = 1

+ FLPM = 0

Any Event from:

Fast startup through

WKUP0–15

RTC alarm

RTT alarm

USB wake-up

Clocked

back

Previous state

saved
Unchanged 56 µA(5) 10 µs

Wait Mode

w/Flash in

Deep Power-

down Mode

ON ON
Powered

(Not clocked)

WAITMODE = 1

+ FLPM = 1

or

WFE +

SLEEPDEEP = 0

+ LPM = 1

+ FLPM = 1

Any Event from:

Fast startup through

WKUP0–15

RTC alarm

RTT alarm

USB wake-up

Clocked

back

Previous state

saved
Unchanged 46.6 µA < 100 µs

Sleep Mode ON ON
Powered(7)

(Not clocked)

WFE

or

WFI + SLEEPDEEP = 0

+ LPM = 0

Entry mode = WFI

Interrupt Only;

Entry mode = WFE

Any Enabled Interrupt

and/or Any Event from:

Fast start-up through

WKUP0–15

RTC alarm

RTT alarm

USB wake-up

Clocked

back

Previous state

saved
Unchanged (6) (6)

21SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

5.7 Wake-up Sources

The wake-up events allow the device to exit the Backup mode. When a wake-up event is detected, the Supply

Controller performs a sequence which automatically reenables the core power supply and the SRAM power

supply, if they are not already enabled. See Figure 18-4 ”Wake-up Sources”.

5.8 Fast Start-up

The SAM4E allows the processor to restart in a few microseconds while the processor is in Wait mode or in Sleep

mode. A fast start-up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUP0 to

15 + RTC + RTT + USB).

The fast restart circuitry (shown in Figure 29-4 ”Fast Startup Circuitry”) is fully asynchronous and provides a fast

start-up signal to the Power Management Controller. As soon as the fast start-up signal is asserted, the PMC

automatically restarts the embedded 4/8/12 MHz Fast RC oscillator, switches the master clock on this 4 MHz clock

by default and reenables the processor clock.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

22

6. Input/Output Lines

The SAM4E has several kinds of input/output (I/O) lines such as general purpose I/Os (GPIO) and system I/Os.

GPIOs can have alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line

can be used whether in I/O mode or by the multiplexed peripheral. System I/Os include pins such as test pins,

oscillators, erase or analog inputs.

6.1 General Purpose I/O Lines

GPIO Lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up or pull-

down, input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt.

Programming of these modes is performed independently for each I/O line through the PIO controller user

interface. For more details, refer to Section 33. “Parallel Input/Output Controller (PIO)”.

Some GPIOs can have an alternate function as analog input. When a GPIO is set in analog mode, all digital

features of the I/O are disabled.

The input/output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAM4E device embeds high speed pads able. See Section 46.11 “AC Characteristics” for more details.

Typical pull-up and pull-down value is 100 kΩ for all I/Os.

Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). It consists of an internal series

resistor termination scheme for impedance matching between the driver output (SAM4E) and the PCB trace

impedance preventing signal reflection. The series resistor helps to reduce IOs switching current (di/dt) thereby

reducing in turn, EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect

between devices or between boards. In conclusion, ODT helps diminish signal integrity issues.

Figure 6-1. On-die Termination

PCB Trace

Z0 ~ 50 Ω

Receiver

SAM4 Driver with

R
ODT

Z
O
 ~ 10 Ω

Z0 ~ Z
O
 + R

ODT

ODT

36 Ω Typ.

23SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

6.2 System I/O Lines

Table 6-1 lists the SAM4E system I/O lines shared with PIO lines.

These pins are software configurable as general purpose I/O or system pins. At startup, the default function of

these pins is always used.

Notes: 1. If PB12 is used as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase

before the user application sets PB12 into PIO mode.

2. When the 32kHz oscillator is used in Bypass mode, XIN32 (PA7) is used as external clock source input and

XOUT32 (PA8) can be left unconnected or used as GPIO.

3. Refer to Section 18.4.2 “Slow Clock Generator”.

4. Refer to Section 28.5.3 “3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator”.

Table 6-1. System I/O Configuration Pin List

CCFG_SYSIO

Bit No.

Default Function

after Reset Other Function

Constraints

for Normal Start Configuration

12 ERASE PB12 Low Level at startup(1)

In Matrix User Interface Registers

(Refer to the System I/O Configuration Register in

Section 24. “Bus Matrix (MATRIX)”.)

7 TCK/SWCLK PB7 –

6 TMS/SWDIO PB6 –

5 TDO/TRACESWO PB5 –

4 TDI PB4 –

– PA7 XIN32(2) –
(3)

– PA8 XOUT32(2) –

– PB9 XIN –
(4)

– PB8 XOUT –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

24

7. Memories

7.1 Product Mapping

Figure 7-1. SAM4E Product Mapping

offset

ID

(+ : wired-or)

peripheral
block

Address memory space

Code

0x00000000

Internal SRAM

0x20000000

Peripherals

0x40000000

External SRAM

0x60000000

Reserved

0xA0000000

System

0xE0000000

0xFFFFFFFF

Code

Boot Memory

0x00000000

Internal Flash

0x00400000

Internal ROM

0x00800000

Reserved

0x00C00000

0x1FFFFFFF

Internal SRAM

SRAM

0x20000000

0x20400000

Undefined (Abort)

0x20800000

0x40000000

External SRAM

EBI Chip Select 0

0x60000000

EBI Chip Select 1

0x61000000

EBI Chip Select 2

0x62000000

EBI Chip Select 3

0x63000000

reserved

0x64000000

0x9FFFFFFF

Reserved

Peripherals

PWM
36

0x40000000

AES
39

0x40004000

Reserved

0x40008000

CAN0
37

0x40010000

CAN1
38

0x40014000

Reserved

0x40018000

GMAC
44

0x40034000

Reserved

0x40038000

Reserved

0x40044000

Reserved

0x40048000

MP Sys Controller

0x40060000

HSMCI
16

0x40080000

UDP
35

0x40084000

SPI
19

0x40088000

Reserved

0x4008C000

TC0
TC0

0x40090000

21

TC0
TC1

+0x40

22

TC0
TC2

+0x80

23

TC1
TC3

0x40094000

24

TC1
TC4

+0x40

25

TC1
TC5

+0x80

26

TC2
TC6

0x40098000

27

TC2
TC7

+0x40

28

TC2
TC8

+0x80

29

Reserved

0x4009C000

USART0
14

0x400A0000

USART1
15

0x400A4000

TWI0
17

0x400A8000

TWI1
18

0x400AC000

AFEC0
30

0x400B0000

AFEC1
31

0x400B4000

DACC
32

0x400B8000

ACC
33

0x400BC000

DMAC
20

0x400C0000

CMCC

0x400C4000

Reserved

0x400C8000

System Controller

0x400E0000

Reserved

0x400E2600

0x60000000

MP Sys Controller

SMC
8

0x40060000

Reserved

0x40060200

UART1
45

0x40060600

Reserved

0x40060800

reserved

0x40061600

0x4007FFFF

System Controller

Reserved

0x400E0000

MATRIX

0x400E0200

PMC
5

0x400E0400

UART0
7

0x400E0600

CHIPID

0x400E0740

Reserved

0x400E0800

EEFC
6

0x400E0A00

Reserved

0x400E0C00

PIOA
9

0x400E0E00

PIOB
10

0x400E1000

PIOC
11

0x400E1200

PIOD
12

0x400E1400

PIOE
13

0x400E1600

SYSC
RSTC

0x400E1800

1

SYSC
SUPC

+0x10

SYSC
RTT

+0x30

3

SYSC
WDT

+0x50

4

SYSC
RTC

+0x60

2

SYSC
GPBR

+0x90

SYSC
RSWDT

+0x100

25SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

7.2 Embedded Memories

7.2.1 Internal SRAM

The SAM4E device (1024 Kbytes) embeds a total of 128-Kbyte high-speed SRAM.

The SRAM is accessible over System Cortex-M4 bus at address 0x2000_0000.

The SRAM is in the bit band region. The bit band alias region is from 0x2200_0000 to 0x23FF_FFFF.

7.2.2 Internal ROM

The SAM4E device embeds an Internal ROM, which contains the SAM Boot Assistant (SAM-BA®), In Application

Programming routines (IAP) and Fast Flash Programming Interface (FFPI).

At any time, the ROM is mapped at address 0x0080 0000.

7.2.3 Embedded Flash

7.2.3.1 Flash Overview

The memory is organized in sectors. Each sector has a size of 64 Kbytes. The first sector of 64 Kbytes is divided

into three smaller sectors.

The three smaller sectors are organized to consist of two sectors of 8 Kbytes and one sector of 48 Kbytes. Refer to

Figure 7-2.

Figure 7-2. Global Flash Organization

Each Sector is organized in pages of 512 bytes.

Flash Organization

Small Sector 08 Kbytes

Small Sector 18 Kbytes

Larger Sector 48 Kbytes

Sector 164 Kbytes

64 Kbytes Sector n

 Sector 0

Sector size Sector name

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

26

For sector 0:

 The smaller sector 0 has 16 pages of 512 bytes

 The smaller sector 1 has 16 pages of 512 bytes

 The larger sector has 96 pages of 512 bytes

From Sector 1 to n:

The rest of the array is composed of 64 Kbyte sector of each 128 pages of 512 bytes. Refer to Figure 7-3.

Figure 7-3. Flash Sector Organization

Flash size varies by product. The Flash size of SAM4E device is 1024 Kbytes.

Refer to Figure 7-4 for the organization of the Flash following its size.

Figure 7-4. Flash Size

Sector 0

Sector n

Smaller sector 0

Smaller sector 1

Larger sector

Flash Sector Organization

A sector size is 64 Kbytes

16 pages of 512 bytes

16 pages of 512 bytes

96 pages of 512 bytes

128 pages of 512 bytes

2 * 8 Kbytes

1 * 48 Kbytes

15 * 64 Kbytes

Flash 1 Mbyte

27SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The following erase commands can be used depending on the sector size:

 8 Kbyte small sector

̶ Erase and write page (EWP)

̶ Erase and write page and lock (EWPL)

̶ Erase sector (ES) with FARG set to a page number in the sector to erase

̶ Erase pages (EPA) with FARG [1:0] = 0 to erase four pages or FARG [1:0] = 1 to erase eight pages.

FARG [1:0] = 2 and FARG [1:0] = 3 must not be used.

 48 Kbyte and 64 Kbyte sectors

̶ One block of 8 pages inside any sector, with the command Erase pages (EPA) with FARG[1:0] = 1

̶ One block of 16 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 2

̶ One block of 32 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 3

̶ One sector with the command Erase sector (ES) and FARG set to a page number in the sector to

erase

 Entire memory plane

̶ The entire Flash, with the command Erase all (EA).

The write commands of the Flash cannot be used under 330 kHz.

7.2.3.2 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by the masters of the system. It enables

reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block.

It manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash

organization, thus making the software generic.

7.2.3.3 Flash Speed

The user needs to set the number of wait states depending on the frequency used:

For more details, refer to the “AC Characteristics” section of the product “Electrical Characteristics”.

Target for the Flash speed at 0 wait state: 24 MHz.

7.2.3.4 Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of

several consecutive pages, and each lock region has its associated lock bit.

If a locked-region’s erase or program command occurs, the command is aborted and the EEFC triggers an

interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables

the protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

Table 7-1. Lock Bit Number

Product Number of lock bits Lock region size

SAM4E 128 8 Kbytes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

28

7.2.3.5 Security Bit Feature

The SAM4E device features a security bit, based on a specific General Purpose NVM bit (GPNVM bit 0). When the

security is enabled, any access to the Flash, SRAM, Core Registers and Internal Peripherals either through the

ICE interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the

code programmed in the Flash.

This security bit can only be enabled through the command “Set General Purpose NVM Bit 0” of the EEFC User

Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash

erase is performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal

Peripherals are permitted.

The ERASE pin integrates a permanent pull-down. Consequently, it can be left unconnected during normal

operation. However, it is recommended, in harsh environment, to connect it directly to GND if the erase operation

is not used in the application.

To avoid unexpected erase at power-up, a minimum ERASE pin assertion time is required. This time is defined in

Table 46-68 “AC Flash Characteristics”.

The erase operation is not performed when the system is in Wait mode with the Flash in Deep-power-down mode.

To make sure that the erase operation is performed after power-up, the system must not reconfigure the ERASE

pin as GPIO or enter Wait mode with Flash in Deep-power-down mode before the ERASE pin assertion time has

elapsed.

The following sequence ensures the erase operation in all cases:

1. Assert the ERASE pin (High)

2. Assert the NRST pin (Low)

3. Power cycle the device

4. Maintain the ERASE pin high for at least the minimum assertion time.

7.2.3.6 Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured

and cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

7.2.3.7 Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed

by the user. The ERASE pin has no effect on the unique identifier.

7.2.3.8 User Signature

Each part contains a User Signature of 512 bytes. It can be used by the user to store user information, such as

trimming, keys, etc., that the customer does not want to be erased by asserting the ERASE pin or by software

ERASE command. Read, write and erase of this area is allowed.

7.2.3.9 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through a multiplexed fully-handshaked

parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming Mode is entered when TST and PA0

and PA1are tied low.

29SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

7.2.3.10 SAM-BA Boot

The SAM-BA Boot is a default Boot Program which provides an easy way to program in-situ the on-chip Flash

memory.

The SAM-BA Boot Assistant supports serial communication via the UART.

The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).

The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

7.2.3.11 GPNVM Bits

The SAM4E device features two GPNVM bits. These bits can be cleared or set respectively through the

commands “Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.

The Flash of SAM4E is composed of 1024 Kbytes in a single bank.

7.2.4 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be

changed via GPNVM.

A general purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the commands “Clear General-purpose NVM Bit” and

“Set General-purpose NVM Bit” of the EEFC User Interface.

Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE

clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.

7.3 External Memories

The SAM4E device features one External Bus Interface to provide an interface to a wide range of external

memories and to any parallel peripheral.

7.4 Cortex-M Cache Controller (CMCC)

The SAM4E device features one cache memory and his controller which improve code execution when the code

runs out of Code section (memory from 0x0 to 0x2000_0000).

The Cache controller handles both command instructions and data, it is an unified cache:

 L1 data cache size set to 2 Kbytes

 L1 cache line is 16 bytes

 L1 cache integrates 32 bits bus master interface

 Unified 4-way set associative cache architecture

Table 7-2. General-purpose Non-volatile Memory Bits

GPNVMBit[#] Function

0 Security bit

1 Boot mode selection

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

30

8. Real-time Event Management

The events generated by peripherals are designed to be directly routed to peripherals managing/using these

events without processor intervention. Peripherals receiving events contain logic by which to select the one

required.

8.1 Embedded Characteristics

 Timers, PWM, IO peripherals generate event triggers which are directly routed to event managers such as

AFEC or DACC, for example, to start measurement/conversion without processor intervention.

 UART, USART, SPI, TWI, PWM, HSMCI, AES, AFEC, DACC, PIO, TIMER (capture mode) also generate

event triggers directly connected to Peripheral DMA Controller (PDC) for data transfer without processor

intervention.

 Parallel capture logic is directly embedded in PIO and generates trigger event to PDC to capture data

without processor intervention.

 PWM security events (faults) are in combinational form and directly routed from event generators (AFEC,

ACC, PMC, TIMER) to PWM module.

 PWM output comparators generate events directly connected to TIMER.

 PMC security event (clock failure detection) can be programmed to switch the MCK on reliable main RC

internal clock without processor intervention.

8.2 Real-time Event Mapping

Table 8-1. Real-time Event Mapping List

Function Application Description Event Source Event Destination

Security General-purpose
Immediate GPBR clear (asynchronous) on

Tamper detection through WKUP0/1 IO pins (1)

Parallel Input/Output

Controller (PIO):

WKUP0/1

General Purpose

Backup Registers

(GPBR)

Safety

General-purpose
Automatic Switch to reliable main RC oscillator

in case of Main Crystal Clock Failure (2)
Power Management

Controller (PMC)
PMC

General-

purpose, motor

control

Puts the PWM Outputs in Safe Mode (Main

Crystal Clock Failure Detection) (2)(3) PMC

Pulse Width

Modulation (PWM)
Motor control

Puts the PWM Outputs in Safe Mode

(Overcurrent sensor, ...) (3)(4)
Analog Comparator

Controller (ACC)

Puts the PWM Outputs in Safe Mode

(Overspeed, Overcurrent detection ...) (3)(5)
Analog-Front-End-

Controller (AFEC0/1)

Puts the PWM Outputs in Safe Mode

(Overspeed detection through TIMER

Quadrature Decoder) (3)(6)
Timer Counter (TC)

General-

purpose, motor

control

Puts the PWM Outputs in Safe Mode (General

Purpose Fault Inputs) (3) PIO

Image

capture

Low-cost image

sensor

PC is embedded in PIO (Capture Image from

Sensor directly to System Memory) (7) PIO DMA

31SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Notes: 1. Refer to “Low-power Tamper Detection and Anti-Tampering” in Section 18. “Supply Controller (SUPC)” and “General

Purpose Backup Register x” in Section 19. “General Purpose Backup Registers (GPBR)”.

2. Refer to “Main Clock Failure Detector” in Section 29. “Power Management Controller (PMC)”.

3. Refer to “Fault Inputs” and “Fault Protection” in “Pulse Width Modulation Controller (PWM)” .

4. Refer to “Fault Mode” in “Analog Comparator Controller (ACC)” .

5. Refer to “Fault Output” in Section 43. “Analog Front-End Controller (AFEC)”.

6. Refer to “Fault Mode” in “Timer Counter (TC)” .

7. Refer to “Parallel Capture Mode” in Section 33. “Parallel Input/Output Controller (PIO)”.

8. Refer to “Conversion Triggers” and the AFEC Mode Register (AFEC_MR) in Section 43. “Analog Front-End Controller

(AFEC)”.

9. Refer to PWM Comparison Value Register (PWM_CMPV) in Section 39. “Pulse Width Modulation Controller (PWM)”.

10. Refer to “PWM Comparison Units” and “PWM Event Lines” in Section 39. “Pulse Width Modulation Controller (PWM)”.

11. Refer to “Comparator” in Section 39. “Pulse Width Modulation Controller (PWM)”.

12. Refer to “Synchronization with PWM” in Section 38. “Timer Counter (TC)”.

13. Refer to DACC Trigger Register (DACC_TRIGR) in Section 44. “Digital-to-Analog Converter Controller (DACC)”.

Measurement

trigger

General-purpose Trigger source selection in AFEC (8)

PIO (ADTRG)

AFEC

TC Output 0

TC Output 1

TC Output 2

 Motor control
ADC-PWM synchronization (9)(10)

Trigger source selection in AFEC (8)

PWM Event Line 0

PWM Event Line 1

Delay

measurement
Motor control

Propagation delay of external components (IOs,

power transistor bridge driver, etc.) (11)(12)

PWM Output

Compare Line 0
TC Input (A/B) 0

PWM Output

Compare Line 1
TC Input (A/B) 1

PWM Output

Compare Line 2
TC Input (A/B) 2

Conversion

trigger
General-purpose Trigger source selection in DACC (13)

PIO DATRG

Digital-Analog

Converter

Controller (DACC)

TC Output 0

TC Output 1

TC Output 2

PWM Event Line 0 (10)

PWM Event Line 1 (10)

Table 8-1. Real-time Event Mapping List (Continued)

Function Application Description Event Source Event Destination

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

32

9. System Controller

9.1 System Controller and Peripherals Mapping

Please refer to Figure 7-1 ”SAM4E Product Mapping”.

9.2 Power-on-Reset, Brownout and Supply Monitor

The SAM4E device embeds three features to monitor, warn and/or reset the chip:

 Power-on-Reset on VDDIO

 Brownout Detector on VDDCORE

 Supply Monitor on VDDIO

9.2.1 Power-on-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power

down. If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to Section

46. “SAM4E Electrical Characteristics”.

9.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the

Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or

sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to the

Section 18. “Supply Controller (SUPC)” and Section 46. “SAM4E Electrical Characteristics”.

9.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully

programmable with 16 steps for the threshold (between 1.6V to 3.4V). It is controlled by the Supply Controller

(SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to

2048. For more information, refer to the Section 18. “Supply Controller (SUPC)” and Section 46. “SAM4E Electrical

Characteristics”.

33SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10. Peripherals

10.1 Peripheral Identifiers

Table 10-1 defines the Peripheral Identifiers of the SAM4E device. A peripheral identifier is required for the control

of the peripheral interrupt with the Nested Vectored Interrupt Controller and control of the peripheral clock with the

Power Management Controller.

Table 10-1. Peripheral Identifiers

Instance ID

Instance

Name

NVIC

Interrupt

PMC

Clock Control Instance Description

0 SUPC X Supply Controller

1 RSTC X Reset Controller

2 RTC X Real-time Clock

3 RTT X Real-time Timer

4
WDT/

RSWDT
X Watchdog/Dual Watchdog Timer

5 PMC X Power Management Controller

6 EEFC X Enhanced Embedded Flash Controller

7 UART0 X X Universal Asynchronous Receiver Transmitter 0

8 SMC X Static Memory Controller

9 PIOA X X Parallel I/O Controller A

10 PIOB X X Parallel I/O Controller B

11 PIOC X X Parallel I/O Controller C

12 PIOD X X Parallel I/O Controller D

13 PIOE X X Parallel I/O Controller E

14 USART0 X X Universal Synchronous Asynchronous Receiver Transmitter 0

15 USART1 X X Universal Synchronous Asynchronous Receiver Transmitter 1

16 HSMCI X X Multimedia Card Interface

17 TWI0 X X Two-wire Interface 0

18 TWI1 X X Two-wire Interface 1

19 SPI X X Serial Peripheral Interface

20 DMAC X X DMA Controller

21 TC0 X X Timer/Counter Channel 0

22 TC1 X X Timer/Counter Channel 1

23 TC2 X X Timer/Counter Channel 2

24 TC3 X X Timer/Counter Channel 3

25 TC4 X X Timer/Counter Channel 4

26 TC5 X X Timer/Counter Channel 5

27 TC6 X X Timer/Counter Channel 6

28 TC7 X X Timer/Counter Channel 7

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

34

29 TC8 X X Timer/Counter Channel 8

30 AFEC0 X X Analog Front End Controller 0

31 AFEC1 X X Analog Front End Controller 1

32 DACC X X Digital to Analog Converter Controller

33 ACC X X Analog Comparator Controller

34 ARM X FPU signals: FPIXC, FPOFC, FPUFC, FPIOC, FPDZC, FPIDC, FPIXC

35 UDP X X USB Device Port

36 PWM X X Pulse Width Modulation Controller

37 CAN0 X X Controller Area Network 0

38 CAN1 X X Controller Area Network 1

39 AES X X Advanced Encryption Standard

40 Reserved

41 Reserved

42 Reserved

43 Reserved

44 GMAC X X Ethernet MAC

45 UART1 X X Universal Asynchronous Receiver Transmitter 1

46 Reserved

Table 10-1. Peripheral Identifiers (Continued)

Instance ID

Instance

Name

NVIC

Interrupt

PMC

Clock Control Instance Description

35SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10.2 Peripheral Signal Multiplexing on I/O Lines

The SAM4E device features five PIO Controllers on 144-pin versions (PIOA, PIOB, PIOC, PIOD and PIOE) that

multiplex the I/O lines of the peripheral set.

The SAM4E PIO Controllers control up to 32 lines. Each line can be assigned to one of three peripheral functions:

A, B or C. The multiplexing tables in the following paragraphs define how the I/O lines of the peripherals A, B and

C are multiplexed on the PIO Controllers. The column “Comments” has been inserted in this table for the user’s

own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

36

10.2.1 PIO Controller A Multiplexing

Notes: 1. WKUPx can be used if PIO controller defines the I/O line as "input".

2. Refer to Section 6.2 “System I/O Lines”.

3. PIODCENx/PIODCx has priority over WKUPx. Refer to Section 33.5.14 “Parallel Capture Mode”.

4. To select this extra function, refer to Section 43.5.1 “I/O Lines”.

Table 10-2. Multiplexing on PIO Controller A (PIOA)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function

PA0 PWMH0 TIOA0 A17 WKUP0(1)

PA1 PWMH1 TIOB0 A18 WKUP1(1)

PA2 PWMH2 DATRG WKUP2(1)

PA3 TWD0 NPCS3

PA4 TWCK0 TCLK0 WKUP3(1)

PA5 NPCS3 URXD1 WKUP4(1)

PA6 PCK0 UTXD1

PA7 PWMH3 XIN32(2)

PA8 AFE0_ADTRG WKUP5(1) XOUT32(2)

PA9 URXD0 NPCS1 PWMFI0 WKUP6(1)

PA10 UTXD0 NPCS2

PA11 NPCS0 PWMH0 WKUP7(1)

PA12 MISO PWMH1

PA13 MOSI PWMH2

PA14 SPCK PWMH3 WKUP8(1)

PA15 TIOA1 PWML3 WKUP14/PIODCEN1(3)

PA16 TIOB1 PWML2 WKUP15/PIODCEN2(3)

PA17 PCK1 PWMH3 AFE0_AD0(4)

PA18 PCK2 A14 AFE0_AD1(4)

PA19 PWML0 A15 AFE0_AD2/WKUP9(5)

PA20 PWML1 A16 AFE0_AD3/WKUP10(5)

PA21 RXD1 PCK1 AFE1_AD2(4)

PA22 TXD1 NPCS3 NCS2 AFE1_AD3(4)

PA23 SCK1 PWMH0 A19 PIODCCLK(6)

PA24 RTS1 PWMH1 A20 PIODC0(6)

PA25 CTS1 PWMH2 A23 PIODC1(6)

PA26 DCD1 TIOA2 MCDA2 PIODC2(6)

PA27 DTR1 TIOB2 MCDA3 PIODC3(6)

PA28 DSR1 TCLK1 MCCDA PIODC4(6)

PA29 RI1 TCLK2 MCCK PIODC5(6)

PA30 PWML2 NPCS2 MCDA0 WKUP11/PIODC6(3)

PA31 NPCS1 PCK2 MCDA1 PIODC7(6)

37SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

5. Analog input has priority over WKUPx pin.

6. To select this extra function, refer to Section 33.5.14 “Parallel Capture Mode”.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38

10.2.2 PIO Controller B Multiplexing

Notes: 1. Analog input has priority over RTCOUTx pin. See Section 15.5.8 “Waveform Generation”.

2. Analog input has priority over WKUPx pin.

3. To select this extra function, refer to Section 43.5.1 “I/O Lines”.

4. WKUPx can be used if PIO controller defines the I/O line as "input".

5. Refer to Section 6.2 “System I/O Lines”.

6. DAC0 is selected when DACC_CHER.CH0 is set. DAC1 is selected when DACC_CHER.CH1 is set. See Section 44.7.3

“DACC Channel Enable Register”.

Table 10-3. Multiplexing on PIO Controller B (PIOB)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function

PB0 PWMH0 RXD0 AFE0_AD4/RTCOUT0(1)

PB1 PWMH1 TXD0 AFE0_AD5/RTCOUT1(1)

PB2 CANTX0 NPCS2 CTS0 AFE1_AD0/WKUP12(2)

PB3 CANRX0 PCK2 RTS0 AFE1_AD1(3)

PB4 TWD1 PWMH2 TDI(5)

PB5 TWCK1 PWML0 WKUP13(4) TDO/TRACESWO(5)

PB6 TMS/SWDIO(5)

PB7 TCK/SWCLK(5)

PB8 XOUT(5)

PB9 XIN(5)

PB10 DDM

PB11 DDP

PB12 PWML1 ERASE(5)

PB13 PWML2 PCK0 SCK0 DAC0(6)

PB14 NPCS1 PWMH3 DAC1(6)

39SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10.2.3 PIO Controller C Multiplexing

Notes: 1. To select this extra function, refer to Section 43.5.1 “I/O Lines”.

Table 10-4. Multiplexing on PIO Controller C (PIOC)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function

PC0 D0 PWML0 AFE0_AD14(1)

PC1 D1 PWML1 AFE1_AD4(1)

PC2 D2 PWML2 AFE1_AD5(1)

PC3 D3 PWML3 AFE1_AD6(1)

PC4 D4 NPCS1 AFE1_AD7(1)

PC5 D5 TIOA6

PC6 D6 TIOB6

PC7 D7 TCLK6

PC8 NWE TIOA7

PC9 NANDOE TIOB7

PC10 NANDWE TCLK7

PC11 NRD TIOA8

PC12 NCS3 TIOB8 CANRX1 AFE0_AD8(1)

PC13 NWAIT PWML0 AFE0_AD6(1)

PC14 NCS0 TCLK8

PC15 NCS1 PWML1 CANTX1 AFE0_AD7(1)

PC16 A21/NANDALE

PC17 A22/NANDCLE

PC18 A0 PWMH0

PC19 A1 PWMH1

PC20 A2 PWMH2

PC21 A3 PWMH3

PC22 A4 PWML3

PC23 A5 TIOA3

PC24 A6 TIOB3

PC25 A7 TCLK3

PC26 A8 TIOA4 AFE0_AD12(1)

PC27 A9 TIOB4 AFE0_AD13(1)

PC28 A10 TCLK4

PC29 A11 TIOA5 AFE0_AD9(1)

PC30 A12 TIOB5 AFE0_AD10(1)

PC31 A13 TCLK5 AFE0_AD11(1)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40

10.2.4 PIO Controller D Multiplexing

Table 10-5. Multiplexing on PIO Controller D (PIOD)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function

PD0 GTXCK

PD1 GTXEN

PD2 GTX0

PD3 GTX1

PD4 GRXDV

PD5 GRX0

PD6 GRX1

PD7 GRXER

PD8 GMDC

PD9 GMDIO

PD10 GCRS

PD11 GRX2

PD12 GRX3

PD13 GCOL

PD14 GRXCK

PD15 GTX2

PD16 GTX3

PD17 GTXER

PD18 NCS1

PD19 NCS3

PD20 PWMH0

PD21 PWMH1

PD22 PWMH2

PD23 PWMH3

PD24 PWML0

PD25 PWML1

PD26 PWML2

PD27 PWML3

PD28

PD29

PD30

PD31

41SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

10.2.5 PIO Controller E Multiplexing

Table 10-6. Multiplexing on PIO Controller E (PIOE)

I/O Line Peripheral A Peripheral B Peripheral C Extra Function System Function Comments

PE0 144-pin version

PE1 144-pin version

PE2 144-pin version

PE3 144-pin version

PE4 144-pin version

PE5 144-pin version

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42

11. Cortex-M4 processor

11.1 Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers

significant benefits to developers, including outstanding processing performance combined with fast interrupt

handling, enhanced system debug with extensive breakpoint and trace capabilities, efficient processor core,

system and memories, ultra-low power consumption with integrated sleep modes, and platform security

robustness, with integrated memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard

architecture, making it ideal for demanding embedded applications. The processor delivers exceptional power

efficiency through an efficient instruction set and extensively optimized design, providing high-end processing

hardware including IEEE754-compliant single-precision floating-point computation, a range of single-cycle and

SIMD multiplication and multiply-with-accumulate capabilities, saturating arithmetic and dedicated hardware

division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system

components that reduce processor area while significantly improving interrupt handling and system debug

capabilities. The Cortex-M4 processor implements a version of the Thumb® instruction set based on Thumb-2

technology, ensuring high code density and reduced program memory requirements. The Cortex-M4 instruction

set provides the exceptional performance expected of a modern 32-bit architecture, with the high code density of

8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt

performance. The NVIC includes a non-maskable interrupt (NMI), and provides up to 256 interrupt priority levels.

The tight integration of the processor core and NVIC provides fast execution of interrupt service routines (ISRs),

dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the

ability to suspend load-multiple and store-multiple operations. Interrupt handlers do not require wrapping in

assembler code, removing any code overhead from the ISRs. A tail-chain optimization also significantly reduces

the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that

enables the entire device to be rapidly powered down while still retaining program state.

11.1.1 System Level Interface

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency

memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables

faster peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling

applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task

basis. Such requirements are becoming critical in many embedded applications such as automotive.

11.1.2 Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of

the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is

ideal for microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints

and a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial

Wire Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information

through a single pin.

43SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators that debuggers

can use. The comparators in the FPB also provide remap functions of up to eight words in the program code in the

CODE memory region. This enables applications stored on a non-erasable, ROM-based microcontroller to be

patched if a small programmable memory, for example flash, is available in the device. During initialization, the

application in ROM detects, from the programmable memory, whether a patch is required. If a patch is required,

the application programs the FPB to remap a number of addresses. When those addresses are accessed, the

accesses are redirected to a remap table specified in the FPB configuration, which means the program in the non-

modifiable ROM can be patched.

11.2 Embedded Characteristics

 Tight integration of system peripherals reduces area and development costs

 Thumb instruction set combines high code density with 32-bit performance

 IEEE754-compliant single-precision FPU

 Code-patch ability for ROM system updates

 Power control optimization of system components

 Integrated sleep modes for low power consumption

 Fast code execution permits slower processor clock or increases sleep mode time

 Hardware division and fast digital-signal-processing oriented multiply accumulate

 Saturating arithmetic for signal processing

 Deterministic, high-performance interrupt handling for time-critical applications

 Memory Protection Unit (MPU) for safety-critical applications

 Extensive debug and trace capabilities:

̶ Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing,

and code profiling.

11.3 Block Diagram

Figure 11-1. Typical Cortex-M4F Implementation

NVIC

Debug

Access
Port

Memory

Protection Unit

Serial

Wire

Viewer

Bus Matrix

Code

Interface

SRAM and

Peripheral Interface

Data

Watchpoints

Flash

Patch

Cortex-M4F

Processor

Processor

Core

FPU

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

44

11.4 Cortex-M4 Models

11.4.1 Programmers Model

This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions, it

contains information about the processor modes and privilege levels for software execution and stacks.

11.4.1.1 Processor Modes and Privilege Levels for Software Execution

The processor modes are:

 Thread mode

Used to execute application software. The processor enters the Thread mode when it comes out of reset.

 Handler mode

Used to handle exceptions. The processor returns to the Thread mode when it has finished exception

processing.

The privilege levels for software execution are:

 Unprivileged

The software:

̶ Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction

̶ Cannot access the System Timer, NVIC, or System Control Block

̶ Might have a restricted access to memory or peripherals.

Unprivileged software executes at the unprivileged level.

 Privileged

The software can use all the instructions and has access to all resources. Privileged software executes at

the privileged level.

In Thread mode, the Control Register controls whether the software execution is privileged or unprivileged, see

“Control Register” . In Handler mode, software execution is always privileged.

Only privileged software can write to the Control Register to change the privilege level for software execution in

Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to

privileged software.

11.4.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked

item in memory When the processor pushes a new item onto the stack, it decrements the stack pointer and then

writes the item to the new memory location. The processor implements two stacks, the main stack and the process

stack, with a pointer for each held in independent registers, see “Stack Pointer” .

In Thread mode, the Control Register controls whether the processor uses the main stack or the process stack,

see “Control Register” .

In Handler mode, the processor always uses the main stack.

The options for processor operations are:

Note: 1. See “Control Register” .

Table 11-1. Summary of processor mode, execution privilege level, and stack use options

Processor

Mode Used to Execute

Privilege Level for

Software Execution Stack Used

Thread Applications Privileged or unprivileged (1) Main stack or process stack(1)

Handler Exception handlers Always privileged Main stack

45SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.3 Core Registers

Figure 11-2. Processor Core Registers

Notes: 1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.

2. An entry of Either means privileged and unprivileged software can access the register.

SP (R13)

LR (R14)

PC (R15)

R5

R6

R7

R0

R1

R3

R4

R2

R10

R11

R12

R8

R9

Low registers

High registers

MSP
‡

PSP
‡

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

General-purpose registers

Stack Pointer

Link Register

Program Counter

Program status register

Exception mask registers

CONTROL register

Special registers

‡
Banked version of SP

Table 11-2. Core Processor Registers

Register Name Access(1) Required Privilege(2) Reset

General-purpose registers R0–R12 Read/Write Either Unknown

Stack Pointer MSP Read/Write Privileged See description

Stack Pointer PSP Read/Write Either Unknown

Link Register LR Read/Write Either 0xFFFFFFFF

Program Counter PC Read/Write Either See description

Program Status Register PSR Read/Write Privileged 0x01000000

Application Program Status Register APSR Read/Write Either 0x00000000

Interrupt Program Status Register IPSR Read-only Privileged 0x00000000

Execution Program Status Register EPSR Read-only Privileged 0x01000000

Priority Mask Register PRIMASK Read/Write Privileged 0x00000000

Fault Mask Register FAULTMASK Read/Write Privileged 0x00000000

Base Priority Mask Register BASEPRI Read/Write Privileged 0x00000000

Control Register CONTROL Read/Write Privileged 0x00000000

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46

11.4.1.4 General-purpose Registers

R0–R12 are 32-bit general-purpose registers for data operations.

11.4.1.5 Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the Control Register indicates the stack pointer to

use:

 0 = Main Stack Pointer (MSP). This is the reset value.

 1 = Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

11.4.1.6 Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and

exceptions. On reset, the processor loads the LR value 0xFFFFFFFF.

11.4.1.7 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads

the PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the

EPSR T-bit at reset and must be 1.

47SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.8 Program Status Register

Name: PSR

Access: Read/Write

Reset: 0x000000000

The Program Status Register (PSR) combines:

• Application Program Status Register (APSR)

• Interrupt Program Status Register (IPSR)

• Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR.

The PSR accesses these registers individually or as a combination of any two or all three registers, using the register

name as an argument to the MSR or MRS instructions. For example:

• Read of all the registers using PSR with the MRS instruction

• Write to the APSR N, Z, C, V and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Notes: 1. The processor ignores writes to the IPSR bits.

2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

31 30 29 28 27 26 25 24

N Z C V Q ICI/IT T

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

ICI/IT – ISR_NUMBER

7 6 5 4 3 2 1 0

ISR_NUMBER

Name Access Combination

PSR Read/Write(1)(2) APSR, EPSR, and IPSR

IEPSR Read-only EPSR and IPSR

IAPSR Read/Write(1) APSR and IPSR

EAPSR Read/Write(2) APSR and EPSR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

48

11.4.1.9 Application Program Status Register

Name: APSR

Access: Read/Write

Reset: 0x000000000

The APSR contains the current state of the condition flags from previous instruction executions.

• N: Negative Flag

0: Operation result was positive, zero, greater than, or equal

1: Operation result was negative or less than.

• Z: Zero Flag

0: Operation result was not zero

1: Operation result was zero.

• C: Carry or Borrow Flag

Carry or borrow flag:

0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit

1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

• V: Overflow Flag

0: Operation did not result in an overflow

1: Operation resulted in an overflow.

• Q: DSP Overflow and Saturation Flag

Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero

1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

• GE[19:16]: Greater Than or Equal Flags

See “SEL” for more information.

31 30 29 28 27 26 25 24

N Z C V Q –

23 22 21 20 19 18 17 16

– GE[3:0]

15 14 13 12 11 10 9 8

–

7 6 5 4 3 2 1 0

–

49SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.10 Interrupt Program Status Register

Name: IPSR

Access: Read/Write

Reset: 0x000000000

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

• ISR_NUMBER: Number of the Current Exception

0 = Thread mode

1 = Reserved

2 = NMI

3 = Hard fault

4 = Memory management fault

5 = Bus fault

6 = Usage fault

7–10 = Reserved

11 = SVCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQ0

49 = IRQ46

See “Exception Types” for more information.

31 30 29 28 27 26 25 24

–

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

– ISR_NUMBER

7 6 5 4 3 2 1 0

ISR_NUMBER

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

50

11.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read/Write

Reset: 0x000000000

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interrupt-

ible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to

write the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR

value in the stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return” .

• ICI: Interruptible-continuable Instruction

When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, or VPOP instruction,

the processor:

– Stops the load multiple or store multiple instruction operation temporarily

– Stores the next register operand in the multiple operation to EPSR bits[15:12].

After servicing the interrupt, the processor:

– Returns to the register pointed to by bits[15:12]

– Resumes the execution of the multiple load or store instruction.

When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

• IT: If-Then Instruction

Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional.

The conditions for the instructions are either all the same, or some can be the inverse of others. See “IT” for more

information.

• T: Thumb State

The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to 0:

– Instructions BLX, BX and POP{PC}

– Restoration from the stacked xPSR value on an exception return

– Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is 0 results in a fault or lockup. See “Lockup” for more information.

31 30 29 28 27 26 25 24

– ICI/IT T

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

ICI/IT –

7 6 5 4 3 2 1 0

–

51SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.12 Exception Mask Registers

The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they

might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the

value of PRIMASK or FAULTMASK. See “MRS” , “MSR” , and “CPS” for more information.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

52

11.4.1.13 Priority Mask Register

Name: PRIMASK

Access: Read/Write

Reset: 0x000000000

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

• PRIMASK

0: No effect

1: Prevents the activation of all exceptions with a configurable priority.

31 30 29 28 27 26 25 24

–

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

–

7 6 5 4 3 2 1 0

– PRIMASK

53SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.14 Fault Mask Register

Name: FAULTMASK

Access: Read/Write

Reset: 0x000000000

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).

• FAULTMASK

0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

31 30 29 28 27 26 25 24

–

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

–

7 6 5 4 3 2 1 0

– FAULTMASK

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

54

11.4.1.15 Base Priority Mask Register

Name: BASEPRI

Access: Read/Write

Reset: 0x000000000

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it

prevents the activation of all exceptions with same or lower priority level as the BASEPRI value.

• BASEPRI

Priority mask bits:

0x0000: No effect

Nonzero: Defines the base priority for exception processing

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this

field, bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that

higher priority field values correspond to lower exception priorities.

31 30 29 28 27 26 25 24

–

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

–

7 6 5 4 3 2 1 0

BASEPRI

55SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.1.16 Control Register

Name: CONTROL

Access: Read/Write

Reset: 0x000000000

The Control Register controls the stack used and the privilege level for software execution when the processor is in Thread

mode and indicates whether the FPU state is active.

• FPCA: Floating-point Context Active

Indicates whether the floating-point context is currently active:

0: No floating-point context active.

1: Floating-point context active.

The Cortex-M4 uses this bit to determine whether to preserve the floating-point state when processing an exception.

• SPSEL: Active Stack Pointer

Defines the current stack:

0: MSP is the current stack pointer.

1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception

return.

• nPRIV: Thread Mode Privilege Level

Defines the Thread mode privilege level:

0: Privileged.

1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the Control

Register when in Handler mode. The exception entry and return mechanisms update the Control Register based on the

EXC_RETURN value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and

exception handlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:

• Use the MSR instruction to set the Active stack pointer bit to 1, see “MSR” , or

• Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 11-10.

31 30 29 28 27 26 25 24

–

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

–

7 6 5 4 3 2 1 0

– FPCA SPSEL nPRIV

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

56

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction. This ensures

that instructions after the ISB execute using the new stack pointer. See “ISB” .

11.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored

Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software

control. The processor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry”

and “Exception Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more

information.

11.4.1.18 Data Types

The processor supports the following data types:

 32-bit words

 16-bit halfwords

 8-bit bytes

 The processor manages all data memory accesses as little-endian. Instruction memory and Private

Peripheral Bus (PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for

more information.

11.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:

 A common way to:

̶ Access peripheral registers

̶ Define exception vectors

 The names of:

̶ The registers of the core peripherals

̶ The core exception vectors

 A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of

CMSIS-compliant software components from various middleware vendors. Software vendors can expand the

CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS

functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the architectural

short names that might be used in other documents.

The following sections give more information about the CMSIS:

 Section 11.5.3 ”Power Management Programming Hints”

 Section 11.6.2 ”CMSIS Functions”

 Section 11.8.2.1 ”NVIC Programming Hints”.

57SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding

features. The processor has a fixed memory map that provides up to 4 GB of addressable memory.

Figure 11-3. Memory Map

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit

data, see “Bit-banding” .

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product,

refer to the Memories section of the datasheet.

11.4.2.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined

memory type, and some regions have additional memory attributes. The memory type and attributes determine the

behavior of accesses to the region.

Vendor-specific

memory

External device

External RAM

Peripheral

SRAM

Code

0xFFFFFFFF

Private peripheral

bus

0xE0100000
0xE00FFFFF

0x9FFFFFFF
0xA0000000

0x5FFFFFFF
0x60000000

0x3FFFFFFF
0x40000000

0x1FFFFFFF
0x20000000

0x00000000

0x40000000

32 MB Bit-band alias

0x400FFFFF

0x42000000

0x43FFFFFF

1 MB Bit-band region

32 MB Bit-band alias

0x20000000

0x200FFFFF

0x22000000

0x23FFFFFF

1.0 GB

1.0 GB

0.5 GB

0.5 GB

0.5 GB

0x DFFFFFFF
0xE000 0000

1.0 MB

511 MB

1 MB Bit-band region

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

58

Memory Types

 Normal

The processor can re-order transactions for efficiency, or perform speculative reads.

 Device

The processor preserves transaction order relative to other transactions to Device or Strongly-ordered

memory.

 Strongly-ordered

The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can

buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes

 Shareable

For a shareable memory region, the memory system provides data synchronization between bus masters in

a system with multiple bus masters, for example, a processor with a DMA controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, the software must ensure data

coherency between the bus masters.

 Execute Never (XN)

Means the processor prevents instruction accesses. A fault exception is generated only on execution of an

instruction executed from an XN region.

11.4.2.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not

guarantee that the order in which the accesses complete matches the program order of the instructions, providing

this does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on

two memory accesses completing in program order, the software must insert a memory barrier instruction between

the memory access instructions, see “Software Ordering of Memory Accesses” .

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered

memory. For two memory access instructions A1 and A2, if A1 occurs before A2 in program order, the ordering of

the memory accesses is described below.

Where:

– Means that the memory system does not guarantee the ordering of the accesses.

< Means that accesses are observed in program order, that is, A1 is always observed

before A2.

Table 11-3. Ordering of the Memory Accesses Caused by Two Instructions

A2

Normal

Access

Device Access
Strongly-

ordered

AccessA1

Non-

shareable Shareable

Normal Access – – – –

Device access, non-shareable – < – <

Device access, shareable – – < <

Strongly-ordered access – < < <

59SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.4.2.3 Behavior of Memory Accesses

The following table describes the behavior of accesses to each region in the memory map.

Note: 1. See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs

always use the Code region. This is because the processor has separate buses that enable instruction fetches and

data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see

“Memory Protection Unit (MPU)” .

Additional Memory Access Constraints For Caches and Shared Memory

When a system includes caches or shared memory, some memory regions have additional access constraints,

and some regions are subdivided, as Table 11-5 shows.

Notes: 1. See “Memory Regions, Types and Attributes” for more information.

2. WT = Write through, no write allocate. WBWA = Write back, write allocate. See the “Glossary” for more information.

Table 11-4. Memory Access Behavior

Address Range Memory Region

Memory

Type XN Description

0x00000000–0x1FFFFFFF Code Normal(1) –
Executable region for program code. Data can also be

put here.

0x20000000–0x3FFFFFFF SRAM Normal (1) –

Executable region for data. Code can also be put here.

This region includes bit band and bit band alias areas,

see Table 11-6.

0x40000000–0x5FFFFFFF Peripheral Device (1) XN
This region includes bit band and bit band alias areas,

see Table 11-6.

0x60000000–0x9FFFFFFF External RAM Normal (1) – Executable region for data

0xA0000000–0xDFFFFFFF External device Device (1) XN External Device memory

0xE0000000–0xE00FFFFF Private Peripheral Bus
Strongly-

ordered (1) XN
This region includes the NVIC, system timer, and system

control block.

0xE0100000–0xFFFFFFFF Reserved Device (1) XN Reserved

Table 11-5. Memory Region Shareability and Cache Policies

Address Range Memory Region Memory Type Shareability Cache Policy

0x00000000–0x1FFFFFFF Code Normal (1) – WT(2)

0x20000000–0x3FFFFFFF SRAM Normal (1) – WBWA(2)

0x40000000–0x5FFFFFFF Peripheral Device (1) – –

0x60000000–0x7FFFFFFF
External RAM Normal (1) –

WBWA(2)

0x80000000–0x9FFFFFFF WT (2)

0xA0000000–0xBFFFFFFF
External device Device (1)

Shareable (1)

–
0xC0000000–0xDFFFFFFF Non-shareable (1)

0xE0000000–0xE00FFFFF
Private Peripheral

Bus
Strongly-ordered(1) Shareable (1) –

0xE0100000–0xFFFFFFFF
Vendor-specific

device
Device (1) – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

60

Instruction Prefetch and Branch Prediction

The Cortex-M4 processor:

 Prefetches instructions ahead of execution

 Speculatively prefetches from branch target addresses.

11.4.2.4 Software Ordering of Memory Accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding memory

transactions. This is because:

 The processor can reorder some memory accesses to improve efficiency, providing this does not affect the

behavior of the instruction sequence.

 The processor has multiple bus interfaces

 Memory or devices in the memory map have different wait states

 Some memory accesses are buffered or speculative.

“Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees the

order of memory accesses. Otherwise, if the order of memory accesses is critical, the software must include

memory barrier instructions to force that ordering. The processor provides the following memory barrier

instructions:

DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before

subsequent memory transactions. See “DMB” .

DSB

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete

before subsequent instructions execute. See “DSB” .

ISB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is

recognizable by subsequent instructions. See “ISB” .

MPU Programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by

subsequent instructions.

11.4.2.5 Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band

regions occupy the lowest 1 MB of the SRAM and peripheral memory regions.

The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:

 Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 11-6.

 Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in

Table 11-7.

Table 11-6. SRAM Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

0x20000000–0x200FFFFF SRAM bit-band region
Direct accesses to this memory range behave as SRAM memory accesses,

but this region is also bit-addressable through bit-band alias.

0x22000000–0x23FFFFFF SRAM bit-band alias

Data accesses to this region are remapped to bit-band region. A write

operation is performed as read-modify-write. Instruction accesses are not

remapped.

61SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 Notes: 1. A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or peripheral bit-band

region.

2. Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the transfer size of the

instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:

bit_word_offset = (byte_offset x 32) + (bit_number x 4)
bit_word_addr = bit_band_base + bit_word_offset

where:

 Bit_word_offset is the position of the target bit in the bit-band memory region.

 Bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit.

 Bit_band_base is the starting address of the alias region.

 Byte_offset is the number of the byte in the bit-band region that contains the targeted bit.

 Bit_number is the bit position, 0–7, of the targeted bit.

Figure 11-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-

band region:

 The alias word at 0x23FFFFE0 maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFE0 =

0x22000000 + (0xFFFFF*32) + (0*4).

 The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC =

0x22000000 + (0xFFFFF*32) + (7*4).

 The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 =

0x22000000 + (0*32) + (0*4).

 The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C =

0x22000000+ (0*32) + (7*4).

Table 11-7. Peripheral Memory Bit-banding Regions

Address Range Memory Region Instruction and Data Accesses

0x40000000–0x400FFFFF Peripheral bit-band alias
Direct accesses to this memory range behave as peripheral memory

accesses, but this region is also bit-addressable through bit-band alias.

0x42000000–0x43FFFFFF Peripheral bit-band region

Data accesses to this region are remapped to bit-band region. A write

operation is performed as read-modify-write. Instruction accesses are not

permitted.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

62

Figure 11-4. Bit-band Mapping

Directly Accessing an Alias Region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-

band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to 0

writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing 0xFF.

Writing 0x00 has the same effect as writing 0x0E.

Reading a word in the alias region:

 0x00000000 indicates that the targeted bit in the bit-band region is set to 0

 0x00000001 indicates that the targeted bit in the bit-band region is set to 1

Directly Accessing a Bit-band Region

“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the bit-band

regions.

11.4.2.6 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example,

bytes 0–3 hold the first stored word, and bytes 4–7 hold the second stored word. “Little-endian Format” describes

how words of data are stored in memory.

Little-endian Format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and

the most significant byte at the highest-numbered byte. For example:

0x23FFFFE4

0x22000004

0x23FFFFE00x23FFFFE80x23FFFFEC0x23FFFFF00x23FFFFF40x23FFFFF80x23FFFFFC

0x220000000x220000140x220000180x2200001C 0x220000080x22000010 0x2200000C

32 MB alias region

0

7 0

07

0x200000000x200000010x200000020x20000003

6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 07 6 5 4 3 2 1

07 6 5 4 3 2 1 6 5 4 3 2 107 6 5 4 3 2 1 07 6 5 4 3 2 1

0x200FFFFC0x200FFFFD0x200FFFFE0x200FFFFF

1 MB SRAM bit-band region

63SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 11-5. Little-endian Format

11.4.2.7 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking

mechanism that a thread or process can use to obtain exclusive access to a memory location. The software can

use them to perform a guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that

location.

A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a

register. If this bit is:

 0: It indicates that the thread or process gained exclusive access to the memory, and the write succeeds,

 1: It indicates that the thread or process did not gain exclusive access to the memory, and no write is

performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

 The word instructions LDREX and STREX

 The halfword instructions LDREXH and STREXH

 The byte instructions LDREXB and STREXB.

The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform an exclusive read-modify-write of a memory location, the software must:

1. Use a Load-Exclusive instruction to read the value of the location.

2. Update the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location

4. Test the returned status bit. If this bit is:

0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out of date. The

software must retry the read-modify-write sequence.

The software can use the synchronization primitives to implement a semaphore as follows:

1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is
free.

2. If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore

address.

Memory Register

Address A

A+1

lsbyte

msbyte

A+2

A+3

07

B0B1B3 B2

31 24 23 16 15 8 7 0

B0

B1

B2

B3

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

64

3. If the returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the

software has claimed the semaphore. However, if the Store-Exclusive instruction failed, another process

might have claimed the semaphore after the software performed the first step.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-

Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory

locations addressed by exclusive accesses by each processor.

The processor removes its exclusive access tag if:

 It executes a CLREX instruction

 It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

 An exception occurs. This means that the processor can resolve semaphore conflicts between different

threads.

In a multiprocessor implementation:

 Executing a CLREX instruction removes only the local exclusive access tag for the processor

 Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all

global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX” and “CLREX” .

11.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for

generation of these instructions:

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic

function. For example, the following C code generates the required LDREXB operation:

__ldrex((volatile char *) 0xFF);

11.4.3 Exception Model

This section describes the exception model.

11.4.3.1 Exception States

Each exception is in one of the following states:

Inactive

The exception is not active and not pending.

Pending

The exception is waiting to be serviced by the processor.

Table 11-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t __LDREXW (uint32_t *addr)

LDREXH uint16_t __LDREXH (uint16_t *addr)

LDREXB uint8_t __LDREXB (uint8_t *addr)

STREX uint32_t __STREXW (uint32_t value, uint32_t *addr)

STREXH uint32_t __STREXH (uint16_t value, uint16_t *addr)

STREXB uint32_t __STREXB (uint8_t value, uint8_t *addr)

CLREX void __CLREX (void)

65SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to

pending.

Active

An exception is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in

the active state.

Active and Pending

The exception is being serviced by the processor and there is a pending exception from the same source.

11.4.3.2 Exception Types

The exception types are:

Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception.

When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset

is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution

restarts as privileged execution in Thread mode.

Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest

priority exception other than reset. It is permanently enabled and has a fixed priority of -2.

NMIs cannot be:

 Masked or prevented from activation by any other exception.

 Preempted by any exception other than Reset.

Hard Fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception

cannot be managed by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have

higher priority than any exception with configurable priority.

Memory Management Fault (MemManage)

A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU

or the fixed memory protection constraints determines this fault, for both instruction and data memory transactions.

This fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is

disabled.

Bus Fault

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory

transaction. This might be from an error detected on a bus in the memory system.

Usage Fault

A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:

 An undefined instruction

 An illegal unaligned access

 An invalid state on instruction execution

 An error on exception return.

The following can cause a Usage Fault when the core is configured to report them:

 An unaligned address on word and halfword memory access

 A division by zero.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

66

SVCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications

can use SVC instructions to access OS kernel functions and device drivers.

PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context

switching when no other exception is active.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate

a SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are

asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the

processor.

Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other

than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register” .

2. See “Vector Table” for more information

3. See “System Handler Priority Registers”

4. See “Interrupt Priority Registers”

5. Increasing in steps of 4.

For an asynchronous exception, other than reset, the processor can execute another instruction between when the

exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 11-9 shows as having configurable priority, see:

 “System Handler Control and State Register”

 “Interrupt Clear-enable Registers” .

Table 11-9. Properties of the Different Exception Types

Exception

Number (1) Irq Number (1) Exception Type Priority

Vector Address

or Offset (2) Activation

1 – Reset -3, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 Hard fault -1 0x0000000C –

4 -12
Memory

management fault
Configurable (3) 0x00000010 Synchronous

5 -11 Bus fault Configurable (3) 0x00000014
Synchronous when precise,

asynchronous when imprecise

6 -10 Usage fault Configurable (3) 0x00000018 Synchronous

7–10 – – – Reserved –

11 -5 SVCall Configurable (3) 0x0000002C Synchronous

12–13 – – – Reserved –

14 -2 PendSV Configurable (3) 0x00000038 Asynchronous

15 -1 SysTick Configurable (3) 0x0000003C Asynchronous

16 and above 0 and above Interrupt (IRQ) Configurable(4) 0x00000040 and above (5) Asynchronous

67SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault

Handling” .

11.4.3.3 Exception Handlers

The processor handles exceptions using:

 Interrupt Service Routines (ISRs)

Interrupts IRQ0 to IRQ46 are the exceptions handled by ISRs.

 Fault Handlers

Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault

handlers.

 System Handlers

NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by

system handlers.

11.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception

vectors, for all exception handlers. Figure 11-6 shows the order of the exception vectors in the vector table. The

least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 11-6. Vector Table

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR

to relocate the vector table start address to a different memory location, in the range 0x00000080 to 0x3FFFFF80,

see “Vector Table Offset Register” .

Initial SP value

Reset

Hard fault

NMI

Memory management fault

Usage fault

Bus fault

0x0000

0x0004

0x0008

0x000C

0x0010

0x0014

0x0018

Reserved

SVCall

PendSV

Reserved for Debug

SysTick

IRQ0

Reserved

0x002C

0x0038

0x003C

0x0040

OffsetException number

2

3

4

5

6

11

12

14

15

16

18

13

7

10

1

Vector

.

.

.

8

9

IRQ1

IRQ2

0x0044

IRQ239

17
0x0048

0x004C

255

.

.

.

.

.

.

0x03FC

IRQ number

-14

-13

-12

-11

-10

-5

-2

-1

0

2

1

239

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

68

11.4.3.5 Exception Priorities

As Table 11-9 shows, all exceptions have an associated priority, with:

 A lower priority value indicating a higher priority

 Configurable priorities for all exceptions except Reset, Hard fault and NMI.

If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0.

For information about configuring exception priorities see “System Handler Priority Registers” , and “Interrupt

Priority Registers” .

 Note: Configurable priority values are in the range 0–15. This means that the Reset, Hard fault, and NMI exceptions, with

fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has

higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number

takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is

processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority

exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not

preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

11.4.3.6 Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each

interrupt priority register entry into two fields:

 An upper field that defines the group priority

 A lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an

interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not

preempt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they

are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the

lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application

Interrupt and Reset Control Register” .

11.4.3.7 Exception Entry and Return

Descriptions of exception handling use the following terms:

Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its

priority is higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more

information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” more

information.

Return

This occurs when the exception handler is completed, and:

 There is no pending exception with sufficient priority to be serviced

 The completed exception handler was not handling a late-arriving exception.

69SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred.

See “Exception Return” for more information.

Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending

exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the

new exception handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous

exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that

exception. State saving is not affected by late arrival because the state saved is the same for both exceptions.

Therefore the state saving continues uninterrupted. The processor can accept a late arriving exception until the

first instruction of the exception handler of the original exception enters the execute stage of the processor. On

return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in

Thread mode, or the new exception is of a higher priority than the exception being handled, in which case the new

exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see

“Exception Mask Registers” . An exception with less priority than this is pending but is not handled by the

processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the

processor pushes information onto the current stack. This operation is referred as stacking and the structure of

eight data words is referred to as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point

state on exception entry. Figure 11-7 on page 70 shows the Cortex-M4 stack frame layout when floating-point

state is preserved on the stack as the result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M

implementations without an FPU. Figure 11-7 on page 70 shows this stack frame also.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

70

Figure 11-7. Exception Stack Frame

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the

stack frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.

This value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start

address from the vector table. When stacking is complete, the processor starts executing the exception handler. At

the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer

corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception

handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception

handler for this exception and does not change the pending status of the earlier exception. This is the late arrival

case.

Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions

to load the EXC_RETURN value into the PC:

 An LDM or POP instruction that loads the PC

 An LDR instruction with the PC as the destination.

 A BX instruction using any register.

Pre-IRQ top of stack

xPSR

PC

LR

R12

R3

R2

R1

R0

{aligner}

IRQ top of stack

Decreasing

memory

address

xPSR

PC

LR

R12

R3

R2

R1

R0

S7

S6

S5

S4

S3

S2

S1

S0

S9

S8

FPSCR

S15

S14

S13

S12

S11

S10

{aligner}

IRQ top of stack

...

Exception frame with

floating-point storage

Exception frame without

floating-point storage

Pre-IRQ top of stack
...

71SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value

to detect when the processor has completed an exception handler. The lowest five bits of this value provide

information on the return stack and processor mode. Table 11-10 shows the EXC_RETURN values with a

description of the exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the

processor that the exception is complete, and the processor initiates the appropriate exception return sequence.

11.4.3.8 Fault Handling

Faults are a subset of the exceptions, see “Exception Model” . The following generate a fault:

 A bus error on:

̶ An instruction fetch or vector table load

̶ A data access

 An internally-detected error such as an undefined instruction

 An attempt to execute an instruction from a memory region marked as Non-Executable (XN).

 A privilege violation or an attempt to access an unmanaged region causing an MPU fault.

Fault Types

Table 11-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the

register bit that indicates that the fault has occurred. See “Configurable Fault Status Register” for more information

about the fault status registers.

Table 11-10. Exception Return Behavior

EXC_RETURN[31:0] Description

0xFFFFFFF1
Return to Handler mode, exception return uses non-floating-point state

from the MSP and execution uses MSP after return.

0xFFFFFFF9
Return to Thread mode, exception return uses state from MSP and

execution uses MSP after return.

0xFFFFFFFD
Return to Thread mode, exception return uses state from the PSP and

execution uses PSP after return.

0xFFFFFFE1
Return to Handler mode, exception return uses floating-point-state from

MSP and execution uses MSP after return.

0xFFFFFFE9
Return to Thread mode, exception return uses floating-point state from

MSP and execution uses MSP after return.

0xFFFFFFED
Return to Thread mode, exception return uses floating-point state from PSP

and execution uses PSP after return.

Table 11-11. Faults

Fault Handler Bit Name Fault Status Register

Bus error on a vector read
Hard fault

VECTTBL
“Hard Fault Status Register”

Fault escalated to a hard fault FORCED

MPU or default memory map mismatch:

Memory

management

fault

– –

on instruction access IACCVIOL (1)

“MMFSR: Memory Management Fault Status

Subregister”

on data access DACCVIOL(2)

during exception stacking MSTKERR

during exception unstacking MUNSTKERR

during lazy floating-point state preservation MLSPERR(3)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

72

Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction with

ICI continuation.

3. Only present in a Cortex-M4F device

Fault Escalation and Hard Faults

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority

Registers” . The software can disable the execution of the handlers for these faults, see “System Handler Control

and State Register” .

Usually, the exception priority, together with the values of the exception mask registers, determines whether the

processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in

“Exception Model” .

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and

the fault is described as escalated to hard fault. Escalation to hard fault occurs when:

 A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs

because a fault handler cannot preempt itself; it must have the same priority as the current priority level.

 A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the

handler for the new fault cannot preempt the currently executing fault handler.

 An exception handler causes a fault for which the priority is the same as or lower than the currently

executing exception.

 A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a

hard fault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack

push for the handler failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than

Reset, NMI, or another hard fault.

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault

address register indicates the address accessed by the operation that caused the fault, as shown in Table 11-12.

Bus error:

Bus fault

– –

during exception stacking STKERR

“BFSR: Bus Fault Status Subregister”

during exception unstacking UNSTKERR

during instruction prefetch IBUSERR

during lazy floating-point state preservation LSPERR(3)

Precise data bus error PRECISERR

Imprecise data bus error IMPRECISERR

Attempt to access a coprocessor

Usage fault

NOCP

“UFSR: Usage Fault Status Subregister”

Undefined instruction UNDEFINSTR

Attempt to enter an invalid instruction set state INVSTATE

Invalid EXC_RETURN value INVPC

Illegal unaligned load or store UNALIGNED

Divide By 0 DIVBYZERO

Table 11-11. Faults (Continued)

Fault Handler Bit Name Fault Status Register

73SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the

processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until

either:

 It is reset

 An NMI occurs

 It is halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the lockup

state.

Table 11-12. Fault Status and Fault Address Registers

Handler

Status Register

Name

Address Register

Name Register Description

Hard fault SCB_HFSR – “Hard Fault Status Register”

Memory

management fault
MMFSR SCB_MMFAR

“MMFSR: Memory Management Fault Status Subregister”

“MemManage Fault Address Register”

Bus fault BFSR SCB_BFAR
“BFSR: Bus Fault Status Subregister”

“Bus Fault Address Register”

Usage fault UFSR – “UFSR: Usage Fault Status Subregister”

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

74

11.5 Power Management

The Cortex-M4 processor sleep modes reduce the power consumption:

 Sleep mode stops the processor clock

 Deep sleep mode stops the system clock and switches off the PLL and flash memory.

The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Register” .

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep

mode.

11.5.1 Entering Sleep Mode

This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor.

Therefore, the software must be able to put the processor back into sleep mode after such an event. A program

might have an idle loop to put the processor back to sleep mode.

11.5.1.1 Wait for Interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a

WFI instruction it stops executing instructions and enters sleep mode. See “WFI” for more information.

11.5.1.2 Wait for Event

The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event

register. When the processor executes a WFE instruction, it checks this register:

 If the register is 0, the processor stops executing instructions and enters sleep mode

 If the register is 1, the processor clears the register to 0 and continues executing instructions without

entering sleep mode.

See “WFE” for more information.

11.5.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception

handler, it returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that

only require the processor to run when an exception occurs.

11.5.2 Wakeup from Sleep Mode

The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

11.5.2.1 Wakeup from WFI or Sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception

entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it

executes an interrupt handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an

interrupt arrives that is enabled and has a higher priority than the current exception priority, the processor wakes

up but does not execute the interrupt handler until the processor sets PRIMASK to zero. For more information

about PRIMASK and FAULTMASK, see “Exception Mask Registers” .

11.5.2.2 Wakeup from WFE

The processor wakes up if:

 It detects an exception with sufficient priority to cause an exception entry

 It detects an external event signal. See “External Event Input”

 In a multiprocessor system, another processor in the system executes an SEV instruction.

75SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes

up the processor, even if the interrupt is disabled or has insufficient priority to cause an exception entry. For more

information about the SCR, see “System Control Register” .

11.5.2.3 External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake the

processor from WFE, or to set the internal WFE event register to 1 to indicate that the processor must not enter

sleep mode on a later WFE instruction. See “Wait for Event” for more information.

11.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for

these instructions:

void __WFE(void) // Wait for Event
void __WFI(void) // Wait for Interrupt

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

76

11.6 Cortex-M4 Instruction Set

11.6.1 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 11-13 lists the supported instructions.

 Angle brackets, <>, enclose alternative forms of the operand

 Braces, {}, enclose optional operands

 The Operands column is not exhaustive

 Op2 is a flexible second operand that can be either a register or a constant

 Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 11-13. Cortex-M4 Instructions

Mnemonic Operands Description Flags

ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V

ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V

ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C,V

ADR Rd, label Load PC-relative address –

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C

ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C

B label Branch –

BFC Rd, #lsb, #width Bit Field Clear –

BFI Rd, Rn, #lsb, #width Bit Field Insert –

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C

BKPT #imm Breakpoint –

BL label Branch with Link –

BLX Rm Branch indirect with Link –

BX Rm Branch indirect –

CBNZ Rn, label Compare and Branch if Non Zero –

CBZ Rn, label Compare and Branch if Zero –

CLREX – Clear Exclusive –

CLZ Rd, Rm Count leading zeros –

CMN Rn, Op2 Compare Negative N,Z,C,V

CMP Rn, Op2 Compare N,Z,C,V

CPSID i Change Processor State, Disable Interrupts –

CPSIE i Change Processor State, Enable Interrupts –

DMB – Data Memory Barrier –

DSB – Data Synchronization Barrier –

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C

ISB – Instruction Synchronization Barrier –

IT – If-Then condition block –

LDM Rn{!}, reglist Load Multiple registers, increment after –

77SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

LDMDB, LDMEA Rn{!}, reglist Load Multiple registers, decrement before –

LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after –

LDR Rt, [Rn, #offset] Load Register with word –

LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte –

LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes –

LDREX Rt, [Rn, #offset] Load Register Exclusive –

LDREXB Rt, [Rn] Load Register Exclusive with byte –

LDREXH Rt, [Rn] Load Register Exclusive with halfword –

LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword –

LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte –

LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword –

LDRT Rt, [Rn, #offset] Load Register with word –

LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C

LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C

MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result –

MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result –

MOV, MOVS Rd, Op2 Move N,Z,C

MOVT Rd, #imm16 Move Top –

MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C

MRS Rd, spec_reg Move from special register to general register –

MSR spec_reg, Rm Move from general register to special register N,Z,C,V

MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z

MVN, MVNS Rd, Op2 Move NOT N,Z,C

NOP – No Operation –

ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C

ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C

PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword –

POP reglist Pop registers from stack –

PUSH reglist Push registers onto stack –

QADD {Rd,} Rn, Rm Saturating double and Add Q

QADD16 {Rd,} Rn, Rm Saturating Add 16 –

QADD8 {Rd,} Rn, Rm Saturating Add 8 –

QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange –

QDADD {Rd,} Rn, Rm Saturating Add Q

QDSUB {Rd,} Rn, Rm Saturating double and Subtract Q

QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange –

QSUB {Rd,} Rn, Rm Saturating Subtract Q

Table 11-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

78

QSUB16 {Rd,} Rn, Rm Saturating Subtract 16 –

QSUB8 {Rd,} Rn, Rm Saturating Subtract 8 –

RBIT Rd, Rn Reverse Bits –

REV Rd, Rn Reverse byte order in a word –

REV16 Rd, Rn Reverse byte order in each halfword –

REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend –

ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C

RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C

RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C,V

SADD16 {Rd,} Rn, Rm Signed Add 16 GE

SADD8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE

SASX {Rd,} Rn, Rm Signed Add GE

SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C,V

SBFX Rd, Rn, #lsb, #width Signed Bit Field Extract –

SDIV {Rd,} Rn, Rm Signed Divide –

SEL {Rd,} Rn, Rm Select bytes –

SEV – Send Event –

SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 –

SHADD8 {Rd,} Rn, Rm Signed Halving Add 8 –

SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange –

SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange –

SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 –

SHSUB8 {Rd,} Rn, Rm Signed Halving Subtract 8 –

SMLABB, SMLABT,

SMLATB, SMLATT
Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q

SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q

SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 × 32 + 64), 64-bit result –

SMLALBB, SMLALBT,

SMLALTB, SMLALTT
RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords –

SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual –

SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q

SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q

SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual

SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate –

SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract –

SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply –

SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q

Table 11-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags

79SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

SMULBB, SMULBT

SMULTB, SMULTT
{Rd,} Rn, Rm Signed Multiply (halfwords) –

SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 × 32), 64-bit result –

SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword –

SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract –

SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q

SSAT16 Rd, #n, Rm Signed Saturate 16 Q

SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE

SSUB16 {Rd,} Rn, Rm Signed Subtract 16 –

SSUB8 {Rd,} Rn, Rm Signed Subtract 8 –

STM Rn{!}, reglist Store Multiple registers, increment after –

STMDB, STMEA Rn{!}, reglist Store Multiple registers, decrement before –

STMFD, STMIA Rn{!}, reglist Store Multiple registers, increment after –

STR Rt, [Rn, #offset] Store Register word –

STRB, STRBT Rt, [Rn, #offset] Store Register byte –

STRD Rt, Rt2, [Rn, #offset] Store Register two words –

STREX Rd, Rt, [Rn, #offset] Store Register Exclusive –

STREXB Rd, Rt, [Rn] Store Register Exclusive byte –

STREXH Rd, Rt, [Rn] Store Register Exclusive halfword –

STRH, STRHT Rt, [Rn, #offset] Store Register halfword –

STRT Rt, [Rn, #offset] Store Register word –

SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V

SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V

SVC #imm Supervisor Call –

SXTAB {Rd,} Rn, Rm,{,ROR #} Extend 8 bits to 32 and add –

SXTAB16 {Rd,} Rn, Rm,{,ROR #} Dual extend 8 bits to 16 and add –

SXTAH {Rd,} Rn, Rm,{,ROR #} Extend 16 bits to 32 and add –

SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 –

SXTB {Rd,} Rm {,ROR #n} Sign extend a byte –

SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword –

TBB [Rn, Rm] Table Branch Byte –

TBH [Rn, Rm, LSL #1] Table Branch Halfword –

TEQ Rn, Op2 Test Equivalence N,Z,C

TST Rn, Op2 Test N,Z,C

UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE

UADD8 {Rd,} Rn, Rm Unsigned Add 8 GE

USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE

Table 11-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

80

UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 –

UHADD8 {Rd,} Rn, Rm Unsigned Halving Add 8 –

UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange –

UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange –

UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 –

UHSUB8 {Rd,} Rn, Rm Unsigned Halving Subtract 8 –

UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract –

UDIV {Rd,} Rn, Rm Unsigned Divide –

UMAAL RdLo, RdHi, Rn, Rm
Unsigned Multiply Accumulate Accumulate Long (32 × 32 + 32 + 32),

64-bit result
–

UMLAL RdLo, RdHi, Rn, Rm Unsigned Multiply with Accumulate (32 × 32 + 64), 64-bit result –

UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 × 32), 64-bit result –

UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 –

UQADD8 {Rd,} Rn, Rm Unsigned Saturating Add 8 –

UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange –

UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange –

UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 –

UQSUB8 {Rd,} Rn, Rm Unsigned Saturating Subtract 8 –

USAD8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences –

USADA8 {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate –

USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q

USAT16 Rd, #n, Rm Unsigned Saturate 16 Q

UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE

USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE

USUB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE

UXTAB {Rd,} Rn, Rm,{,ROR #} Rotate, extend 8 bits to 32 and Add –

UXTAB16 {Rd,} Rn, Rm,{,ROR #} Rotate, dual extend 8 bits to 16 and Add –

UXTAH {Rd,} Rn, Rm,{,ROR #} Rotate, unsigned extend and Add Halfword –

UXTB {Rd,} Rm {,ROR #n} Zero extend a byte –

UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 –

UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword –

VABS.F32 Sd, Sm Floating-point Absolute –

VADD.F32 {Sd,} Sn, Sm Floating-point Add –

VCMP.F32 Sd, <Sm | #0.0>
Compare two floating-point registers, or one floating-point register

and zero
FPSCR

VCMPE.F32 Sd, <Sm | #0.0>
Compare two floating-point registers, or one floating-point register

and zero with Invalid Operation check
FPSCR

VCVT.S32.F32 Sd, Sm Convert between floating-point and integer –

Table 11-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags

81SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

VCVT.S16.F32 Sd, Sd, #fbits Convert between floating-point and fixed point –

VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding –

VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision –

VCVTT<B|T>.F32.F16 Sd, Sm Converts single-precision register to half-precision –

VDIV.F32 {Sd,} Sn, Sm Floating-point Divide –

VFMA.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Accumulate –

VFNMA.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Accumulate –

VFMS.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Subtract –

VFNMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract –

VLDM.F<32|64> Rn{!}, list Load Multiple extension registers –

VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory –

VLMA.F32 {Sd,} Sn, Sm Floating-point Multiply Accumulate –

VLMS.F32 {Sd,} Sn, Sm Floating-point Multiply Subtract –

VMOV.F32 Sd, #imm Floating-point Move immediate –

VMOV Sd, Sm Floating-point Move register –

VMOV Sn, Rt Copy ARM core register to single precision –

VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision –

VMOV Dd[x], Rt Copy ARM core register to scalar –

VMOV Rt, Dn[x] Copy scalar to ARM core register –

VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C,V

VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR

VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply –

VNEG.F32 Sd, Sm Floating-point Negate –

VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add –

VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract –

VNMUL {Sd,} Sn, Sm Floating-point Multiply –

VPOP list Pop extension registers –

VPUSH list Push extension registers –

VSQRT.F32 Sd, Sm Calculates floating-point Square Root –

VSTM Rn{!}, list Floating-point register Store Multiple –

VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory –

VSUB.F<32|64> {Sd,} Sn, Sm Floating-point Subtract –

WFE – Wait For Event –

WFI – Wait For Interrupt –

Table 11-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

82

11.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can

generate these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler

does not support an appropriate intrinsic function, the user might have to use inline assembler to access some

instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly

access:

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR

instructions:

Table 11-14. CMSIS Functions to Generate some Cortex-M4 Instructions

Instruction CMSIS Function

CPSIE I void __enable_irq(void)

CPSID I void __disable_irq(void)

CPSIE F void __enable_fault_irq(void)

CPSID F void __disable_fault_irq(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t __REV(uint32_t int value)

REV16 uint32_t __REV16(uint32_t int value)

REVSH uint32_t __REVSH(uint32_t int value)

RBIT uint32_t __RBIT(uint32_t int value)

SEV void __SEV(void)

WFE void __WFE(void)

WFI void __WFI(void)

Table 11-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register Access CMSIS Function

PRIMASK
Read uint32_t __get_PRIMASK (void)

Write void __set_PRIMASK (uint32_t value)

FAULTMASK
Read uint32_t __get_FAULTMASK (void

Write void __set_FAULTMASK (uint32_t value)

BASEPRI
Read uint32_t __get_BASEPRI (void)

Write void __set_BASEPRI (uint32_t value)

CONTROL
Read uint32_t __get_CONTROL (void)

Write void __set_CONTROL (uint32_t value)

MSP
Read uint32_t __get_MSP (void)

Write void __set_MSP (uint32_t TopOfMainStack)

PSP
Read uint32_t __get_PSP (void)

Write void __set_PSP (uint32_t TopOfProcStack)

83SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.3 Instruction Descriptions

11.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions

act on the operands and often store the result in a destination register. When there is a destination register in the

instruction, it is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand” .

11.6.3.2 Restrictions when Using PC or SP

Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands

or destination register can be used. See instruction descriptions for more information.

Note: Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct execution,

because this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb instructions.

11.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand2 in the

descriptions of the syntax of each instruction.

Operand2 can be a:

 “Constant”

 “Register with Optional Shift”

Constant

Specify an Operand2 constant in the form:

#constant

where constant can be:

 Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word

 Any constant of the form 0x00XY00XY

 Any constant of the form 0xXY00XY00

 Any constant of the form 0xXYXYXYXY.

 Note: In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are described in

the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,

TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be

produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other

constant.

Instruction Substitution

The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant

that is not permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the

equivalent instruction CMN Rd, #0x2.

Register with Optional Shift

Specify an Operand2 register in the form:

Rm {, shift}

where:

Rm is the register holding the data for the second operand.

shift is an optional shift to be applied to Rm. It can be one of:

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

84

ASR #n arithmetic shift right n bits, 1 ≤ n ≤ 32.

LSL #n logical shift left n bits, 1 ≤ n ≤ 31.

LSR #n logical shift right n bits, 1 ≤ n ≤ 32.

ROR #n rotate right n bits, 1 ≤ n ≤ 31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.

If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the

instruction. However, the contents in the register Rm remains unchanged. Specifying a register with shift also

updates the carry flag when used with certain instructions. For information on the shift operations and how they

affect the carry flag, see “Flexible Second Operand” .

11.6.3.4 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the shift length.

Register shift can be performed:

 Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register

 During the calculation of Operand2 by the instructions that specify the second operand as a register with

shift. See “Flexible Second Operand” . The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs.

Register shift operations update the carry flag except when the specified shift length is 0. The following

subsections describe the various shift operations and how they affect the carry flag. In these descriptions, Rm is

the register containing the value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the

right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the

result. See Figure 11-8.

The ASR #n operation can be used to divide the value in the register Rm by 2n, with the result being rounded

towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,

ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the

register Rm.

 If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.

 If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 11-8. ASR #3

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-

hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 11-9.

�����

���	

�� � � � �

85SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The LSR #n operation can be used to divide the value in the register Rm by 2n, if the value is regarded as an

unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,

ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the

register Rm.

 If n is 32 or more, then all the bits in the result are cleared to 0.

 If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 11-9. LSR #3

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand

32-n bits of the result; and it sets the right-hand n bits of the result to 0. See Figure 11-10.

The LSL #n operation can be used to multiply the value in the register Rm by 2n, if the value is regarded as an

unsigned integer or a two’s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS,

MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-

n], of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

 If n is 32 or more, then all the bits in the result are cleared to 0.

 If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 11-10. LSL #3

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand

32-n bits of the result; and it moves the right-hand n bits of the register into the left-hand n bits of the result. See

Figure 11-11.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,

ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register

Rm.

 If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated

to bit[31] of Rm.

 ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

�����

����

	
� �
 � �

			

	
� �
 � �

�����

����

			

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

86

Figure 11-11. ROR #3

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into

bit[31] of the result. See Figure 11-12.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS,

ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 11-12. RRX

11.6.3.5 Address Alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word

access, or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.

The Cortex-M4 processor supports unaligned access only for the following instructions:

 LDR, LDRT

 LDRH, LDRHT

 LDRSH, LDRSHT

 STR, STRT

 STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned access, and

therefore their accesses must be address-aligned. For more information about usage faults, see “Fault Handling” .

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not

support unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned.

To avoid accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control

Register to trap all unaligned accesses, see “Configuration and Control Register” .

11.6.3.6 PC-relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is

represented in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the

required offset from the label and the address of the current instruction. If the offset is too big, the assembler

produces an error.

 For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4

bytes.

�����

����

	
� �
 � �

	

�����

����

	
� �

87SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4

bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

 Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a

number, or an expression of the form [PC, #number].

11.6.3.7 Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status

Register (APSR) according to the result of the operation, see “Application Program Status Register” . Some

instructions update all flags, and some only update a subset. If a flag is not updated, the original value is

preserved. See the instruction descriptions for the flags they affect.

An instruction can be executed conditionally, based on the condition flags set in another instruction, either:

 Immediately after the instruction that updated the flags

 After any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code suffixes to

instructions. See Table 11-16 for a list of the suffixes to add to instructions to make them conditional instructions.

The condition code suffix enables the processor to test a condition based on the flags. If the condition test of a

conditional instruction fails, the instruction:

 Does not execute

 Does not write any value to its destination register

 Does not affect any of the flags

 Does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for

more information and restrictions when using the IT instruction. Depending on the vendor, the assembler might

automatically insert an IT instruction if there are conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.

This section describes:

 “Condition Flags”

 “Condition Code Suffixes” .

Condition Flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.

Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

V Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, see “Program Status Register” .

A carry occurs:

 If the result of an addition is greater than or equal to 232

 If the result of a subtraction is positive or zero

 As the result of an inline barrel shifter operation in a move or logical instruction.

An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation

been performed at infinite precision, for example:

 If adding two negative values results in a positive value

 If adding two positive values results in a negative value

 If subtracting a positive value from a negative value generates a positive value

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

88

 If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is

discarded. See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more

information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.

Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if

the condition code flags in the APSR meet the specified condition. Table 11-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.

Table 11-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. R0 =

ABS(R1).

MOVS R0, R1 ; R0 = R1, setting flags
IT MI ; IT instruction for the negative condition
RSBMI R0, R1, #0 ; If negative, R0 = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values R0 is

greater than R1 and R2 is greater than R3.

CMP R0, R1 ; Compare R0 and R1, setting flags
ITT GT ; IT instruction for the two GT conditions
CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting flags
MOVGT R4, R5 ; If still 'greater than', do R4 = R5

Table 11-16. Condition Code Suffixes

Suffix Flags Meaning

EQ Z = 1 Equal

NE Z = 0 Not equal

CS or HS C = 1 Higher or same, unsigned ≥

CC or LO C = 0 Lower, unsigned <

MI N = 1 Negative

PL N = 0 Positive or zero

VS V = 1 Overflow

VC V = 0 No overflow

HI C = 1 and Z = 0 Higher, unsigned >

LS C = 0 or Z = 1 Lower or same, unsigned ≤

GE N = V Greater than or equal, signed ≥

LT N != V Less than, signed <

GT Z = 0 and N = V Greater than, signed >

LE Z = 1 and N != V Less than or equal, signed ≤

AL Can have any value Always. This is the default when no suffix is specified.

89SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.3.8 Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the

operands and destination register specified. For some of these instructions, the user can force a specific

instruction size by using an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix

forces a 16-bit instruction encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the

requested width, it generates an error.

Note: In some cases, it might be necessary to specify the .W suffix, for example if the operand is the label of an instruction or

literal data, as in the case of branch instructions. This is because the assembler might not automatically generate the

right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any.

The example below shows instructions with the instruction width suffix.

BCS.W label ; creates a 32-bit instruction even for a short
; branch

ADDS.W R0, R0, R1 ; creates a 32-bit instruction even though the same
; operation can be done by a 16-bit instruction

11.6.4 Memory Access Instructions

The table below shows the memory access instructions.

Table 11-17. Memory Access Instructions

Mnemonic Description

ADR Load PC-relative address

CLREX Clear Exclusive

LDM{mode} Load Multiple registers

LDR{type} Load Register using immediate offset

LDR{type} Load Register using register offset

LDR{type}T Load Register with unprivileged access

LDR Load Register using PC-relative address

LDRD Load Register Dual

LDREX{type} Load Register Exclusive

POP Pop registers from stack

PUSH Push registers onto stack

STM{mode} Store Multiple registers

STR{type} Store Register using immediate offset

STR{type} Store Register using register offset

STR{type}T Store Register with unprivileged access

STREX{type} Store Register Exclusive

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

90

11.6.4.1 ADR

Load PC-relative address.

Syntax

ADR{cond} Rd, label

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

label is a PC-relative expression. See “PC-relative Expressions” .

Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination

register.

ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated

is set to 1 for correct execution.

Values of label must be within the range of −4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are not word-

aligned. See “Instruction Width Selection” .

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

ADR R1, TextMessage ; Write address value of a location labelled as
; TextMessage to R1

91SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.4.2 LDR and STR, Immediate Offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed
op{type}{cond} Rt, [Rn], #offset ; post-indexed
opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

where:

op is one of:

LDR Load Register.

STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.

Rt2 is the additional register to load or store for two-word operations.

Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the

address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:

[Rn, #offset]

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

92

Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the

address for the memory access and written back into the register Rn. The assembly language syntax for this mode

is:

[Rn, #offset]!

Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is

added to or subtracted from the address, and written back into the register Rn. The assembly language syntax for

this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed

or unsigned. See “Address Alignment” .

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Restrictions

For load instructions:

 Rt can be SP or PC for word loads only

 Rt must be different from Rt2 for two-word loads

 Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:

 Bit[0] of the loaded value must be 1 for correct execution

 A branch occurs to the address created by changing bit[0] of the loaded value to 0

 If the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

 Rt can be SP for word stores only

 Rt must not be PC

 Rn must not be PC

 Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition Flags

These instructions do not change the flags.

Table 11-18. Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed

Word, halfword, signed

halfword, byte, or signed byte
-255 to 4095 -255 to 255 -255 to 255

Two words
multiple of 4 in the

range -1020 to 1020

multiple of 4 in the

range -1020 to 1020

multiple of 4 in the

range -1020 to 1020

93SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Examples

LDR R8, [R10] ; Loads R8 from the address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word

; 960 bytes above the address in R5, and
; increments R5 by 960.

STR R2, [R9,#const-struc] ; const-struc is an expression evaluating
; to a constant in the range 0-4095.

STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increment R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the
; address in R3, and load R9 from a word 36
; bytes above the address in R3

STRD R0, R1, [R8], #-16 ; Store R0 to address in R8, and store R1 to
; a word 4 bytes above the address in R8,
; and then decrement R8 by 16.

11.6.4.3 LDR and STR, Register Offset

Load and Store with register offset.

Syntax

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]

where:

op is one of:

LDR Load Register.

STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .

Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.

LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the

register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either

be signed or unsigned. See “Address Alignment” .

Restrictions

In these instructions:

 Rn must not be PC

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

94

 Rm must not be SP and must not be PC

 Rt can be SP only for word loads and word stores

 Rt can be PC only for word loads.

When Rt is PC in a word load instruction:

 Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned

address

 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples

STR R0, [R5, R1] ; Store value of R0 into an address equal to
; sum of R5 and R1

LDRSB R0, [R5, R1, LSL #1] ; Read byte value from an address equal to
; sum of R5 and two times R1, sign extended it
; to a word value and put it in R0

STR R0, [R1, R2, LSL #2] ; Stores R0 to an address equal to sum of R1
; and four times R2

95SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.4.4 LDR and STR, Unprivileged

Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset

where:

op is one of:

LDR Load Register.

STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.

Operation

These load and store instructions perform the same function as the memory access instructions with immediate

offset, see “LDR and STR, Immediate Offset” . The difference is that these instructions have only unprivileged

access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access

instructions with immediate offset.

Restrictions

In these instructions:

 Rn must not be PC

 Rt must not be SP and must not be PC.

Condition Flags

These instructions do not change the flags.

Examples

STRBTEQ R4, [R7] ; Conditionally store least significant byte in
; R4 to an address in R7, with unprivileged access

LDRHT R2, [R2, #8] ; Load halfword value from an address equal to
; sum of R2 and 8 into R2, with unprivileged access

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

96

11.6.4.5 LDR, PC-relative

Load register from memory.

Syntax

LDR{type}{cond} Rt, label
LDRD{cond} Rt, Rt2, label ; Load two words

where:

type is one of:

B unsigned byte, zero extend to 32 bits.

SB signed byte, sign extend to 32 bits.

H unsigned halfword, zero extend to 32 bits.

SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .

Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative Expressions” .

Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label

or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either

be signed or unsigned. See “Address Alignment” .

label must be within a limited range of the current instruction. The table below shows the possible offsets between

label and the PC.

 The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection” .

Restrictions

In these instructions:

 Rt can be SP or PC only for word loads

 Rt2 must not be SP and must not be PC

 Rt must be different from Rt2.

Table 11-19. Offset Ranges

Instruction Type Offset Range

Word, halfword, signed halfword, byte, signed byte -4095 to 4095

Two words -1020 to 1020

97SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

When Rt is PC in a word load instruction:

 Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned

address

 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples

LDR R0, LookUpTable ; Load R0 with a word of data from an address
; labelled as LookUpTable

LDRSB R7, localdata ; Load a byte value from an address labelled
; as localdata, sign extend it to a word
; value, and put it in R7

11.6.4.6 LDM and STM

Load and Store Multiple registers.

Syntax

op{addr_mode}{cond} Rn{!}, reglist

where:

op is one of:

LDM Load Multiple registers.

STM Store Multiple registers.

addr_mode is any one of the following:

IA Increment address After each access. This is the default.

DB Decrement address Before each access.

cond is an optional condition code, see “Conditional Execution” .

Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.

If ! is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It

can contain register ranges. It must be comma separated if it contains more

than one register or register range, see “Examples” .

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending

stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending

stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte

intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in

order of increasing register numbers, with the lowest numbered register using the lowest memory address and the

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

98

highest number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4

* (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals

ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of

decreasing register numbers, with the highest numbered register using the highest memory address and the

lowest number register using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 *

(n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” for details.

Restrictions

In these instructions:

 Rn must not be PC

 reglist must not contain SP

 In any STM instruction, reglist must not contain PC

 In any LDM instruction, reglist must not contain PC if it contains LR

 reglist must not contain Rn if the writeback suffix is specified.

When PC is in reglist in an LDM instruction:

 Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-

aligned address

 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples

LDM R8,{R0,R2,R9} ; LDMIA is a synonym for LDM
STMDB R1!,{R3-R6,R11,R12}

Incorrect Examples

STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list

99SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.4.7 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

Syntax

PUSH{cond} reglist
POP{cond} reglist

where:

cond is an optional condition code, see “Conditional Execution” .

reglist is a non-empty list of registers, enclosed in braces. It can contain register

ranges. It must be comma separated if it contains more than one register or

register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based

on SP, and with the final address for the access written back to the SP. PUSH and POP are the preferred

mnemonics in these cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered

register using the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register

using the lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.

Restrictions

In these instructions:

 reglist must not contain SP

 For the PUSH instruction, reglist must not contain PC

 For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

 Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-

aligned address

 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples

PUSH {R0,R4-R7}
PUSH {R2,LR}
POP {R0,R10,PC}

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

100

11.6.4.8 LDREX and STREX

Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]
STREXH{cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address.

The address used in any Store-Exclusive instruction must be the same as the address in the most recently

executed Load-exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same

data size as the value loaded by the preceding Load-exclusive instruction. This means software must always use a

Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see

“Synchronization Primitives” .

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the

store, it writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is

guaranteed that no other process in the system has accessed the memory location between the Load-exclusive

and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-

Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding

Load-Exclusive instruction is unpredictable.

Restrictions

In these instructions:

 Do not use PC

 Do not use SP for Rd and Rt

 For STREX, Rd must be different from both Rt and Rn

 The value of offset must be a multiple of four in the range 0–1020.

Condition Flags

These instructions do not change the flags.

Examples

 MOV R1, #0x1 ; Initialize the ‘lock taken’ value try
LDREX R0, [LockAddr] ; Load the lock value
CMP R0, #0 ; Is the lock free?

101SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

ITT EQ ; IT instruction for STREXEQ and CMPEQ
STREXEQ R0, R1, [LockAddr] ; Try and claim the lock
CMPEQ R0, #0 ; Did this succeed?
BNE try ; No – try again
.... ; Yes – we have the lock

11.6.4.9 CLREX

Clear Exclusive.

Syntax

CLREX{cond}

where:

cond is an optional condition code, see “Conditional Execution” .

Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write a 1 to its destination register and fail

to perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception

occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization

operation.

See “Synchronization Primitives” for more information.

Condition Flags

These instructions do not change the flags.

Examples

CLREX

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

102

11.6.5 General Data Processing Instructions

The table below shows the data processing instructions.

Table 11-20. Data Processing Instructions

Mnemonic Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right

BIC Bit Clear

CLZ Count leading zeros

CMN Compare Negative

CMP Compare

EOR Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

MOV Move

MOVT Move Top

MOVW Move 16-bit constant

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword

REVSH Reverse byte order in bottom halfword and sign extend

ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADD8 Signed Add 8

SASX Signed Add and Subtract with Exchange

SSAX Signed Subtract and Add with Exchange

SBC Subtract with Carry

SHADD16 Signed Halving Add 16

SHADD8 Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange

SHSAX Signed Halving Subtract and Add with Exchange

103SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

SHSUB16 Signed Halving Subtract 16

SHSUB8 Signed Halving Subtract 8

SSUB16 Signed Subtract 16

SSUB8 Signed Subtract 8

SUB Subtract

SUBW Subtract

TEQ Test Equivalence

TST Test

UADD16 Unsigned Add 16

UADD8 Unsigned Add 8

UASX Unsigned Add and Subtract with Exchange

USAX Unsigned Subtract and Add with Exchange

UHADD16 Unsigned Halving Add 16

UHADD8 Unsigned Halving Add 8

UHASX Unsigned Halving Add and Subtract with Exchange

UHSAX Unsigned Halving Subtract and Add with Exchange

UHSUB16 Unsigned Halving Subtract 16

UHSUB8 Unsigned Halving Subtract 8

USAD8 Unsigned Sum of Absolute Differences

USADA8 Unsigned Sum of Absolute Differences and Accumulate

USUB16 Unsigned Subtract 16

USUB8 Unsigned Subtract 8

Table 11-20. Data Processing Instructions (Continued)

Mnemonic Description

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

104

11.6.5.1 ADD, ADC, SUB, SBC, and RSB

Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax

op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #imm12 ; ADD and SUB only

where:

op is one of:

ADD Add.

ADC Add with Carry.

SUB Subtract.

SBC Subtract with Carry.

RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the

operation, see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the

options.

imm12 is any value in the range 0–4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is

reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide

range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.

See also “ADR” .

Note: ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax that uses

the imm12 operand.

Restrictions

In these instructions:

 Operand2 must not be SP and must not be PC

 Rd can be SP only in ADD and SUB, and only with the additional restrictions:

̶ Rn must also be SP

̶ Any shift in Operand2 must be limited to a maximum of 3 bits using LSL

 Rn can be SP only in ADD and SUB

 Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:

̶ The user must not specify the S suffix

̶ Rm must not be PC and must not be SP

105SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

̶ If the instruction is conditional, it must be the last instruction in the IT block

 With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only

with the additional restrictions:

̶ The user must not specify the S suffix

̶ The second operand must be a constant in the range 0 to 4095.

̶ Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to 0b00

before performing the calculation, making the base address for the calculation word-aligned.

̶ Note: To generate the address of an instruction, the constant based on the value of the PC must be

adjusted. ARM recommends to use the ADR instruction instead of ADD or SUB with Rn equal to the

PC, because the assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

 Bit[0] of the value written to the PC is ignored

 A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition Flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

Examples

ADD R2, R1, R3 ; Sets the flags on the result
SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
RSB R4, R4, #1280 ; Only executed if C flag set and Z
ADCHI R11, R0, R3 ; flag clear.

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit

integer contained in R0 and R1, and place the result in R4 and R5.

64-bit Addition Example

ADDS R4, R0, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a

96-bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the

result in R6, R9, and R2.

96-bit Subtraction Example

SUBS R6, R6, R9 ; subtract the least significant words
SBCS R9, R2, R1 ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the most significant words with carry

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

106

11.6.5.2 AND, ORR, EOR, BIC, and ORN

Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax

op{S}{cond} {Rd,} Rn, Operand2

where:

op is one of:

AND logical AND.

ORR logical OR, or bit set.

EOR logical Exclusive OR.

BIC logical AND NOT, or bit clear.

ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the

operation, see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the

options.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn

and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in

the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in

the value of Operand2.

Restrictions

Do not use SP and do not use PC.

Condition Flags

If S is specified, these instructions:

 Update the N and Z flags according to the result

 Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

 Do not affect the V flag.

Examples

AND R9, R2, #0xFF00
ORREQ R2, R0, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC R0, R1, #0xab
ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

107SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.3 ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax

op{S}{cond} Rd, Rm, Rs
op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm

where:

op is one of:

ASR Arithmetic Shift Right.

LSL Logical Shift Left.

LSR Logical Shift Right.

ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the

operation, see “Conditional Execution” .

Rd is the destination register.

Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.

n is the shift length. The range of shift length depends on the instruction:

ASR shift length from 1 to 32

LSL shift length from 0 to 31

LSR shift length from 1 to 32

ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by

constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on

what result is generated by the different instructions, see “Shift Operations” .

Restrictions

Do not use SP and do not use PC.

Condition Flags

If S is specified:

 These instructions update the N and Z flags according to the result

 The C flag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations” .

Examples

ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
SLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits
ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6
RRX R4, R5 ; Rotate right with extend.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

108

11.6.5.4 CLZ

Count Leading Zeros.

Syntax

CLZ{cond} Rd, Rm

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rm is the operand register.

Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result

value is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.

Condition Flags

This instruction does not change the flags.

Examples

CLZ R4,R9
CLZNE R2,R3

109SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.5 CMP and CMN

Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand2
CMN{cond} Rn, Operand2

where:

cond is an optional condition code, see “Conditional Execution” .

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the

options.

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result,

but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS

instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS instruction,

except that the result is discarded.

Restrictions

In these instructions:
 Do not use PC

 Operand2 must not be SP.

Condition Flags

These instructions update the N, Z, C and V flags according to the result.

Examples

CMP R2, R9
CMN R0, #6400
CMPGT SP, R7, LSL #2

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

110

11.6.5.6 MOV and MVN

Move and Move NOT.

Syntax

MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #imm16
MVN{S}{cond} Rd, Operand2

where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the

operation, see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the

options.

imm16 is any value in the range 0–65535.

Operation

The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the

corresponding shift instruction:

 ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n

 LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #n if n != 0

 LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n

 ROR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n

 RRX{S}{cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:

 MOV{S}{cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs

 MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs

 MOV{S}{cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs

 MOV{S}{cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs

See “ASR, LSL, LSR, ROR, and RRX” .

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and

places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.

Restrictions

SP and PC only can be used in the MOV instruction, with the following restrictions:

 The second operand must be a register without shift

 The S suffix must not be specified.

When Rd is PC in a MOV instruction:

 Bit[0] of the value written to the PC is ignored

 A branch occurs to the address created by forcing bit[0] of that value to 0.

 Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX

instruction to branch for software portability to the ARM instruction set.

Condition Flags

111SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

If S is specified, these instructions:

 Update the N and Z flags according to the result

 Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

 Do not affect the V flag.

Examples

MOVS R11, #0x000B ; Write value of 0x000B to
R11, flags get updated

MOV R1, #0xFA05 ; Write value of 0xFA05 to
R1, flags are not updated

MOVS R10, R12 ; Write value in R12 to R10,
flags get updated

MOV R3, #23 ; Write value of 23 to R3
MOV R8, SP ; Write value of stack pointer to R8
MVNS R2, #0xF ; Write value of 0xFFFFFFF0 (bitwise inverse of 0xF)

; to the R2 and update flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

112

11.6.5.7 MOVT

Move Top.

Syntax

MOVT{cond} Rd, #imm16

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

imm16 is a 16-bit immediate constant.

Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write

does not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower halfword
; and APSR are unchanged.

113SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.8 REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

Syntax

op{cond} Rd, Rn

where:

op is any of:

REV Reverse byte order in a word.

REV16 Reverse byte order in each halfword independently.

REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.

RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the register holding the operand.

Operation

Use these instructions to change endianness of data:

REV converts either:

 32-bit big-endian data into little-endian data

 32-bit little-endian data into big-endian data.

REV16 converts either:

 16-bit big-endian data into little-endian data

 16-bit little-endian data into big-endian data.

REVSH converts either:

 16-bit signed big-endian data into 32-bit signed little-endian data

 16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

REV R3, R7; Reverse byte order of value in R7 and write it to R3
REV16 R0, R0; Reverse byte order of each 16-bit halfword in R0
REVSH R0, R5; Reverse Signed Halfword
REVHS R3, R7; Reverse with Higher or Same condition
RBIT R7, R8; Reverse bit order of value in R8 and write the result to R7.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

114

11.6.5.9 SADD16 and SADD8

Signed Add 16 and Signed Add 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

op is any of:

SADD16 Performs two 16-bit signed integer additions.

SADD8 Performs four 8-bit signed integer additions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel:

The SADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Writes the result in the corresponding halfwords of the destination register.

The SADD8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

Writes the result in the corresponding bytes of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SADD16 R1, R0 ; Adds the halfwords in R0 to the corresponding
 ; halfwords of R1 and writes to corresponding halfword
 ; of R1.

SADD8 R4, R0, R5 ; Adds bytes of R0 to the corresponding byte in R5 and
; writes to the corresponding byte in R4.

115SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.10 SHADD16 and SHADD8

Signed Halving Add 16 and Signed Halving Add 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

op is any of:

SHADD16 Signed Halving Add 16.

SHADD8 Signed Halving Add 8.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the

destination register:

The SHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halfword results in the destination register.

The SHADDB8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SHADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1
 ; and writes halved result to corresponding halfword in
 ; R1

SHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes halved result to corresponding byte in R4.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

116

11.6.5.11 SHASX and SHSAX

Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax

op{cond} {Rd}, Rn, Rm

where:

op is any of:

SHASX Add and Subtract with Exchange and Halving.

SHSAX Subtract and Add with Exchange and Halving.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to

the right causing a divide by two, or halving.

3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit

to the right causing a divide by two, or halving.

The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit

to the right causing a divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second operand.

4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to

the right causing a divide by two, or halving.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2
; and writes halved result to top halfword of R7
; Subtracts top halfword of R2 from bottom halfword of
 ; R4 and writes halved result to bottom halfword of R7

SHSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword
 ; of R3 and writes halved result to top halfword of R0
 ; Adds top halfword of R5 to bottom halfword of R3 and
 ; writes halved result to bottom halfword of R0.

117SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.12 SHSUB16 and SHSUB8

Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

op is any of:

SHSUB16 Signed Halving Subtract 16.

SHSUB8 Signed Halving Subtract 8.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the

destination register:

The SHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halved halfword results in the destination register.

The SHSUBB8 instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first operand,

2. Shuffles the result by one bit to the right, halving the data,

3. Writes the corresponding signed byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SHSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword
 ; of R1 and writes to corresponding halfword of R1

SHSUB8 R4, R0, R5 ; Subtracts bytes of R0 from corresponding byte in R5,
 ; and writes to corresponding byte in R4.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

118

11.6.5.13 SSUB16 and SSUB8

Signed Subtract 16 and Signed Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

op is any of:

SSUB16 Performs two 16-bit signed integer subtractions.

SSUB8 Performs four 8-bit signed integer subtractions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

Use these instructions to change endianness of data:

The SSUB16 instruction:

1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand

2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.

The SSUB8 instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first operand

2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword
; of R1 and writes to corresponding halfword of R1

SSUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in
; R0, and writes to corresponding byte of R4.

119SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.14 SASX and SSAX

Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax

op{cond} {Rd}, Rm, Rn

where:

op is any of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SASX instruction:

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.

2. Writes the signed result of the addition to the top halfword of the destination register.

3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first

operand.

4. Writes the signed result of the subtraction to the bottom halfword of the destination register.

The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first
operand.

2. Writes the signed result of the addition to the bottom halfword of the destination register.

3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.

4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SASX R0, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
; writes to top halfword of R0
; Subtracts bottom halfword of R5 from top halfword of R4
; and writes to bottom halfword of R0

SSAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
 ; and writes to bottom halfword of R7
 ; Adds top halfword of R3 with bottom halfword of R2 and
 ; writes to top halfword of R7.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

120

11.6.5.15 TST and TEQ

Test bits and Test Equivalence.

Syntax

TST{cond} Rn, Operand2
TEQ{cond} Rn, Operand2

where

cond is an optional condition code, see “Conditional Execution” .

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the

options.

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the

result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the

same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1

and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2.

This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the

sign bits of the two operands.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions:

 Update the N and Z flags according to the result

 Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

 Do not affect the V flag.

Examples

TST R0, #0x3F8 ; Perform bitwise AND of R0 value to 0x3F8,
; APSR is updated but result is discarded

TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
; value in R9, APSR is updated but result is discarded.

121SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.16 UADD16 and UADD8

Unsigned Add 16 and Unsigned Add 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

op is any of:

UADD16 Performs two 16-bit unsigned integer additions.

UADD8 Performs four 8-bit unsigned integer additions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to add 16- and 8-bit unsigned data:

The UADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The UADD16 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Writes the unsigned result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

UADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1,
; writes to corresponding halfword of R1

UADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
; writes to corresponding byte in R4.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

122

11.6.5.17 UASX and USAX

Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax

op{cond} {Rd}, Rn, Rm

where:

op is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The UASX instruction:

1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.

2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.

3. Adds the top halfword of the first operand with the bottom halfword of the second operand.

4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:

1. Adds the bottom halfword of the first operand with the top halfword of the second operand.

2. Writes the unsigned result of the addition to the bottom halfword of the destination register.

3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.

4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UASX R0, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
; writes to top halfword of R0

 ; Subtracts bottom halfword of R5 from top halfword of R0
 ; and writes to bottom halfword of R0

USAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
 ; and writes to bottom halfword of R7
; Adds top halfword of R3 to bottom halfword of R2 and

 ; writes to top halfword of R7.

123SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.18 UHADD16 and UHADD8

Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

op is any of:

UHADD16 Unsigned Halving Add 16.

UHADD8 Unsigned Halving Add 8.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the register holding the first operand.

Rm is the register holding the second operand.

Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the

destination register:

The UHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Shuffles the halfword result by one bit to the right, halving the data.

3. Writes the unsigned results to the corresponding halfword in the destination register.

The UHADD8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the byte result by one bit to the right, halving the data.

3. Writes the unsigned results in the corresponding byte in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding halfword of R3
 ; and writes halved result to corresponding halfword
 ; in R7

UHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes halved result to corresponding byte in R4.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

124

11.6.5.19 UHASX and UHSAX

Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax

op{cond} {Rd}, Rn, Rm

where:

op is one of:

UHASX Add and Subtract with Exchange and Halving.

UHSAX Subtract and Add with Exchange and Halving.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the addition to the top halfword of the destination register.

4. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination register.

The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the subtraction in the top halfword of the destination register.

4. Adds the bottom halfword of the first operand with the top halfword of the second operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the addition to the bottom halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2
; and writes halved result to top halfword of R7
; Subtracts top halfword of R2 from bottom halfword of
; R7 and writes halved result to bottom halfword of R7

UHSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
 ; R3 and writes halved result to top halfword of R0
 ; Adds top halfword of R5 to bottom halfword of R3 and
; writes halved result to bottom halfword of R0.

125SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.20 UHSUB16 and UHSUB8

Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm

where:

op is any of:

UHSUB16 Performs two unsigned 16-bit integer additions, halves the results,

 and writes the results to the destination register.

UHSUB8 Performs four unsigned 8-bit integer additions, halves the results, and

writes the results to the destination register.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the

destination register:

The UHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.

2. Shuffles each halfword result to the right by one bit, halving the data.

3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.

The UHSUB8 instruction:

1. Subtracts each byte of second operand from the corresponding byte of the first operand.

2. Shuffles each byte result by one bit to the right, halving the data.

3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

UHSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword of
 ; R1 and writes halved result to corresponding halfword in R1

UHSUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0 and
 ; writes halved result to corresponding byte in R4.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

126

11.6.5.21 SEL

Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the

values of the GE flags.

Syntax

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

where:

c, q are standard assembler syntax fields.

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

The SEL instruction:

1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second

operand register.

Restrictions

None.

Condition Flags

These instructions do not change the flags.

Examples

SADD16 R0, R1, R2 ; Set GE bits based on result
SEL R0, R0, R3 ; Select bytes from R0 or R3, based on GE.

127SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.22 USAD8

Unsigned Sum of Absolute Differences

Syntax

USAD8{cond}{Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

The USAD8 instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Adds the absolute values of the differences together.

3. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

USAD8 R1, R4, R0 ; Subtracts each byte in R0 from corresponding byte of R4
 ; adds the differences and writes to R1

USAD8 R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0,
 ; adds the differences and writes to R0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

128

11.6.5.23 USADA8

Unsigned Sum of Absolute Differences and Accumulate

Syntax

USADA8{cond}{Rd,} Rn, Rm, Ra

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Ra is the register that contains the accumulation value.

Operation

The USADA8 instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Adds the unsigned absolute differences together.

3. Adds the accumulation value to the sum of the absolute differences.

4. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

USADA8 R1, R0, R6 ; Subtracts bytes in R0 from corresponding halfword of R1
; adds differences, adds value of R6, writes to R1

USADA8 R4, R0, R5, R2 ; Subtracts bytes of R5 from corresponding byte in R0
 ; adds differences, adds value of R2 writes to R4.

129SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.5.24 USUB16 and USUB8

Unsigned Subtract 16 and Unsigned Subtract 8

Syntax

op{cond}{Rd,} Rn, Rm

where

op is any of:

USUB16 Unsigned Subtract 16.

USUB8 Unsigned Subtract 8.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of the first
operand register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The USUB8 instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the first operand
register.

2. Writes the unsigned byte result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

USUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword of R1
 ; and writes to corresponding halfword in R1USUB8 R4, R0, R5
; Subtracts bytes of R5 from corresponding byte in R0 and

 ; writes to the corresponding byte in R4.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

130

11.6.6 Multiply and Divide Instructions

The table below shows the multiply and divide instructions.

Table 11-21. Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result

MLS Multiply and Subtract, 32-bit result

MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX Signed Multiply Accumulate Dual

SMLAL Signed Multiply with Accumulate (32 × 32 + 64), 64-bit result

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)

SMLALD, SMLALDX Signed Multiply Accumulate Long Dual

SMLAW[B|T] Signed Multiply Accumulate (word by halfword)

SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX Signed Dual Multiply Add

SMUL[B,T] Signed Multiply (word by halfword)

SMMUL, SMMULR Signed Most Significant Word Multiply

SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT Signed Multiply (word by halfword)

SMUSD, SMUSDX Signed Dual Multiply Subtract

UDIV Unsigned Divide

UMAAL Unsigned Multiply Accumulate Accumulate Long (32 × 32 + 32 + 32), 64-bit result

UMLAL Unsigned Multiply with Accumulate (32 × 32 + 64), 64-bit result

UMULL Unsigned Multiply (32 × 32), 64-bit result

131SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.1 MUL, MLA, and MLS

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.

Syntax

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

where:

cond is an optional condition code, see “Conditional Execution” .

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the

operation, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in

Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least

significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and

places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.

Restrictions

In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:

 Rd, Rn, and Rm must all be in the range R0 to R7

 Rd must be the same as Rm

 The cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:

 Updates the N and Z flags according to the result

 Does not affect the C and V flags.

Examples

MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) + R5
MULS R0, R2, R2 ; Multiply with flag update, R0 = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

132

11.6.6.2 UMULL, UMAAL, UMLAL

Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

where:

op is one of:

UMULL Unsigned Long Multiply.

UMAAL Unsigned Long Multiply with Accumulate Accumulate.

UMLAL Unsigned Long Multiply, with Accumulate.

cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMAAL, UMLAL and UMLAL they also hold

the accumulating value.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.

The UMULL instruction:

 Multiplies the two unsigned integers in the first and second operands.

 Writes the least significant 32 bits of the result in RdLo.

 Writes the most significant 32 bits of the result in RdHi.

The UMAAL instruction:

 Multiplies the two unsigned 32-bit integers in the first and second operands.

 Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.

 Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.

 Writes the top 32-bits of the result to RdHi.

 Writes the lower 32-bits of the result to RdLo.

The UMLAL instruction:

 Multiplies the two unsigned integers in the first and second operands.

 Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.

 Writes the result back to RdHi and RdLo.

Restrictions

In these instructions:

 Do not use SP and do not use PC.

 RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UMULL R0, R4, R5, R6 ; Multiplies R5 and R6, writes the top 32 bits to R4
 ; and the bottom 32 bits to R0

UMAAL R3, R6, R2, R7 ; Multiplies R2 and R7, adds R6, adds R3, writes the
; top 32 bits to R6, and the bottom 32 bits to R3

UMLAL R2, R1, R3, R5 ; Multiplies R5 and R3, adds R1:R2, writes to R1:R2.

133SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.3 SMLA and SMLAW

Signed Multiply Accumulate (halfwords).

Syntax

op{XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm, Ra

where:

op is one of:

SMLA Signed Multiply Accumulate Long (halfwords).

X and Y specifies which half of the source registers Rn and Rm are used as the

first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0], of Rn is used.

If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used

SMLAW Signed Multiply Accumulate (word by halfword).

Y specifies which half of the source register Rm is used as the second multiply

operand.

If Y is T, then the top halfword, bits [31:16] of Rm is used.

If Y is B, then the bottom halfword, bits [15:0] of Rm is used.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The SMALBB, SMLABT, SMLATB, SMLATT instructions:

 Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.

 Adds the value in Ra to the resulting 32-bit product.

 Writes the result of the multiplication and addition in Rd.

The non-specified halfwords of the source registers are ignored.

The SMLAWB and SMLAWT instructions:

 Multiply the 32-bit signed values in Rn with:

̶ The top signed halfword of Rm, T instruction suffix.

̶ The bottom signed halfword of Rm, B instruction suffix.

 Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product

 Writes the result of the multiplication and addition in Rd.

The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No

overflow can occur during the multiplication.

Restrictions

In these instructions, do not use SP and do not use PC.

Condition Flags

If an overflow is detected, the Q flag is set.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

134

Examples

SMLABB R5, R6, R4, R1 ; Multiplies bottom halfwords of R6 and R4, adds
 ; R1 and writes to R5

SMLATB R5, R6, R4, R1 ; Multiplies top halfword of R6 with bottom halfword
; of R4, adds R1 and writes to R5

SMLATT R5, R6, R4, R1 ; Multiplies top halfwords of R6 and R4, adds
; R1 and writes the sum to R5

SMLABT R5, R6, R4, R1 ; Multiplies bottom halfword of R6 with top halfword
 ; of R4, adds R1 and writes to R5

SMLABT R4, R3, R2 ; Multiplies bottom halfword of R4 with top halfword of
 ; R3, adds R2 and writes to R4

SMLAWB R10, R2, R5, R3 ; Multiplies R2 with bottom halfword of R5, adds
 ; R3 to the result and writes top 32-bits to R10

SMLAWT R10, R2, R1, R5 ; Multiplies R2 with top halfword of R1, adds R5
; and writes top 32-bits to R10.

135SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.4 SMLAD

Signed Multiply Accumulate Long Dual

Syntax

op{X}{cond} Rd, Rn, Rm, Ra ;

where:

op is one of:

SMLAD Signed Multiply Accumulate Dual.

SMLADX Signed Multiply Accumulate Dual Reverse.

X specifies which halfword of the source register Rn is used as the multiply

operand.

If X is omitted, the multiplications are bottom × bottom and top × top.

If X is present, the multiplications are bottom × top and top × bottom.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register holding the values to be multiplied.

Rm the second operand register.

Ra is the accumulate value.

Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and

SMLADX instructions:

 If X is not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the

bottom signed halfword values in Rn with the bottom signed halfword of Rm.

 Or if X is present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and

the bottom signed halfword values in Rn with the top signed halfword of Rm.

 Add both multiplication results to the signed 32-bit value in Ra.

 Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SMLAD R10, R2, R1, R5 ; Multiplies two halfword values in R2 with
; corresponding halfwords in R1, adds R5 and

 ; writes to R10
SMLALDX R0, R2, R4, R6 ; Multiplies top halfword of R2 with bottom

; halfword of R4, multiplies bottom halfword of R2
; with top halfword of R4, adds R6 and writes to
; R0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

136

11.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate

Long Dual.

Syntax

op{cond} RdLo, RdHi, Rn, Rm
op{XY}{cond} RdLo, RdHi, Rn, Rm
op{X}{cond} RdLo, RdHi, Rn, Rm

where:

op is one of:

MLAL Signed Multiply Accumulate Long.

SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).

X and Y specify which halfword of the source registers Rn and Rm are used as

the first and second multiply operand:

If X is B, then the bottom halfword, bits [15:0], of Rn is used.

If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual.

SMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the X is omitted, the multiplications are bottom × bottom and top × top.

If X is present, the multiplications are bottom × top and top × bottom.

cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers.

RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.

For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLA

LDX, they also hold the accumulating value.

Rn, Rm are registers holding the first and second operands.

Operation

The SMLAL instruction:

 Multiplies the two’s complement signed word values from Rn and Rm.

 Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.

 Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:

 Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

 Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.

 Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement

signed 16-bit integers. These instructions:

 If X is not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the

bottom signed halfword values of Rn with the bottom signed halfword of Rm.

 Or if X is present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and

the bottom signed halfword values of Rn with the top signed halfword of Rm.

137SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit

product.

 Write the 64-bit product in RdLo and RdHi.

Restrictions

In these instructions:

 Do not use SP and do not use PC.

 RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SMLAL R4, R5, R3, R8 ; Multiplies R3 and R8, adds R5:R4 and writes to
; R5:R4

SMLALBT R2, R1, R6, R7 ; Multiplies bottom halfword of R6 with top
 ; halfword of R7, sign extends to 32-bit, adds
; R1:R2 and writes to R1:R2

SMLALTB R2, R1, R6, R7 ; Multiplies top halfword of R6 with bottom
; halfword of R7,sign extends to 32-bit, adds R1:R2
; and writes to R1:R2

SMLALD R6, R8, R5, R1 ; Multiplies top halfwords in R5 and R1 and bottom
 ; halfwords of R5 and R1, adds R8:R6 and writes to
 ; R8:R6

SMLALDX R6, R8, R5, R1 ; Multiplies top halfword in R5 with bottom
; halfword of R1, and bottom halfword of R5 with
 ; top halfword of R1, adds R8:R6 and writes to
 ; R8:R6.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

138

11.6.6.6 SMLSD and SMLSLD

Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual

Syntax

op{X}{cond} Rd, Rn, Rm, Ra

where:

op is one of:

SMLSD Signed Multiply Subtract Dual.

SMLSDX Signed Multiply Subtract Dual Reversed.

SMLSLD Signed Multiply Subtract Long Dual.

SMLSLDX Signed Multiply Subtract Long Dual Reversed.

SMLAW Signed Multiply Accumulate (word by halfword).

If X is present, the multiplications are bottom × top and top × bottom.

If the X is omitted, the multiplications are bottom × bottom and top × top.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Ra is the register holding the accumulate value.

Operation

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This

instruction:

 Optionally rotates the halfwords of the second operand.

 Performs two signed 16 × 16-bit halfword multiplications.

 Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.

 Adds the signed accumulate value to the result of the subtraction.

 Writes the result of the addition to the destination register.

The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.

This instruction:

 Optionally rotates the halfwords of the second operand.

 Performs two signed 16 × 16-bit halfword multiplications.

 Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.

 Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.

 Writes the 64-bit result of the addition to the RdHi and RdLo.

Restrictions

In these instructions:

 Do not use SP and do not use PC.

Condition Flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the

multiplications or subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.

139SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Examples

SMLSD R0, R4, R5, R6 ; Multiplies bottom halfword of R4 with bottom
; halfword of R5, multiplies top halfword of R4
; with top halfword of R5, subtracts second from
; first, adds R6, writes to R0

SMLSDX R1, R3, R2, R0 ; Multiplies bottom halfword of R3 with top
; halfword of R2, multiplies top halfword of R3
; with bottom halfword of R2, subtracts second from
; first, adds R0, writes to R1

SMLSLD R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with bottom
; halfword of R2, multiplies top halfword of R6
; with top halfword of R2, subtracts second from
; first, adds R6:R3, writes to R6:R3

SMLSLDX R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with top
; halfword of R2, multiplies top halfword of R6
; with bottom halfword of R2, subtracts second from
; first, adds R6:R3, writes to R6:R3.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

140

11.6.6.7 SMMLA and SMMLS

Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax

op{R}{cond} Rd, Rn, Rm, Ra

where:

op is one of:

SMMLA Signed Most Significant Word Multiply Accumulate.

SMMLS Signed Most Significant Word Multiply Subtract.

If the X is omitted, the multiplications are bottom × bottom and top × top.

R is a rounding error flag. If R is specified, the result is rounded instead of being

truncated. In this case the constant 0x80000000 is added to the product before

the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second multiply operands.

Ra is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLA instruction:

 Multiplies the values in Rn and Rm.

 Optionally rounds the result by adding 0x80000000.

 Extracts the most significant 32 bits of the result.

 Adds the value of Ra to the signed extracted value.

 Writes the result of the addition in Rd.

The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLS instruction:

 Multiplies the values in Rn and Rm.

 Optionally rounds the result by adding 0x80000000.

 Extracts the most significant 32 bits of the result.

 Subtracts the extracted value of the result from the value in Ra.

 Writes the result of the subtraction in Rd.

Restrictions

In these instructions:

 Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

141SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Examples

SMMLA R0, R4, R5, R6 ; Multiplies R4 and R5, extracts top 32 bits, adds
 ; R6, truncates and writes to R0

SMMLAR R6, R2, R1, R4 ; Multiplies R2 and R1, extracts top 32 bits, adds
; R4, rounds and writes to R6

SMMLSR R3, R6, R2, R7 ; Multiplies R6 and R2, extracts top 32 bits,
; subtracts R7, rounds and writes to R3

SMMLS R4, R5, R3, R8 ; Multiplies R5 and R3, extracts top 32 bits,
; subtracts R8, truncates and writes to R4.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

142

11.6.6.8 SMMUL

Signed Most Significant Word Multiply

Syntax

op{R}{cond} Rd, Rn, Rm

where:

op is one of:

SMMUL Signed Most Significant Word Multiply.

R is a rounding error flag. If R is specified, the result is rounded instead of being

truncated. In this case the constant 0x80000000 is added to the product before

the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The

SMMUL instruction:

 Multiplies the values from Rn and Rm.

 Optionally rounds the result, otherwise truncates the result.

 Writes the most significant signed 32 bits of the result in Rd.

Restrictions

In this instruction:

 do not use SP and do not use PC.

Condition Flags

This instruction does not affect the condition code flags.

Examples

SMULL R0, R4, R5 ; Multiplies R4 and R5, truncates top 32 bits
 ; and writes to R0

SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
; and writes to R6.

143SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.9 SMUAD and SMUSD

Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax

op{X}{cond} Rd, Rn, Rm

where:

op is one of:

SMUAD Signed Dual Multiply Add.

SMUADX Signed Dual Multiply Add Reversed.

SMUSD Signed Dual Multiply Subtract.

SMUSDX Signed Dual Multiply Subtract Reversed.

If X is present, the multiplications are bottom × top and top × bottom.

If the X is omitted, the multiplications are bottom × bottom and top × top.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each

operand. This instruction:

 Optionally rotates the halfwords of the second operand.

 Performs two signed 16 × 16-bit multiplications.

 Adds the two multiplication results together.

 Writes the result of the addition to the destination register.

The SMUSD instruction interprets the values from the first and second operands as two’s complement signed

integers. This instruction:

 Optionally rotates the halfwords of the second operand.

 Performs two signed 16 × 16-bit multiplications.

 Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.

 Writes the result of the subtraction to the destination register.

Restrictions

In these instructions:

 Do not use SP and do not use PC.

Condition Flags

Sets the Q flag if the addition overflows. The multiplications cannot overflow.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

144

Examples

SMUAD R0, R4, R5 ; Multiplies bottom halfword of R4 with the bottom
; halfword of R5, adds multiplication of top halfword
 ; of R4 with top halfword of R5, writes to R0

SMUADX R3, R7, R4 ; Multiplies bottom halfword of R7 with top halfword
; of R4, adds multiplication of top halfword of R7
; with bottom halfword of R4, writes to R3

SMUSD R3, R6, R2 ; Multiplies bottom halfword of R4 with bottom halfword
; of R6, subtracts multiplication of top halfword of R6
; with top halfword of R3, writes to R3

SMUSDX R4, R5, R3 ; Multiplies bottom halfword of R5 with top halfword of
; R3, subtracts multiplication of top halfword of R5
 ; with bottom halfword of R3, writes to R4.

145SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.10 SMUL and SMULW

Signed Multiply (halfwords) and Signed Multiply (word by halfword)

Syntax

op{XY}{cond} Rd,Rn, Rm
op{Y}{cond} Rd. Rn, Rm

For SMULXY only:

op is one of:

SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as

the first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0] of Rn is used.

If X is T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the bot

tom halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW{Y} Signed Multiply (word by halfword).

Y specifies which halfword of the source register Rm is used as the second mul

tiply operand.

If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.

If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed

16-bit integers. These instructions:

 Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

 Writes the 32-bit result of the multiplication in Rd.

The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two

halfword 16-bit signed integers. These instructions:

 Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

 Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:

 Do not use SP and do not use PC.

 RdHi and RdLo must be different registers.

Examples

SMULBT R0, R4, R5 ; Multiplies the bottom halfword of R4 with the
 ; top halfword of R5, multiplies results and
 ; writes to R0

SMULBB R0, R4, R5 ; Multiplies the bottom halfword of R4 with the
; bottom halfword of R5, multiplies results and

 ; writes to R0
SMULTT R0, R4, R5 ; Multiplies the top halfword of R4 with the top

 ; halfword of R5, multiplies results and writes
 ; to R0

SMULTB R0, R4, R5 ; Multiplies the top halfword of R4 with the

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

146

; bottom halfword of R5, multiplies results and
 ; and writes to R0

SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
; extracts top 32 bits and writes to R4

SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of R3,
; extracts top 32 bits and writes to R4.

147SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.6.11 UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit

result.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

where:

op is one of:

UMULL Unsigned Long Multiply.

UMLAL Unsigned Long Multiply, with Accumulate.

SMULL Signed Long Multiply.

SMLAL Signed Long Multiply, with Accumulate.

cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accu

mulating value.

Rn, Rm are registers holding the operands.

Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and

places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers,

adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to

RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies

these integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the

result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies

these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result

back to RdHi and RdLo.

Restrictions

In these instructions:

 Do not use SP and do not use PC

 RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UMULL R0, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

148

11.6.6.12 SDIV and UDIV

Signed Divide and Unsigned Divide.

Syntax

SDIV{cond} {Rd,} Rn, Rm
UDIV{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SDIV R0, R2, R4 ; Signed divide, R0 = R2/R4
UDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1

149SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.7 Saturating Instructions

The table below shows the saturating instructions.

For signed n-bit saturation, this means that:

 If the value to be saturated is less than -2n-1, the result returned is -2n-1

 If the value to be saturated is greater than 2n-1-1, the result returned is 2n-1-1

 Otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation, this means that:

 If the value to be saturated is less than 0, the result returned is 0

 If the value to be saturated is greater than 2n-1, the result returned is 2n-1

 Otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the

instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, the

MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .

Table 11-22. Saturating Instructions

Mnemonic Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QSUB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange

QSAX Saturating Subtract and Add with Exchange

QDADD Saturating Double and Add

QDSUB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADD8 Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange

UQSAX Unsigned Saturating Subtract and Add with Exchange

UQSUB16 Unsigned Saturating Subtract 16

UQSUB8 Unsigned Saturating Subtract 8

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

150

11.6.7.1 SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

Syntax

op{cond} Rd, #n, Rm {, shift #s}

where:

op is one of:

SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 31 for USAT.

to 32 for SSAT

Rm is the register containing the value to saturate.

shift #s is an optional shift applied to Rm before saturating. It must be one of the

following:

ASR #s where s is in the range 1 to 31.

LSL #s where s is in the range 0 to 31.

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range

-2n–1
≤ x ≤ 2n–1-1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 ≤ x ≤ 2n-1.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit value and
; write it back to R7

USATNE R0, #7, R5 ; Conditionally saturate value in R5 as an
; unsigned 7 bit value and write it to R0.

151SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.7.2 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax

op{cond} Rd, #n, Rm

where:

op is one of:

SSAT16 Saturates a signed halfword value to a signed range.

USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit

position in n.

Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit

position in n.

Writes the results as two unsigned halfwords in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT16 R7, #9, R2 ; Saturates the top and bottom highwords of R2
; as 9-bit values, writes to corresponding halfword

 ; of R7
USAT16NE R0, #13, R5 ; Conditionally saturates the top and bottom

 ; halfwords of R5 as 13-bit values, writes to
 ; corresponding halfword of R0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

152

11.6.7.3 QADD and QSUB

Saturating Add and Saturating Subtract, signed.

Syntax

op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:

QADD Saturating 32-bit add.

QADD8 Saturating four 8-bit integer additions.

QADD16 Saturating two 16-bit integer additions.

QSUB Saturating 32-bit subtraction.

QSUB8 Saturating four 8-bit integer subtraction.

QSUB16 Saturating two 16-bit integer subtraction.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two, four or eight values from the first and second operands and then writes a

signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result to the signed

range -2n–1
≤ x ≤ 2n–1-1, where x is given by the number of bits applied in the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the

QADD and QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. The 8-bit

and 16-bit QADD and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of
; R2, saturates to 16 bits and writes to
; corresponding halfword of R7

QADD8 R3, R1, R6 ; Adds bytes of R1 to the corresponding bytes of R6,
 ; saturates to 8 bits and writes to corresponding
 ; byte of R3

QSUB16 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding
 ; halfword of R2, saturates to 16 bits, writes to
 ; corresponding halfword of R4

QSUB8 R4, R2, R5 ; Subtracts bytes of R5 from the corresponding byte
 ; in R2, saturates to 8 bits, writes to corresponding
 ; byte of R4.

153SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.7.4 QASX and QSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax

op{cond} {Rd}, Rm, Rn

where:

op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The QASX instruction:

1. Adds the top halfword of the source operand with the bottom halfword of the second operand.

2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215 – 1,

where x equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range

–215 ≤ x ≤ 215 – 1, where x equals 16, to the top halfword of the destination register.

The QSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Adds the bottom halfword of the source operand with the top halfword of the second operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range

–215 ≤ x ≤ 215 – 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215 – 1,

where x equals 16, to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,
 ; saturates to 16 bits, writes to top halfword of R7
; Subtracts top highword of R2 from bottom halfword of
; R4, saturates to 16 bits and writes to bottom halfword
; of R7

QSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
 ; R3, saturates to 16 bits, writes to top halfword of R0
 ; Adds bottom halfword of R3 to top halfword of R5,
 ; saturates to 16 bits, writes to bottom halfword of R0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

154

11.6.7.5 QDADD and QDSUB

Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax

op{cond} {Rd}, Rm, Rn

where:

op is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rm, Rn are registers holding the first and second operands.

Operation

The QDADD instruction:

 Doubles the second operand value.

 Adds the result of the doubling to the signed saturated value in the first operand.

 Writes the result to the destination register.

The QDSUB instruction:

 Doubles the second operand value.

 Subtracts the doubled value from the signed saturated value in the first operand.

 Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer range –

231 ≤ x ≤ 231– 1. If saturation occurs in either operation, it sets the Q flag in the APSR.

Restrictions

Do not use SP and do not use PC.

Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

Examples

QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
 ; saturates to 32 bits, writes to R7

QDSUB R0, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits
 ; from R5, saturates to 32 bits, writes to R0.

155SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.7.6 UQASX and UQSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, unsigned.

Syntax

op{cond} {Rd}, Rm, Rn

where:

type is one of:

UQASX Add and Subtract with Exchange and Saturate.

UQSAX Subtract and Add with Exchange and Saturate.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The UQASX instruction:

1. Adds the bottom halfword of the source operand with the top halfword of the second operand.

2. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range

0 ≤ x ≤ 216 – 1, where x equals 16, to the top halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 ≤ x ≤ 216 – 1, where

x equals 16, to the bottom halfword of the destination register.

The UQSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Adds the bottom halfword of the first operand with the top halfword of the second operand.

3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 ≤ x ≤ 216 – 1, where

x equals 16, to the top halfword of the destination register.

4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 ≤ x ≤ 216 – 1, where x

equals 16, to the bottom halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2,
; saturates to 16 bits, writes to top halfword of R7
 ; Subtracts top halfword of R2 from bottom halfword of
; R4, saturates to 16 bits, writes to bottom halfword of R7

UQSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of R3,
 ; saturates to 16 bits, writes to top halfword of R0
; Adds bottom halfword of R4 to top halfword of R5
; saturates to 16 bits, writes to bottom halfword of R0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

156

11.6.7.7 UQADD and UQSUB

Saturating Add and Saturating Subtract Unsigned.

Syntax

op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:

UQADD8 Saturating four unsigned 8-bit integer additions.

UQADD16 Saturating two unsigned 16-bit integer additions.

UDSUB8 Saturating four unsigned 8-bit integer subtractions.

UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the

destination register.

The UQADD16 instruction:

 Adds the respective top and bottom halfwords of the first and second operands.

 Saturates the result of the additions for each halfword in the destination register to the unsigned range

0 ≤ x ≤ 216-1, where x is 16.

The UQADD8 instruction:

 Adds each respective byte of the first and second operands.

 Saturates the result of the addition for each byte in the destination register to the unsigned range 0 ≤ x ≤ 28-

1, where x is 8.

The UQSUB16 instruction:

 Subtracts both halfwords of the second operand from the respective halfwords of the first operand.

 Saturates the result of the differences in the destination register to the unsigned range 0 ≤ x ≤ 216-1, where x

is 16.

The UQSUB8 instructions:

 Subtracts the respective bytes of the second operand from the respective bytes of the first operand.

 Saturates the results of the differences for each byte in the destination register to the unsigned range

0 ≤ x ≤ 28-1, where x is 8.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

157SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Examples

UQADD16 R7, R4, R2 ; Adds halfwords in R4 to corresponding halfword in R2,
; saturates to 16 bits, writes to corresponding halfword of R7

UQADD8 R4, R2, R5 ; Adds bytes of R2 to corresponding byte of R5, saturates
; to 8 bits, writes to corresponding bytes of R4

UQSUB16 R6, R3, R0 ; Subtracts halfwords in R0 from corresponding halfword
 ; in R3, saturates to 16 bits, writes to corresponding
 ; halfword in R6

UQSUB8 R1, R5, R6 ; Subtracts bytes in R6 from corresponding byte of R5,
 ; saturates to 8 bits, writes to corresponding byte of R1.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

158

11.6.8 Packing and Unpacking Instructions

The table below shows the instructions that operate on packing and unpacking data.

Table 11-23. Packing and Unpacking Instructions

Mnemonic Description

PKH Pack Halfword

SXTAB Extend 8 bits to 32 and add

SXTAB16 Dual extend 8 bits to 16 and add

SXTAH Extend 16 bits to 32 and add

SXTB Sign extend a byte

SXTB16 Dual extend 8 bits to 16 and add

SXTH Sign extend a halfword

UXTAB Extend 8 bits to 32 and add

UXTAB16 Dual extend 8 bits to 16 and add

UXTAH Extend 16 bits to 32 and add

UXTB Zero extend a byte

UXTB16 Dual zero extend 8 bits to 16 and add

UXTH Zero extend a halfword

159SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.8.1 PKHBT and PKHTB

Pack Halfword

Syntax

op{cond} {Rd}, Rn, Rm {, LSL #imm}
op{cond} {Rd}, Rn, Rm {, ASR #imm}

where:

op is one of:

PKHBT Pack Halfword, bottom and top with shift.

PKHTB Pack Halfword, top and bottom with shift.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register

Rm is the second operand register holding the value to be optionally shifted.

imm is the shift length. The type of shift length depends on the instruction:

For PKHBT

LSL a left shift with a shift length from 1 to 31, 0 means no shift.

For PKHTB

ASR an arithmetic shift right with a shift length from 1 to 32,

a shift of 32-bits is encoded as 0b00000.

Operation

The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the destination
register.

2. If shifted, the shifted value of the second operand is written to the top halfword of the destination register.

The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the destination register.

2. If shifted, the shifted value of the second operand is written to the bottom halfword of the destination register.

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

PKHBT R3, R4, R5 LSL #0 ; Writes bottom halfword of R4 to bottom halfword of
 ; R3, writes top halfword of R5, unshifted, to top
 ; halfword of R3

PKHTB R4, R0, R2 ASR #1 ; Writes R2 shifted right by 1 bit to bottom halfword
; of R4, and writes top halfword of R0 to top
 ; halfword of R4.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

160

11.6.8.2 SXT and UXT

Sign extend and Zero extend.

Syntax

op{cond} {Rd,} Rm {, ROR #n}
op{cond} {Rd}, Rm {, ROR #n}

where:

op is one of:

SXTB Sign extends an 8-bit value to a 32-bit value.

SXTH Sign extends a 16-bit value to a 32-bit value.

SXTB16 Sign extends two 8-bit values to two 16-bit values.

UXTB Zero extends an 8-bit value to a 32-bit value.

UXTH Zero extends a 16-bit value to a 32-bit value.

UXTB16 Zero extends two 8-bit values to two 16-bit values.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rm is the register holding the value to extend.

ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.

Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

̶ SXTB extracts bits[7:0] and sign extends to 32 bits.

̶ UXTB extracts bits[7:0] and zero extends to 32 bits.

̶ SXTH extracts bits[15:0] and sign extends to 32 bits.

̶ UXTH extracts bits[15:0] and zero extends to 32 bits.

̶ SXTB16 extracts bits[7:0] and sign extends to 16 bits,

and extracts bits [23:16] and sign extends to 16 bits.

̶ UXTB16 extracts bits[7:0] and zero extends to 16 bits,

and extracts bits [23:16] and zero extends to 16 bits.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom halfword of
; of result, sign extends to 32 bits and writes to R4

UXTB R3, R10 ; Extracts lowest byte of value in R10, zero extends, and
; writes to R3.

161SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.8.3 SXTA and UXTA

Signed and Unsigned Extend and Add

Syntax

op{cond} {Rd,} Rn, Rm {, ROR #n}
op{cond} {Rd,} Rn, Rm {, ROR #n}

where:

op is one of:

SXTAB Sign extends an 8-bit value to a 32-bit value and add.

SXTAH Sign extends a 16-bit value to a 32-bit value and add.

SXTAB16 Sign extends two 8-bit values to two 16-bit values and add.

UXTAB Zero extends an 8-bit value to a 32-bit value and add.

UXTAH Zero extends a 16-bit value to a 32-bit value and add.

UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register.

Rm is the register holding the value to rotate and extend.

ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

̶ SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.

̶ UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.

̶ SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.

̶ UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.

̶ SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits,

and extracts bits [23:16] from Rm and sign extends to 16 bits.

̶ UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits,

and extracts bits [23:16] from Rm and zero extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes the result in

Rd.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

162

Examples

SXTAH R4, R8, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
; halfword, sign extends to 32 bits, adds
; R8,and writes to R4

UXTAB R3, R4, R10 ; Extracts bottom byte of R10 and zero extends
; to 32 bits, adds R4, and writes to R3.

163SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.9 Bitfield Instructions

The table below shows the instructions that operate on adjacent sets of bits in registers or bitfields.

Table 11-24. Packing and Unpacking Instructions

Mnemonic Description

BFC Bit Field Clear

BFI Bit Field Insert

SBFX Signed Bit Field Extract

SXTB Sign extend a byte

SXTH Sign extend a halfword

UBFX Unsigned Bit Field Extract

UXTB Zero extend a byte

UXTH Zero extend a halfword

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

164

11.6.9.1 BFC and BFI

Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #lsb, #width
BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield. lsb must be in the range

0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-lsb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position lsb. Other bits in Rd are

unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit

position lsb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with

; bit 0 to bit 11 from R2.

165SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.9.2 SBFX and UBFX

Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax

SBFX{cond} Rd, Rn, #lsb, #width
UBFX{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield. lsb must be in the range

0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-lsb.

Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination

register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SBFX R0, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and sign
; extend to 32 bits and then write the result to R0.

UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and zero
; extend to 32 bits and then write the result to R8.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

166

11.6.9.3 SXT and UXT

Sign extend and Zero extend.

Syntax

SXTextend{cond} {Rd,} Rm {, ROR #n}
UXTextend{cond} {Rd}, Rm {, ROR #n}

where:

extend is one of:

B Extends an 8-bit value to a 32-bit value.

H Extends a 16-bit value to a 32-bit value.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rm is the register holding the value to extend.

ROR #n is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

̶ SXTB extracts bits[7:0] and sign extends to 32 bits.

̶ UXTB extracts bits[7:0] and zero extends to 32 bits.

̶ SXTH extracts bits[15:0] and sign extends to 32 bits.

̶ UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the lower
; halfword of the result and then sign extend to
; 32 bits and write the result to R4.

UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero
; extend it, and write the result to R3.

167SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.10 Branch and Control Instructions

The table below shows the branch and control instructions.

Table 11-25. Branch and Control Instructions

Mnemonic Description

B Branch

BL Branch with Link

BLX Branch indirect with Link

BX Branch indirect

CBNZ Compare and Branch if Non Zero

CBZ Compare and Branch if Zero

IT If-Then

TBB Table Branch Byte

TBH Table Branch Halfword

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

168

11.6.10.1 B, BL, BX, and BLX

Branch instructions.

Syntax

B{cond} label
BL{cond} label
BX{cond} Rm
BLX{cond} Rm

where:

B is branch (immediate).

BL is branch with link (immediate).

BX is branch indirect (register).

BLX is branch indirect with link (register).

cond is an optional condition code, see “Conditional Execution” .

label is a PC-relative expression. See “PC-relative Expressions” .

Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm

must be 1, but the address to branch to is created by changing bit[0] to 0.

Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:

 The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).

 The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch

instructions must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT” .

The table below shows the ranges for the various branch instructions.

 The .W suffix might be used to get the maximum branch range. See “Instruction Width Selection” .

Restrictions

The restrictions are:

 Do not use PC in the BLX instruction

 For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address

created by changing bit[0] to 0

 When any of these instructions is inside an IT block, it must be the last instruction of the IT block.

 Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer

branch range when it is inside an IT block.

Table 11-26. Branch Ranges

Instruction Branch Range

B label −16 MB to +16 MB

Bcond label (outside IT block) −1 MB to +1 MB

Bcond label (inside IT block) −16 MB to +16 MB

BL{cond} label −16 MB to +16 MB

BX{cond} Rm Any value in register

BLX{cond} Rm Any value in register

169SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Condition Flags

These instructions do not change the flags.

Examples

B loopA ; Branch to loopA
BLE ng ; Conditionally branch to label ng
B.W target ; Branch to target within 16MB range
BEQ target ; Conditionally branch to target
BEQ.W target ; Conditionally branch to target within 1MB
BL funC ; Branch with link (Call) to function funC, return address

; stored in LR
BX LR ; Return from function call
BXNE R0 ; Conditionally branch to address stored in R0
BLX R0 ; Branch with link and exchange (Call) to a address stored in R0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

170

11.6.10.2 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax

CBZ Rn, label
CBNZ Rn, label

where:

Rn is the register holding the operand.

label is the branch destination.

Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of

instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BNE label

Restrictions

The restrictions are:

 Rn must be in the range of R0 to R7

 The branch destination must be within 4 to 130 bytes after the instruction

 These instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples

CBZ R5, target ; Forward branch if R5 is zero
CBNZ R0, target ; Forward branch if R0 is not zero

171SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.10.3 IT

If-Then condition instruction.

Syntax

IT{x{y{z}}} cond

where:

x specifies the condition switch for the second instruction in the IT block.

y specifies the condition switch for the third instruction in the IT block.

z specifies the condition switch for the fourth instruction in the IT block.

cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:

T Then. Applies the condition cond to the instruction.

E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in

the IT block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some

of them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT

block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their

syntax.

The assembler might be able to generate the required IT instructions for conditional instructions automatically, so

that the user does not have to write them. See the assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an

exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked

PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and

execution of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to

branch to an instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:

 IT

 CBZ and CBNZ

 CPSID and CPSIE.

Other restrictions when using an IT block are:

 A branch or any instruction that modifies the PC must either be outside an IT block or must be the last

instruction inside the IT block. These are:

̶ ADD PC, PC, Rm

̶ MOV PC, Rm

̶ B, BL, BX, BLX

̶ Any LDM, LDR, or POP instruction that writes to the PC

̶ TBB and TBH

 Do not branch to any instruction inside an IT block, except when returning from an exception handler

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

172

 All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside

an IT block but has a larger branch range if it is inside one

 Each instruction inside the IT block must specify a condition code suffix that is either the same or logical

inverse as for the other instructions in the block.

 Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler

directives within them.

Condition Flags

This instruction does not change the flags.

Example

ITTE NE ; Next 3 instructions are conditional
ANDNE R0, R0, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
MOVEQ R2, R3 ; Conditional move

CMP R0, #9 ; Convert R0 hex value (0 to 15) into ASCII
; ('0'-'9', 'A'-'F')

ITE GT ; Next 2 instructions are conditional
ADDGT R1, R0, #55 ; Convert 0xA -> 'A'
ADDLE R1, R0, #48 ; Convert 0x0 -> '0'

IT GT ; IT block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment R1 conditionally

ITTEE EQ ; Next 4 instructions are conditional
MOVEQ R0, R1 ; Conditional move
ADDEQ R2, R2, #10 ; Conditional add
ANDNE R3, R3, #1 ; Conditional AND
BNE.W dloop ; Branch instruction can only be used in the last

; instruction of an IT block

IT NE ; Next instruction is conditional
ADD R0, R0, R1 ; Syntax error: no condition code used in IT block

173SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.10.4 TBB and TBH

Table Branch Byte and Table Branch Halfword.

Syntax

TBB [Rn, Rm]
TBH [Rn, Rm, LSL #1]

where:

Rn is the register containing the address of the table of branch lengths.

If Rn is PC, then the address of the table is the address of the byte immediately

following the TBB or TBH instruction.

Rm is the index register. This contains an index into the table. For halfword tables,

LSL #1 doubles the value in Rm to form the right offset into the table.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword

offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch

offset is twice the unsigned value of the byte returned from the table. and for TBH the branch offset is twice the

unsigned value of the halfword returned from the table. The branch occurs to the address at that offset from the

address of the byte immediately after the TBB or TBH instruction.

Restrictions

The restrictions are:

 Rn must not be SP

 Rm must not be SP and must not be PC

 When any of these instructions is used inside an IT block, it must be the last instruction of the IT block.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

174

Examples

ADR.W R0, BranchTable_Byte
TBB [R0, R1] ; R1 is the index, R0 is the base address of the

; branch table
Case1
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3
; an instruction sequence follows
BranchTable_Byte

DCB 0 ; Case1 offset calculation
DCB ((Case2-Case1)/2) ; Case2 offset calculation
DCB ((Case3-Case1)/2) ; Case3 offset calculation

TBH [PC, R1, LSL #1] ; R1 is the index, PC is used as base of the
; branch table

BranchTable_H
DCI ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCI ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
DCI ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows
CaseC
; an instruction sequence follows

175SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11 Floating-point Instructions

The table below shows the floating-point instructions.

These instructions are only available if the FPU is included, and enabled, in the system. See “Enabling the FPU”

for information about enabling the floating-point unit.

Table 11-27. Floating-point Instructions

Mnemonic Description

VABS Floating-point Absolute

VADD Floating-point Add

VCMP Compare two floating-point registers, or one floating-point register and zero

VCMPE
Compare two floating-point registers, or one floating-point register and zero with Invalid

Operation check

VCVT Convert between floating-point and integer

VCVT Convert between floating-point and fixed point

VCVTR Convert between floating-point and integer with rounding

VCVTB Converts half-precision value to single-precision

VCVTT Converts single-precision register to half-precision

VDIV Floating-point Divide

VFMA Floating-point Fused Multiply Accumulate

VFNMA Floating-point Fused Negate Multiply Accumulate

VFMS Floating-point Fused Multiply Subtract

VFNMS Floating-point Fused Negate Multiply Subtract

VLDM Load Multiple extension registers

VLDR Loads an extension register from memory

VLMA Floating-point Multiply Accumulate

VLMS Floating-point Multiply Subtract

VMOV Floating-point Move Immediate

VMOV Floating-point Move Register

VMOV Copy ARM core register to single precision

VMOV Copy 2 ARM core registers to 2 single precision

VMOV Copies between ARM core register to scalar

VMOV Copies between Scalar to ARM core register

VMRS Move to ARM core register from floating-point System Register

VMSR Move to floating-point System Register from ARM Core register

VMUL Multiply floating-point

VNEG Floating-point negate

VNMLA Floating-point multiply and add

VNMLS Floating-point multiply and subtract

VNMUL Floating-point multiply

VPOP Pop extension registers

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

176

VPUSH Push extension registers

VSQRT Floating-point square root

VSTM Store Multiple extension registers

VSTR Stores an extension register to memory

VSUB Floating-point Subtract

Table 11-27. Floating-point Instructions (Continued)

Mnemonic Description

177SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.1 VABS

Floating-point Absolute.

Syntax

VABS{cond}.F32 Sd, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd, Sm are the destination floating-point value and the operand floating-point value.

Operation

This instruction:

1. Takes the absolute value of the operand floating-point register.

2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

The floating-point instruction clears the sign bit.

Examples

VABS.F32 S4, S6

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

178

11.6.11.2 VADD

Floating-point Add

Syntax

VADD{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd, is the destination floating-point value.

Sn, Sm are the operand floating-point values.

Operation

This instruction:

1. Adds the values in the two floating-point operand registers.

2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

This instruction does not change the flags.

Examples

VADD.F32 S4, S6, S7

179SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.3 VCMP, VCMPE

Compares two floating-point registers, or one floating-point register and zero.

Syntax

VCMP{E}{cond}.F32 Sd, Sm
VCMP{E}{cond}.F32 Sd, #0.0

where:

cond is an optional condition code, see “Conditional Execution” .

E If present, any NaN operand causes an Invalid Operation exception.

Otherwise, only a signaling NaN causes the exception.

Sd is the floating-point operand to compare.

Sm is the floating-point operand that is compared with.

Operation

This instruction:

1. Compares:

̶ Two floating-point registers.

̶ One floating-point register and zero.

2. Writes the result to the FPSCR flags.

Restrictions

This instruction can optionally raise an Invalid Operation exception if either operand is any type of NaN. It always raises

an Invalid Operation exception if either operand is a signaling NaN.

Condition Flags

When this instruction writes the result to the FPSCR flags, the values are normally transferred to the ARM flags by a

subsequent VMRS instruction, see “” .

Examples

VCMP.F32 S4, #0.0
VCMP.F32 S4, S2

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

180

11.6.11.4 VCVT, VCVTR between Floating-point and Integer

Converts a value in a register from floating-point to a 32-bit integer.

Syntax

VCVT{R}{cond}.Tm.F32 Sd, Sm
VCVT{cond}.F32.Tm Sd, Sm

where:

R If R is specified, the operation uses the rounding mode specified by the FPSCR.

If R is omitted. the operation uses the Round towards Zero rounding mode.

cond is an optional condition code, see “Conditional Execution” .

Tm is the data type for the operand. It must be one of:

S32 signed 32- U32 unsigned 32-bit value.

bit value.

Sd, Sm are the destination register and the operand register.

Operation

These instructions:

1. Either

̶ Converts a value in a register from floating-point value to a 32-bit integer.

̶ Converts from a 32-bit integer to floating-point value.

2. Places the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode, but can optionally

use the rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

181SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.5 VCVT between Floating-point and Fixed-point

Converts a value in a register from floating-point to and from fixed-point.

Syntax

VCVT{cond}.Td.F32 Sd, Sd, #fbits
VCVT{cond}.F32.Td Sd, Sd, #fbits

where:

cond is an optional condition code, see “Conditional Execution” .

Td is the data type for the fixed-point number. It must be one of:

S16 signed 16-bit value.

U16 unsigned 16-bit value.

S32 signed 32-bit value.

U32 unsigned 32-bit value.

Sd is the destination register and the operand register.

fbits is the number of fraction bits in the fixed-point number:

If Td is S16 or U16, fbits must be in the range 0–16.

If Td is S32 or U32, fbits must be in the range 1–32.

Operation

These instructions:

1. Either

̶ Converts a value in a register from floating-point to fixed-point.

̶ Converts a value in a register from fixed-point to floating-point.

2. Places the result in a second register.

The floating-point values are single-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the low-

order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register width.

Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-

point operation uses the Round to Nearest rounding mode.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

182

11.6.11.6 VCVTB, VCVTT

Converts between a half-precision value and a single-precision value.

Syntax

VCVT{y}{cond}.F32.F16 Sd, Sm
VCVT{y}{cond}.F16.F32 Sd, Sm

where:

y Specifies which half of the operand register Sm or destination register Sd is used for the

operand or destination:

- If y is B, then the bottom half, bits [15:0], of Sm or Sd is used.

- If y is T, then the top half, bits [31:16], of Sm or Sd is used.

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination register.

Sm is the operand register.

Operation

This instruction with the.F16.32 suffix:

1. Converts the half-precision value in the top or bottom half of a single-precision. register to single-
precision.

2. Writes the result to a single-precision register.

This instruction with the.F32.F16 suffix:

1. Converts the value in a single-precision register to half-precision.

2. Writes the result into the top or bottom half of a single-precision register, preserving the other half of the

target register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

183SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.7 VDIV

Divides floating-point values.

Syntax

VDIV{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination register.

Sn, Sm are the operand registers.

Operation

This instruction:

1. Divides one floating-point value by another floating-point value.

2. Writes the result to the floating-point destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

184

11.6.11.8 VFMA, VFMS

Floating-point Fused Multiply Accumulate and Subtract.

Syntax

VFMA{cond}.F32 {Sd,} Sn, Sm
VFMS{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFMA instruction:

1. Multiplies the floating-point values in the operand registers.

2. Accumulates the results into the destination register.

The result of the multiply is not rounded before the accumulation.

The VFMS instruction:

1. Negates the first operand register.

2. Multiplies the floating-point values of the first and second operand registers.

3. Adds the products to the destination register.

4. Places the results in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

185SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.9 VFNMA, VFNMS

Floating-point Fused Negate Multiply Accumulate and Subtract.

Syntax

VFNMA{cond}.F32 {Sd,} Sn, Sm
VFNMS{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFNMA instruction:

1. Negates the first floating-point operand register.

2. Multiplies the first floating-point operand with second floating-point operand.

3. Adds the negation of the floating -point destination register to the product

4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.

The VFNMS instruction:

1. Multiplies the first floating-point operand with second floating-point operand.

2. Adds the negation of the floating-point value in the destination register to the product.

3. Places the result in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

186

11.6.11.10 VLDM

Floating-point Load Multiple

Syntax

VLDM{mode}{cond}{.size} Rn{!}, list

where:

mode is the addressing mode:

- IA Increment After. The consecutive addresses start at the address speci

fied in Rn.

- DB Decrement Before. The consecutive addresses end just before the

address specified in Rn.

cond is an optional condition code, see “Conditional Execution” .

size is an optional data size specifier.

Rn is the base register. The SP can be used

! is the command to the instruction to write a modified value back to Rn. This is

required if mode == DB, and is optional if mode == IA.

list is the list of extension registers to be loaded, as a list of consecutively numbered

doubleword or singleword registers, separated by commas and surrounded by

brackets.

Operation

This instruction loads:

 Multiple extension registers from consecutive memory locations using an address from an ARM core register

as the base address.

Restrictions

The restrictions are:

 If size is present, it must be equal to the size in bits, 32 or 64, of the registers in list.

 For the base address, the SP can be used.

In the ARM instruction set, if ! is not specified the PC can be used.

 list must contain at least one register. If it contains doubleword registers, it must not contain more than 16

registers.

 If using the Decrement Before addressing mode, the write back flag, !, must be appended to the base

register specification.

Condition Flags

These instructions do not change the flags.

187SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.11 VLDR

Loads a single extension register from memory

Syntax

VLDR{cond}{.64} Dd, [Rn{#imm}]
VLDR{cond}{.64} Dd, label
VLDR{cond}{.64} Dd, [PC, #imm}]
VLDR{cond}{.32} Sd, [Rn {, #imm}]
VLDR{cond}{.32} Sd, label
VLDR{cond}{.32} Sd, [PC, #imm]

where:

cond is an optional condition code, see “Conditional Execution” .

64, 32 are the optional data size specifiers.

Dd is the destination register for a doubleword load.

Sd is the destination register for a singleword load.

Rn is the base register. The SP can be used.

imm is the + or - immediate offset used to form the address.

Permitted address values are multiples of 4 in the range 0 to 1020.

label is the label of the literal data item to be loaded.

Operation

This instruction:

 Loads a single extension register from memory, using a base address from an ARM core register, with an

optional offset.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

188

11.6.11.12 VLMA, VLMS

Multiplies two floating-point values, and accumulates or subtracts the results.

Syntax

VLMA{cond}.F32 Sd, Sn, Sm
VLMS{cond}.F32 Sd, Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination floating-point value.

Sn, Sm are the operand floating-point values.

Operation

The floating-point Multiply Accumulate instruction:

1. Multiplies two floating-point values.

2. Adds the results to the destination floating-point value.

The floating-point Multiply Subtract instruction:

1. Multiplies two floating-point values.

2. Subtracts the products from the destination floating-point value.

3. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

189SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.13 VMOV Immediate

Move floating-point Immediate

Syntax

VMOV{cond}.F32 Sd, #imm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd is the branch destination.

imm is a floating-point constant.

Operation

This instruction copies a constant value to a floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

190

11.6.11.14 VMOV Register

Copies the contents of one register to another.

Syntax

VMOV{cond}.F64 Dd, Dm
VMOV{cond}.F32 Sd, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Dd is the destination register, for a doubleword operation.

Dm is the source register, for a doubleword operation.

Sd is the destination register, for a singleword operation.

Sm is the source register, for a singleword operation.

Operation

This instruction copies the contents of one floating-point register to another.

Restrictions

There are no restrictions

Condition Flags

These instructions do not change the flags.

191SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.15 VMOV Scalar to ARM Core Register

Transfers one word of a doubleword floating-point register to an ARM core register.

Syntax

VMOV{cond} Rt, Dn[x]

where:

cond is an optional condition code, see “Conditional Execution” .

Rt is the destination ARM core register.

Dn is the 64-bit doubleword register.

x Specifies which half of the doubleword register to use:

- If x is 0, use lower half of doubleword register

- If x is 1, use upper half of doubleword register.

Operation

This instruction transfers:

 One word from the upper or lower half of a doubleword floating-point register to an ARM core register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

192

11.6.11.16 VMOV ARM Core Register to Single Precision

Transfers a single-precision register to and from an ARM core register.

Syntax

VMOV{cond} Sn, Rt
VMOV{cond} Rt, Sn

where:

cond is an optional condition code, see “Conditional Execution” .

Sn is the single-precision floating-point register.

Rt is the ARM core register.

Operation

This instruction transfers:

 The contents of a single-precision register to an ARM core register.

 The contents of an ARM core register to a single-precision register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

193SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.17 VMOV Two ARM Core Registers to Two Single Precision

Transfers two consecutively numbered single-precision registers to and from two ARM core registers.

Syntax

VMOV{cond} Sm, Sm1, Rt, Rt2
VMOV{cond} Rt, Rt2, Sm, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sm is the first single-precision register.

Sm1 is the second single-precision register.

This is the next single-precision register after Sm.

Rt is the ARM core register that Sm is transferred to or from.

Rt2 is the The ARM core register that Sm1 is transferred to or from.

Operation

This instruction transfers:

 The contents of two consecutively numbered single-precision registers to two ARM core registers.

 The contents of two ARM core registers to a pair of single-precision registers.

Restrictions

 The restrictions are:

 The floating-point registers must be contiguous, one after the other.

 The ARM core registers do not have to be contiguous.

 Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

194

11.6.11.18 VMOV ARM Core Register to Scalar

Transfers one word to a floating-point register from an ARM core register.

Syntax

VMOV{cond}{.32} Dd[x], Rt

where:

cond is an optional condition code, see “Conditional Execution” .

32 is an optional data size specifier.

Dd[x] is the destination, where [x] defines which half of the doubleword is transferred,

as follows:

If x is 0, the lower half is extracted

If x is 1, the upper half is extracted.

Rt is the source ARM core register.

Operation

This instruction transfers one word to the upper or lower half of a doubleword floating-point register from an ARM

core register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

195SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.19 VMRS

Move to ARM Core register from floating-point System Register.

Syntax

VMRS{cond} Rt, FPSCR
VMRS{cond} APSR_nzcv, FPSCR

where:

cond is an optional condition code, see “Conditional Execution” .

Rt is the destination ARM core register. This register can be R0–R14.

APSR_nzcv Transfer floating-point flags to the APSR flags.

Operation

This instruction performs one of the following actions:

 Copies the value of the FPSCR to a general-purpose register.

 Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions optionally change the flags: N, Z, C, V

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

196

11.6.11.20 VMSR

Move to floating-point System Register from ARM Core register.

Syntax

VMSR{cond} FPSCR, Rt

where:

cond is an optional condition code, see “Conditional Execution” .

Rt is the general-purpose register to be transferred to the FPSCR.

Operation

This instruction moves the value of a general-purpose register to the FPSCR. See “Floating-point Status Control

Register” for more information.

Restrictions

The restrictions are:

 Rt cannot be PC or SP.

Condition Flags

This instruction updates the FPSCR.

197SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.21 VMUL

Floating-point Multiply.

Syntax

VMUL{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination floating-point value.

Sn, Sm are the operand floating-point values.

Operation

This instruction:

1. Multiplies two floating-point values.

2. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

198

11.6.11.22 VNEG

Floating-point Negate.

Syntax

VNEG{cond}.F32 Sd, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination floating-point value.

Sm is the operand floating-point value.

Operation

This instruction:

1. Negates a floating-point value.

2. Places the results in a second floating-point register.

The floating-point instruction inverts the sign bit.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

199SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.23 VNMLA, VNMLS, VNMUL

Floating-point multiply with negation followed by add or subtract.

Syntax

VNMLA{cond}.F32 Sd, Sn, Sm
VNMLS{cond}.F32 Sd, Sn, Sm
VNMUL{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination floating-point register.

Sn, Sm are the operand floating-point registers.

Operation

The VNMLA instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the negation of the product.

3. Writes the result back to the destination register.

The VNMLS instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the product.

3. Writes the result back to the destination register.

The VNMUL instruction:

1. Multiplies together two floating-point register values.

2. Writes the negation of the result to the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

200

11.6.11.24 VPOP

Floating-point extension register Pop.

Syntax

VPOP{cond}{.size} list

where:

cond is an optional condition code, see “Conditional Execution” .

size is an optional data size specifier.

If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

list is the list of extension registers to be loaded, as a list of consecutively numbered

doubleword or singleword registers, separated by commas and surrounded by

brackets.

Operation

This instruction loads multiple consecutive extension registers from the stack.

Restrictions

The list must contain at least one register, and not more than sixteen registers.

Condition Flags

These instructions do not change the flags.

201SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.25 VPUSH

Floating-point extension register Push.

Syntax

VPUSH{cond}{.size} list

where:

cond is an optional condition code, see “Conditional Execution” .

size is an optional data size specifier.

If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

list is a list of the extension registers to be stored, as a list of consecutively num

bered doubleword or singleword registers, separated by commas and sur

rounded by brackets.

Operation

This instruction:

 Stores multiple consecutive extension registers to the stack.

Restrictions

The restrictions are:

 list must contain at least one register, and not more than sixteen.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

202

11.6.11.26 VSQRT

Floating-point Square Root.

Syntax

VSQRT{cond}.F32 Sd, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination floating-point value.

Sm is the operand floating-point value.

Operation

This instruction:

 Calculates the square root of the value in a floating-point register.

 Writes the result to another floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

203SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.27 VSTM

Floating-point Store Multiple.

Syntax

VSTM{mode}{cond}{.size} Rn{!}, list

where:

mode is the addressing mode:

- IA Increment After. The consecutive addresses start at the address speci

fied in Rn.

This is the default and can be omitted.

- DB Decrement Before. The consecutive addresses end just before the

address specified in Rn.

cond is an optional condition code, see “Conditional Execution” .

size is an optional data size specifier.

If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

Rn is the base register. The SP can be used

! is the function that causes the instruction to write a modified value back to Rn.

Required if mode == DB.

list is a list of the extension registers to be stored, as a list of consecutively num

bered doubleword or singleword registers, separated by commas and sur

rounded by brackets.

Operation

This instruction:

 Stores multiple extension registers to consecutive memory locations using a base address from an ARM

core register.

Restrictions

The restrictions are:

 list must contain at least one register.

If it contains doubleword registers it must not contain more than 16 registers.

 Use of the PC as Rn is deprecated.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

204

11.6.11.28 VSTR

Floating-point Store.

Syntax

VSTR{cond}{.32} Sd, [Rn{, #imm}]
VSTR{cond}{.64} Dd, [Rn{, #imm}]

where

cond is an optional condition code, see “Conditional Execution” .

32, 64 are the optional data size specifiers.

Sd is the source register for a singleword store.

Dd is the source register for a doubleword store.

Rn is the base register. The SP can be used.

imm is the + or - immediate offset used to form the address. Values are multiples of 4

in the range 0–1020. imm can be omitted, meaning an offset of +0.

Operation

This instruction:

 Stores a single extension register to memory, using an address from an ARM core register, with an optional

offset, defined in imm.

Restrictions

The restrictions are:

 The use of PC for Rn is deprecated.

Condition Flags

These instructions do not change the flags.

205SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.11.29 VSUB

Floating-point Subtract.

Syntax

VSUB{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination floating-point value.

Sn, Sm are the operand floating-point value.

Operation

This instruction:

1. Subtracts one floating-point value from another floating-point value.

2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

206

11.6.12 Miscellaneous Instructions

The table below shows the remaining Cortex-M4 instructions.

Table 11-28. Miscellaneous Instructions

Mnemonic Description

BKPT Breakpoint

CPSID Change Processor State, Disable Interrupts

CPSIE Change Processor State, Enable Interrupts

DMB Data Memory Barrier

DSB Data Synchronization Barrier

ISB Instruction Synchronization Barrier

MRS Move from special register to register

MSR Move from register to special register

NOP No Operation

SEV Send Event

SVC Supervisor Call

WFE Wait For Event

WFI Wait For Interrupt

207SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.1 BKPT

Breakpoint.

Syntax

BKPT #imm

where:

imm is an expression evaluating to an integer in the range 0–255 (8-bit value).

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system

state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the

breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition

specified by the IT instruction.

Condition Flags

This instruction does not change the flags.

Examples

BKPT 0xAB ; Breakpoint with immediate value set to 0xAB (debugger can
; extract the immediate value by locating it using the PC)

Note: ARM does not recommend the use of the BKPT instruction with an immediate value set to 0xAB for any purpose other

than Semi-hosting.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

208

11.6.12.2 CPS

Change Processor State.

Syntax

CPSeffect iflags

where:

effect is one of:

IE Clears the special purpose register.

ID Sets the special purpose register.

iflags is a sequence of one or more flags:

i Set or clear PRIMASK.

f Set or clear FAULTMASK.

Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception Mask Registers” for more

information about these registers.

Restrictions

The restrictions are:

 Use CPS only from privileged software, it has no effect if used in unprivileged software

 CPS cannot be conditional and so must not be used inside an IT block.

Condition Flags

This instruction does not change the condition flags.

Examples

CPSID i ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)

209SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.3 DMB

Data Memory Barrier.

Syntax

DMB{cond}

where:

cond is an optional condition code, see “Conditional Execution” .

Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order,

before the DMB instruction are completed before any explicit memory accesses that appear, in program order,

after the DMB instruction. DMB does not affect the ordering or execution of instructions that do not access

memory.

Condition Flags

This instruction does not change the flags.

Examples

DMB ; Data Memory Barrier

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

210

11.6.12.4 DSB

Data Synchronization Barrier.

Syntax

DSB{cond}

where:

cond is an optional condition code, see “Conditional Execution” .

Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program

order, do not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory

accesses before it complete.

Condition Flags

This instruction does not change the flags.

Examples

DSB ; Data Synchronisation Barrier

211SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.5 ISB

Instruction Synchronization Barrier.

Syntax

ISB{cond}

where:

cond is an optional condition code, see “Conditional Execution” .

Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions

following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

Condition Flags

This instruction does not change the flags.

Examples

ISB ; Instruction Synchronisation Barrier

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

212

11.6.12.6 MRS

Move the contents of a special register to a general-purpose register.

Syntax

MRS{cond} Rd, spec_reg

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,

PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to

clear the Q flag.

In process swap code, the programmers model state of the process being swapped out must be saved, including

relevant PSR contents. Similarly, the state of the process being swapped in must also be restored. These

operations use MRS in the state-saving instruction sequence and MSR in the state-restoring instruction sequence.

Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.

See “MSR” .

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

MRS R0, PRIMASK ; Read PRIMASK value and write it to R0

213SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.7 MSR

Move the contents of a general-purpose register into the specified special register.

Syntax

MSR{cond} spec_reg, Rn

where:

cond is an optional condition code, see “Conditional Execution” .

Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,

PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the

APSR. See “Application Program Status Register” . Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:

Rn is non-zero and the current BASEPRI value is 0

Rn is non-zero and less than the current BASEPRI value.

See “MRS” .

Restrictions

Rn must not be SP and must not be PC.

Condition Flags

This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

214

11.6.12.8 NOP

No Operation.

Syntax

NOP{cond}

where:

cond is an optional condition code, see “Conditional Execution” .

Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the

pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.

Condition Flags

This instruction does not change the flags.

Examples

NOP ; No operation

215SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.9 SEV

Send Event.

Syntax

SEV{cond}

where:

cond is an optional condition code, see “Conditional Execution” .

Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It

also sets the local event register to 1, see “Power Management” .

Condition Flags

This instruction does not change the flags.

Examples

SEV ; Send Event

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

216

11.6.12.10 SVC

Supervisor Call.

Syntax

SVC{cond} #imm

where:

cond is an optional condition code, see “Conditional Execution” .

imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service

is being requested.

Condition Flags

This instruction does not change the flags.

Examples

SVC 0x32 ; Supervisor Call (SVC handler can extract the immediate value
; by locating it via the stacked PC)

217SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.6.12.11 WFE

Wait For Event.

Syntax

WFE{cond}

where:

cond is an optional condition code, see “Conditional Execution” .

Operation

WFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

 An exception, unless masked by the exception mask registers or the current priority level

 An exception enters the Pending state, if SEVONPEND in the System Control Register is set

 A Debug Entry request, if Debug is enabled

 An event signaled by a peripheral or another processor in a multiprocessor system using the SEV

instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information, see “Power Management” .

Condition Flags

This instruction does not change the flags.

Examples

WFE ; Wait for event

11.6.12.12 WFI

Wait for Interrupt.

Syntax

WFI{cond}

where:

cond is an optional condition code, see “Conditional Execution” .

Operation

WFI is a hint instruction that suspends execution until one of the following events occurs:

 An exception

 A Debug Entry request, regardless of whether Debug is enabled.

Condition Flags

This instruction does not change the flags.

Examples

WFI ; Wait for interrupt

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

218

11.7 Cortex-M4 Core Peripherals

11.7.1 Peripherals

 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low

latency interrupt processing. See Section 11.8 ”Nested Vectored Interrupt Controller (NVIC)”.

 System Control Block (SCB)

The System Control Block (SCB) is the programmers model interface to the processor. It provides system

implementation information and system control, including configuration, control, and reporting of system

exceptions. See Section 11.9 ”System Control Block (SCB)”.

 System Timer (SysTick)

The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System

(RTOS) tick timer or as a simple counter. See Section 11.10 ”System Timer (SysTick)”.

 Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) improves system reliability by defining the memory attributes for different

memory regions. It provides up to eight different regions, and an optional predefined background region.

See Section 11.11 ”Memory Protection Unit (MPU)”.

 Floating-point Unit (FPU)

The Floating-point Unit (FPU) provides IEEE754-compliant operations on single-precision, 32-bit, floating-

point values. See Section 11.12 ”Floating Point Unit (FPU)”.

11.7.2 Address Map

The address map of the Private peripheral bus (PPB) is given in the following table.

In register descriptions:

 The required privilege gives the privilege level required to access the register, as follows:

̶ Privileged: Only privileged software can access the register.

̶ Unprivileged: Both unprivileged and privileged software can access the register.

Table 11-29. Core Peripheral Register Regions

Address Core Peripheral

0xE000E008–0xE000E00F System Control Block

0xE000E010–0xE000E01F System Timer

0xE000E100–0xE000E4EF Nested Vectored Interrupt Controller

0xE000ED00–0xE000ED3F System control block

0xE000ED90–0xE000EDB8 Memory Protection Unit

0xE000EF00–0xE000EF03 Nested Vectored Interrupt Controller

0xE000EF30–0xE000EF44 Floating-point Unit

219SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8 Nested Vectored Interrupt Controller (NVIC)

This section describes the NVIC and the registers it uses. The NVIC supports:

 Up to 47 interrupts

 A programmable priority level of 0–15 for each interrupt. A higher level corresponds to a lower priority, so

level 0 is the highest interrupt priority.

 Level detection of interrupt signals

 Dynamic reprioritization of interrupts

 Grouping of priority values into group priority and subpriority fields

 Interrupt tail-chaining

 An external Non-maskable interrupt (NMI)

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no

instruction overhead. This provides low latency exception handling.

11.8.1 Level-sensitive Interrupts

The processor supports level-sensitive interrupts. A level-sensitive interrupt is held asserted until the peripheral

deasserts the interrupt signal. Typically, this happens because the ISR accesses the peripheral, causing it to clear

the interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see “Hardware

and Software Control of Interrupts”). For a level-sensitive interrupt, if the signal is not deasserted before the

processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR

again. This means that the peripheral can hold the interrupt signal asserted until it no longer requires servicing.

11.8.1.1 Hardware and Software Control of Interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:

 The NVIC detects that the interrupt signal is HIGH and the interrupt is not active

 The NVIC detects a rising edge on the interrupt signal

 A software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending

Registers” , or to the NVIC_STIR to make an interrupt pending, see “Software Trigger Interrupt Register” .

A pending interrupt remains pending until one of the following:

 The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active.

Then:

̶ For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the

interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might

cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to

inactive.

 Software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not

change. Otherwise, the state of the interrupt changes to inactive.

11.8.2 NVIC Design Hints and Tips

Ensure that the software uses correctly aligned register accesses. The processor does not support unaligned

accesses to NVIC registers. See the individual register descriptions for the supported access sizes.

A interrupt can enter a pending state even if it is disabled. Disabling an interrupt only prevents the processor from

taking that interrupt. Before programming SCB_VTOR to relocate the vector table, ensure that the vector table

entries of the new vector table are set up for fault handlers, NMI and all enabled exception like interrupts. For more

information, see the “Vector Table Offset Register” .

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

220

11.8.2.1 NVIC Programming Hints

The software uses the CPSIE I and CPSID I instructions to enable and disable the interrupts. The CMSIS provides

the following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts

void __enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

The input parameter IRQn is the IRQ number. For more information about these functions, see the CMSIS

documentation.

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:

 The Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit

integers, so that:

̶ The array ISER[0] to ISER[1] corresponds to the registers ISER0–ISER1

̶ The array ICER[0] to ICER[1] corresponds to the registers ICER0–ICER1

̶ The array ISPR[0] to ISPR[1] corresponds to the registers ISPR0–ISPR1

̶ The array ICPR[0] to ICPR[1] corresponds to the registers ICPR0–ICPR1

̶ The array IABR[0] to IABR[1] corresponds to the registers IABR0–IABR1

 The Interrupt Priority Registers (IPR0–IPR12) provide an 8-bit priority field for each interrupt and each

register holds four priority fields.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. Table 11-31

shows how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS variables

that have one bit per interrupt.

Note: 1. Each array element corresponds to a single NVIC register, for example the ICER[0] element corresponds to the

ICER0.

Table 11-30. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQn

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn) Return true (IRQ-Number) if IRQn is pending

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn) Return the IRQ number of the active interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

Table 11-31. Mapping of Interrupts

Interrupts

CMSIS Array Elements (1)

Set-enable Clear-enable Set-pending Clear-pending Active Bit

0–31 ISER[0] ICER[0] ISPR[0] ICPR[0] IABR[0]

32–47 ISER[1] ICER[1] ISPR[1] ICPR[1] IABR[1]

221SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3 Nested Vectored Interrupt Controller (NVIC) User Interface

Table 11-32. Nested Vectored Interrupt Controller (NVIC) Register Mapping

Offset Register Name Access Reset

0xE000E100 Interrupt Set-enable Register 0 NVIC_ISER0 Read/Write 0x00000000

...

0xE000E11C Interrupt Set-enable Register 7 NVIC_ISER7 Read/Write 0x00000000

0XE000E180 Interrupt Clear-enable Register 0 NVIC_ICER0 Read/Write 0x00000000

...

0xE000E19C Interrupt Clear-enable Register 7 NVIC_ICER7 Read/Write 0x00000000

0XE000E200 Interrupt Set-pending Register 0 NVIC_ISPR0 Read/Write 0x00000000

...

0xE000E21C Interrupt Set-pending Register 7 NVIC_ISPR7 Read/Write 0x00000000

0XE000E280 Interrupt Clear-pending Register 0 NVIC_ICPR0 Read/Write 0x00000000

...

0xE000E29C Interrupt Clear-pending Register 7 NVIC_ICPR7 Read/Write 0x00000000

0xE000E300 Interrupt Active Bit Register 0 NVIC_IABR0 Read/Write 0x00000000

...

0xE000E31C Interrupt Active Bit Register 7 NVIC_IABR7 Read/Write 0x00000000

0xE000E400 Interrupt Priority Register 0 NVIC_IPR0 Read/Write 0x00000000

...

0XE000E42C Interrupt Priority Register 12 NVIC_IPR12 Read/Write 0x00000000

0xE000EF00 Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

222

11.8.3.1 Interrupt Set-enable Registers

Name: NVIC_ISERx [x=0..7]

Access: Read/Write

Reset: 0x000000000

These registers enable interrupts and show which interrupts are enabled.

• SETENA: Interrupt Set-enable

Write:

0: No effect.

1: Enables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

Notes: 1. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.

2. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, the NVIC never activates

the interrupt, regardless of its priority.

31 30 29 28 27 26 25 24

SETENA

23 22 21 20 19 18 17 16

SETENA

15 14 13 12 11 10 9 8

SETENA

7 6 5 4 3 2 1 0

SETENA

223SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3.2 Interrupt Clear-enable Registers

Name: NVIC_ICERx [x=0..7]

Access: Read/Write

Reset: 0x000000000

These registers disable interrupts, and show which interrupts are enabled.

• CLRENA: Interrupt Clear-enable

Write:

0: No effect.

1: Disables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

31 30 29 28 27 26 25 24

CLRENA

23 22 21 20 19 18 17 16

CLRENA

15 14 13 12 11 10 9 8

CLRENA

7 6 5 4 3 2 1 0

CLRENA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

224

11.8.3.3 Interrupt Set-pending Registers

Name: NVIC_ISPRx [x=0..7]

Access: Read/Write

Reset: 0x000000000

These registers force interrupts into the pending state, and show which interrupts are pending.

• SETPEND: Interrupt Set-pending

Write:

0: No effect.

1: Changes the interrupt state to pending.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Notes: 1. Writing a 1 to an ISPR bit corresponding to an interrupt that is pending has no effect.

2. Writing a 1 to an ISPR bit corresponding to a disabled interrupt sets the state of that interrupt to pending.

31 30 29 28 27 26 25 24

SETPEND

23 22 21 20 19 18 17 16

SETPEND

15 14 13 12 11 10 9 8

SETPEND

7 6 5 4 3 2 1 0

SETPEND

225SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3.4 Interrupt Clear-pending Registers

Name: NVIC_ICPRx [x=0..7]

Access: Read/Write

Reset: 0x000000000

These registers remove the pending state from interrupts, and show which interrupts are pending.

• CLRPEND: Interrupt Clear-pending

Write:

0: No effect.

1: Removes the pending state from an interrupt.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Note: Writing a 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

31 30 29 28 27 26 25 24

CLRPEND

23 22 21 20 19 18 17 16

CLRPEND

15 14 13 12 11 10 9 8

CLRPEND

7 6 5 4 3 2 1 0

CLRPEND

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

226

11.8.3.5 Interrupt Active Bit Registers

Name: NVIC_IABRx [x=0..7]

Access: Read/Write

Reset: 0x000000000

These registers indicate which interrupts are active.

• ACTIVE: Interrupt Active Flags

0: Interrupt is not active.

1: Interrupt is active.

Note: A bit reads as one if the status of the corresponding interrupt is active, or active and pending.

31 30 29 28 27 26 25 24

ACTIVE

23 22 21 20 19 18 17 16

ACTIVE

15 14 13 12 11 10 9 8

ACTIVE

7 6 5 4 3 2 1 0

ACTIVE

227SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.8.3.6 Interrupt Priority Registers

Name: NVIC_IPRx [x=0..12]

Access: Read/Write

Reset: 0x000000000

The NVIC_IPR0–NVIC_IPR12 registers provide a 8-bit priority field for each interrupt. These registers are byte-accessible.

Each register holds four priority fields that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[46].

• PRI3: Priority (4m+3)

Priority, Byte Offset 3, refers to register bits [31:24].

• PRI2: Priority (4m+2)

Priority, Byte Offset 2, refers to register bits [23:16].

• PRI1: Priority (4m+1)

Priority, Byte Offset 1, refers to register bits [15:8].

• PRI0: Priority (4m)

Priority, Byte Offset 0, refers to register bits [7:0].

Notes: 1. Each priority field holds a priority value, 0–15. The lower the value, the greater the priority of the corresponding interrupt.

The processor implements only bits[7:4] of each field; bits[3:0] read as zero and ignore writes.

2. For more information about the IP[0] to IP[46] interrupt priority array, that provides the software view of the interrupt

priorities, see Table 11-30, “CMSIS Functions for NVIC Control” .

3. The corresponding IPR number n is given by n = m DIV 4.

4. The byte offset of the required Priority field in this register is m MOD 4.

31 30 29 28 27 26 25 24

PRI3

23 22 21 20 19 18 17 16

PRI2

15 14 13 12 11 10 9 8

PRI1

7 6 5 4 3 2 1 0

PRI0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

228

11.8.3.7 Software Trigger Interrupt Register

Name: NVIC_STIR

Access: Write-only

Reset: 0x000000000

Write to this register to generate an interrupt from the software.

• INTID: Interrupt ID

Interrupt ID of the interrupt to trigger, in the range 0–239. For example, a value of 0x03 specifies interrupt IRQ3.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – INTID

7 6 5 4 3 2 1 0

INTID

229SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9 System Control Block (SCB)

The System Control Block (SCB) provides system implementation information, and system control. This includes

configuration, control, and reporting of the system exceptions.

Ensure that the software uses aligned accesses of the correct size to access the system control block registers:

 Except for the SCB_CFSR and SCB_SHPR1–SCB_SHPR3 registers, it must use aligned word accesses

 For the SCB_CFSR and SCB_SHPR1–SCB_SHPR3 registers, it can use byte or aligned halfword or word

accesses.

The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or SCB_BFAR value.

2. Read the MMARVALID bit in the MMFSR subregister, or the BFARVALID bit in the BFSR subregister. The

SCB_MMFAR or SCB_BFAR address is valid only if this bit is 1.

The software must follow this sequence because another higher priority exception might change the SCB_MMFAR

or SCB_BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault

might change the SCB_MMFAR or SCB_BFAR value.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

230

11.9.1 System Control Block (SCB) User Interface

Notes: 1. See the register description for more information.

2. This register contains the subregisters: “MMFSR: Memory Management Fault Status Subregister” (0xE000ED28 - 8 bits),

“BFSR: Bus Fault Status Subregister” (0xE000ED29 - 8 bits), “UFSR: Usage Fault Status Subregister” (0xE000ED2A - 16

bits).

Table 11-33. System Control Block (SCB) Register Mapping

Offset Register Name Access Reset

0xE000E008 Auxiliary Control Register SCB_ACTLR Read/Write 0x00000000

0xE000ED00 CPUID Base Register SCB_CPUID Read-only 0x410FC240

0xE000ED04 Interrupt Control and State Register SCB_ICSR Read/Write(1) 0x00000000

0xE000ED08 Vector Table Offset Register SCB_VTOR Read/Write 0x00000000

0xE000ED0C Application Interrupt and Reset Control Register SCB_AIRCR Read/Write 0xFA050000

0xE000ED10 System Control Register SCB_SCR Read/Write 0x00000000

0xE000ED14 Configuration and Control Register SCB_CCR Read/Write 0x00000200

0xE000ED18 System Handler Priority Register 1 SCB_SHPR1 Read/Write 0x00000000

0xE000ED1C System Handler Priority Register 2 SCB_SHPR2 Read/Write 0x00000000

0xE000ED20 System Handler Priority Register 3 SCB_SHPR3 Read/Write 0x00000000

0xE000ED24 System Handler Control and State Register SCB_SHCSR Read/Write 0x00000000

0xE000ED28 Configurable Fault Status Register SCB_CFSR(2) Read/Write 0x00000000

0xE000ED2C HardFault Status Register SCB_HFSR Read/Write 0x00000000

0xE000ED34 MemManage Fault Address Register SCB_MMFAR Read/Write Unknown

0xE000ED38 BusFault Address Register SCB_BFAR Read/Write Unknown

231SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.1 Auxiliary Control Register

Name: SCB_ACTLR

Access: Read/Write

The SCB_ACTLR provides disable bits for the following processor functions:

• IT folding

• Write buffer use for accesses to the default memory map

• Interruption of multi-cycle instructions.

By default, this register is set to provide optimum performance from the Cortex-M4 processor, and does not normally

require modification.

• DISOOFP: Disable Out Of Order Floating Point

Disables floating point instructions that complete out of order with respect to integer instructions.

• DISFPCA: Disable FPCA

Disables an automatic update of CONTROL.FPCA.

• DISFOLD: Disable Folding

When set to 1, disables the IT folding.

Note: In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT instruction.

This behavior is called IT folding, and it improves the performance. However, IT folding can cause jitter in looping. If a task must

avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable the IT folding.

• DISDEFWBUF: Disable Default Write Buffer

When set to 1, it disables the write buffer use during default memory map accesses. This causes BusFault to be precise

but decreases the performance, as any store to memory must complete before the processor can execute the next

instruction.

This bit only affects write buffers implemented in the Cortex-M4 processor.

• DISMCYCINT: Disable Multiple Cycle Interruption

When set to 1, it disables the interruption of load multiple and store multiple instructions. This increases the interrupt

latency of the processor, as any LDM or STM must complete before the processor can stack the current state and enter the

interrupt handler.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – DISOOFP DISFPCA

7 6 5 4 3 2 1 0

– – – – – DISFOLD DISDEFWBUF DISMCYCINT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

232

11.9.1.2 CPUID Base Register

Name: SCB_CPUID

Access: Read/Write

The SCB_CPUID register contains the processor part number, version, and implementation information.

• Implementer: Implementer Code

0x41: ARM.

• Variant: Variant Number

It is the r value in the rnpn product revision identifier:

0x0: Revision 0.

• Constant: Reads as 0xF

Reads as 0xF.

• PartNo: Part Number of the Processor

0xC24 = Cortex-M4.

• Revision: Revision Number

It is the p value in the rnpn product revision identifier:

0x0: Patch 0.

31 30 29 28 27 26 25 24

Implementer

23 22 21 20 19 18 17 16

Variant Constant

15 14 13 12 11 10 9 8

PartNo

7 6 5 4 3 2 1 0

PartNo Revision

233SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.3 Interrupt Control and State Register

Name: SCB_ICSR

Access: Read/Write

The SCB_ICSR provides a set-pending bit for the Non-Maskable Interrupt (NMI) exception, and set-pending and clear-

pending bits for the PendSV and SysTick exceptions.

It indicates:

• The exception number of the exception being processed, and whether there are preempted active exceptions,

• The exception number of the highest priority pending exception, and whether any interrupts are pending.

• NMIPENDSET: NMI Set-pending

Write:

PendSV set-pending bit.

Write:

0: No effect.

1: Changes NMI exception state to pending.

Read:

0: NMI exception is not pending.

1: NMI exception is pending.

As NMI is the highest-priority exception, the processor normally enters the NMI exception handler as soon as it registers a

write of 1 to this bit. Entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if

the NMI signal is reasserted while the processor is executing that handler.

• PENDSVSET: PendSV Set-pending

Write:

0: No effect.

1: Changes PendSV exception state to pending.

Read:

0: PendSV exception is not pending.

1: PendSV exception is pending.

Writing a 1 to this bit is the only way to set the PendSV exception state to pending.

31 30 29 28 27 26 25 24

NMIPENDSET – PENDSVSET PENDSVCLR PENDSTSET PENDSTCLR –

23 22 21 20 19 18 17 16

– ISRPENDING VECTPENDING

15 14 13 12 11 10 9 8

VECTPENDING RETTOBASE – – VECTACTIVE

7 6 5 4 3 2 1 0

VECTACTIVE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

234

• PENDSVCLR: PendSV Clear-pending

Write:

0: No effect.

1: Removes the pending state from the PendSV exception.

• PENDSTSET: SysTick Exception Set-pending

Write:

0: No effect.

1: Changes SysTick exception state to pending.

Read:

0: SysTick exception is not pending.

1: SysTick exception is pending.

• PENDSTCLR: SysTick Exception Clear-pending

Write:

0: No effect.

1: Removes the pending state from the SysTick exception.

This bit is Write-only. On a register read, its value is Unknown.

• ISRPENDING: Interrupt Pending Flag (Excluding NMI and Faults)

0: Interrupt not pending.

1: Interrupt pending.

• VECTPENDING: Exception Number of the Highest Priority Pending Enabled Exception

0: No pending exceptions.

Nonzero: The exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the

PRIMASK register.

• RETTOBASE: Preempted Active Exceptions Present or Not

0: There are preempted active exceptions to execute.

1: There are no active exceptions, or the currently-executing exception is the only active exception.

• VECTACTIVE: Active Exception Number Contained

0: Thread mode.

Nonzero: The exception number of the currently active exception. The value is the same as IPSR bits [8:0]. See “Interrupt

Program Status Register” .

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-

Pending, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” .

Note: When the user writes to the SCB_ICSR, the effect is unpredictable if:

- Writing a 1 to the PENDSVSET bit and writing a 1 to the PENDSVCLR bit

- Writing a 1 to the PENDSTSET bit and writing a 1 to the PENDSTCLR bit.

235SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.4 Vector Table Offset Register

Name: SCB_VTOR

Access: Read/Write

The SCB_VTOR indicates the offset of the vector table base address from memory address 0x00000000.

• TBLOFF: Vector Table Base Offset

It contains bits [29:7] of the offset of the table base from the bottom of the memory map.

Bit [29] determines whether the vector table is in the code or SRAM memory region:

0: Code.

1: SRAM.

It is sometimes called the TBLBASE bit.

Note: When setting TBLOFF, the offset must be aligned to the number of exception entries in the vector table. Configure the next

statement to give the information required for your implementation; the statement reminds the user of how to determine the

alignment requirement. The minimum alignment is 32 words, enough for up to 16 interrupts. For more interrupts, adjust the

alignment by rounding up to the next power of two. For example, if 21 interrupts are required, the alignment must be on a 64-word

boundary because the required table size is 37 words, and the next power of two is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

31 30 29 28 27 26 25 24

TBLOFF

23 22 21 20 19 18 17 16

TBLOFF

15 14 13 12 11 10 9 8

TBLOFF

7 6 5 4 3 2 1 0

TBLOFF – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

236

11.9.1.5 Application Interrupt and Reset Control Register

Name: SCB_AIRCR

Access: Read/Write

The SCB_AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset

control of the system. To write to this register, write 0x5FA to the VECTKEY field, otherwise the processor ignores the

write.

• VECTKEYSTAT: Register Key (Read)

Reads as 0xFA05.

• VECTKEY: Register Key (Write)

Writes 0x5FA to VECTKEY, otherwise the write is ignored.

• ENDIANNESS: Data Endianness

0: Little-endian.

1: Big-endian.

• PRIGROUP: Interrupt Priority Grouping

This field determines the split of group priority from subpriority. It shows the position of the binary point that splits the PRI_n

fields in the Interrupt Priority Registers into separate group priority and subpriority fields. The table below shows how the

PRIGROUP value controls this split.

Note: 1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.

Determining preemption of an exception uses only the group priority field.

31 30 29 28 27 26 25 24

VECTKEYSTAT/VECTKEY

23 22 21 20 19 18 17 16

VECTKEYSTAT/VECTKEY

15 14 13 12 11 10 9 8

ENDIANNESS – – – – PRIGROUP

7 6 5 4 3 2 1 0

– – – – – SYSRESETREQ VECTCLRACTIVE VECTRESET

PRIGROUP

Interrupt Priority Level Value, PRI_N[7:0] Number of

Binary Point (1) Group Priority Bits Subpriority Bits Group Priorities Subpriorities

0b000 bxxxxxxx.y [7:1] None 128 2

0b001 bxxxxxx.yy [7:2] [4:0] 64 4

0b010 bxxxxx.yyy [7:3] [4:0] 32 8

0b011 bxxxx.yyyy [7:4] [4:0] 16 16

0b100 bxxx.yyyyy [7:5] [4:0] 8 32

0b101 bxx.yyyyyy [7:6] [5:0] 4 64

0b110 bx.yyyyyyy [7] [6:0] 2 128

0b111 b.yyyyyyy None [7:0] 1 256

237SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• SYSRESETREQ: System Reset Request

0: No system reset request.

1: Asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components except for debug. This bit reads as 0.

• VECTCLRACTIVE: Reserved for Debug use

This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

• VECTRESET: Reserved for Debug use

This bit reads as 0. When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

238

11.9.1.6 System Control Register

Name: SCB_SCR

Access: Read/Write

• SEVONPEND: Send Event on Pending Bit

0: Only enabled interrupts or events can wake up the processor; disabled interrupts are excluded.

1: Enabled events and all interrupts, including disabled interrupts, can wake up the processor.

When an event or an interrupt enters the pending state, the event signal wakes up the processor from WFE. If the proces-

sor is not waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

• SLEEPDEEP: Sleep or Deep Sleep

Controls whether the processor uses sleep or deep sleep as its low power mode:

0: Sleep.

1: Deep sleep.

• SLEEPONEXIT: Sleep-on-exit

Indicates sleep-on-exit when returning from the Handler mode to the Thread mode:

0: Do not sleep when returning to Thread mode.

1: Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt-driven application to avoid returning to an empty main application.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – SEVONPEND – SLEEPDEEP SLEEPONEXIT –

239SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.7 Configuration and Control Register

Name: SCB_CCR

Access: Read/Write

The SCB_CCR controls the entry to the Thread mode and enables the handlers for NMI, hard fault and faults escalated by

FAULTMASK to ignore BusFaults. It also enables the division by zero and unaligned access trapping, and the access to

the NVIC_STIR by unprivileged software (see “Software Trigger Interrupt Register”).

• STKALIGN: Stack Alignment

Indicates the stack alignment on exception entry:

0: 4-byte aligned.

1: 8-byte aligned.

On exception entry, the processor uses bit [9] of the stacked PSR to indicate the stack alignment. On return from the

exception, it uses this stacked bit to restore the correct stack alignment.

• BFHFNMIGN: Bus Faults Ignored

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the

hard fault and FAULTMASK escalated handlers:

0: Data bus faults caused by load and store instructions cause a lock-up.

1: Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-

tem devices and bridges to detect control path problems and fix them.

• DIV_0_TRP: Division by Zero Trap

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0:

0: Do not trap divide by 0.

1: Trap divide by 0.

When this bit is set to 0, a divide by zero returns a quotient of 0.

• UNALIGN_TRP: Unaligned Access Trap

Enables unaligned access traps:

0: Do not trap unaligned halfword and word accesses.

1: Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a usage fault.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – STKALIGN BFHFNMIGN

7 6 5 4 3 2 1 0

– – – DIV_0_TRP UNALIGN_TRP – USERSETMPEND
NONBASETHRDE

NA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

240

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

• USERSETMPEND: Unprivileged Software Access

Enables unprivileged software access to the NVIC_STIR, see “Software Trigger Interrupt Register” :

0: Disable.

1: Enable.

• NONBASETHRDENA: Thread Mode Enable

Indicates how the processor enters Thread mode:

0: The processor can enter the Thread mode only when no exception is active.

1: The processor can enter the Thread mode from any level under the control of an EXC_RETURN value, see “Exception

Return” .

241SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.8 System Handler Priority Registers

The SCB_SHPR1–SCB_SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have configurable pri-

ority. They are byte-accessible.

The system fault handlers and the priority field and register for each handler are:

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:4] of each field, and bits [3:0] read as zero and

ignore writes.

Table 11-34. System Fault Handler Priority Fields

Handler Field Register Description

Memory management fault (MemManage) PRI_4

System Handler Priority Register 1Bus fault (BusFault) PRI_5

Usage fault (UsageFault) PRI_6

SVCall PRI_11 System Handler Priority Register 2

PendSV PRI_14
System Handler Priority Register 3

SysTick PRI_15

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

242

11.9.1.9 System Handler Priority Register 1

Name: SCB_SHPR1

Access: Read/Write

• PRI_6: Priority

Priority of system handler 6, UsageFault.

• PRI_5: Priority

Priority of system handler 5, BusFault.

• PRI_4: Priority

Priority of system handler 4, MemManage.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

PRI_6

15 14 13 12 11 10 9 8

PRI_5

7 6 5 4 3 2 1 0

PRI_4

243SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.10 System Handler Priority Register 2

Name: SCB_SHPR2

Access: Read/Write

• PRI_11: Priority

Priority of system handler 11, SVCall.

31 30 29 28 27 26 25 24

PRI_11

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

244

11.9.1.11 System Handler Priority Register 3

Name: SCB_SHPR3

Access: Read/Write

• PRI_15: Priority

Priority of system handler 15, SysTick exception.

• PRI_14: Priority

Priority of system handler 14, PendSV.

31 30 29 28 27 26 25 24

PRI_15

23 22 21 20 19 18 17 16

PRI_14

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

245SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.12 System Handler Control and State Register

Name: SCB_SHCSR

Access: Read/Write

The SHCSR enables the system handlers, and indicates the pending status of the bus fault, memory management fault,

and SVC exceptions; it also indicates the active status of the system handlers.

• USGFAULTENA: Usage Fault Enable

0: Disables the exception.

1: Enables the exception.

• BUSFAULTENA: Bus Fault Enable

0: Disables the exception.

1: Enables the exception.

• MEMFAULTENA: Memory Management Fault Enable

0: Disables the exception.

1: Enables the exception.

• SVCALLPENDED: SVC Call Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

• BUSFAULTPENDED: Bus Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – USGFAULTENA BUSFAULTENA MEMFAULTENA

15 14 13 12 11 10 9 8

SVCALLPENDED
BUSFAULTPEND

ED

MEMFAULTPEND

ED

USGFAULTPEND

ED
SYSTICKACT PENDSVACT – MONITORACT

7 6 5 4 3 2 1 0

SVCALLACT – – – USGFAULTACT – BUSFAULTACT MEMFAULTACT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

246

• MEMFAULTPENDED: Memory Management Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

• USGFAULTPENDED: Usage Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

• SYSTICKACT: SysTick Exception Active

Read:

0: The exception is not active.

1: The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.

- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the stacked content

can cause the processor to generate a fault exception. Ensure that the software writing to this register retains and subsequently

restores the current active status.

- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a read-modify-write

procedure to ensure that only the required bit is changed.

• PENDSVACT: PendSV Exception Active

0: The exception is not active.

1: The exception is active.

• MONITORACT: Debug Monitor Active

0: Debug monitor is not active.

1: Debug monitor is active.

• SVCALLACT: SVC Call Active

0: SVC call is not active.

1: SVC call is active.

• USGFAULTACT: Usage Fault Exception Active

0: Usage fault exception is not active.

1: Usage fault exception is active.

• BUSFAULTACT: Bus Fault Exception Active

0: Bus fault exception is not active.

1: Bus fault exception is active.

• MEMFAULTACT: Memory Management Fault Exception Active

0: Memory management fault exception is not active.

1: Memory management fault exception is active.

247SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

If the user disables a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system exceptions. An OS kernel can write to

the active bits to perform a context switch that changes the current exception type.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

248

11.9.1.13 Configurable Fault Status Register

Name: SCB_CFSR

Access: Read/Write

• IACCVIOL: Instruction Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No instruction access violation fault.

1: The processor attempted an instruction fetch from a location that does not permit execution.

This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not

written a fault address to the SCB_MMFAR.

• DACCVIOL: Data Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No data access violation fault.

1: The processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded

the SCB_MMFAR with the address of the attempted access.

• MUNSTKERR: Memory Manager Fault on Unstacking for a Return From Exception

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No unstacking fault.

1: Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The proces-

sor has not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a

fault address to the SCB_MMFAR.

• MSTKERR: Memory Manager Fault on Stacking for Exception Entry

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor

has not written a fault address to SCB_MMFAR.

• MLSPERR: MemManage During Lazy State Preservation

31 30 29 28 27 26 25 24

– – – – – – DIVBYZERO UNALIGNED

23 22 21 20 19 18 17 16

– – – – NOCP INVPC INVSTATE UNDEFINSTR

15 14 13 12 11 10 9 8

BFARVALID – LSPERR STKERR UNSTKERR IMPRECISERR PRECISERR IBUSERR

7 6 5 4 3 2 1 0

MMARVALID – MLSPERR MSTKERR MUNSTKERR – DACCVIOL IACCVIOL

249SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No MemManage fault occurred during the floating-point lazy state preservation.

1: A MemManage fault occurred during the floating-point lazy state preservation.

• MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: The value in SCB_MMFAR is not a valid fault address.

1: SCB_MMFAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set

this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_MMFAR

value has been overwritten.

• IBUSERR: Instruction Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .

0: No instruction bus error.

1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it

attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

• PRECISERR: Precise Data Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .

0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused

the fault.

When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR.

• IMPRECISERR: Imprecise Data Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .

0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the

error.

When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault

priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-

cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects

that both this bit and one of the precise fault status bits are set to 1.

• UNSTKERR: Bus Fault on Unstacking for a Return From Exception

This is part of “BFSR: Bus Fault Status Subregister” .

0: No unstacking fault.

1: Unstack for an exception return has caused one or more bus faults.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

250

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still

present. The processor does not adjust the SP from the failing return, does not performed a new save, and does not write

a fault address to the BFAR.

• STKERR: Bus Fault on Stacking for Exception Entry

This is part of “BFSR: Bus Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incor-

rect. The processor does not write a fault address to the SCB_BFAR.

• LSPERR: Bus Error During Lazy Floating-point State Preservation

This is part of “BFSR: Bus Fault Status Subregister” .

0: No bus fault occurred during floating-point lazy state preservation

1: A bus fault occurred during floating-point lazy state preservation.

• BFARVALID: Bus Fault Address Register (BFAR) Valid flag

This is part of “BFSR: Bus Fault Status Subregister” .

0: The value in SCB_BFAR is not a valid fault address.

1: SCB_BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a

memory management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This

prevents problems if returning to a stacked active bus fault handler whose SCB_BFAR value has been overwritten.

• UNDEFINSTR: Undefined Instruction Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No undefined instruction usage fault.

1: The processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

• INVSTATE: Invalid State Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No invalid state usage fault.

1: The processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal

use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

251SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• INVPC: Invalid PC Load Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” . It is caused by an invalid PC load by EXC_RETURN:

0: No invalid PC load usage fault.

1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid

EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the ille-

gal load of the PC.

• NOCP: No Coprocessor Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” . The processor does not support coprocessor instructions:

0: No usage fault caused by attempting to access a coprocessor.

1: The processor has attempted to access a coprocessor.

• UNALIGNED: Unaligned Access Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No unaligned access fault, or unaligned access trapping not enabled.

1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the SCB_CCR to 1. See “Configuration and

Control Register” . Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of

UNALIGN_TRP.

• DIVBYZERO: Divide by Zero Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No divide by zero fault, or divide by zero trapping not enabled.

1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed

the divide by zero. Enable trapping of divide by zero by setting the DIV_0_TRP bit in the SCB_CCR to 1. See “Configura-

tion and Control Register” .

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

252

11.9.1.14 Configurable Fault Status Register (Byte Access)

Name: SCB_CFSR (BYTE)

Access: Read/Write

• MMFSR: Memory Management Fault Status Subregister

The flags in the MMFSR subregister indicate the cause of memory access faults. See bitfield [7..0] description in Section

11.9.1.13.

• BFSR: Bus Fault Status Subregister

The flags in the BFSR subregister indicate the cause of a bus access fault. See bitfield [14..8] description in Section

11.9.1.13.

• UFSR: Usage Fault Status Subregister

The flags in the UFSR subregister indicate the cause of a usage fault. See bitfield [31..15] description in Section 11.9.1.13.

Note: The UFSR bits are sticky. This means that as one or more fault occurs, the associated bits are set to 1. A bit that is set to 1 is

cleared to 0 only by wrting a 1 to that bit, or by a reset.

The SCB_CFSR indicates the cause of a memory management fault, bus fault, or usage fault. It is byte accessible. The

user can access the SCB_CFSR or its subregisters as follows:

• Access complete SCB_CFSR with a word access to 0xE000ED28

• Access MMFSR with a byte access to 0xE000ED28

• Access MMFSR and BFSR with a halfword access to 0xE000ED28

• Access BFSR with a byte access to 0xE000ED29

• Access UFSR with a halfword access to 0xE000ED2A.

31 30 29 28 27 26 25 24

UFSR

23 22 21 20 19 18 17 16

UFSR

15 14 13 12 11 10 9 8

BFSR

7 6 5 4 3 2 1 0

MMFSR

253SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.15 Hard Fault Status Register

Name: SCB_HFSR

Access: Read/Write

The SCB_HFSR gives information about events that activate the hard fault handler. This register is read, write to clear.

This means that bits in the register read normally, but wrting a 1 to any bit clears that bit to 0.

• DEBUGEVT: Reserved for Debug Use

When writing to the register, write a 0 to this bit, otherwise the behavior is unpredictable.

• FORCED: Forced Hard Fault

It indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either

because of priority or because it is disabled:

0: No forced hard fault.

1: Forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

• VECTTBL: Bus Fault on a Vector Table

It indicates a bus fault on a vector table read during an exception processing:

0: No bus fault on vector table read.

1: Bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the

exception.

Note: The HFSR bits are sticky. This means that, as one or more fault occurs, the associated bits are set to 1. A bit that is set to 1 is

cleared to 0 only by wrting a 1 to that bit, or by a reset.

31 30 29 28 27 26 25 24

DEBUGEVT FORCED – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – VECTTBL –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

254

11.9.1.16 MemManage Fault Address Register

Name: SCB_MMFAR

Access: Read/Write

The SCB_MMFAR contains the address of the location that generated a memory management fault.

• ADDRESS: Memory Management Fault Generation Location Address

When the MMARVALID bit of the MMFSR subregister is set to 1, this field holds the address of the location that generated

the memory management fault.

Notes: 1. When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction

can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

2. Flags in the MMFSR subregister indicate the cause of the fault, and whether the value in the SCB_MMFAR is valid. See

“MMFSR: Memory Management Fault Status Subregister” .

31 30 29 28 27 26 25 24

ADDRESS

23 22 21 20 19 18 17 16

ADDRESS

15 14 13 12 11 10 9 8

ADDRESS

7 6 5 4 3 2 1 0

ADDRESS

255SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.9.1.17 Bus Fault Address Register

Name: SCB_BFAR

Access: Read/Write

The SCB_BFAR contains the address of the location that generated a bus fault.

• ADDRESS: Bus Fault Generation Location Address

When the BFARVALID bit of the BFSR subregister is set to 1, this field holds the address of the location that generated the

bus fault.

Notes: 1. When an unaligned access faults, the address in the SCB_BFAR is the one requested by the instruction, even if it is not the

address of the fault.

2. Flags in the BFSR indicate the cause of the fault, and whether the value in the SCB_BFAR is valid. See “BFSR: Bus Fault

Status Subregister” .

31 30 29 28 27 26 25 24

ADDRESS

23 22 21 20 19 18 17 16

ADDRESS

15 14 13 12 11 10 9 8

ADDRESS

7 6 5 4 3 2 1 0

ADDRESS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

256

11.10 System Timer (SysTick)

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps

to) the value in the SYST_RVR on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging, the counter does not decrement.

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power mode, the SysTick

counter stops.

Ensure that the software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset; the correct initialization sequence for the

SysTick counter is:

1. Program the reload value.

2. Clear the current value.

3. Program the Control and Status register.

257SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.10.1 System Timer (SysTick) User Interface

Table 11-35. System Timer (SYST) Register Mapping

Offset Register Name Access Reset

0xE000E010 SysTick Control and Status Register SYST_CSR Read/Write 0x00000000

0xE000E014 SysTick Reload Value Register SYST_RVR Read/Write Unknown

0xE000E018 SysTick Current Value Register SYST_CVR Read/Write Unknown

0xE000E01C SysTick Calibration Value Register SYST_CALIB Read-only 0x00003A98

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

258

11.10.1.1 SysTick Control and Status Register

Name: SYST_CSR

Access: Read/Write

The SysTick SYST_CSR enables the SysTick features.

• COUNTFLAG: Count Flag

Returns 1 if the timer counted to 0 since the last time this was read.

• CLKSOURCE: Clock Source

Indicates the clock source:

0: External Clock.

1: Processor Clock.

• TICKINT: SysTick Exception Request Enable

Enables a SysTick exception request:

0: Counting down to zero does not assert the SysTick exception request.

1: Counting down to zero asserts the SysTick exception request.

The software can use COUNTFLAG to determine if SysTick has ever counted to zero.

• ENABLE: Counter Enable

Enables the counter:

0: Counter disabled.

1: Counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR and then counts down. On reaching

0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the

RELOAD value again, and begins counting.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – COUNTFLAG

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – CLKSOURCE TICKINT ENABLE

259SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.10.1.2 SysTick Reload Value Registers

Name: SYST_RVR

Access: Read/Write

The SYST_RVR specifies the start value to load into the SYST_CVR.

• RELOAD: SYST_CVR Load Value

Value to load into the SYST_CVR when the counter is enabled and when it reaches 0.

The RELOAD value can be any value in the range 0x00000001–0x00FFFFFF. A start value of 0 is possible, but has no

effect because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

The RELOAD value is calculated according to its use: For example, to generate a multi-shot timer with a period of N pro-

cessor clock cycles, use a RELOAD value of N-1. If the SysTick interrupt is required every 100 clock pulses, set RELOAD

to 99.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

RELOAD

15 14 13 12 11 10 9 8

RELOAD

7 6 5 4 3 2 1 0

RELOAD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

260

11.10.1.3 SysTick Current Value Register

Name: SYST_CVR

Access: Read/Write

The SysTick SYST_CVR contains the current value of the SysTick counter.

• CURRENT: SysTick Counter Current Value

Reads return the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CURRENT

15 14 13 12 11 10 9 8

CURRENT

7 6 5 4 3 2 1 0

CURRENT

261SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.10.1.4 SysTick Calibration Value Register

Name: SYST_CALIB

Access: Read/Write

The SysTick SYST_CSR indicates the SysTick calibration properties.

• NOREF: No Reference Clock

It indicates whether the device provides a reference clock to the processor:

0: Reference clock provided.

1: No reference clock provided.

If your device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit reads-as-one and ignores writes.

• SKEW: TENMS Value Verification

It indicates whether the TENMS value is exact:

0: TENMS value is exact.

1: TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real time clock.

• TENMS: Ten Milliseconds

The reload value for 10 ms (100 Hz) timing is subject to system clock skew errors. If the value reads as zero, the calibra-

tion value is not known.

The TENMS field default value is 0x00003A98 (15000 decimal).

In order to achieve a 1 ms timebase on SystTick, the TENMS field must be programmed to a value corresponding to the

processor clock frequency (in kHz) divided by 8.

For example, for devices running the processor clock at 48 MHz, the TENMS field value must be 0x0001770

(48000 kHz/8).

31 30 29 28 27 26 25 24

NOREF SKEW – – – – – –

23 22 21 20 19 18 17 16

TENMS

15 14 13 12 11 10 9 8

TENMS

7 6 5 4 3 2 1 0

TENMS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

262

11.11 Memory Protection Unit (MPU)

The MPU divides the memory map into a number of regions, and defines the location, size, access permissions,

and memory attributes of each region. It supports:

 Independent attribute settings for each region

 Overlapping regions

 Export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The Cortex-M4 MPU defines:

 Eight separate memory regions, 0–7

 A background region.

When memory regions overlap, a memory access is affected by the attributes of the region with the highest

number. For example, the attributes for region 7 take precedence over the attributes of any region that overlaps

region 7.

The background region has the same memory access attributes as the default memory map, but is accessible

from privileged software only.

The Cortex-M4 MPU memory map is unified. This means that instruction accesses and data accesses have the

same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory

management fault. This causes a fault exception, and might cause the termination of the process in an OS

environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be

executed. Typically, an embedded OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types (see “Memory Regions, Types and Attributes”).

Table 11-36 shows the possible MPU region attributes. These include Share ability and cache behavior attributes

that are not relevant to most microcontroller implementations. See “MPU Configuration for a Microcontroller” for

guidelines for programming such an implementation.

11.11.1 MPU Access Permission Attributes

This section describes the MPU access permission attributes. The access permission bits (TEX, C, B, S, AP, and

XN) of the MPU_RASR control the access to the corresponding memory region. If an access is made to an area of

memory without the required permissions, then the MPU generates a permission fault.

Table 11-36. Memory Attributes Summary

Memory Type Shareability Other Attributes Description

Strongly-ordered – –
All accesses to Strongly-ordered memory occur in program order. All

Strongly-ordered regions are assumed to be shared.

Device
Shared – Memory-mapped peripherals that several processors share.

Non-shared – Memory-mapped peripherals that only a single processor uses.

Normal

Shared

Non-cacheable Write-

through Cacheable

Write-back Cacheable

Normal memory that is shared between several processors.

Non-shared

Non-cacheable Write-

through Cacheable

Write-back Cacheable

Normal memory that only a single processor uses.

263SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The table below shows the encodings for the TEX, C, B, and S access permission bits.

Note: 1. The MPU ignores the value of this bit.

Table 11-38 shows the cache policy for memory attribute encodings with a TEX value is in the range 4–7.

Table 11-37. TEX, C, B, and S Encoding

TEX C B S Memory Type Shareability Other Attributes

b000

0

0 x (1) Strongly-ordered Shareable –

1 x (1) Device Shareable –

1

0
0

Normal

Not

shareable Outer and inner write-through. No

write allocate.
1 Shareable

1
0

Normal

Not

shareable Outer and inner write-back. No write

allocate.
1 Shareable

b001

0

0
0

Normal

Not

shareable Outer and inner noncacheable.

1 Shareable

1 x (1) Reserved encoding –

1

0 x (1) Implementation defined

attributes.
–

1
0

Normal

Not

shareable Outer and inner write-back. Write and

read allocate.
1 Shareable

b010
0

0 x (1) Device
Not

shareable
Nonshared Device.

1 x (1) Reserved encoding –

1 x (1) x (1) Reserved encoding –

b1BB A A
0

Normal

Not

shareable Cached memory BB = outer policy,

AA = inner policy.
1 Shareable

Table 11-38. Cache Policy for Memory Attribute Encoding

Encoding, AA or BB Corresponding Cache Policy

00 Non-cacheable

01 Write back, write and read allocate

10 Write through, no write allocate

11 Write back, no write allocate

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

264

Table 11-39 shows the AP encodings that define the access permissions for privileged and unprivileged software.

11.11.1.1 MPU Mismatch

When an access violates the MPU permissions, the processor generates a memory management fault, see

“Exceptions and Interrupts” . The MMFSR indicates the cause of the fault. See “MMFSR: Memory Management

Fault Status Subregister” for more information.

11.11.1.2 Updating an MPU Region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASRs. Each register

can be programed separately, or a multiple-word write can be used to program all of these registers. MPU_RBAR

and MPU_RASR aliases can be used to program up to four regions simultaneously using an STM instruction.

11.11.1.3 Updating an MPU Region Using Separate Words

Simple code to configure one region:

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
LDR R0,=MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R4, [R0, #0x4] ; Region Base Address
STRH R2, [R0, #0x8] ; Region Size and Enable
STRH R3, [R0, #0xA] ; Region Attribute

Disable a region before writing new region settings to the MPU, if the region being changed was previously

enabled. For example:

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
LDR R0,=MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
BIC R2, R2, #1 ; Disable
STRH R2, [R0, #0x8] ; Region Size and Enable
STR R4, [R0, #0x4] ; Region Base Address
STRH R3, [R0, #0xA] ; Region Attribute
ORR R2, #1 ; Enable

Table 11-39. AP Encoding

AP[2:0]

Privileged

Permissions

Unprivileged

Permissions Description

000 No access No access All accesses generate a permission fault

001 RW No access Access from privileged software only

010 RW RO
Writes by unprivileged software generate a permission

fault

011 RW RW Full access

100 Unpredictable Unpredictable Reserved

101 RO No access Reads by privileged software only

110 RO RO Read only, by privileged or unprivileged software

111 RO RO Read only, by privileged or unprivileged software

265SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

STRH R2, [R0, #0x8] ; Region Size and Enable

The software must use memory barrier instructions:

 Before the MPU setup, if there might be outstanding memory transfers, such as buffered writes, that might

be affected by the change in MPU settings

 After the MPU setup, if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by entering an exception

handler, or is followed by an exception return, because the exception entry and exception return mechanisms

cause memory barrier behavior.

The software does not need any memory barrier instructions during an MPU setup, because it accesses the MPU

through the PPB, which is a Strongly-Ordered memory region.

For example, if the user wants all of the memory access behavior to take effect immediately after the programming

sequence, a DSB instruction and an ISB instruction must be used. A DSB is required after changing MPU settings,

such as at the end of a context switch. An ISB is required if the code that programs the MPU region or regions is

entered using a branch or call. If the programming sequence is entered using a return from exception, or by taking

an exception, then an ISB is not required.

11.11.1.4 Updating an MPU Region Using Multi-word Writes

The user can program directly using multi-word writes, depending on how the information is divided. Consider the

following reprogramming:

; R1 = region number
; R2 = address
; R3 = size, attributes in one
LDR R0, =MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R2, [R0, #0x4] ; Region Base Address
STR R3, [R0, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

; R1 = region number
; R2 = address
; R3 = size, attributes in one
LDR R0, =MPU_RNR ; 0xE000ED98, MPU region number register
STM R0, {R1-R3} ; Region Number, address, attribute, size and enable

This can be done in two words for pre-packed information. This means that the MPU_RBAR contains the required

region number and had the VALID bit set to 1. See “MPU Region Base Address Register” . Use this when the data

is statically packed, for example in a boot loader:

; R1 = address and region number in one
; R2 = size and attributes in one
LDR R0, =MPU_RBAR ; 0xE000ED9C, MPU Region Base register
STR R1, [R0, #0x0] ; Region base address and

; region number combined with VALID (bit 4) set to 1
STR R2, [R0, #0x4] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

; R1 = address and region number in one
; R2 = size and attributes in one
LDR R0,=MPU_RBAR ; 0xE000ED9C, MPU Region Base register

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

266

STM R0, {R1-R2} ; Region base address, region number and VALID bit,
; and Region Attribute, Size and Enable

11.11.1.5 Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD

field of the MPU_RASR field to disable a subregion. See “MPU Region Attribute and Size Register” . The least

significant bit of SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling

a subregion means another region overlapping the disabled range matches instead. If no other enabled region

overlaps the disabled subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be

set to 0x00, otherwise the MPU behavior is unpredictable.

11.11.1.6 Example of SRD Use

Two regions with the same base address overlap. Region 1 is 128 KB, and region 2 is 512 KB. To ensure the

attributes from region 1 apply to the first 128 KB region, set the SRD field for region 2 to b00000011 to disable the

first two subregions, as in Figure 11-13 below:

Figure 11-13. SRD Use

11.11.1.7 MPU Design Hints And Tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt

handlers might access.

Ensure the software uses aligned accesses of the correct size to access MPU registers:

 Except for the MPU_RASR, it must use aligned word accesses

 For the MPU_RASR, it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent

any previous region settings from affecting the new MPU setup.

MPU Configuration for a Microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU

as follows:

Region 1

Disabled subregion

Disabled subregion

Region 2, with

subregions

Base address of both regions

Offset from

base address

0

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Table 11-40. Memory Region Attributes for a Microcontroller

Memory Region TEX C B S Memory Type and Attributes

Flash memory b000 1 0 0 Normal memory, non-shareable, write-through

Internal SRAM b000 1 0 1 Normal memory, shareable, write-through

External SRAM b000 1 1 1 Normal memory, shareable, write-back, write-allocate

Peripherals b000 0 1 1 Device memory, shareable

267SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system

behavior. However, using these settings for the MPU regions can make the application code more portable. The

values given are for typical situations. In special systems, such as multiprocessor designs or designs with a

separate DMA engine, the shareability attribute might be important. In these cases, refer to the recommendations

of the memory device manufacturer.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

268

11.11.2 Memory Protection Unit (MPU) User Interface

Table 11-41. Memory Protection Unit (MPU) Register Mapping

Offset Register Name Access Reset

0xE000ED90 MPU Type Register MPU_TYPE Read-only 0x00000800

0xE000ED94 MPU Control Register MPU_CTRL Read/Write 0x00000000

0xE000ED98 MPU Region Number Register MPU_RNR Read/Write 0x00000000

0xE000ED9C MPU Region Base Address Register MPU_RBAR Read/Write 0x00000000

0xE000EDA0 MPU Region Attribute and Size Register MPU_RASR Read/Write 0x00000000

0xE000EDA4 MPU Region Base Address Register Alias 1 MPU_RBAR_A1 Read/Write 0x00000000

0xE000EDA8 MPU Region Attribute and Size Register Alias 1 MPU_RASR_A1 Read/Write 0x00000000

0xE000EDAC MPU Region Base Address Register Alias 2 MPU_RBAR_A2 Read/Write 0x00000000

0xE000EDB0 MPU Region Attribute and Size Register Alias 2 MPU_RASR_A2 Read/Write 0x00000000

0xE000EDB4 MPU Region Base Address Register Alias 3 MPU_RBAR_A3 Read/Write 0x00000000

0xE000EDB8 MPU Region Attribute and Size Register Alias 3 MPU_RASR_A3 Read/Write 0x00000000

269SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.11.2.1 MPU Type Register

Name: MPU_TYPE

Access: Read/Write

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.

• IREGION: Instruction Region

Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

• DREGION: Data Region

Indicates the number of supported MPU data regions:

0x08 = Eight MPU regions.

• SEPARATE: Separate Instruction

Indicates support for unified or separate instruction and date memory maps:

0: Unified.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

IREGION

15 14 13 12 11 10 9 8

DREGION

7 6 5 4 3 2 1 0

– – – – – – – SEPARATE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

270

11.11.2.2 MPU Control Register

Name: MPU_CTRL

Access: Read/Write

The MPU CTRL register enables the MPU, enables the default memory map background region, and enables the use of

the MPU when in the hard fault, Non-maskable Interrupt (NMI), and FAULTMASK escalated handlers.

• PRIVDEFENA: Privileged Default Memory Map Enable

Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables the use of the default memory map. Any memory access to a location not covered by

any enabled region causes a fault.

1: If the MPU is enabled, enables the use of the default memory map as a background region for privileged software

accesses.

When enabled, the background region acts as a region number -1. Any region that is defined and enabled has priority over

this default map.

If the MPU is disabled, the processor ignores this bit.

• HFNMIENA: Hard Fault and NMI Enable

Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.

When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit.

1: The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1, the behavior is unpredictable.

• ENABLE: MPU Enable

Enables the MPU:

0: MPU disabled.

1: MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

• For privileged accesses, the default memory map is as described in “Memory Model” . Any access by privileged
software that does not address an enabled memory region behaves as defined by the default memory map.

• Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – PRIVDEFENA HFNMIENA ENABLE

271SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless

the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged soft-

ware can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the

MPU is not implemented. The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are

accessible based on regions and whether PRIVDEFENA is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with

priority –1 or –2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is

enabled. Setting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

272

11.11.2.3 MPU Region Number Register

Name: MPU_RNR

Access: Read/Write

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASRs.

• REGION: MPU Region Referenced by the MPU_RBAR and MPU_RASRs

Indicates the MPU region referenced by the MPU_RBAR and MPU_RASRs.

The MPU supports 8 memory regions, so the permitted values of this field are 0–7.

Normally, the required region number is written to this register before accessing the MPU_RBAR or MPU_RASR. How-

ever, the region number can be changed by writing to the MPU_RBAR with the VALID bit set to 1; see “MPU Region Base

Address Register” . This write updates the value of the REGION field.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

REGION

273SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.11.2.4 MPU Region Base Address Register

Name: MPU_RBAR

Access: Read/Write

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the

MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

• ADDR: Region Base Address

Software must ensure that the value written to the ADDR field aligns with the size of the selected region (SIZE field in the

MPU_RASR).

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies

the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,

for example, at 0x00010000 or 0x00020000.

• VALID: MPU Region Number Valid

Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and

ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for

the region specified in the REGION field.

Always reads as zero.

• REGION: MPU Region

For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR VALID REGION

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

274

11.11.2.5 MPU Region Attribute and Size Register

Name: MPU_RASR

Access: Read/Write

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and

enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

• The most significant halfword holds the region attributes.

• The least significant halfword holds the region size, and the region and subregion enable bits.

• XN: Instruction Access Disable

0: Instruction fetches enabled.

1: Instruction fetches disabled.

• AP: Access Permission

See Table 11-39.

• TEX, C, B: Memory Access Attributes

See Table 11-37.

• S: Shareable

See Table 11-37.

• SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.

1: Corresponding subregion is disabled.

See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD

field as 0x00.

31 30 29 28 27 26 25 24

– – – XN – AP

23 22 21 20 19 18 17 16

– – TEX S C B

15 14 13 12 11 10 9 8

SRD

7 6 5 4 3 2 1 0

– – SIZE ENABLE

275SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:

(Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE

values, with the corresponding region size and value of N in the MPU_RBAR.

Note: 1. In the MPU_RBAR; see “MPU Region Base Address Register”

• ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

SIZE Value Region Size Value of N (1) Note

b00100 (4) 32 B 5 Minimum permitted size

b01001 (9) 1 KB 10 –

b10011 (19) 1 MB 20 –

b11101 (29) 1 GB 30 –

b11111 (31) 4 GB b01100 Maximum possible size

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

276

11.11.2.6 MPU Region Base Address Register Alias 1

Name: MPU_RBAR_A1

Access: Read/Write

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the

MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

• ADDR: Region Base Address

Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified

by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies

the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,

for example, at 0x00010000 or 0x00020000.

• VALID: MPU Region Number Valid

Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and

ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for

the region specified in the REGION field.

Always reads as zero.

• REGION: MPU Region

For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR VALID REGION

277SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.11.2.7 MPU Region Attribute and Size Register Alias 1

Name: MPU_RASR_A1

Access: Read/Write

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and

enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

• The most significant halfword holds the region attributes.

• The least significant halfword holds the region size, and the region and subregion enable bits.

• XN: Instruction Access Disable

0: Instruction fetches enabled.

1: Instruction fetches disabled.

• AP: Access Permission

See Table 11-39.

• TEX, C, B: Memory Access Attributes

See Table 11-37.

• S: Shareable

See Table 11-37.

• SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.

1: Corresponding subregion is disabled.

See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD

field as 0x00.

31 30 29 28 27 26 25 24

– – – XN – AP

23 22 21 20 19 18 17 16

– TEX S C B

15 14 13 12 11 10 9 8

SRD

7 6 5 4 3 2 1 0

– – SIZE ENABLE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

278

• SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:

(Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE

values, with the corresponding region size and value of N in the MPU_RBAR.

Note: 1. In the MPU_RBAR; see “MPU Region Base Address Register”

• ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

SIZE Value Region Size Value of N (1) Note

b00100 (4) 32 B 5 Minimum permitted size

b01001 (9) 1 KB 10 –

b10011 (19) 1 MB 20 –

b11101 (29) 1 GB 30 –

b11111 (31) 4 GB b01100 Maximum possible size

279SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.11.2.8 MPU Region Base Address Register Alias 2

Name: MPU_RBAR_A2

Access: Read/Write

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the

MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

• ADDR: Region Base Address

Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified

by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies

the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,

for example, at 0x00010000 or 0x00020000.

• VALID: MPU Region Number Valid

Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and

ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for

the region specified in the REGION field.

Always reads as zero.

• REGION: MPU Region

For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR VALID REGION

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

280

11.11.2.9 MPU Region Attribute and Size Register Alias 2

Name: MPU_RASR_A2

Access: Read/Write

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and

enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

• The most significant halfword holds the region attributes.

• The least significant halfword holds the region size, and the region and subregion enable bits.

• XN: Instruction Access Disable

0: Instruction fetches enabled.

1: Instruction fetches disabled.

• AP: Access Permission

See Table 11-39.

• TEX, C, B: Memory Access Attributes

See Table 11-37.

• S: Shareable

See Table 11-37.

• SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.

1: Corresponding subregion is disabled.

See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD

field as 0x00.

31 30 29 28 27 26 25 24

– – – XN – AP

23 22 21 20 19 18 17 16

– – TEX S C B

15 14 13 12 11 10 9 8

SRD

7 6 5 4 3 2 1 0

– – SIZE ENABLE

281SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:

(Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE

values, with the corresponding region size and value of N in the MPU_RBAR.

Note: 1. In the MPU_RBAR; see “MPU Region Base Address Register”

• ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

SIZE Value Region Size Value of N (1) Note

b00100 (4) 32 B 5 Minimum permitted size

b01001 (9) 1 KB 10 –

b10011 (19) 1 MB 20 –

b11101 (29) 1 GB 30 –

b11111 (31) 4 GB b01100 Maximum possible size

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

282

11.11.2.10 MPU Region Base Address Register Alias 3

Name: MPU_RBAR_A3

Access: Read/Write

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the

MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

• ADDR: Region Base Address

Software must ensure that the value written to the ADDR field aligns with the size of the selected region.

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified

by the SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies

the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB,

for example, at 0x00010000 or 0x00020000.

• VALID: MPU Region Number Valid

Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and

ignores the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for

the region specified in the REGION field.

Always reads as zero.

• REGION: MPU Region

For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR VALID REGION

283SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.11.2.11 MPU Region Attribute and Size Register Alias 3

Name: MPU_RASR_A3

Access: Read/Write

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and

enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

• The most significant halfword holds the region attributes.

• The least significant halfword holds the region size, and the region and subregion enable bits.

• XN: Instruction Access Disable

0: Instruction fetches enabled.

1: Instruction fetches disabled.

• AP: Access Permission

See Table 11-39.

• TEX, C, B: Memory Access Attributes

See Table 11-37.

• S: Shareable

See Table 11-37.

• SRD: Subregion Disable

For each bit in this field:

0: Corresponding subregion is enabled.

1: Corresponding subregion is disabled.

See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD

field as 0x00.

31 30 29 28 27 26 25 24

– – – XN – AP

23 22 21 20 19 18 17 16

– – TEX S C B

15 14 13 12 11 10 9 8

SRD

7 6 5 4 3 2 1 0

– – SIZE ENABLE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

284

• SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:

(Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE

values, with the corresponding region size and value of N in the MPU_RBAR.

Note: 1. In the MPU_RBAR; see “MPU Region Base Address Register”

• ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

SIZE Value Region Size Value of N (1) Note

b00100 (4) 32 B 5 Minimum permitted size

b01001 (9) 1 KB 10 –

b10011 (19) 1 MB 20 –

b11101 (29) 1 GB 30 –

b11111 (31) 4 GB b01100 Maximum possible size

285SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.12 Floating Point Unit (FPU)

The Cortex-M4F FPU implements the FPv4-SP floating-point extension.

The FPU fully supports single-precision add, subtract, multiply, divide, multiply and accumulate, and square root

operations. It also provides conversions between fixed-point and floating-point data formats, and floating-point

constant instructions.

The FPU provides floating-point computation functionality that is compliant with the ANSI/IEEE Std 754-2008,

IEEE Standard for Binary Floating-Point Arithmetic, referred to as the IEEE 754 standard.

The FPU contains 32 single-precision extension registers, which can also be accessed as 16 doubleword registers

for load, store, and move operations.

11.12.1 Enabling the FPU

The FPU is disabled from reset. It must be enabled before any floating-point instructions can be used. Example 4-

1 shows an example code sequence for enabling the FPU in both privileged and user modes. The processor must

be in privileged mode to read from and write to the CPACR.

Example of Enabling the FPU:

; CPACR is located at address 0xE000ED88
LDR.W R0, =0xE000ED88
; Read CPACR
LDR R1, [R0]
; Set bits 20-23 to enable CP10 and CP11 coprocessors
ORR R1, R1, #(0xF << 20)
; Write back the modified value to the CPACR
STR R1, [R0]; wait for store to complete
DSB
;reset pipeline now the FPU is enabled
ISB

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

286

11.12.2 Floating Point Unit (FPU) User Interface

Table 11-42. Floating Point Unit (FPU) Register Mapping

Offset Register Name Access Reset

0xE000ED88 Coprocessor Access Control Register CPACR Read/Write 0x00000000

0xE000EF34 Floating-point Context Control Register FPCCR Read/Write 0xC0000000

0xE000EF38 Floating-point Context Address Register FPCAR Read/Write –

– Floating-point Status Control Register FPSCR Read/Write –

0xE000E01C Floating-point Default Status Control Register FPDSCR Read/Write 0x00000000

287SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.12.2.1 Coprocessor Access Control Register

Name: CPACR

Access: Read/Write

The CPACR specifies the access privileges for coprocessors.

• CP10: Access Privileges for Coprocessor 10

The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.

1: Privileged access only. An unprivileged access generates a NOCP fault.

2: Reserved. The result of any access is unpredictable.

3: Full access.

• CP11: Access Privileges for Coprocessor 11

The possible values of each field are:

0: Access denied. Any attempted access generates a NOCP UsageFault.

1: Privileged access only. An unprivileged access generates a NOCP fault.

2: Reserved. The result of any access is unpredictable.

3: Full access.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CP11 CP10 – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

288

11.12.2.2 Floating-point Context Control Register

Name: FPCCR

Access: Read/Write

The FPCCR sets or returns FPU control data.

• ASPEN: Automatic Hardware State Preservation And Restoration

Enables CONTROL bit [2] setting on execution of a floating-point instruction. This results in an automatic hardware state

preservation and restoration, for floating-point context, on exception entry and exit.

0: Disable CONTROL bit [2] setting on execution of a floating-point instruction.

1: Enable CONTROL bit [2] setting on execution of a floating-point instruction.

• LSPEN: Automatic Lazy State Preservation

0: Disable automatic lazy state preservation for floating-point context.

1: Enable automatic lazy state preservation for floating-point context.

• MONRDY: Debug Monitor Ready

0: DebugMonitor is disabled or the priority did not permit to set MON_PEND when the floating-point stack frame was

allocated.

1: DebugMonitor is enabled and the priority permitted to set MON_PEND when the floating-point stack frame was

allocated.

• BFRDY: Bus Fault Ready

0: BusFault is disabled or the priority did not permit to set the BusFault handler to the pending state when the floating-point

stack frame was allocated.

1: BusFault is enabled and the priority permitted to set the BusFault handler to the pending state when the floating-point

stack frame was allocated.

• MMRDY: Memory Management Ready

0: MemManage is disabled or the priority did not permit to set the MemManage handler to the pending state when the float-

ing-point stack frame was allocated.

1: MemManage is enabled and the priority permitted to set the MemManage handler to the pending state when the float-

ing-point stack frame was allocated.

31 30 29 28 27 26 25 24

ASPEN LSPEN – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – MONRDY

7 6 5 4 3 2 1 0

– BFRDY MMRDY HFRDY THREAD – USER LSPACT

289SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• HFRDY: Hard Fault Ready

0: The priority did not permit to set the HardFault handler to the pending state when the floating-point stack frame was

allocated.

1: The priority permitted to set the HardFault handler to the pending state when the floating-point stack frame was

allocated.

• THREAD: Thread Mode

0: The mode was not the Thread Mode when the floating-point stack frame was allocated.

1: The mode was the Thread Mode when the floating-point stack frame was allocated.

• USER: User Privilege Level

0: The privilege level was not User when the floating-point stack frame was allocated.

1: The privilege level was User when the floating-point stack frame was allocated.

• LSPACT: Lazy State Preservation Active

0: The lazy state preservation is not active.

1: The lazy state preservation is active. The floating-point stack frame has been allocated but saving the state to it has

been deferred.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

290

11.12.2.3 Floating-point Context Address Register

Name: FPCAR

Access: Read/Write

The FPCAR holds the location of the unpopulated floating-point register space allocated on an exception stack frame.

• ADDRESS: Location of Unpopulated Floating-point Register Space Allocated on an Exception Stack Frame

The location of the unpopulated floating-point register space allocated on an exception stack frame.

31 30 29 28 27 26 25 24

ADDRESS

23 22 21 20 19 18 17 16

ADDRESS

15 14 13 12 11 10 9 8

ADDRESS

7 6 5 4 3 2 1 0

ADDRESS – – –

291SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.12.2.4 Floating-point Status Control Register

Name: FPSCR

Access: Read/Write

The FPSCR provides all necessary User level control of the floating-point system.

• N: Negative Condition Code Flag

Floating-point comparison operations update this flag.

• Z: Zero Condition Code Flag

Floating-point comparison operations update this flag.

• C: Carry Condition Code Flag

Floating-point comparison operations update this flag.

• V: Overflow Condition Code Flag

Floating-point comparison operations update this flag.

• AHP: Alternative Half-precision Control

0: IEEE half-precision format selected.

1: Alternative half-precision format selected.

• DN: Default NaN Mode Control

0: NaN operands propagate through to the output of a floating-point operation.

1: Any operation involving one or more NaNs returns the Default NaN.

• FZ: Flush-to-zero Mode Control

0: Flush-to-zero mode disabled. The behavior of the floating-point system is fully compliant with the IEEE 754 standard.

1: Flush-to-zero mode enabled.

• RMode: Rounding Mode Control

The encoding of this field is:

0b00: Round to Nearest (RN) mode

0b01: Round towards Plus Infinity (RP) mode.

0b10: Round towards Minus Infinity (RM) mode.

31 30 29 28 27 26 25 24

N Z C V – AHP DN FZ

23 22 21 20 19 18 17 16

RMode – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

IDC – – IXC UFC OFC DZC IOC

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

292

0b11: Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all floating-point instructions.

• IDC: Input Denormal Cumulative Exception

IDC is a cumulative exception bit for floating-point exception; see also bits [4:0].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• IXC: Inexact Cumulative Exception

IXC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• UFC: Underflow Cumulative Exception

UFC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• OFC: Overflow Cumulative Exception

OFC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• DZC: Division by Zero Cumulative Exception

DZC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• IOC: Invalid Operation Cumulative Exception

IOC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

293SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

11.12.2.5 Floating-point Default Status Control Register

Name: FPDSCR

Access: Read/Write

The FPDSCR holds the default values for the floating-point status control data.

• AHP: FPSCR.AHP Default Value

Default value for FPSCR.AHP.

• DN: FPSCR.DN Default Value

Default value for FPSCR.DN.

• FZ: FPSCR.FZ Default Value

Default value for FPSCR.FZ.

• RMode: FPSCR.RMode Default Value

Default value for FPSCR.RMode.

31 30 29 28 27 26 25 24

– – – – – AHP DN FZ

23 22 21 20 19 18 17 16

RMode – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

294

11.13 Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates to a processor that the value associated with a memory access is invalid.

An abort can be caused by the external or internal memory system as a result of attempting to access

invalid instruction or data memory.

Aligned
A data item stored at an address that is divisible by the number of bytes that defines the data size is

said to be aligned. Aligned words and halfwords have addresses that are divisible by four and two

respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses that are

divisible by four and two respectively.

Banked register A register that has multiple physical copies, where the state of the processor determines which copy is

used. The Stack Pointer, SP (R13) is a banked register.

Base register
In instruction descriptions, a register specified by a load or store instruction that is used to hold the

base value for the instruction’s address calculation. Depending on the instruction and its addressing

mode, an offset can be added to or subtracted from the base register value to form the address that is

sent to memory.

See also “Index register” .

Big-endian (BE) Byte ordering scheme in which bytes of decreasing significance in a data word are stored at

increasing addresses in memory.

See also “Byte-invariant” , “Endianness” , “Little-endian (LE)” .

Big-endian memory

Memory in which:

a byte or halfword at a word-aligned address is the most significant byte or halfword within the word at

that address,

a byte at a halfword-aligned address is the most significant byte within the halfword at that address.

See also “Little-endian memory” .

Breakpoint

A breakpoint is a mechanism provided by debuggers to identify an instruction at which program

execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of register

contents, memory locations, variable values at fixed points in the program execution to test that the

program is operating correctly. Breakpoints are removed after the program is successfully tested.

295SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Byte-invariant
In a byte-invariant system, the address of each byte of memory remains unchanged when switching

between little-endian and big-endian operation. When a data item larger than a byte is loaded from or

stored to memory, the bytes making up that data item are arranged into the correct order depending

on the endianness of the memory access.

An ARM byte-invariant implementation also supports unaligned halfword and word memory accesses.

It expects multi-word accesses to be word-aligned.

Cache
A block of on-chip or off-chip fast access memory locations, situated between the processor and main

memory, used for storing and retrieving copies of often used instructions, data, or instructions and

data. This is done to greatly increase the average speed of memory accesses and so improve

processor performance.

Condition field
A four-bit field in an instruction that specifies a condition under which the instruction can execute.

Conditional execution If the condition code flags indicate that the corresponding condition is true when the instruction starts

executing, it executes normally. Otherwise, the instruction does nothing.

Context The environment that each process operates in for a multitasking operating system. In ARM

processors, this is limited to mean the physical address range that it can access in memory and the

associated memory access permissions.

Coprocessor
A processor that supplements the main processor. Cortex-M4 does not support any coprocessors.

Debugger A debugging system that includes a program, used to detect, locate, and correct software faults,

together with custom hardware that supports software debugging.

Direct Memory Access

(DMA)

An operation that accesses main memory directly, without the processor performing any accesses to

the data concerned.

Doubleword
A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

Doubleword-aligned A data item having a memory address that is divisible by eight.

Endianness Byte ordering. The scheme that determines the order that successive bytes of a data word are stored

in memory. An aspect of the system’s memory mapping.

See also “Little-endian (LE)” and “Big-endian (BE)” .

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

296

Exception

An event that interrupts program execution. When an exception occurs, the processor suspends the

normal program flow and starts execution at the address indicated by the corresponding exception

vector. The indicated address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults

include attempting an invalid memory access, attempting to execute an instruction in an invalid

processor state, and attempting to execute an undefined instruction.

Exception service routine
See “Interrupt handler” .

Exception vector See “Interrupt vector” .

Flat address mapping A system of organizing memory in which each physical address in the memory space is the same as

the corresponding virtual address.

Halfword A 16-bit data item.

Illegal instruction An instruction that is architecturally Undefined.

Implementation-defined The behavior is not architecturally defined, but is defined and documented by individual

implementations.

Implementation-specific The behavior is not architecturally defined, and does not have to be documented by individual

implementations. Used when there are a number of implementation options available and the option

chosen does not affect software compatibility.

Index register
In some load and store instruction descriptions, the value of this register is used as an offset to be

added to or subtracted from the base register value to form the address that is sent to memory. Some

addressing modes optionally enable the index register value to be shifted prior to the addition or

subtraction.

See also “Base register” .

Instruction cycle count The number of cycles that an instruction occupies the Execute stage of the pipeline.

Interrupt handler A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector One of a number of fixed addresses in low memory, or in high memory if high vectors are configured,

that contains the first instruction of the corresponding interrupt handler.

297SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Little-endian (LE) Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing

addresses in memory.

See also “Big-endian (BE)” , “Byte-invariant” , “Endianness” .

Little-endian memory

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at

that address,

a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

See also “Big-endian memory” .

Load/store architecture A processor architecture where data-processing operations only operate on register contents, not

directly on memory contents.

Memory Protection Unit

(MPU)

Hardware that controls access permissions to blocks of memory. An MPU does not perform any

address translation.

Prefetching In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before

the preceding instructions have finished executing. Prefetching an instruction does not mean that the

instruction has to be executed.

Preserved Preserved by writing the same value back that has been previously read from the same field on the

same processor.

Read Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb

instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

Region A partition of memory space.

Reserved

A field in a control register or instruction format is reserved if the field is to be defined by the

implementation, or produces Unpredictable results if the contents of the field are not zero. These fields

are reserved for use in future extensions of the architecture or are implementation-specific. All

reserved bits not used by the implementation must be written as 0 and read as 0.

Thread-safe
In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing

shared resources, to ensure correct operation without the risk of shared access conflicts.

Thumb instruction One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be

halfword-aligned.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

298

Unaligned
A data item stored at an address that is not divisible by the number of bytes that defines the data size

is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Undefined Indicates an instruction that generates an Undefined instruction exception.

Unpredictable One cannot rely on the behavior. Unpredictable behavior must not represent security holes.

Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Warm reset
Also known as a core reset. Initializes the majority of the processor excluding the debug controller and

debug logic. This type of reset is useful if debugging features of a processor.

WA See “Write-allocate (WA)” .

WB See “Write-back (WB)” .

Word A 32-bit data item.

Write Writes are defined as operations that have the semantics of a store. Writes include the Thumb

instructions STM, STR, STRH, STRB, and PUSH.

Write-allocate (WA)
In a write-allocate cache, a cache miss on storing data causes a cache line to be allocated into the

cache.

Write-back (WB) In a write-back cache, data is only written to main memory when it is forced out of the cache on line

replacement following a cache miss. Otherwise, writes by the processor only update the cache. This is

also known as copyback.

Write buffer A block of high-speed memory, arranged as a FIFO buffer, between the data cache and main memory,

whose purpose is to optimize stores to main memory.

Write-through (WT)
In a write-through cache, data is written to main memory at the same time as the cache is updated.

299SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

12. Debug and Test Features

12.1 Description

The SAM4 Series Microcontrollers feature a number of complementary debug and test capabilities. The Serial

Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port (SW-DP) and JTAG Debug (JTAG-DP) port

is used for standard debugging functions, such as downloading code and single-stepping through programs. It also

embeds a serial wire trace.

12.2 Embedded Characteristics

 Debug access to all memory and registers in the system, including Cortex-M4 register bank when the core is

running, halted, or held in reset.

 Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access

 Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches

 Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and system profiling

 Instrumentation Trace Macrocell (ITM) for support of printf style debugging

 IEEE1149.1 JTAG Boundary-scan on all digital pins

12.3 Debug and Test Block Diagram

Figure 12-1. Debug and Test Block Diagram

TST

TMS

TCK/SWCLK

TDI

JTAGSEL

TDO/TRACESWO

Boundary
TAP

SWJ-DP

Reset
and
Test

POR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

300

12.4 Application Examples

12.4.1 Debug Environment

Figure 12-2 shows a complete debug environment example. The SWJ-DP interface is used for standard

debugging functions, such as downloading code and single-stepping through the program and viewing core and

peripheral registers.

Figure 12-2. Application Debug Environment Example

12.4.2 Test Environment

Figure 12-3 shows a test environment example (JTAG Boundary scan). Test vectors are sent and interpreted by

the tester. In this example, the “board in test” is designed using a number of JTAG-compliant devices. These

devices can be connected to form a single scan chain.

SAM4

Host Debugger
PC

SAM4-based Application Board

SWJ-DP
Connector

SWJ-DP
Emulator/Probe

301SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 12-3. Application Test Environment Example

12.5 Debug and Test Pin Description

Chip 2Chip n

Chip 1SAM4

SAM4-based Application Board In Test

JTAG
Connector

Tester
Test Adaptor

JTAG
Probe

Table 12-1. Debug and Test Signal List

Signal Name Function Type Active Level

Reset/Test

NRST Microcontroller Reset Input/Output Low

TST Test Select Input

SWD/JTAG

TCK/SWCLK Test Clock/Serial Wire Clock Input

TDI Test Data In Input

TDO/TRACESWO Test Data Out/Trace Asynchronous Data Out Output

TMS/SWDIO Test Mode Select/Serial Wire Input/Output Input

JTAGSEL JTAG Selection Input High

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

302

12.6 Functional Description

12.6.1 Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM4E

series. The TST pin integrates a permanent pull-down resistor of about 15 kΩ to GND, so that it can be left

unconnected for normal operations. To enter fast programming mode, see Section 21. “Fast Flash Programming

Interface (FFPI)”.

12.6.2 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset

signal to the external components or asserted low externally to reset the microcontroller. It will reset the Core and

the peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length

of the reset pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a

permanent pull-up resistor to VDDIO of about 100 kΩ. By default, the NRST pin is configured as an input.

12.6.3 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read

as logic level 1). The ERASE pin and the ROM code ensure an in-situ reprogrammability of the Flash content

without the use of a debug tool. When the security bit is activated, the ERASE pin provides the capability to

reprogram the Flash content. It integrates a pull-down resistor of about 100 kΩ to GND, so that it can be left

unconnected for normal operations.

This pin is debounced by SCLK to improve the glitch tolerance. To avoid unexpected erase at power-up, a

minimum ERASE pin assertion time is required. This time is defined in Table 46-68, “AC Flash Characteristics,” on

page 1407.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured

as a PIO pin. If the ERASE pin is used as a standard I/O, start-up level of this pin must be low to prevent unwanted

erasing. Also, if the ERASE pin is used as a standard I/O output, asserting the pin to low does not erase the Flash.

For details, please refer to Section 10.2 “Peripheral Signal Multiplexing on I/O Lines”.

12.6.4 Debug Architecture

Figure 12-4 shows the Debug Architecture used in the SAM4. The Cortex-M4 embeds five functional units for

debug:

 SWJ-DP (Serial Wire/JTAG Debug Port)

 FPB (Flash Patch Breakpoint)

 DWT (Data Watchpoint and Trace)

 ITM (Instrumentation Trace Macrocell)

 TPIU (Trace Port Interface Unit)

The debug architecture information that follows is mainly dedicated to developers of SWJ-DP Emulators/Probes

and debugging tool vendors for Cortex-M4 based microcontrollers. For further details on SWJ-DP see the Cortex-

M4 technical reference manual.

303SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 12-4. Debug Architecture

12.6.5 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin

JTAG connector defined by ARM. For more details about voltage reference and reset state, please refer to Section

3. “Signal Description”.

At start-up, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port

is not needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general IO

mode is performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad

for pull-up, triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL and PA7 pins are used to select the JTAG boundary scan when JTAGSEL is at high level and PA7

at low level. It integrates a permanent pull-down resistor of about 15 kΩ to GND, so that it can be left unconnected

for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it

must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and

enables the SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. The asynchronous trace can only be

used with SW-DP, not JTAG-DP.

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly between SWJ-DP

and JTAG boundary scan operations. A chip reset must be performed after JTAGSEL is changed.

4 watchpoints

PC sampler

data address sampler

data sampler

interrupt trace

CPU statistics

DWT

6 breakpoints

FPB

software trace
32 channels

time stamping

ITM

SWD/JTAG

SWJ-DP

SWO trace

TPIU

Table 12-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port

TMS/SWDIO TMS SWDIO

TCK/SWCLK TCK SWCLK

TDI TDI –

TDO/TRACESWO TDO TRACESWO (optional: trace)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

304

12.6.5.1 SW-DP and JTAG-DP Selection Mechanism

Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-DP is selected by

default after reset.

 Switch from JTAG-DP to SW-DP. The sequence is:

̶ Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

̶ Send the 16-bit sequence on SWDIOTMS = 0111100111100111 (0x79E7 MSB first)

̶ Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

 Switch from SWD to JTAG. The sequence is:

̶ Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

̶ Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (0x3CE7 MSB first)

̶ Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

12.6.6 FPB (Flash Patch Breakpoint)

The FPB:

 Implements hardware breakpoints

 Patches code and data from code space to system space.

The FPB unit contains:

 Two literal comparators for matching against literal loads from Code space, and remapping to a

corresponding area in System space.

 Six instruction comparators for matching against instruction fetches from Code space and remapping to a

corresponding area in System space.

 Alternatively, comparators can also be configured to generate a Breakpoint instruction to the processor core

on a match.

12.6.7 DWT (Data Watchpoint and Trace)

The DWT contains four comparators which can be configured to generate the following:

 PC sampling packets at set intervals

 PC or Data watchpoint packets

 Watchpoint event to halt core

The DWT contains counters for the items that follow:

 Clock cycle (CYCCNT)

 Folded instructions

 Load Store Unit (LSU) operations

 Sleep Cycles

 CPI (all instruction cycles except for the first cycle)

 Interrupt overhead

12.6.8 ITM (Instrumentation Trace Macrocell)

The ITM is an application driven trace source that supports printf style debugging to trace Operating System (OS)

and application events, and emits diagnostic system information. The ITM emits trace information as packets

which can be generated by three different sources with several priority levels:

 Software trace: Software can write directly to ITM stimulus registers. This can be done using the printf

function. For more information, refer to Section 12.6.8.1 “How to Configure the ITM”.

 Hardware trace: The ITM emits packets generated by the DWT.

305SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate

the timestamp.

12.6.8.1 How to Configure the ITM

The following example describes how to output trace data in asynchronous trace mode.

 Configure the TPIU for asynchronous trace mode (refer to Section 12.6.8.3 “How to Configure the TPIU”)

 Enable the write accesses into the ITM registers by writing “0xC5ACCE55” into the Lock Access Register

(Address: 0xE0000FB0)

 Write 0x00010015 into the Trace Control Register:

̶ Enable ITM

̶ Enable Synchronization packets

̶ Enable SWO behavior

̶ Fix the ATB ID to 1

 Write 0x1 into the Trace Enable Register:

̶ Enable the Stimulus port 0

 Write 0x1 into the Trace Privilege Register:

̶ Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will result in the

corresponding stimulus port being accessible in user mode.)

 Write into the Stimulus port 0 register: TPIU (Trace Port Interface Unit)

The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macrocell (ITM).

The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

12.6.8.2 Asynchronous Mode

The TPIU is configured in asynchronous mode, trace data are output using the single TRACESWO pin. The

TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, asynchronous

trace mode is only available when the Serial Wire Debug mode is selected since TDO signal is used in JTAG

debug mode.

Two encoding formats are available for the single pin output:

 Manchester encoded stream. This is the reset value.

 NRZ_based UART byte structure

12.6.8.3 How to Configure the TPIU

This example only concerns the asynchronous trace mode.

 Set the TRCENA bit to 1 into the Debug Exception and Monitor Register (0xE000EDFC) to enable the use of

trace and debug blocks.

 Write 0x2 into the Selected Pin Protocol Register

̶ Select the Serial Wire Output – NRZ

 Write 0x100 into the Formatter and Flush Control Register

 Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the

asynchronous output (this can be done automatically by the debugging tool).

12.6.9 IEEE® 1149.1 JTAG Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.

IEEE1149.1 JTAG Boundary Scan is enabled when TST is tied to high, PA7 tied low, and JTAGSEL tied to high

during power-up. These pins must be maintained in their respective states for the duration of the boundary scan

operation.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

306

The SAMPLE, EXTEST and BYPASS functions are implemented. In SWD/JTAG debug mode, the ARM processor

responds with a non-JTAG chip ID that identifies the processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset

must be performed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file to set up the test is provided on www.atmel.com.

12.6.9.1 JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins and associated

control signals.

Each SAM4 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be

forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects

the direction of the pad.

For more information, please refer to BDSL files available for the SAM4 Series.

http://www.atmel.com

307SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

12.6.10 ID Code Register

Access: Read-only

• VERSION[31:28]: Product Version Number

Set to 0x0.

• PART NUMBER[27:12]: Product Part Number

• MANUFACTURER IDENTITY[11:1]

Set to 0x01F.

• Bit[0] Required by IEEE Std. 1149.1.

Set to 0x1.

31 30 29 28 27 26 25 24

VERSION PART NUMBER

23 22 21 20 19 18 17 16

PART NUMBER

15 14 13 12 11 10 9 8

PART NUMBER MANUFACTURER IDENTITY

7 6 5 4 3 2 1 0

MANUFACTURER IDENTITY 1

Chip Name Chip ID

SAM4E 0xA3CC_0CE0

Chip Name JTAG ID Code

SAM4E 0x05B3_703F

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

308

13. Reset Controller (RSTC)

13.1 Description

The Reset Controller (RSTC), driven by power-on reset (POR) cells, Software, external reset pin and peripheral

events, handles all the resets of the system without any external components. It reports which reset occurred last.

The RSTC also drives independently or simultaneously the external reset and the peripheral and processor resets.

13.2 Embedded Characteristics

 Driven by Embedded Power-on Reset, Software, External Reset Pin and Peripheral Events

 Management of All System Resets, Including

̶ External Devices through the NRST Pin

̶ Processor

̶ Peripheral Set

 Reset Source Status

̶ Status of the Last Reset

̶ Either VDDCORE and VDDIO POR Reset, Software Reset, User Reset, Watchdog Reset

 External Reset Signal Control and Shaping

13.3 Block Diagram

Figure 13-1. Reset Controller Block Diagram

NRST Pin

proc_nreset

wd_fault

periph_nreset

SLCK

Reset

State

Manager

Reset Controller

rstc_irq

NRST

Manager

exter_nreset
nrst_out

core_backup_reset

WDT_MR.WDRPROC

user_reset

vddcore_nresetPOR

VDDCORE

POR

VDDIO

From

watchdog

309SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

13.4 Functional Description

13.4.1 Reset Controller Overview

The Reset Controller is made up of an NRST manager and a reset state manager. It runs at slow clock frequency

and generates the following reset signals:

 proc_nreset: processor reset line (also resets the Watchdog Timer)

 periph_nreset: affects the whole set of embedded peripherals

 nrst_out: drives the NRST pin

These reset signals are asserted by the Reset Controller, either on events generated by peripherals, events on

NRST pin, or on software action. The reset state manager controls the generation of reset signals and provides a

signal to the NRST manager when an assertion of the NRST pin is required.

The NRST manager shapes the NRST assertion during a programmable time, thus controlling external device

resets.

The Reset Controller Mode Register (RSTC_MR), used to configure the Reset Controller, is powered with VDDIO,

so that its configuration is saved as long as VDDIO is on.

13.4.2 NRST Manager

The NRST manager samples the NRST input pin and drives this pin low when required by the reset state

manager. Figure 13-2 shows the block diagram of the NRST manager.

NRST Pin

proc_nreset

wd_fault

periph_nreset

SLCK

Reset

State

Manager

Reset Controller

rstc_irq

NRST

Manager

exter_nreset
nrst_out

core_backup_reset

coproc_nreset

coproc_periph_nresetWDT_MR.WDRPROC

user_reset

vddcore_nresetPOR

VDDCORE

POR

VDDIO

From

watchdog

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

310

Figure 13-2. NRST Manager

13.4.2.1 NRST Signal or Interrupt

The NRST manager samples the NRST pin at slow clock speed. When the line is detected low, a User Reset is

reported to the reset state manager. The NRST pin must be asserted for at least 1 SLCK clock cycle to ensure

execution of a user reset.

However, the NRST manager can be programmed to not trigger a reset when an assertion of NRST occurs.

Writing a 0 to the URSTEN bit in the RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in the Reset Controller Status

Register (RSTC_SR). As soon as the NRST pin is asserted, bit URSTS in the RSTC_SR is written to 1. This bit is

cleared only when the RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a reset. To do so, set

the URSTIEN bit in the RSTC_MR.

13.4.2.2 NRST External Reset Control

The reset state manager asserts the signal exter_nreset to assert the NRST pin. When this occurs, the “nrst_out”

signal is driven low by the NRST manager for a time programmed by field ERSTL in the RSTC_MR. This assertion

duration, named External Reset Length, lasts 2(ERSTL+1) slow clock cycles. This gives the approximate duration of

an assertion between 60 µs and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the NRST

pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that the NRST line is

driven low for a time compliant with potential external devices connected on the system reset.

RSTC_MR is backed up, making it possible to use the ERSTL field to shape the system power-up reset for devices

requiring a longer startup time than that of the slow clock oscillator.

13.4.3 Reset States

The reset state manager handles the different reset sources and generates the internal reset signals. It reports the

reset status in field RSTTYP of the Status Register (RSTC_SR). The update of RSTC_SR.RSTTYP is performed

when the processor reset is released.

13.4.3.1 General Reset

A general reset occurs when a VDDIO power-on-reset is detected, an Asynchronous Master Reset (NRSTB pin) is

requested, a brownout or a voltage regulation loss is detected by the Supply Controller. The vddcore_nreset signal

is asserted by the Supply Controller when a general reset occurs.

All the reset signals are released and field RSTC_SR.RSTTYP reports a general reset. As the RSTC_MR is

written to 0, the NRST line rises two cycles after the vddcore_nreset, as ERSTL defaults at value 0x0.

External Reset Timer

URSTS

URSTEN

ERSTL

exter_nreset

URSTIEN

RSTC_MR

RSTC_MR

RSTC_MR

RSTC_SR

NRSTL

nrst_out

NRST

rstc_irq

Other

interrupt

sources

user_reset

311SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 13-3 shows how the general reset affects the reset signals.

Figure 13-3. General Reset State

13.4.3.2 Backup Reset

A backup reset occurs when the chip exits from Backup mode. While exiting Backup mode, the vddcore_nreset

signal is asserted by the Supply Controller.

Field RSTC_SR.RSTTYP is updated to report a backup reset.

13.4.3.3 Watchdog Reset

The watchdog reset is entered when a watchdog fault occurs. This reset lasts three slow clock cycles.

When in watchdog reset, assertion of the reset signals depends on the WDRPROC bit in the WDT_MR:

 If WDRPROC = 0, the processor reset and the peripheral reset are asserted. The NRST line is also

asserted, depending on how field RSTC_MR.ERSTL is programmed. However, the resulting low level on

NRST does not result in a user reset state.

 If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if

WDRSTEN in the WDT_MR is written to 1, the Watchdog Timer is always reset after a watchdog reset, and the

Watchdog is enabled by default and with a period set to a maximum.

When bit WDT_MR.WDRSTEN is written to 0, the watchdog fault has no impact on the Reset Controller.

After a watchdog overflow occurs, the report on the RSTC_SR.RSTTYP field may differ (either WDT_RST or

USER_RST) depending on the external components driving the NRST pin. For example, if the NRST line is driven

through a resistor and a capacitor (NRST pin debouncer), the reported value is USER_RST if the low to high

transition is greater than one SLCK cycle.

SLCK

periph_nreset

proc_nreset

NRST

(nrst_out)

External Reset Length

= 2 cycles

MCK

Processor Startup

= 2 cycles

vddio_nreset

Any

Freq.

RSTTYP XXX 0x0 = General Reset XXX

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

312

Figure 13-4. Watchdog Reset

13.4.3.4 Software Reset

The Reset Controller offers commands to assert the different reset signals. These commands are performed by

writing the Control Register (RSTC_CR) with the following bits at 1:

 RSTC_CR.PROCRST: Writing a 1 to PROCRST resets the processor and the watchdog timer.

 RSTC_CR.PERRST: Writing a 1 to PERRST resets all the embedded peripherals including the memory

system, and, in particular, the Remap Command. The Peripheral Reset is generally used for debug

purposes.

Except for debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and

PROCRST set both at 1 simultaneously).

 RSTC_CR.EXTRST: Writing a 1 to EXTRST asserts low the NRST pin during a time defined by the field

RSTC_MR.ERSTL.

The software reset is entered if at least one of these bits is written to 1 by the software. All these commands can be

performed independently or simultaneously. The software reset lasts three slow clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master

Clock (MCK). They are released when the software reset has ended, i.e., synchronously to SLCK.

If EXTRST is written to 1, the nrst_out signal is asserted depending on the configuration of f ield

RSTC_MR.ERSTL. However, the resulting falling edge on NRST does not lead to a user reset.

If and only if the PROCRST bit is written to 1, the Reset Controller reports the software status in field

RSTC_SR.RSTTYP. Other software resets are not reported in RSTTYP.

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Progress) is written to

1 in the RSTC_SR. SRCMP is cleared at the end of the software reset. No other software reset can be performed

while the SRCMP bit is written to 1, and writing any value in the RSTC_CR has no effect.

Only if

WDRPROC = 0

SLCK

periph_nreset

proc_nreset

wd_fault

NRST

(nrst_out)

EXTERNAL RESET LENGTH

8 cycles (ERSTL=2)

MCK

Processor Startup

= 2 cycles

Any

Freq.

RSTTYP Any XXX 0x2 = Watchdog Reset

313SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 13-5. Software Reset

13.4.3.5 User Reset

The user reset is entered when a low level is detected on the NRST pin and bit URSTEN in the RSTC_MR is at 1.

The NRST input signal is resynchronized with SLCK to ensure proper behavior of the system. Thus, the NRST pin

must be asserted for at least 1 SLCK clock cycle to ensure execution of a user reset.

The user reset is entered 2 slow clock cycles (SLCK) after a low level is detected on NRST. The processor reset

and the peripheral reset are asserted.

The user reset ends when NRST rises, after a two-cycle resynchronization time and a three-cycle processor

startup. The processor clock is re-enabled as soon as NRST is confirmed high.

When the processor reset signal is released, field RSTC_SR.RSTTYP is loaded with the value 0x4, indicating a

user reset.

The NRST manager guarantees that the NRST line is asserted for External Reset Length slow clock cycles, as

programmed in field RSTC_MR.ERSTL. However, if NRST does not rise after External Reset Length because it is

driven low externally, the internal reset lines remain asserted until NRST actually rises.

SLCK

periph_nreset

if PERRST=1

proc_nreset

if PROCRST=1

Write RSTC_CR

NRST

(nrst_out)

if EXTRST=1

EXTERNAL RESET LENGTH

8 cycles (ERSTL=2)

MCK

Processor Startup

= 2 cycles

Any

Freq.

RSTTYP Any XXX 0x3 = Software Reset

Resynch.

1 cycle

SRCMP in RSTC_SR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

314

Figure 13-6. User Reset State

13.4.4 Reset State Priorities

The reset state manager manages the priorities among the different reset sources. The resets are listed in order of

priority as follows:

1. General reset

2. Backup reset

3. Watchdog reset

4. Software reset

5. User reset

Particular cases are listed below:

 When in user reset:

̶ A watchdog event is impossible because the Watchdog Timer is being reset by the proc_nreset signal.

̶ A software reset is impossible, since the processor reset is being activated.

 When in software reset:

̶ A watchdog event has priority over the current state.

̶ The NRST has no effect.

 When in watchdog reset:

̶ The processor reset is active and so a software reset cannot be programmed.

̶ A user reset cannot be entered.

SLCK

periph_nreset

proc_nreset

NRST

NRST

(nrst_out)

>= EXTERNAL RESET LENGTH

MCK

Processor Startup

= 2 cycles

Any

Freq.

Resynch.

2 cycles

RSTTYP Any XXX

Resynch.

2 cycles

0x4 = User Reset

315SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

13.5 Reset Controller (RSTC) User Interface

Note: 1. This value assumes that a general reset has been performed, subject to change if other types of reset are generated.

Table 13-1. Register Mapping

Offset Register Name Access Reset

0x00 Control Register RSTC_CR Write-only –

0x04 Status Register RSTC_SR Read-only 0x0000_0000(1)

0x08 Mode Register RSTC_MR Read/Write 0x0000 0001

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

316

13.5.1 Reset Controller Control Register

Name: RSTC_CR

Address: 0x400E1800

Access: Write-only

• PROCRST: Processor Reset

0: No effect

1: If KEY is correct, resets the processor

• PERRST: Peripheral Reset

0: No effect

1: If KEY is correct, resets the peripherals

• EXTRST: External Reset

0: No effect

1: If KEY is correct, asserts the NRST pin

• KEY: System Reset Key

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – EXTRST PERRST – PROCRST

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

317SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

13.5.2 Reset Controller Status Register

Name: RSTC_SR

Address: 0x400E1804

Access: Read-only

• URSTS: User Reset Status

A high-to-low transition of the NRST pin sets the URSTS bit. This transition is also detected on the MCK rising edge. If the

user reset is disabled (URSTEN = 0 in RSTC_MR) and if the interruption is enabled by the URSTIEN bit in the RSTC_MR,

the URSTS bit triggers an interrupt. Reading the RSTC_SR resets the URSTS bit and clears the interrupt.

0: No high-to-low edge on NRST happened since the last read of RSTC_SR.

1: At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

• RSTTYP: Reset Type

This field reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

• NRSTL: NRST Pin Level

This bit registers the NRST pin level sampled on each Master Clock (MCK) rising edge.

• SRCMP: Software Reset Command in Progress

When set, this bit indicates that a software reset command is in progress and that no further software reset should be per-

formed until the end of the current one. This bit is automatically cleared at the end of the current software reset.

0: No software command is being performed by the Reset Controller. The Reset Controller is ready for a software

command.

1: A software reset command is being performed by the Reset Controller. The Reset Controller is busy.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – SRCMP NRSTL

15 14 13 12 11 10 9 8

– – – – – RSTTYP

7 6 5 4 3 2 1 0

– – – – – – – URSTS

Value Name Description

0 GENERAL_RST First power-up reset

1 BACKUP_RST Return from Backup Mode

2 WDT_RST Watchdog fault occurred

3 SOFT_RST Processor reset required by the software

4 USER_RST NRST pin detected low

5 – Reserved

6 – Reserved

7 – Reserved

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

318

13.5.3 Reset Controller Mode Register

Name: RSTC_MR

Address: 0x400E1808

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_WPMR).

• URSTEN: User Reset Enable

0: The detection of a low level on the NRST pin does not generate a user reset.

1: The detection of a low level on the NRST pin triggers a user reset.

• URSTIEN: User Reset Interrupt Enable

0: USRTS bit in RSTC_SR at 1 has no effect on rstc_irq.

1: USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.

• ERSTL: External Reset Length

This field defines the external reset length. The external reset is asserted during a time of 2(ERSTL+1) slow clock cycles. This

allows assertion duration to be programmed between 60 µs and 2 seconds. Note that synchronization cycles must also be

considered when calculating the actual reset length as previously described.

• KEY: Write Access Password

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – ERSTL

7 6 5 4 3 2 1 0

– – – URSTIEN – – – URSTEN

Value Name Description

0xA5 PASSWD
Writing any other value in this field aborts the write operation.

Always reads as 0.

319SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

14. Real-time Timer (RTT)

14.1 Description

The Real-time Timer (RTT) is built around a 32-bit counter used to count roll-over events of the programmable 16-

bit prescaler driven from the 32-kHz slow clock source. It generates a periodic interrupt and/or triggers an alarm on

a programmed value.

The RTT can also be configured to be driven by the 1Hz RTC signal, thus taking advantage of a calibrated 1Hz

clock.

The slow clock source can be fully disabled to reduce power consumption when only an elapsed seconds count is

required.

14.2 Embedded Characteristics

 32-bit Free-running Counter on prescaled slow clock or RTC calibrated 1Hz clock

 16-bit Configurable Prescaler

 Interrupt on Alarm or Counter Increment

14.3 Block Diagram

Figure 14-1. Real-time Timer

14.4 Functional Description

The programmable 16-bit prescaler value can be configured through the RTPRES field in the “Real-time Timer

Mode Register” (RTT_MR).

SLCK

RTPRES

RTTINC

ALMS

16-bit

Prescaler

32-bit

Counter

ALMV

=

CRTV

RTT_MR

RTT_VR

RTT_AR

RTT_SR

RTTINCIEN

RTT_MR

0

1 0

ALMIEN

rtt_int

RTT_MR

set

set

RTT_SR

read

RTT_SR

reset

reset

RTT_MR

reload

rtt_alarm

RTTRST

RTT_MR

RTTRST

RTT_MR

RTTDIS

1 0

RTT_MR

RTC1HZ

RTC 1Hz

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

320

Configuring the RTPRES field value to 0x8000 (default value) corresponds to feeding the real-time counter with a

1Hz signal (if the slow clock is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corresponding to

more than 136 years, then roll over to 0. Bit RTTINC in the “Real-time Timer Status Register” (RTT_SR) is set

each time there is a prescaler roll-over (see Figure 14-2)

The real-time 32-bit counter can also be supplied by the 1Hz RTC clock. This mode is interesting when the RTC

1Hz is calibrated (CORRECTION field ≠ 0 in RTC_MR) in order to guaranty the synchronism between RTC and

RTT counters.

Setting the RTC1HZ bit in the RTT_MR drives the 32-bit RTT counter from the 1Hz RTC clock. In this mode, the

RTPRES field has no effect on the 32-bit counter.

The prescaler roll-over generates an increment of the real-time timer counter if RTC1HZ = 0. Otherwise, if

RTC1HZ = 1, the real-time timer counter is incremented every second. The RTTINC bit is set independently from

the 32-bit counter increment.

The real-time timer can also be used as a free-running timer with a lower time-base. The best accuracy is achieved

by writing RTPRES to 3 in RTT_MR.

Programming RTPRES to 1 or 2 is forbidden.

If the RTT is configured to trigger an interrupt, the interrupt occurs two slow clock cycles after reading the RTT_SR.

To prevent several executions of the interrupt handler, the interrupt must be disabled in the interrupt handler and

re-enabled when the RTT_SR is cleared.

The CRTV field can be read at any time in the “Real-time Timer Value Register” (RTT_VR). As this value can be

updated asynchronously with the Master Clock, the CRTV field must be read twice at the same value to read a

correct value.

The current value of the counter is compared with the value written in the “Real-time Timer Alarm Register”

(RTT_AR). If the counter value matches the alarm, the ALMS bit in the RTT_SR is set. The RTT_AR is set to its

maximum value (0xFFFF_FFFF) after a reset.

The ALMS flag is always a source of the RTT alarm signal that may be used to exit the system from low power

modes (see Figure 14-1).

The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR) when writing a new ALMV value in

the RTT_AR.

The RTTINC bit can be used to start a periodic interrupt, the period being one second when the RTPRES field

value = 0x8000 and the slow clock = 32.768 kHz.

The RTTINCIEN bit must be cleared prior to writing a new RTPRES value in the RTT_MR.

Reading the RTT_SR automatically clears the RTTINC and ALMS bits.

Writing the RTTRST bit in the RTT_MR immediately reloads and restarts the clock divider with the new

programmed value. This also resets the 32-bit counter.

When not used, the Real-time Timer can be disabled in order to suppress dynamic power consumption in this

module. This can be achieved by setting the RTTDIS bit in the RTT_MR.

321SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 14-2. RTT Counting

Prescaler

ALMVALMV-10 ALMV+1

0

RTPRES - 1

CRTV

read RTT_SR

ALMS (RTT_SR)

APB Interface

SLCK

RTTINC (RTT_SR)

ALMV+2 ALMV+3...

APB cycleAPB cycle

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

322

14.5 Real-time Timer (RTT) User Interface

Table 14-1. Register Mapping

Offset Register Name Access Reset

0x00 Mode Register RTT_MR Read/Write 0x0000_8000

0x04 Alarm Register RTT_AR Read/Write 0xFFFF_FFFF

0x08 Value Register RTT_VR Read-only 0x0000_0000

0x0C Status Register RTT_SR Read-only 0x0000_0000

323SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

14.5.1 Real-time Timer Mode Register

Name: RTT_MR

Address: 0x400E1830

Access: Read/Write

• RTPRES: Real-time Timer Prescaler Value

Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:

RTPRES = 0: The prescaler period is equal to 216 * SLCK periods.

RTPRES = 1 or 2: forbidden.

RTPRES ≠ 0,1 or 2: The prescaler period is equal to RTPRES * SLCK periods.

Note: The RTTINCIEN bit must be cleared prior to writing a new RTPRES value.

• ALMIEN: Alarm Interrupt Enable

0: The bit ALMS in RTT_SR has no effect on interrupt.

1: The bit ALMS in RTT_SR asserts interrupt.

• RTTINCIEN: Real-time Timer Increment Interrupt Enable

0: The bit RTTINC in RTT_SR has no effect on interrupt.

1: The bit RTTINC in RTT_SR asserts interrupt.

• RTTRST: Real-time Timer Restart

0: No effect.

1: Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

• RTTDIS: Real-time Timer Disable

0: The real-time timer is enabled.

1: The real-time timer is disabled (no dynamic power consumption).

Note: RTTDIS is write only.

• RTC1HZ: Real-Time Clock 1Hz Clock Selection

0: The RTT 32-bit counter is driven by the 16-bit prescaler roll-over events.

1: The RTT 32-bit counter is driven by the 1Hz RTC clock.

Note: RTC1HZ is write only.

31 30 29 28 27 26 25 24

– – – – – – – RTC1HZ

23 22 21 20 19 18 17 16

– – – RTTDIS – RTTRST RTTINCIEN ALMIEN

15 14 13 12 11 10 9 8

RTPRES

7 6 5 4 3 2 1 0

RTPRES

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

324

14.5.2 Real-time Timer Alarm Register

Name: RTT_AR

Address: 0x400E1834

Access: Read/Write

• ALMV: Alarm Value

When the CRTV value in RTT_VR equals the ALMV field, the ALMS flag is set in RTT_SR. As soon as the ALMS flag

rises, the CRTV value equals ALMV+1 (refer to Figure 14-2).

Note: The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR) when writing a new ALMV value.

31 30 29 28 27 26 25 24

ALMV

23 22 21 20 19 18 17 16

ALMV

15 14 13 12 11 10 9 8

ALMV

7 6 5 4 3 2 1 0

ALMV

325SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

14.5.3 Real-time Timer Value Register

Name: RTT_VR

Address: 0x400E1838

Access: Read-only

• CRTV: Current Real-time Value

Returns the current value of the Real-time Timer.

Note: As CRTV can be updated asynchronously, it must be read twice at the same value.

31 30 29 28 27 26 25 24

CRTV

23 22 21 20 19 18 17 16

CRTV

15 14 13 12 11 10 9 8

CRTV

7 6 5 4 3 2 1 0

CRTV

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

326

14.5.4 Real-time Timer Status Register

Name: RTT_SR

Address: 0x400E183C

Access: Read-only

• ALMS: Real-time Alarm Status (cleared on read)

0: The Real-time Alarm has not occurred since the last read of RTT_SR.

1: The Real-time Alarm occurred since the last read of RTT_SR.

• RTTINC: Prescaler Roll-over Status (cleared on read)

0: No prescaler roll-over occurred since the last read of the RTT_SR.

1: Prescaler roll-over occurred since the last read of the RTT_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – RTTINC ALMS

327SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

15. Real-time Clock (RTC)

15.1 Description

The Real-time Clock (RTC) peripheral is designed for very low power consumption. For optimal functionality, the

RTC requires an accurate external 32.768 kHz clock, which can be provided by a crystal oscillator.

It combines a complete time-of-day clock with alarm and a Gregorian or Persian calendar, complemented by a

programmable periodic interrupt. The alarm and calendar registers are accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format can be 24-hour

mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel capture on the 32-bit

data bus. An entry control is performed to avoid loading registers with incompatible BCD format data or with an

incompatible date according to the current month/year/century.

A clock divider calibration circuitry can be used to compensate for crystal oscillator frequency variations.

An RTC output can be programmed to generate several waveforms, including a prescaled clock derived from

32.768 kHz.

15.2 Embedded Characteristics

 Full Asynchronous Design for Ultra Low Power Consumption

 Gregorian and Persian Modes Supported

 Programmable Periodic Interrupt

 Safety/security Features:

̶ Valid Time and Date Programming Check

̶ On-The-Fly Time and Date Validity Check

 Counters Calibration Circuitry to Compensate for Crystal Oscillator Variations

 Waveform Generation

 Register Write Protection

15.3 Block Diagram

Figure 15-1. Real-time Clock Block Diagram

User Interface

32768 Divider
Time

Slow Clock: SLCK

System Bus

Date

RTC Interrupt
Entry

Control

Interrupt

Control

Clock Calibration

RTCOUT0

RTCOUT1

Wave

Generator

Alarm

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

328

15.4 Product Dependencies

15.4.1 Power Management

The Real-time Clock is continuously clocked at 32.768 kHz. The Power Management Controller has no effect on

RTC behavior.

15.4.2 Interrupt

RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC interrupt requires the

interrupt controller to be programmed first.

15.5 Functional Description

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year (with leap years),

month, date, day, hours, minutes and seconds reported in RTC Time Register (RTC_TIMR) and RTC Calendar

Register (RTC_CALR).

The valid year range is up to 2099 in Gregorian mode (or 1300 to 1499 in Persian mode).

The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years except 1900). This is correct up to

the year 2099.

The RTC can generate configurable waveforms on RTCOUT0/1 outputs.

15.5.1 Reference Clock

The reference clock is the Slow Clock (SLCK). It can be driven internally or by an external 32.768 kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical. The crystal

selection has to take into account the current consumption for power saving and the frequency drift due to

temperature effect on the circuit for time accuracy.

15.5.2 Timing

The RTC is updated in real time at one-second intervals in Normal mode for the counters of seconds, at one-

minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain that the value read

in the RTC registers (century, year, month, date, day, hours, minutes, seconds) are valid and stable, it is

necessary to read these registers twice. If the data is the same both times, then it is valid. Therefore, a minimum of

two and a maximum of three accesses are required.

15.5.3 Alarm

The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:

 If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted and an interrupt

generated if enabled) at a given month, date, hour/minute/second.

 If only the “seconds” field is enabled, then an alarm is generated every minute.

Table 15-1. Peripheral IDs

Instance ID

RTC 2

329SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Depending on the combination of fields enabled, a large number of possibilities are available to the user ranging

from minutes to 365/366 days.

Hour, minute and second matching alarm (SECEN, MINEN, HOUREN) can be enabled independently of SEC,

MIN, HOUR fields.

Note: To change one of the SEC, MIN, HOUR, DATE, MONTH fields, it is recommended to disable the field before changing

the value and then re-enable it after the change has been made. This requires up to three accesses to the

RTC_TIMALR or RTC_CALALR. The first access clears the enable corresponding to the field to change (SECEN,

MINEN, HOUREN, DATEEN, MTHEN). If the field is already cleared, this access is not required. The second access

performs the change of the value (SEC, MIN, HOUR, DATE, MONTH). The third access is required to re-enable the

field by writing 1 in SECEN, MINEN, HOUREn, DATEEN, MTHEN fields.

15.5.4 Error Checking when Programming

Verification on user interface data is performed when accessing the century, year, month, date, day, hours,

minutes, seconds and alarms. A check is performed on illegal BCD entries such as illegal date of the month with

regard to the year and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is set in the validity

register. The user can not reset this flag. It is reset as soon as an acceptable value is programmed. This avoids

any further side effects in the hardware. The same procedure is followed for the alarm.

The following checks are performed:

1. Century (check if it is in range 19–20 or 13–14 in Persian mode)

2. Year (BCD entry check)

3. Date (check range 01–31)

4. Month (check if it is in BCD range 01–12, check validity regarding “date”)

5. Day (check range 1–7)

6. Hour (BCD checks: in 24-hour mode, check range 00–23 and check that AM/PM flag is not set if RTC is set

in 24-hour mode; in 12-hour mode check range 01–12)

7. Minute (check BCD and range 00–59)

8. Second (check BCD and range 00–59)

Note: If the 12-hour mode is selected by means of the RTC Mode Register (RTC_MR), a 12-hour value can be programmed

and the returned value on RTC_TIMR will be the corresponding 24-hour value. The entry control checks the value of

the AM/PM indicator (bit 22 of RTC_TIMR) to determine the range to be checked.

15.5.5 RTC Internal Free Running Counter Error Checking

To improve the reliability and security of the RTC, a permanent check is performed on the internal free running

counters to report non-BCD or invalid date/time values.

An error is reported by TDERR bit in the status register (RTC_SR) if an incorrect value has been detected. The

flag can be cleared by setting the TDERRCLR bit in the Status Clear Command Register (RTC_SCCR).

Anyway the TDERR error flag will be set again if the source of the error has not been cleared before clearing the

TDERR flag. The clearing of the source of such error can be done by reprogramming a correct value on

RTC_CALR and/or RTC_TIMR.

The RTC internal free running counters may automatically clear the source of TDERR due to their roll-over (i.e.,

every 10 seconds for SECONDS[3:0] field in RTC_TIMR). In this case the TDERR is held high until a clear

command is asserted by TDERRCLR bit in RTC_SCCR.

15.5.6 Updating Time/Calendar

The update of the time/calendar must be synchronized on a second periodic event by either polling the

RTC_SR.SEC status bit or by enabling the SECEN interrupt in the RTC_IER register.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

330

Once the second event occurs, the user must stop the RTC by setting the corresponding field in the Control

Register (RTC_CR). Bit UPDTIM must be set to update time fields (hour, minute, second) and bit UPDCAL must

be set to update calendar fields (century, year, month, date, day).

The ACKUPD bit must then be read to 1 by either polling the RTC_SR or by enabling the ACKUPD interrupt in the

RTC_IER. Once ACKUPD is read to 1, it is mandatory to clear this flag by writing the corresponding bit in the

RTC_SCCR, after which the user can write to the Time Register, the Calendar Register, or both.

Once the update is finished, the user must write UPDTIM and/or UPDCAL to 0 in the RTC_CR.

The timing sequence of the time/calendar update is described in Figure 15-2.

When entering the Programming mode of the calendar fields, the time fields remain enabled. When entering the

Programming mode of the time fields, both the time and the calendar fields are stopped. This is due to the location

of the calendar logical circuity (downstream for low-power considerations). It is highly recommended to prepare all

the fields to be updated before entering Programming mode. In successive update operations, the user must wait

for at least one second after resetting the UPDTIM/UPDCAL bit in the RTC_CR before setting these bits again.

This is done by waiting for the SEC flag in the RTC_SR before setting the UPDTIM/UPDCAL bit. After resetting

UPDTIM/UPDCAL, the SEC flag must also be cleared.

Figure 15-2. Time/Calendar Update Timing Diagram

20 (counter stopped) 15 16

Clear

ACKUPD bit
Update request

from SW

Clear

UPDTIM bit

Update

RTC_TIMR.SEC to 15

Sofware

Time Line

//

//

//

1 2 43

RTC_SR.ACKUPD

SEC Event Flag

RTC_CR.UPDTIM

RTC_TIMR.SEC

1Hz RTC Clock

RTC BACK TO

NORMAL MODE

//

//

//

//

////

//

// //

331SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 15-3. Gregorian and Persian Modes Update Sequence

Prepare Time or Calendar Fields

Set UPDTIM and/or UPDCAL

bit(s) in RTC_CR

Read RTC_SR

ACKUPD

= 1?

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in

RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit

in RTC_CR

No

Yes

Begin

End

Polling or

IRQ (if enabled)

Wait for second periodic event

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

332

15.5.7 RTC Accurate Clock Calibration

The crystal oscillator that drives the RTC may not be as accurate as expected mainly due to temperature variation.

The RTC is equipped with circuitry able to correct slow clock crystal drift.

To compensate for possible temperature variations over time, this accurate clock calibration circuitry can be

programmed on-the-fly and also programmed during application manufacturing, in order to correct the crystal

frequency accuracy at room temperature (20–25°C). The typical clock drift range at room temperature is ±20 ppm.

In the device operating temperature range, the 32.768 kHz crystal oscillator clock inaccuracy can be up to -

200 ppm.

The RTC clock calibration circuitry allows positive or negative correction in a range of 1.5 ppm to 1950 ppm.

The calibration circuitry is fully digital. Thus, the configured correction is independent of temperature, voltage,

process, etc., and no additional measurement is required to check that the correction is effective.

If the correction value configured in the calibration circuitry results from an accurate crystal frequency measure,

the remaining accuracy is bounded by the values listed below:

 Below 1 ppm, for an initial crystal drift between 1.5 ppm up to 20 ppm, and from 30 ppm to 90 ppm

 Below 2 ppm, for an initial crystal drift between 20 ppm up to 30 ppm, and from 90 ppm to 130 ppm

 Below 5 ppm, for an initial crystal drift between 130 ppm up to 200 ppm

The calibration circuitry does not modify the 32.768 kHz crystal oscillator clock frequency but it acts by slightly

modifying the 1 Hz clock period from t ime to t ime. The correct ion event occurs every 1 + [(20 -

(19 x HIGHPPM)) x CORRECTION] seconds. When the period is modified, depending on the sign of the

correction, the 1 Hz clock period increases or reduces by around 4 ms. Depending on the CORRECTION,

NEGPPM and HIGHPPM values configured in RTC_MR, the period interval between two correction events differs.

Figure 15-4. Calibration Circuitry

32.768 kHz

O
s
c
ill

a
to

r

Other Logic

RTC

Time/Calendar1Hz

CORRECTION, HIGHPPM
Integrator

Comparator

Divider by 32768
Add

32.768 kHz

NEGPPM

Suppress

333SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 15-5. Calibration Circuitry Waveforms

The inaccuracy of a crystal oscillator at typical room temperature (±20 ppm at 20–25 °C) can be compensated if a

reference clock/signal is used to measure such inaccuracy. This kind of calibration operation can be set up during

the final product manufacturing by means of measurement equipment embedding such a reference clock. The

correction of value must be programmed into the (RTC_MR), and this value is kept as long as the circuitry is

powered (backup area). Removing the backup power supply cancels this calibration. This room temperature

calibration can be further processed by means of the networking capability of the target application.

Time

Monotonic 1 Hz

Counter value

32.768 kHz -50 ppm

32.768 kHz +50 ppm

Crystal frequency

remains unadjusted

Internal 1 Hz clock

is adjusted

Phase adjustment

 (~4 ms)

User configurable period

(integer multiple of 1s or 20s)

Time

-50 ppm

-25 ppm

-50 ppm correction period

-25 ppm correction period

Nominal 32.768 kHz

Crystal clock

Internally divided clock (256 Hz)

Internally divided clock (128 Hz)

Clock pulse periodically suppressed

when correction period elapses

128 Hz clock edge delayed by 3.906 ms

when correction period elapses

Internally divided clock (256 Hz)

Internally divided clock (128 Hz)

Internally divided clock (64 Hz)

128 Hz clock edge delayed by 3.906 ms

when correction period elapses

Clock edge periodically added

when correction period elapses

1.000 second

1.003906 second

1.000 second

0.996094 second

N
E

G
A

T
IV

E
 C

O
R

R
E

C
T

IO
N

P
O

S
IT

IV
E

 C
O

R
R

E
C

T
IO

N

dashed lines = no correction

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

334

To ease the comparison of the inherent crystal accuracy with the reference clock/signal during manufacturing, an

internal prescaled 32.768 kHz clock derivative signal can be assigned to drive RTC output. To accommodate the

measure, several clock frequencies can be selected among 1 Hz, 32 Hz, 64 Hz, 512 Hz.

The clock calibration correction drives the internal RTC counters but can also be observed in the RTC output when

one of the following three frequencies 1 Hz, 32 Hz or 64 Hz is configured. The correction is not visible in the RTC

output if 512 Hz frequency is configured.

In any event, this adjustment does not take into account the temperature variation.

The frequency drift (up to -200 ppm) due to temperature variation can be compensated using a reference time if

the application can access such a reference. If a reference time cannot be used, a temperature sensor can be

placed close to the crystal oscillator in order to get the operating temperature of the crystal oscillator. Once

obtained, the temperature may be converted using a lookup table (describing the accuracy/temperature curve of

the crystal oscillator used) and RTC_MR configured accordingly. The calibration can be performed on-the-fly. This

adjustment method is not based on a measurement of the crystal frequency/drift and therefore can be improved by

means of the networking capability of the target application.

If no crystal frequency adjustment has been done during manufacturing, it is still possible to do it. In the case

where a reference time of the day can be obtained through LAN/WAN network, it is possible to calculate the drift of

the application crystal oscillator by comparing the values read on RTC Time Register (RTC_TIMR) and

programming the HIGHPPM and CORRECTION fields on RTC_MR according to the difference measured

between the reference time and those of RTC_TIMR.

15.5.8 Waveform Generation

Waveforms can be generated by the RTC in order to take advantage of the RTC inherent prescalers while the RTC

is the only powered circuitry (Low-power mode of operation, Backup mode) or in any active mode. Going into

Backup or Low-power operating modes does not affect the waveform generation outputs.

The RTC outputs (RTCOUT0 and RTCOUT1) have a source driver selected among seven possibilities.

The first selection choice sticks the associated output at 0 (This is the reset value and it can be used at any time to

disable the waveform generation).

Selection choices 1 to 4 respectively select 1 Hz, 32 Hz, 64 Hz and 512 Hz.

32 Hz or 64 Hz can drive, for example, a TN LCD backplane signal while 1 Hz can be used to drive a blinking

character like “:” for basic time display (hour, minute) on TN LCDs.

Selection choice 5 provides a toggling signal when the RTC alarm is reached.

Selection choice 6 provides a copy of the alarm flag, so the associated output is set high (logical 1) when an alarm

occurs and immediately cleared when software clears the alarm interrupt source.

Selection choice 7 provides a 1 Hz periodic high pulse of 15 µs duration that can be used to drive external devices

for power consumption reduction or any other purpose.

PIO lines associated to RTC outputs are automatically selecting these waveforms as soon as RTC_MR

corresponding fields OUT0 and OUT1 differ from 0.

335SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 15-6. Waveform Generation

RTCOUT1

‘0’

1 Hz

32 Hz

64 Hz

512 Hz

toggle_alarm

flag_alarm

 pulse

0

1

2

3

4

5

6

7

RTC_MR(OUT1)

RTCOUT0

‘0’

1 Hz

32 Hz

64 Hz

512 Hz

toggle_alarm

flag_alarm

pulse

0

1

2

3

4

5

6

7

RTC_MR(OUT0)

flag_alarm

alarm match

event 1

RTC_SCCR(ALRCLR)

alarm match

event 2

RTC_SCCR(ALRCLR)

toggle_alarm

pulse

Tperiod Tperiod

Thigh

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

336

15.6 Real-time Clock (RTC) User Interface

Note: If an offset is not listed in the table it must be considered as reserved.

Table 15-2. Register Mapping

Offset Register Name Access Reset

0x00 Control Register RTC_CR Read/Write 0x00000000

0x04 Mode Register RTC_MR Read/Write 0x00000000

0x08 Time Register RTC_TIMR Read/Write 0x00000000

0x0C Calendar Register RTC_CALR Read/Write 0x01a11020

0x10 Time Alarm Register RTC_TIMALR Read/Write 0x00000000

0x14 Calendar Alarm Register RTC_CALALR Read/Write 0x01010000

0x18 Status Register RTC_SR Read-only 0x00000000

0x1C Status Clear Command Register RTC_SCCR Write-only –

0x20 Interrupt Enable Register RTC_IER Write-only –

0x24 Interrupt Disable Register RTC_IDR Write-only –

0x28 Interrupt Mask Register RTC_IMR Read-only 0x00000000

0x2C Valid Entry Register RTC_VER Read-only 0x00000000

0x30–0xC8 Reserved – – –

0xCC Reserved – – –

0xD0 Reserved – – –

0xD4–0xF8 Reserved – – –

0xFC Reserved – – –

337SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

15.6.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1860

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_WPMR).

• UPDTIM: Update Request Time Register

0: No effect or, if UPDTIM has been previously written to 1, stops the update procedure.

1: Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and

acknowledged by the bit ACKUPD of the RTC_SR.

• UPDCAL: Update Request Calendar Register

0: No effect or, if UPDCAL has been previously written to 1, stops the update procedure.

1: Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once

this bit is set and acknowledged by the bit ACKUPD of the RTC_SR.

• TIMEVSEL: Time Event Selection

The event that generates the flag TIMEV in RTC_SR depends on the value of TIMEVSEL.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – CALEVSEL

15 14 13 12 11 10 9 8

– – – – – – TIMEVSEL

7 6 5 4 3 2 1 0

– – – – – – UPDCAL UPDTIM

Value Name Description

0 MINUTE Minute change

1 HOUR Hour change

2 MIDNIGHT Every day at midnight

3 NOON Every day at noon

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

338

• CALEVSEL: Calendar Event Selection

The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL

Value Name Description

0 WEEK Week change (every Monday at time 00:00:00)

1 MONTH Month change (every 01 of each month at time 00:00:00)

2 YEAR Year change (every January 1 at time 00:00:00)

3 – Reserved

339SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

15.6.2 RTC Mode Register

Name: RTC_MR

Address: 0x400E1864

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_WPMR).

• HRMOD: 12-/24-hour Mode

0: 24-hour mode is selected.

1: 12-hour mode is selected.

• PERSIAN: PERSIAN Calendar

0: Gregorian calendar.

1: Persian calendar.

• NEGPPM: NEGative PPM Correction

0: Positive correction (the divider will be slightly higher than 32768).

1: Negative correction (the divider will be slightly lower than 32768).

Refer to CORRECTION and HIGHPPM field descriptions.

Note: NEGPPM must be cleared to correct a crystal slower than 32.768 kHz.

• CORRECTION: Slow Clock Correction

0: No correction

1–127: The slow clock will be corrected according to the formula given in HIGHPPM description.

• HIGHPPM: HIGH PPM Correction

0: Lower range ppm correction with accurate correction.

1: Higher range ppm correction with accurate correction.

If the absolute value of the correction to be applied is lower than 30 ppm, it is recommended to clear HIGHPPM. HIGHPPM

set to 1 is recommended for 30 ppm correction and above.

Formula:

If HIGHPPM = 0, then the clock frequency correction range is from 1.5 ppm up to 98 ppm. The RTC accuracy is less
than 1 ppm for a range correction from 1.5 ppm up to 30 ppm.

The correction field must be programmed according to the required correction in ppm; the formula is as follows:

31 30 29 28 27 26 25 24

– – TPERIOD – THIGH

23 22 21 20 19 18 17 16

– OUT1 – OUT0

15 14 13 12 11 10 9 8

HIGHPPM CORRECTION

7 6 5 4 3 2 1 0

– – – NEGPPM – – PERSIAN HRMOD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

340

The value obtained must be rounded to the nearest integer prior to being programmed into CORRECTION field.

If HIGHPPM = 1, then the clock frequency correction range is from 30.5 ppm up to 1950 ppm. The RTC accuracy is
less than 1 ppm for a range correction from 30.5 ppm up to 90 ppm.

The correction field must be programmed according to the required correction in ppm; the formula is as follows:

The value obtained must be rounded to the nearest integer prior to be programmed into CORRECTION field.

If NEGPPM is set to 1, the ppm correction is negative (used to correct crystals that are faster than the nominal 32.768

kHz).

• OUT0: RTCOUT0 OutputSource Selection

• OUT1: RTCOUT1 Output Source Selection

• THIGH: High Duration of the Output Pulse

Value Name Description

0 NO_WAVE No waveform, stuck at ‘0’

1 FREQ1HZ 1 Hz square wave

2 FREQ32HZ 32 Hz square wave

3 FREQ64HZ 64 Hz square wave

4 FREQ512HZ 512 Hz square wave

5 ALARM_TOGGLE Output toggles when alarm flag rises

6 ALARM_FLAG Output is a copy of the alarm flag

7 PROG_PULSE Duty cycle programmable pulse

Value Name Description

0 NO_WAVE No waveform, stuck at ‘0’

1 FREQ1HZ 1 Hz square wave

2 FREQ32HZ 32 Hz square wave

3 FREQ64HZ 64 Hz square wave

4 FREQ512HZ 512 Hz square wave

5 ALARM_TOGGLE Output toggles when alarm flag rises

6 ALARM_FLAG Output is a copy of the alarm flag

7 PROG_PULSE Duty cycle programmable pulse

Value Name Description

0 H_31MS 31.2 ms

1 H_16MS 15.6 ms

2 H_4MS 3.91 ms

3 H_976US 976 µs

CORRECTION
3906

20 ppm×
----------------------- 1–=

CORRECTION
3906

ppm
------------ 1–=

341SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• TPERIOD: Period of the Output Pulse

4 H_488US 488 µs

5 H_122US 122 µs

6 H_30US 30.5 µs

7 H_15US 15.2 µs

Value Name Description

0 P_1S 1 second

1 P_500MS 500 ms

2 P_250MS 250 ms

3 P_125MS 125 ms

Value Name Description

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

342

15.6.3 RTC Time Register

Name: RTC_TIMR

Address: 0x400E1868

Access: Read/Write

• SEC: Current Second

The range that can be set is 0–59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• MIN: Current Minute

The range that can be set is 0–59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• HOUR: Current Hour

The range that can be set is 1–12 (BCD) in 12-hour mode or 0–23 (BCD) in 24-hour mode.

• AMPM: Ante Meridiem Post Meridiem Indicator

This bit is the AM/PM indicator in 12-hour mode.

0: AM.

1: PM.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– AMPM HOUR

15 14 13 12 11 10 9 8

– MIN

7 6 5 4 3 2 1 0

– SEC

343SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

15.6.4 RTC Calendar Register

Name: RTC_CALR

Address: 0x400E186C

Access: Read/Write

• CENT: Current Century

The range that can be set is 19–20 (Gregorian) or 13–14 (Persian) (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• YEAR: Current Year

The range that can be set is 00–99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• MONTH: Current Month

The range that can be set is 01–12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• DAY: Current Day in Current Week

The range that can be set is 1–7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

• DATE: Current Day in Current Month

The range that can be set is 01–31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

31 30 29 28 27 26 25 24

– – DATE

23 22 21 20 19 18 17 16

DAY MONTH

15 14 13 12 11 10 9 8

YEAR

7 6 5 4 3 2 1 0

– CENT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

344

15.6.5 RTC Time Alarm Register

Name: RTC_TIMALR

Address: 0x400E1870

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_WPMR).

Note: To change one of the SEC, MIN, HOUR fields, it is recommended to disable the field before changing the value and then re-

enable it after the change has been made. This requires up to three accesses to the RTC_TIMALR. The first access clears the

enable corresponding to the field to change (SECEN, MINEN, HOUREN). If the field is already cleared, this access is not

required. The second access performs the change of the value (SEC, MIN, HOUR). The third access is required to re-enable the

field by writing 1 in SECEN, MINEN, HOUREN fields.

• SEC: Second Alarm

This field is the alarm field corresponding to the BCD-coded second counter.

• SECEN: Second Alarm Enable

0: The second-matching alarm is disabled.

1: The second-matching alarm is enabled.

• MIN: Minute Alarm

This field is the alarm field corresponding to the BCD-coded minute counter.

• MINEN: Minute Alarm Enable

0: The minute-matching alarm is disabled.

1: The minute-matching alarm is enabled.

• HOUR: Hour Alarm

This field is the alarm field corresponding to the BCD-coded hour counter.

• AMPM: AM/PM Indicator

This field is the alarm field corresponding to the BCD-coded hour counter.

• HOUREN: Hour Alarm Enable

0: The hour-matching alarm is disabled.

1: The hour-matching alarm is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

HOUREN AMPM HOUR

15 14 13 12 11 10 9 8

MINEN MIN

7 6 5 4 3 2 1 0

SECEN SEC

345SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

15.6.6 RTC Calendar Alarm Register

Name: RTC_CALALR

Address: 0x400E1874

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_WPMR).

Note: To change one of the DATE, MONTH fields, it is recommended to disable the field before changing the value and then re-enable

it after the change has been made. This requires up to three accesses to the RTC_CALALR. The first access clears the enable

corresponding to the field to change (DATEEN, MTHEN). If the field is already cleared, this access is not required. The second

access performs the change of the value (DATE, MONTH). The third access is required to re-enable the field by writing 1 in

DATEEN, MTHEN fields.

• MONTH: Month Alarm

This field is the alarm field corresponding to the BCD-coded month counter.

• MTHEN: Month Alarm Enable

0: The month-matching alarm is disabled.

1: The month-matching alarm is enabled.

• DATE: Date Alarm

This field is the alarm field corresponding to the BCD-coded date counter.

• DATEEN: Date Alarm Enable

0: The date-matching alarm is disabled.

1: The date-matching alarm is enabled.

31 30 29 28 27 26 25 24

DATEEN – DATE

23 22 21 20 19 18 17 16

MTHEN – – MONTH

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

346

15.6.7 RTC Status Register

Name: RTC_SR

Address: 0x400E1878

Access: Read-only

• ACKUPD: Acknowledge for Update

• ALARM: Alarm Flag

• SEC: Second Event

• TIMEV: Time Event

Note: The time event is selected in the TIMEVSEL field in the Control Register (RTC_CR) and can be any one of the following events:

minute change, hour change, noon, midnight (day change).

• CALEV: Calendar Event

Note: The calendar event is selected in the CALEVSEL field in the Control Register (RTC_CR) and can be any one of the following

events: week change, month change and year change.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TDERR CALEV TIMEV SEC ALARM ACKUPD

Value Name Description

0 FREERUN Time and calendar registers cannot be updated.

1 UPDATE Time and calendar registers can be updated.

Value Name Description

0 NO_ALARMEVENT No alarm matching condition occurred.

1 ALARMEVENT An alarm matching condition has occurred.

Value Name Description

0 NO_SECEVENT No second event has occurred since the last clear.

1 SECEVENT At least one second event has occurred since the last clear.

Value Name Description

0 NO_TIMEVENT No time event has occurred since the last clear.

1 TIMEVENT At least one time event has occurred since the last clear.

Value Name Description

0 NO_CALEVENT No calendar event has occurred since the last clear.

1 CALEVENT At least one calendar event has occurred since the last clear.

347SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• TDERR: Time and/or Date Free Running Error

Value Name Description

0 CORRECT
The internal free running counters are carrying valid values since the last read of the Status

Register (RTC_SR).

1 ERR_TIMEDATE
The internal free running counters have been corrupted (invalid date or time, non-BCD

values) since the last read and/or they are still invalid.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

348

15.6.8 RTC Status Clear Command Register

Name: RTC_SCCR

Address: 0x400E187C

Access: Write-only

• ACKCLR: Acknowledge Clear

0: No effect.

1: Clears corresponding status flag in the Status Register (RTC_SR).

• ALRCLR: Alarm Clear

0: No effect.

1: Clears corresponding status flag in the Status Register (RTC_SR).

• SECCLR: Second Clear

0: No effect.

1: Clears corresponding status flag in the Status Register (RTC_SR).

• TIMCLR: Time Clear

0: No effect.

1: Clears corresponding status flag in the Status Register (RTC_SR).

• CALCLR: Calendar Clear

0: No effect.

1: Clears corresponding status flag in the Status Register (RTC_SR).

• TDERRCLR: Time and/or Date Free Running Error Clear

0: No effect.

1: Clears corresponding status flag in the Status Register (RTC_SR).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TDERRCLR CALCLR TIMCLR SECCLR ALRCLR ACKCLR

349SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

15.6.9 RTC Interrupt Enable Register

Name: RTC_IER

Address: 0x400E1880

Access: Write-only

• ACKEN: Acknowledge Update Interrupt Enable

0: No effect.

1: The acknowledge for update interrupt is enabled.

• ALREN: Alarm Interrupt Enable

0: No effect.

1: The alarm interrupt is enabled.

• SECEN: Second Event Interrupt Enable

0: No effect.

1: The second periodic interrupt is enabled.

• TIMEN: Time Event Interrupt Enable

0: No effect.

1: The selected time event interrupt is enabled.

• CALEN: Calendar Event Interrupt Enable

0: No effect.

1: The selected calendar event interrupt is enabled.

• TDERREN: Time and/or Date Error Interrupt Enable

0: No effect.

1: The time and date error interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TDERREN CALEN TIMEN SECEN ALREN ACKEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

350

15.6.10 RTC Interrupt Disable Register

Name: RTC_IDR

Address: 0x400E1884

Access: Write-only

• ACKDIS: Acknowledge Update Interrupt Disable

0: No effect.

1: The acknowledge for update interrupt is disabled.

• ALRDIS: Alarm Interrupt Disable

0: No effect.

1: The alarm interrupt is disabled.

• SECDIS: Second Event Interrupt Disable

0: No effect.

1: The second periodic interrupt is disabled.

• TIMDIS: Time Event Interrupt Disable

0: No effect.

1: The selected time event interrupt is disabled.

• CALDIS: Calendar Event Interrupt Disable

0: No effect.

1: The selected calendar event interrupt is disabled.

• TDERRDIS: Time and/or Date Error Interrupt Disable

0: No effect.

1: The time and date error interrupt is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TDERRDIS CALDIS TIMDIS SECDIS ALRDIS ACKDIS

351SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

15.6.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: 0x400E1888

Access: Read-only

• ACK: Acknowledge Update Interrupt Mask

0: The acknowledge for update interrupt is disabled.

1: The acknowledge for update interrupt is enabled.

• ALR: Alarm Interrupt Mask

0: The alarm interrupt is disabled.

1: The alarm interrupt is enabled.

• SEC: Second Event Interrupt Mask

0: The second periodic interrupt is disabled.

1: The second periodic interrupt is enabled.

• TIM: Time Event Interrupt Mask

0: The selected time event interrupt is disabled.

1: The selected time event interrupt is enabled.

• CAL: Calendar Event Interrupt Mask

0: The selected calendar event interrupt is disabled.

1: The selected calendar event interrupt is enabled.

• TDERR: Time and/or Date Error Mask

0: The time and/or date error event is disabled.

1: The time and/or date error event is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TDERR CAL TIM SEC ALR ACK

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

352

15.6.12 RTC Valid Entry Register

Name: RTC_VER

Address: 0x400E188C

Access: Read-only

• NVTIM: Non-valid Time

0: No invalid data has been detected in RTC_TIMR (Time Register).

1: RTC_TIMR has contained invalid data since it was last programmed.

• NVCAL: Non-valid Calendar

0: No invalid data has been detected in RTC_CALR (Calendar Register).

1: RTC_CALR has contained invalid data since it was last programmed.

• NVTIMALR: Non-valid Time Alarm

0: No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1: RTC_TIMALR has contained invalid data since it was last programmed.

• NVCALALR: Non-valid Calendar Alarm

0: No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1: RTC_CALALR has contained invalid data since it was last programmed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – NVCALALR NVTIMALR NVCAL NVTIM

353SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

15.6.13 RTC TimeStamp Time Register 0 (UTC_MODE)

Name: RTC_TSTR0 (UTC_MODE)

Access: Read-only

RTC_TSTR0 reports the timestamp of the first tamper event.

• TEVCNT: Tamper Events Counter (cleared by reading RTC_TSSR0)

Each time a tamper event occurs, this counter is incremented. This counter saturates at 15. Once this value is reached, it

is no more possible to know the exact number of tamper events.

If this field is not null, this implies that at least one tamper event occurs since last register reset and that the values stored

in timestamping registers are valid.

• BACKUP: System Mode of the Tamper (cleared by reading RTC_TSSR0)

0: The state of the system is different from Backup mode when the tamper event occurs.

1: The system is in Backup mode when the tamper event occurs.

31 30 29 28 27 26 25 24

BACKUP – – – TEVCNT

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

354

15.6.14 RTC TimeStamp Time Register 1 (UTC_MODE)

Name: RTC_TSTR1 (UTC_MODE)

Access: Read-only

RTC_TSTR1 reports the timestamp of the last tamper event.

• BACKUP: System Mode of the Tamper

0: The state of the system is different from Backup mode when the tamper event occurs.

1: The system is in Backup mode when the tamper event occurs.

31 30 29 28 27 26 25 24

BACKUP – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

355SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

15.6.15 RTC TimeStamp Date Register (UTC_MODE)

Name: RTC_TSDRx (UTC_MODE)

Access: Read-only

• UTC_TIME: Time of the Tamper (UTC format)

This configuration is relevant only if UTC = 1 in RTC_MR.

31 30 29 28 27 26 25 24

UTC_TIME

23 22 21 20 19 18 17 16

UTC_TIME

15 14 13 12 11 10 9 8

UTC_TIME

7 6 5 4 3 2 1 0

UTC_TIME

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

356

16. Watchdog Timer (WDT)

16.1 Description

The Watchdog Timer (WDT) is used to prevent system lock-up if the software becomes trapped in a deadlock. It

features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow clock around 32 kHz). It

can generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in

Debug mode or Sleep mode (Idle mode).

16.2 Embedded Characteristics

 12-bit Key-protected Programmable Counter

 Watchdog Clock is Independent from Processor Clock

 Provides Reset or Interrupt Signals to the System

 Counter May Be Stopped while the Processor is in Debug State or in Idle Mode

357SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

16.3 Block Diagram

Figure 16-1. Watchdog Timer Block Diagram

= 0

1 0

set

resetread WDT_SR

or

reset

wdt_fault

(to Reset Controller)
set

reset

WDFIEN

wdt_int

WDT_MR

SLCK1/128

12-bit Down

Counter

Current

Value

WDD

WDT_MR

<= WDD

WDV

WDRSTT

WDT_MR

WDT_CR

reload

WDUNF

WDERR

reload

write WDT_MR

WDT_MR

WDRSTEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

358

16.4 Functional Description

The Watchdog Timer is used to prevent system lock-up if the software becomes trapped in a deadlock. It is

supplied with VDDCORE. It restarts with initial values on processor reset.

The watchdog is built around a 12-bit down counter, which is loaded with the value defined in the field WDV of the

Mode Register (WDT_MR). The Watchdog Timer uses the slow clock divided by 128 to establish the maximum

watchdog period to be 16 seconds (with a typical slow clock of 32.768 kHz).

After a processor reset, the value of WDV is 0xFFF, corresponding to the maximum value of the counter with the

external reset generation enabled (field WDRSTEN at 1 after a backup reset). This means that a default watchdog

is running at reset, i.e., at power-up. The user can either disable the WDT by setting bit WDT_MR.WDDIS or

reprogram the WDT to meet the maximum watchdog period the application requires.

When setting the WDDIS bit, and while it is set, the fields WDV and WDD must not be modified.

If the watchdog is restarted by writing into the Control Register (WDT_CR), WDT_MR must not be programmed

during a period of time of three slow clock periods following the WDT_CR write access. In any case, programming

a new value in WDT_MR automatically initiates a restart instruction.

WDT_MR can be written only once. Only a processor reset resets it. Writing WDT_MR reloads the timer with the

newly programmed mode parameters.

In normal operation, the user reloads the watchdog at regular intervals before the timer underflow occurs, by

setting bit WDT_CR.WDRSTT. The watchdog counter is then immediately reloaded from WDT_MR and restarted,

and the slow clock 128 divider is reset and restarted. WDT_CR is write-protected. As a result, writing WDT_CR

without the correct hard-coded key has no effect. If an underflow does occur, the “wdt_fault” signal to the Reset

Controller is asserted if bit WDT_MR.WDRSTEN is set. Moreover, the bit WDUNF is set in the Status Register

(WDT_SR).

The reload of the watchdog must occur while the watchdog counter is within a window between 0 and WDD. WDD

is defined in WDT_MR.

Any attempt to restart the watchdog while the watchdog counter is between WDV and WDD results in a watchdog

error, even if the watchdog is disabled. The bit WDT_SR.WDERR is updated and the “wdt_fault” signal to the

Reset Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In

such a configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDV] and does not

generate an error. This is the default configuration on reset (the WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit

WDT_MR.WDFIEN is set. The signal “wdt_fault” to the Reset Controller causes a watchdog reset if the

WDRSTEN bit is set as already explained in the Reset Controller documentation. In this case, the processor and

the Watchdog Timer are reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared, and the “wdt_fault”

signal to the reset controller is deasserted.

Writing WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in Sleep mode, the counter may be stopped depending on the value

programmed for the bits WDIDLEHLT and WDDBGHLT in WDT_MR.

359SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 16-2. Watchdog Behavior

0

WDV

WDD

WDT_CR.WDRSTT=1
Watchdog

Fault

Normal behavior

Watchdog Error Watchdog Underflow

FFF
if WDRSTEN is 1

if WDRSTEN is 0

Forbidden

Window

Permitted

Window

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

360

16.5 Watchdog Timer (WDT) User Interface

Table 16-1. Register Mapping

Offset Register Name Access Reset

0x00 Control Register WDT_CR Write-only –

0x04 Mode Register WDT_MR Read/Write Once 0x3FFF_2FFF

0x08 Status Register WDT_SR Read-only 0x0000_0000

361SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

16.5.1 Watchdog Timer Control Register

Name: WDT_CR

Address: 0x400E1850

Access: Write-only

Note: The WDT_CR register values must not be modified within three slow clock periods following a restart of the watchdog performed

by a write access in WDT_CR. Any modification will cause the watchdog to trigger an end of period earlier than expected.

• WDRSTT: Watchdog Restart

0: No effect.

1: Restarts the watchdog if KEY is written to 0xA5.

• KEY: Password

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – WDRSTT

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

362

16.5.2 Watchdog Timer Mode Register

Name: WDT_MR

Address: 0x400E1854

Access: Read/Write Once

Notes: 1. The first write access prevents any further modification of the value of this register. Read accesses remain possible.

2. The WDT_MR register values must not be modified within three slow clock periods following a restart of the watchdog

performed by a write access in WDT_CR. Any modification will cause the watchdog to trigger an end of period earlier than

expected.

• WDV: Watchdog Counter Value

Defines the value loaded in the 12-bit watchdog counter.

• WDFIEN: Watchdog Fault Interrupt Enable

0: A watchdog fault (underflow or error) has no effect on interrupt.

1: A watchdog fault (underflow or error) asserts interrupt.

• WDRSTEN: Watchdog Reset Enable

0: A watchdog fault (underflow or error) has no effect on the resets.

1: A watchdog fault (underflow or error) triggers a watchdog reset.

• WDRPROC: Watchdog Reset Processor

0: If WDRSTEN is 1, a watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a watchdog fault (underflow or error) activates the processor reset.

• WDDIS: Watchdog Disable

0: Enables the Watchdog Timer.

1: Disables the Watchdog Timer.

Note: When setting the WDDIS bit, and while it is set, the fields WDV and WDD must not be modified.

• WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, setting bit WDT_CR.WDRSTT restarts the timer.

If the Watchdog Timer value is greater than WDD, setting bit WDT_CR.WDRSTT causes a watchdog error.

31 30 29 28 27 26 25 24

– – WDIDLEHLT WDDBGHLT WDD

23 22 21 20 19 18 17 16

WDD

15 14 13 12 11 10 9 8

WDDIS WDRPROC WDRSTEN WDFIEN WDV

7 6 5 4 3 2 1 0

WDV

363SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• WDDBGHLT: Watchdog Debug Halt

0: The watchdog runs when the processor is in debug state.

1: The watchdog stops when the processor is in debug state.

• WDIDLEHLT: Watchdog Idle Halt

0: The watchdog runs when the system is in idle state.

1: The watchdog stops when the system is in idle state.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

364

16.5.3 Watchdog Timer Status Register

Name: WDT_SR

Address: 0x400E1858

Access Read-only

• WDUNF: Watchdog Underflow (cleared on read)

0: No watchdog underflow occurred since the last read of WDT_SR.

1: At least one watchdog underflow occurred since the last read of WDT_SR.

• WDERR: Watchdog Error (cleared on read)

0: No watchdog error occurred since the last read of WDT_SR.

1: At least one watchdog error occurred since the last read of WDT_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – WDERR WDUNF

365SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

17. Reinforced Safety Watchdog Timer (RSWDT)

17.1 Description

The Reinforced Safety Watchdog Timer (RSWDT) works in parallel with the Watchdog Timer (WDT) to reinforce

safe watchdog operations.

The RSWDT can be used to reinforce the safety level provided by the WDT in order to prevent system lock-up if

the software becomes trapped in a deadlock. The RSWDT works in a fully operable mode, independent of the

WDT. Its clock source is automatically selected from either the slow RC oscillator clock or main RC oscillator

divided clock to get an equivalent slow RC oscillator clock. If the WDT clock source (for example, the 32 kHz

crystal oscillator) fails, the system lock-up is no longer monitored by the WDT because the RSWDT performs the

monitoring. Thus, there is no lack of safety irrespective of the external operating conditions. The RSWDT shares

the same features as the WDT (i.e., a 12-bit down counter that allows a watchdog period of up to 16 seconds with

slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition, it can be stopped

while the processor is in debug mode or idle mode.

17.2 Embedded Characteristics

 Automatically Selected Reliable RSWDT Clock Source (independent of WDT clock source)

 Windowed Watchdog

 12-bit Key-protected Programmable Counter

 Provides Reset or Interrupt Signals to the System

 Counter may be Stopped While Processor is in Debug State or Idle Mode

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

366

17.3 Block Diagram

17.4 Functional Description

The RSWDT is supplied by VDDCORE. The RSWDT is initialized with default values on processor reset or on a

power-on sequence and is disabled (its default mode) under such conditions.

The RSWDT must not be enabled if the WDT is disabled.

The main RC oscillator divided clock is selected if the main RC oscillator is already enabled by the application

(CKGR_MOR.MOSCRCEN = 1) or if the WDT is driven by the slow RC oscillator.

The RSWDT is built around a 12-bit down counter, which is loaded with a slow clock value other than that of the

slow clock in the WDT, defined in the WDV (Watchdog Counter Value) field of the Mode Register (RSWDT_MR).

The RSWDT uses the slow clock divided by 128 to establish the maximum watchdog period to be 16 seconds (with

a typical slow clock of 32.768 kHz).

After a processor reset, the value of WDV is 0xFFF, corresponding to the maximum value of the counter with the

external reset generation enabled (RSWDT_MR.WDRSTEN = 1 after a backup reset). This means that a default

watchdog is running at reset, i.e., at power-up.

If the watchdog is restarted by writing into the Control Register (RSWDT_CR), the RSWDT_MR must not be

programmed during a period of time of three slow clock periods following the RSWDT_CR write access.

Programming a new value in the RSWDT_MR automatically initiates a restart instruction.

Figure 17-1. Reinforced Safety Watchdog Timer Block Diagram

= 0

1 0

set

resetread RSWDT_SR

or

reset

rswdt_fault

(to Reset Controller)

(ORed with wdt_fault)set

reset

WDFIEN

rswdt_int

(ORed with wdt_int)

RSWDT_MR

slow RC clock

1/128

12-bit Down

Counter

Current

Value

WDD

RSWDT_MR

<= WDD

WDV

WDRSTT

RSWDT_MR

RSWDT_CR

reload

WDUNF

WDERR

reload

write RSWDT_MR

RSWDT_MR

WDRSTEN

main RC clock

divider

main RC frequency

Automatic selection

[CKGR_MOR.MOSCRCEN = 0

and

(WDT_MR.WDDIS

or

SUPC_MR.XTALSEL = 1)]

1

0

367SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

RSWDT_MR can be written only once. Only a processor reset resets it. Writing RSWDT_MR reloads the timer with

the newly programmed mode parameters.

In normal operation, the user reloads the watchdog at regular intervals before the timer underflow occurs, by

setting bit RSWDT_CR.WDRSTT. The watchdog counter is then immediately reloaded from the RSWDT_MR and

restarted, and the slow clock 128 divider is reset and restarted. The RSWDT_CR is write-protected. As a result,

writing RSWDT_CR without the correct hard-coded key has no effect. If an underflow does occur, the “wdt_fault”

signal to the reset controller is asserted if the bit RSWDT_MR.WDRSTEN is set. Moreover, the bit WDUNF

(Watchdog Underflow) is set in the Status Register (RSWDT_SR).

To prevent a software deadlock that continuously triggers the RSWDT, the reload of the RSWDT must occur while

the watchdog counter is within a window between 0 and the Watchdog Delta Value (WDD). WDD is defined in the

RSWDT_MR.

Any attempt to restart the watchdog while the watchdog counter is between the two values WDV and WDD results

in a watchdog error, even if the RSWDT is disabled. The WDERR (Watchdog Error) bit is updated in the

RSWDT_SR and the “wdt_fault” signal to the reset controller is asserted.

Note that the Windowed Watchdog feature can be disabled by programming a WDD value greater than or equal to

the WDV value. In such a configuration, restarting the RSWDT is permitted in the whole range 0 to WDV and does

not generate an error. This is the default configuration on reset (the WDD and WDV values are equal).

The status bits WDUNF and WDERR trigger an interrupt, provided the WDFIEN bit is set in the RSWDT_MR. The

signal “wdt_fault” to the reset controller causes a Watchdog reset if the WDRSTEN bit is set as explained in the

“Reset Controller (RSTC)” section of the product datasheet. In this case, the processor and the RSWDT are reset,

and the WDUNF and WDERR flags are reset.

If a reset is generated, or if RSWDT_SR is read, the status bits are reset, the interrupt is cleared, and the

“wdt_fault” signal to the reset controller is deasserted

Writing RSWDT_MR reloads and restarts the down counter.

The RSWDT is disabled after any power-on sequence.

While the processor is in debug state or in idle mode, the counter may be stopped depending on the value

programmed for the WDIDLEHLT and WDDBGHLT bits in the RSWDT_MR.

Figure 17-2. Watchdog Behavior

0

WDV

WDD

RSWDT_CR.WDRSTT = 1
Watchdog

Fault

Normal behavior

Watchdog Error Watchdog Underflow

FFF
if WDRSTEN is 1

if WDRSTEN is 0

Forbidden

Window

Permitted

Window

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

368

17.5 Reinforced Safety Watchdog Timer (RSWDT) User Interface

Table 17-1. Register Mapping

Offset Register Name Access Reset

0x00 Control Register RSWDT_CR Write-only –

0x04 Mode Register RSWDT_MR Read-write Once 0x3FFF_AFFF

0x08 Status Register RSWDT_SR Read-only 0x0000_0000

369SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

17.5.1 Reinforced Safety Watchdog Timer Control Register

Name: RSWDT_CR

Address: 0x400E1900

Access: Write-only

• WDRSTT: Watchdog Restart

0: No effect.

1: Restarts the watchdog.

• KEY: Password

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – – WDRSTT

Value Name Description

0xC4 PASSWD Writing any other value in this field aborts the write operation.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

370

17.5.2 Reinforced Safety Watchdog Timer Mode Register

Name: RSWDT_MR

Address: 0x400E1904

Access: Read-write Once

Note: The first write access prevents any further modification of the value of this register; read accesses remain possible.

Note: The WDD and WDV values must not be modified within three slow clock periods following a restart of the watchdog performed by

means of a write access in the RSWDT_CR, else the watchdog may trigger an end of period earlier than expected.

• WDV: Watchdog Counter Value

Defines the value loaded in the 12-bit watchdog counter.

• WDFIEN: Watchdog Fault Interrupt Enable

0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

• WDRSTEN: Watchdog Reset Enable

0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a watchdog reset.

• WDRPROC: Watchdog Reset Processor

0: If WDRSTEN is 1, a watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a watchdog fault (underflow or error) activates the processor reset.

• WDD: Watchdog Delta Value

Defines the permitted range for reloading the RSWDT.

If the RSWDT value is less than or equal to WDD, writing RSWDT_CR with WDRSTT = 1 restarts the timer.

If the RSWDT value is greater than WDD, writing RSWDT_CR with WDRSTT = 1 causes a Watchdog error.

• WDDBGHLT: Watchdog Debug Halt

0: The RSWDT runs when the processor is in debug state.

1: The RSWDT stops when the processor is in debug state.

31 30 29 28 27 26 25 24

– – WDIDLEHLT WDDBGHLT WDD

23 22 21 20 19 18 17 16

WDD

15 14 13 12 11 10 9 8
WDDIS WDRPROC WDRSTEN WDFIEN WDV

7 6 5 4 3 2 1 0
WDV

371SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• WDIDLEHLT: Watchdog Idle Halt

0: The RSWDT runs when the system is in idle mode.

1: The RSWDT stops when the system is in idle state.

• WDDIS: Watchdog Disable

0: Enables the RSWDT.

1: Disables the RSWDT.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

372

17.5.3 Reinforced Safety Watchdog Timer Status Register

Name: RSWDT_SR

Address: 0x400E1908

Access: Read-only

• WDUNF: Watchdog Underflow

0: No watchdog underflow occurred since the last read of RSWDT_SR.

1: At least one watchdog underflow occurred since the last read of RSWDT_SR.

• WDERR: Watchdog Error

0: No watchdog error occurred since the last read of RSWDT_SR.

1: At least one watchdog error occurred since the last read of RSWDT_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – – – WDERR WDUNF

373SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

18. Supply Controller (SUPC)

18.1 Description

The Supply Controller (SUPC) controls the supply voltages of the system and manages the Backup mode. In this

mode, current consumption is reduced to a few microamps for backup power retention. Exit from this mode is

possible on multiple wake-up sources. The SUPC also generates the slow clock by selecting either the low-power

RC oscillator or the low-power crystal oscillator.

18.2 Embedded Characteristics

 Manages the core power supply VDDCORE and backup mode by controlling the embedded voltage

regulator

 A supply monitor detection on VDDIO or a brownout detection on VDDCORE triggers a core reset

 Generates the slow clock SLCK by selecting either the 22-42 kHz low-power RC oscillator or the 32 kHz low-

power crystal oscillator

 Low-power tamper detection on two inputs

 Anti-tampering by immediate clear of the general-purpose backup registers

 Supports multiple wake-up sources for exit from backup mode

̶ Force Wake-up Pin with programmable debouncing

̶ 16 Wake-up Inputs with programmable debouncing

̶ Real-Time Clock Alarm

̶ Real-Time Timer Alarm

̶ Supply monitor detection on VDDIO, with programmable scan period and voltage threshold

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

374

18.3 Block Diagram

Figure 18-1. Supply Controller Block Diagram

NRST

VDDOUT

VDDIN

on/off

Reset

Controller

vddcore_nreset

supc_irqPower-On Reset

VDDCORE

Brown-Out

Detector

VDDCORE

por_core_out

bod_out

sm_out

por_io_out

Real-Time

Clock

WKUP0-WKUP15

Voltage Regulator

Controller

Real-Time

Timer

rtc_alarm

VROFF

Supply

Monitor

Controller

BODDIS

SMSMPL SMTH

OSCBYPASS

SMRSTEN

BODRSTEN

XTALSEL

Slow

Clock

Controller

SMIEN

Supply Controller

SMEN

Wake-Up

Controller
RTCEN

rtt_alarm

RTTEN

RTCOUT0

RTCOUT1

sm_out

LPDBCEN0

LPDBCEN1

LPDBCCLR

WKUPEN0..15

WKUPT0..15

WKUPDBC

LPDBC

General-Purpose

Backup Registers

clear

wake_up

SLCK

XIN32

XOUT32

Programmable

Supply Monitor

VDDIO

Zero-Power

Power-On Reset

VDDIO

XTAL OSC 32kHz

RC OSC 32kHz

Core Voltage

Regulator

Interrupt

Controller

ONREG

proc_nreset

periph_nreset

ice_nreset

Backup Area
SLCK

375SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

18.4 Functional Description

18.4.1 Overview

The device is divided into two power supply areas:

 VDDIO power supply: includes the Supply Controller, part of the Reset Controller, the slow clock switch, the

general-purpose backup registers, the supply monitor and the clock which includes the Real-time Timer and

the Real-time Clock.

 Core power supply: includes part of the Reset Controller, the Brownout Detector, the processor, the SRAM

memory, the Flash memory and the peripherals.

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC intervenes when

the VDDIO power supply rises (when the system is starting) or when Backup mode is entered.

The SUPC also integrates the slow clock generator, which is based on a 32 kHz crystal oscillator, and an

embedded 32 kHz RC oscillator. The slow clock defaults to the RC oscillator, but the software can enable the

crystal oscillator and select it as the slow clock source.

The SUPC and the VDDIO power supply have a reset circuitry based on a zero-power power-on reset cell. The

zero-power power-on reset allows the SUPC to start correctly as soon as the VDDIO voltage becomes valid.

At start-up of the system, once the backup voltage VDDIO is valid and the embedded 32 kHz RC oscillator is

stabilized, the SUPC starts up the core by sequentially enabling the internal voltage regulator. The SUPC waits

until the core voltage VDDCORE is valid, then releases the reset signal of the core vddcore_nreset signal.

Once the system has started, the user can program a supply monitor and/or a brownout detector. If the supply

monitor detects a voltage level on VDDIO that is too low, the SUPC asserts the reset signal of the core

vddcore_nreset signal until VDDIO is valid. Likewise, if the brownout detector detects a core voltage level

VDDCORE that is too low, the SUPC asserts the reset signal vddcore_nreset until VDDCORE is valid.

When Backup mode is entered, the SUPC sequentially asserts the reset signal of the core power supply

vddcore_nreset and disables the voltage regulator, in order to supply only the VDDIO power supply. Current

consumption is reduced to a few microamps for the backup part retention. Exit from this mode is possible on

multiple wake-up sources including an event on the FWUP pin or WKUP pins, or a clock alarm. To exit this mode,

the SUPC operates in the same way as system start-up.

18.4.2 Slow Clock Generator

The SUPC embeds a slow clock generator that is supplied with the VDDIO power supply. As soon as the VDDIO is

supplied, both the crystal oscillator and the embedded RC oscillator are powered up, but only the embedded RC

oscillator is enabled. When the RC oscillator is selected as the slow clock source, the slow clock stabilizes more

quickly than when the crystal oscillator is selected.

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more accurate

frequency than the RC oscillator. The crystal oscillator is selected by setting the XTALSEL bit in the SUPC Control

register (SUPC_CR). The following sequence must be used to switch from the RC oscillator to the crystal

oscillator:

9. The PIO lines multiplexed with XIN32 and XOUT32 are configured to be driven by the oscillator.

10. The crystal oscillator is enabled.

11. A number of RC oscillator clock periods is counted to cover the start-up time of the crystal oscillator. Refer to

the section “Electrical Characteristics” for information on 32 kHz crystal oscillator start-up time.

12. The slow clock is switched to the output of the crystal oscillator.

13. The RC oscillator is disabled to save power.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

376

The switching time may vary depending on the RC oscillator clock frequency range. The switch of the slow clock

source is glitch-free. The OSCSEL bit of the SUPC Status register (SUPC_SR) indicates when the switch

sequence is finished.

Reverting to the RC oscillator as a slow clock source is only possible by shutting down the VDDIO power supply.

If the user does not need the crystal oscillator, the XIN32 and XOUT32 pins should be left unconnected.

The user can also set the crystal oscillator in Bypass mode instead of connecting a crystal. In this case, the user

has to provide the external clock signal on XIN32. The input characteristics of the XIN32 pin are given in the

section ‘Electrical Characteristics. To enter Bypass mode, the OSCBYPASS bit in the Mode register (SUPC_MR)

must be set before setting XTALSEL.

18.4.3 Core Voltage Regulator Control/Backup Low-power Mode

The SUPC can be used to control the embedded voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load current. Refer to

the section “Electrical Characteristics”.

The user can switch off the voltage regulator, and thus put the device in Backup mode, by writing a 1 to the

VROFF bit in SUPC_CR.

This asserts the vddcore_nreset signal after the write resynchronization time, which lasts two slow clock cycles

(worst case). Once the vddcore_nreset signal is asserted, the processor and the peripherals are stopped one slow

clock cycle before the core power supply shuts off.

When the internal voltage regulator is not used and VDDCORE is supplied by an external supply, the voltage

regulator can be disabled by writing a 1 to the ONREG bit in SUPC_MR.

18.4.4 Supply Monitor

The SUPC embeds a supply monitor located in the VDDIO power supply and which monitors VDDIO power

supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state if the main power

supply drops below a certain level.

The threshold of the supply monitor is programmable in the SMTH field of the Supply Monitor Mode register

(SUPC_SMMR). Refer to Supply Monitor characteristics in the section “Electrical Characteristics”.

The supply monitor can also be enabled during one slow clock period on every one of either 32, 256 or 2048 slow

clock periods, depending on the user selection. This is configured in the SMSMPL field in SUPC_SMMR.

Enabling the supply monitor for such reduced times divides the typical supply monitor power consumption by

factors of 2, 16 and 128, respectively, if continuous monitoring of the VDDIO power supply is not required.

A supply monitor detection generates either a reset of the core power supply or a wake-up of the core power

supply. Generating a core reset when a supply monitor detection occurs is enabled by setting the SMRSTEN bit in

SUPC_SMMR.

Waking up the core power supply when a supply monitor detection occurs can be enabled by setting the SMEN bit

in the Wake-up Mode register (SUPC_WUMR).

The SUPC provides two status bits in the SUPC_SR for the supply monitor that determine whether the last wake-

up was due to the supply monitor:

 The SMOS bit provides real-time information, updated at each measurement cycle or updated at each slow

clock cycle, if the measurement is continuous.

 The SMS bit provides saved information and shows a supply monitor detection has occurred since the last

read of SUPC_SR.

The SMS flag generates an interrupt if the SMIEN bit is set in SUPC_SMMR.

377SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 18-2. Supply Monitor Status Bit and Associated Interrupt

18.4.5 Backup Power Supply Reset

18.4.5.1 Raising the Backup Power Supply

When the backup voltage VDDIO rises, the RC oscillator is powered up and the zero-power power-on reset cell

maintains its output low as long as VDDIO has not reached its target voltage. During this period, the SUPC is

reset. When the VDDIO voltage becomes valid and the zero-power power-on reset signal is released, a counter is

started for five slow clock cycles. This is the time required for the 32 kHz RC oscillator to stabilize.

After this time, the voltage regulator is enabled. The core power supply rises and the brownout detector provides

the bodcore_in signal as soon as the core voltage VDDCORE is valid. This results in releasing the vddcore_nreset

signal to the Reset Controller after the bodcore_in signal has been confirmed as being valid for at least one slow

clock cycle.

Supply Monitor ON

3.3 V

0 V

Threshold

SMS and SUPC interrupt

Read SUPC_SR

Periodic Sampling

Continuous Sampling (SMSMPL = 1)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

378

Figure 18-3. Raising the VDDIO Power Supply

18.4.6 Core Reset

The Supply Controller manages the vddcore_nreset signal to the Reset Controller, as described in Section 18.4.5

”Backup Power Supply Reset”. The vddcore_nreset signal is normally asserted before shutting down the core

power supply and released as soon as the core power supply is correctly regulated.

There are two additional sources which can be programmed to activate vddcore_nreset:

 a supply monitor detection

 a brownout detection

18.4.6.1 Supply Monitor Reset

The supply monitor is capable of generating a reset of the system. This is enabled by setting the SMRSTEN bit in

SUPC_SMMR.

If SMRSTEN is set and if a supply monitor detection occurs, the vddcore_nreset signal is immediately activated for

a minimum of one slow clock cycle.

18.4.6.2 Brownout Detector Reset

The brownout detector provides the bodcore_in signal to the SUPC. This signal indicates that the voltage

regulation is operating as programmed. If this signal is lost for longer than 1 slow clock period while the voltage

regulator is enabled, the SUPC asserts vddcore_nreset if BODRSTEN is written to 1 in SUPC_MR.

Zero-Power Power-On

Reset Cell output

22 - 42 kHz RC

Oscillator output

Fast RC

Oscillator output

Backup Power Supply

vr_on

bodcore_in

vddcore_nreset

NRST

(no ext. drive assumed)

proc_nreset

Note: After “proc_nreset” rising, the core starts fetching instructions from Flash at 4 MHz.

periph_nreset

7 x Slow Clock Cycles 3 x Slow Clock

Cycles

2 x Slow Clock

Cycles

6.5 x Slow Clock

Cycles

TON Voltage

Regulator

Zero-Power POR

Core Power Supply

RSTC.ERSTL

(5 for startup slow RC + 2 for synchro.)

default = 2

379SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

If BODRSTEN is set and the voltage regulation is lost (output voltage of the regulator too low), the vddcore_nreset

signal is asserted for a minimum of one slow clock cycle and then released if bodcore_in has been reactivated.

The BODRSTS bit in SUPC_SR indicates the source of the last reset.

Until bodcore_in is deactivated, the vddcore_nreset signal remains active.

18.4.7 Wake-up Sources

The wake-up events allow the device to exit Backup mode. When a wake-up event is detected, the SUPC

performs a sequence that automatically reenables the core power supply.

Figure 18-4. Wake-up Sources

18.4.7.1 Force Wake-up

The FWUP pin is enabled as a wake-up source by writing a 1 to the FWUPEN bit in SUPC_WUMR. The

FWUPDBC field then selects a debouncing period of 3, 32, 512, 4,096 or 32,768 slow clock cycles. The duration of

these periods corresponds, respectively, to about 100 µs, about 1 ms, about 16 ms, about 128 ms and about 1

second (for a typical slow clock frequency of 32 kHz). Programming FWUPDBC to 0x0 selects an immediate

wake-up, i.e., the FWUP must be low during at least one slow clock period to wake up the core power supply.

If the FWUP pin is asserted for a time longer than the debouncing period, a wake-up of the core power supply is

started and the FWUPS bit in SUPC_SR is set and remains high until the register is read.

WKUP15

WKUPEN15
WKUPT15

WKUPEN1

WKUPEN0

Debouncer

SLCK

WKUPDBC

WKUPS

RTCEN

rtc_alarm

SMEN
sm_out

Core

Supply

Restart

WKUPIS0

WKUPIS1

WKUPIS15

WKUPT0

WKUPT1

WKUP0

WKUP1

RTTEN

rtt_alarm

Debouncer

RTCOUT0

LPDBC

Debouncer

LPDBC

RTCOUT0
LPDBCS0

LPDBCS1
LPDBCEN1

WKUPT1

LPDBCEN0

WKUPT0

Falling/Rising
Edge Detect

Low-power

Tamper Detection

Logic

GPBR Clear

LPDBCCLR

LPDBCS1

LPDBCS0

Falling/Rising
Edge Detect

Falling/Rising
Edge Detect

Falling/Rising
Edge Detect

Falling/Rising
Edge Detect

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

380

18.4.7.2 Wake-up Inputs

The wake-up inputs, WKUPx, can be programmed to perform a wake-up of the core power supply. Each input can

be enabled by writing a 1 to the corresponding bit, WKUPENx, in the Wake-up Inputs register (SUPC_WUIR). The

wake-up level can be selected with the corresponding polarity bit, WKUPTx, also located in SUPC_WUIR.

The resulting signals are wired-ORed to trigger a debounce counter, which is programmed with the WKUPDBC

field in SUPC_WUMR. The WKUPDBC field selects a debouncing period of 3, 32, 512, 4,096 or 32,768 slow clock

cycles. The duration of these periods corresponds, respectively, to about 100 µs, about 1 ms, about 16 ms, about

128 ms and about 1 second (for a typical slow clock frequency of 32 kHz). Programming WKUPDBC to 0x0 selects

an immediate wake-up, i.e., an enabled WKUP pin must be active according to its polarity during a minimum of

one slow clock period to wake up the core power supply.

If an enabled WKUP pin is asserted for a duration longer than the debouncing period, a wake-up of the core power

supply is started and the signals, WKUP0 to WKUPx as shown in Figure 18-4 "Wake-up Sources", are latched in

SUPC_SR. This allows the user to identify the source of the wake-up. However, if a new wake-up condition

occurs, the primary information is lost. No new wake-up can be detected since the primary wake-up condition has

disappeared.

Before instructing the system to enter Backup mode, if the field WKUPDBC > 0, it must be checked that none of

the WKUPx pins that are enabled for a wake-up (exit from Backup mode) holds an active polarity. This is checked

by reading the pin status in the PIO Controller. If WKUPENx=1 and the pin WKUPx holds an active polarity, the

system must not be instructed to enter Backup mode.

Figure 18-5. Entering and Exiting Backup Mode with a WKUP Pin

18.4.7.3 Low-power Tamper Detection and Anti-Tampering

Low-power debouncer inputs (WKUP0, WKUP1) can be used for tamper detection. If the tamper sensor is biased

through a resistor and constantly driven by the power supply, this leads to power consumption as long as the

tamper detection switch is in its active state. To prevent power consumption when the switch is in active state, the

tamper sensor circuitry must be intermittently powered, and thus a specific waveform must be applied to the

sensor circuitry.

The waveform is generated using RTCOUTx in all modes including Backup mode. Refer to the section “Real-Time

Clock (RTC)” for waveform generation.

Separate debouncers are embedded, one for WKUP0 input, one for WKUP1 input.

The WKUP0 and/or WKUP1 inputs perform a system wake-up upon tamper detection. This is enabled by setting

the LPDBCEN0/1 bit in the SUPC_WUMR.

WKUP0 and/or WKUP1 inputs can also be used when VDDCORE is powered to detect a tamper.

WKUPx

WKUPTx=0

Active BACKUP Active BACKUP Active BACKUPSystem

Edge detect +

debounce time
Edge detect +

debounce time

active runtime active runtime

VROFF=1VROFF=1

check

WKUPx

status

check

WKUPx

status

WKUPDBC > 0

381SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

When the bit LPDBCENx is written to 1, WKUPx pins must not be configured to act as a debouncing source for the

WKUPDBC counter (WKUPENx must be cleared in SUPC_WUIR).

Low-power tamper detection or debounce requires RTC output (RTCOUTx) to be configured to generate a duty

cycle programmable pulse (i.e., OUT0 = 0x7 in RTC_MR) in order to create the sampling points of both

debouncers. The sampling point is the falling edge of the RTCOUTx waveform.

Figure 18-6 shows an example of an application where two tamper switches are used. RTCOUTx powers the

external pull-up used by the tamper sensor circuitry.

Figure 18-6. Low-power Debouncer (Push-to-Make Switch, Pull-up Resistors)

Figure 18-7. Low-power Debouncer (Push-to-Break Switch, Pull-down Resistors)

The debouncing period duration is configurable. The period is set for all debouncers (i.e., the duration cannot be

adjusted for each debouncer). The number of successive identical samples to wake up the system can be

configured from 2 up to 8 in the LPDBC field of SUPC_WUMR. The period of time between two samples can be

configured by programming the TPERIOD field in the RTC_MR. Power parameters can be adjusted by modifying

the period of time in the THIGH field in RTC_MR.

MCU

WKUP0

WKUP1

RTCOUTx

Pull-up

Resistor

Pull-up

Resistor

GND

GND

GND

MCU

WKUP0

WKUP1

RTCOUTx

Pull-down

Resistors

GND GND

GND

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

382

The wake-up polarity of the inputs can be independently configured by writing WKUPT0 and/ or WKUPT1 fields in

SUPC_WUMR.

In order to determine which wake-up/tamper pin triggers the system wake-up, a status flag is associated for each

low-power debouncer. These flags are read in SUPC_SR.

A debounce event (tamper detection) can perform an immediate clear (0 delay) on the first half the general-

purpose backup registers (GPBR). The LPDBCCLR bit must be set in SUPC_WUMR.

Note that it is not mandatory to use the RTCOUTx pin when using the WKUP0/WKUP1 pins as tampering inputs in

any mode. Using the RTCOUTx pin provides a “sampling mode” to further reduce the power consumption of the

tamper detection circuitry. If RTCOUTx is not used, the RTC must be configured to create an internal sampling

point for the debouncer logic. The period of time between two samples can be configured by programming the

TPERIOD field in RTC_MR.

Figure 18-8 illustrates the use of WKUPx without the RTCOUTx pin.

Figure 18-8. Using WKUP Pins Without RTCOUTx Pins

18.4.7.4 Clock Alarms

The RTC and the RTT alarms can generate a wake-up of the core power supply. This can be enabled by setting,

respectively, the bits RTCEN and RTTEN in SUPC_WUMR.

The Supply Controller does not provide any status as the information is available in the user interface of either the

Real-Time Timer or the Real-Time Clock.

18.4.7.5 Supply Monitor Detection

The supply monitor can generate a wake-up of the core power supply. See Section 18.4.4 ”Supply Monitor”.

MCU

WKUP0

WKUP1

VDDIO

Pull-up

Resistor

Pull-up

Resistor

GND

GND

GND

383SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

18.4.8 Register Write Protection

To prevent any single software error from corrupting SYSC behavior, certain registers in the address space can be

write-protected by setting the WPEN bit in the ”System Controller Write Protection Mode Register”

(SYSC_WPMR).

The following registers can be write-protected:

 RSTC Mode Register

 RTT Mode Register

 RTT Alarm Register

 RTC Control Register

 RTC Mode Register

 RTC Time Alarm Register

 RTC Calendar Alarm Register

 General Purpose Backup Registers

 Supply Controller Control Register

 Supply Controller Supply Monitor Mode Register

 Supply Controller Mode Register

 Supply Controller Wake-up Mode Register

18.4.9 Register Bits in Backup Domain (VDDIO)

The following configuration registers, or certain bits of the registers, are physically located in the product backup

domain:

 RSTC Mode Register (all bits)

 RTT Mode Register (all bits)

 RTT Alarm Register (all bits)

 RTC Control Register (all bits)

 RTC Mode Register (all bits)

 RTC Time Alarm Register (all bits)

 RTC Calendar Alarm Register (all bits)

 General Purpose Backup Registers (all bits)

 Supply Controller Control Register (see register description for details)

 Supply Controller Supply Monitor Mode Register (all bits)

 Supply Controller Mode Register (see register description for details)

 Supply Controller Wake-up Mode Register (all bits)

 Supply Controller Wake-up Inputs Register (all bits)

 Supply Controller Status Register (all bits)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

384

18.5 Supply Controller (SUPC) User Interface

The user interface of the Supply Controller is part of the System Controller user interface.

18.5.1 System Controller (SYSC) User Interface

18.5.2 Supply Controller (SUPC) User Interface

Table 18-1. System Controller Registers

Offset System Controller Peripheral Name

0x00-0x0c Reset Controller RSTC

0x10-0x2C Supply Controller SUPC

0x30-0x3C Real Time Timer RTT

0x50-0x5C Watchdog Timer WDT

0x60-0x8C Real Time Clock RTC

0x90-0xDC General Purpose Backup Register GPBR

0xE0 Reserved –

0xE4 Write Protection Mode Register SYSC_WPMR

0xE8-0xF8 Reserved –

0x100-0x10C Reinforced Safety Watchdog Timer RSWDT

Table 18-2. Register Mapping

Offset Register Name Access Reset

0x00 Supply Controller Control Register SUPC_CR Write-only –

0x04 Supply Controller Supply Monitor Mode Register SUPC_SMMR Read/Write 0x0000_0000

0x08 Supply Controller Mode Register SUPC_MR Read/Write 0x0000_5A00

0x0C Supply Controller Wake-up Mode Register SUPC_WUMR Read/Write 0x0000_0000

0x10 Supply Controller Wake-up Inputs Register SUPC_WUIR Read/Write 0x0000_0000

0x14 Supply Controller Status Register SUPC_SR Read-only 0x0000_0000

0x18 Reserved – – –

0xD4 Write Protection Mode Register SYSC_WPMR Read/Write 0x0000_0000

385SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

18.5.3 Supply Controller Control Register

Name: SUPC_CR

Address: 0x400E1810

Access: Write-only

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_MR).

• VROFF: Voltage Regulator Off

0 (NO_EFFECT): No effect.

1 (STOP_VREG): If KEY is correct, VROFF asserts the vddcore_nreset and stops the voltage regulator.

Note: This bit is located in the VDDIO domain.

• XTALSEL: Crystal Oscillator Select

0 (NO_EFFECT): No effect.

1 (CRYSTAL_SEL): If KEY is correct, XTALSEL switches the slow clock on the crystal oscillator output.

Note: This bit is located in the VDDIO domain.

• KEY: Password

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – XTALSEL VROFF – –

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

386

18.5.4 Supply Controller Supply Monitor Mode Register

Name: SUPC_SMMR

Address: 0x400E1814

Access: Read/Write

This register is located in the VDDIO domain.

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_MR).

• SMTH: Supply Monitor Threshold

Selects the threshold voltage of the supply monitor. Refer to the section “Electrical Characteristics” for voltage values.

• SMSMPL: Supply Monitor Sampling Period

• SMRSTEN: Supply Monitor Reset Enable

0 (NOT_ENABLE): The core reset signal vddcore_nreset is not affected when a supply monitor detection occurs.

1 (ENABLE): The core reset signal, vddcore_nreset is asserted when a supply monitor detection occurs.

• SMIEN: Supply Monitor Interrupt Enable

0 (NOT_ENABLE): The SUPC interrupt signal is not affected when a supply monitor detection occurs.

1 (ENABLE): The SUPC interrupt signal is asserted when a supply monitor detection occurs.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – SMIEN SMRSTEN – SMSMPL

7 6 5 4 3 2 1 0

– – – – SMTH

Value Name Description

0x0 SMD Supply Monitor disabled

0x1 CSM Continuous Supply Monitor

0x2 32SLCK Supply Monitor enabled one SLCK period every 32 SLCK periods

0x3 256SLCK Supply Monitor enabled one SLCK period every 256 SLCK periods

0x4 2048SLCK Supply Monitor enabled one SLCK period every 2,048 SLCK periods

387SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

18.5.5 Supply Controller Mode Register

Name: SUPC_MR

Address: 0x400E1818

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_MR).

• BODRSTEN: Brownout Detector Reset Enable

0 (NOT_ENABLE): The core reset signal vddcore_nreset is not affected when a brownout detection occurs.

1 (ENABLE): The core reset signal, vddcore_nreset is asserted when a brownout detection occurs.

Note: This bit is located in the VDDIO domain.

• BODDIS: Brownout Detector Disable

0 (ENABLE): The core brownout detector is enabled.

1 (DISABLE): The core brownout detector is disabled.

Note: This bit is located in the VDDIO domain.

• ONREG: Voltage Regulator Enable

0 (ONREG_UNUSED): Internal voltage regulator is not used (external power supply is used).

1 (ONREG_USED): Internal voltage regulator is used.

Note: This bit is located in the VDDIO domain.

• OSCBYPASS: Oscillator Bypass

0 (NO_EFFECT): No effect. Clock selection depends on the value of XTALSEL (SUPC_CR).

1 (BYPASS): The 32 kHz crystal oscillator is bypassed if XTALSEL (SUPC_CR) is set. OSCBYPASS must be set prior to

setting XTALSEL.

Note: This bit is located in the VDDIO domain.

• KEY: Password Key

31 30 29 28 27 26 25 24

KEY

23 22 21 20 19 18 17 16

– – – OSCBYPASS – – – –

15 14 13 12 11 10 9 8

– ONREG BODDIS BODRSTEN – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

388

18.5.6 Supply Controller Wake-up Mode Register

Name: SUPC_WUMR

Address: 0x400E181C

Access: Read/Write

This register is located in the VDDIO domain.

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register

(SYSC_MR).

• FWUPEN: Force Wake-up Enable

0 (NOT_ENABLE): The force wake-up pin has no wake-up effect.

1 (ENABLE): The force wake-up pin low forces the wake-up of the core power supply.

• SMEN: Supply Monitor Wake-up Enable

0 (NOT_ENABLE): The supply monitor detection has no wake-up effect.

1 (ENABLE): The supply monitor detection forces the wake-up of the core power supply.

• RTTEN: Real-time Timer Wake-up Enable

0 (NOT_ENABLE): The RTT alarm signal has no wake-up effect.

1 (ENABLE): The RTT alarm signal forces the wake-up of the core power supply.

• RTCEN: Real-time Clock Wake-up Enable

0 (NOT_ENABLE): The RTC alarm signal has no wake-up effect.

1 (ENABLE): The RTC alarm signal forces the wake-up of the core power supply.

• LPDBCEN0: Low-power Debouncer Enable WKUP0

0 (NOT_ENABLE): The WKUP0 input pin is not connected to the low-power debouncer.

1 (ENABLE): The WKUP0 input pin is connected to the low-power debouncer and forces a system wake-up.

• LPDBCEN1: Low-power Debouncer Enable WKUP1

0 (NOT_ENABLE): The WKUP1 input pin is not connected to the low-power debouncer.

1 (ENABLE): The WKUP1 input pin is connected to the low-power debouncer and forces a system wake-up.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – LPDBC

15 14 13 12 11 10 9 8

– WKUPDBC – FWUPDBC

7 6 5 4 3 2 1 0

LPDBCCLR LPDBCEN1 LPDBCEN0 – RTCEN RTTEN SMEN FWUPEN

389SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• LPDBCCLR: Low-power Debouncer Clear

0 (NOT_ENABLE): A low-power debounce event does not create an immediate clear on the first half of GPBR registers.

1 (ENABLE): A low-power debounce event on WKUP0 or WKUP1 generates an immediate clear on the first half of GPBR

registers.

• FWUPDBC: Force Wake-up Debouncer Period

• WKUPDBC: Wake-up Inputs Debouncer Period

• LPDBC: Low-power Debouncer Period

Value Name Description

0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.

1 3_SCLK FWUP shall be low for at least 3 SLCK periods

2 32_SCLK FWUP shall be low for at least 32 SLCK periods

3 512_SCLK FWUP shall be low for at least 512 SLCK periods

4 4096_SCLK FWUP shall be low for at least 4,096 SLCK periods

5 32768_SCLK FWUP shall be low for at least 32,768 SLCK periods

Value Name Description

0 IMMEDIATE Immediate, no debouncing, detected active at least on one Slow Clock edge.

1 3_SCLK WKUPx shall be in its active state for at least 3 SLCK periods

2 32_SCLK WKUPx shall be in its active state for at least 32 SLCK periods

3 512_SCLK WKUPx shall be in its active state for at least 512 SLCK periods

4 4096_SCLK WKUPx shall be in its active state for at least 4,096 SLCK periods

5 32768_SCLK WKUPx shall be in its active state for at least 32,768 SLCK periods

Value Name Description

0 DISABLE Disables the low-power debouncers.

1 2_RTCOUT0 WKUP0/1 in active state for at least 2 RTCOUTx clock periods

2 3_RTCOUT0 WKUP0/1 in active state for at least 3 RTCOUTx clock periods

3 4_RTCOUT0 WKUP0/1 in active state for at least 4 RTCOUTx clock periods

4 5_RTCOUT0 WKUP0/1 in active state for at least 5 RTCOUTx clock periods

5 6_RTCOUT0 WKUP0/1 in active state for at least 6 RTCOUTx clock periods

6 7_RTCOUT0 WKUP0/1 in active state for at least 7 RTCOUTx clock periods

7 8_RTCOUT0 WKUP0/1 in active state for at least 8 RTCOUTx clock periods

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

390

18.5.7 Supply Controller Wake-up Inputs Register

Name: SUPC_WUIR

Address: 0x400E1820

Access: Read/Write

This register is located in the VDDIO domain.

• WKUPEN0 - WKUPENx: Wake-up Input Enable 0 to x

0 (DISABLE): The corresponding wake-up input has no wake-up effect.

1 (ENABLE): The corresponding wake-up input is enabled for a wake-up of the core power supply.

• WKUPT0 - WKUPTx: Wake-up Input Type 0 to x

0 (LOW): A falling edge followed by a low level for a period defined by WKUPDBC on the corresponding wake-up input

forces the wake-up of the core power supply.

1 (HIGH): A rising edge followed by a high level for a period defined by WKUPDBC on the corresponding wake-up input

forces the wake-up of the core power supply.

31 30 29 28 27 26 25 24

WKUPT15 WKUPT14 WKUPT13 WKUPT12 WKUPT11 WKUPT10 WKUPT9 WKUPT8

23 22 21 20 19 18 17 16

WKUPT7 WKUPT6 WKUPT5 WKUPT4 WKUPT3 WKUPT2 WKUPT1 WKUPT0

15 14 13 12 11 10 9 8

WKUPEN15 WKUPEN14 WKUPEN13 WKUPEN12 WKUPEN11 WKUPEN10 WKUPEN9 WKUPEN8

7 6 5 4 3 2 1 0

WKUPEN7 WKUPEN6 WKUPEN5 WKUPEN4 WKUPEN3 WKUPEN2 WKUPEN1 WKUPEN0

391SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

18.5.8 Supply Controller Status Register

Name: SUPC_SR

Address: 0x400E1824

Access: Read-only

Note: Because of the asynchronism between the Slow Clock (SLCK) and the System Clock (MCK), the status register flag reset is taken

into account only 2 slow clock cycles after the read of the SUPC_SR.

This register is located in the VDDIO domain.

• FWUPS: FWUP Wake-up Status (cleared on read)

0 (NO): No wake-up due to the assertion of the FWUP pin has occurred since the last read of SUPC_SR.

1 (PRESENT): At least one wake-up due to the assertion of the FWUP pin has occurred since the last read of SUPC_SR.

• WKUPS: WKUP Wake-up Status (cleared on read)

0 (NO): No wake-up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

1 (PRESENT): At least one wake-up due to the assertion of the WKUP pins has occurred since the last read of SUPC_SR.

• SMWS: Supply Monitor Detection Wake-up Status (cleared on read)

0 (NO): No wake-up due to a supply monitor detection has occurred since the last read of SUPC_SR.

1 (PRESENT): At least one wake-up due to a supply monitor detection has occurred since the last read of SUPC_SR.

• BODRSTS: Brownout Detector Reset Status (cleared on read)

0 (NO): No core brownout rising edge event has been detected since the last read of the SUPC_SR.

1 (PRESENT): At least one brownout output rising edge event has been detected since the last read of the SUPC_SR.

When the voltage remains below the defined threshold, there is no rising edge event at the output of the brownout detec-

tion cell. The rising edge event occurs only when there is a voltage transition below the threshold.

• SMRSTS: Supply Monitor Reset Status (cleared on read)

0 (NO): No supply monitor detection has generated a core reset since the last read of the SUPC_SR.

1 (PRESENT): At least one supply monitor detection has generated a core reset since the last read of the SUPC_SR.

• SMS: Supply Monitor Status (cleared on read)

0 (NO): No supply monitor detection since the last read of SUPC_SR.

1 (PRESENT): At least one supply monitor detection since the last read of SUPC_SR.

31 30 29 28 27 26 25 24

WKUPIS15 WKUPIS14 WKUPIS13 WKUPIS12 WKUPIS11 WKUPIS10 WKUPIS9 WKUPIS8

23 22 21 20 19 18 17 16

WKUPIS7 WKUPIS6 WKUPIS5 WKUPIS4 WKUPIS3 WKUPIS2 WKUPIS1 WKUPIS0

15 14 13 12 11 10 9 8

– LPDBCS1 LPDBCS0 FWUPIS – – – –

7 6 5 4 3 2 1 0

OSCSEL SMOS SMS SMRSTS BODRSTS SMWS WKUPS FWUPS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

392

• SMOS: Supply Monitor Output Status

0 (HIGH): The supply monitor detected VDDIO higher than its threshold at its last measurement.

1 (LOW): The supply monitor detected VDDIO lower than its threshold at its last measurement.

• OSCSEL: 32-kHz Oscillator Selection Status

0 (RC): The slow clock, SLCK, is generated by the embedded 32 kHz RC oscillator.

1 (CRYST): The slow clock, SLCK, is generated by the 32 kHz crystal oscillator.

• FWUPIS: FWUP Input Status

0 (LOW): FWUP input is tied low.

1 (HIGH): FWUP input is tied high.

• LPDBCS0: Low-power Debouncer Wake-up Status on WKUP0 (cleared on read)

0 (NO): No wake-up due to the assertion of the WKUP0 pin has occurred since the last read of SUPC_SR.

1 (PRESENT): At least one wake-up due to the assertion of the WKUP0 pin has occurred since the last read of SUPC_SR.

• LPDBCS1: Low-power Debouncer Wake-up Status on WKUP1 (cleared on read)

0 (NO): No wake-up due to the assertion of the WKUP1 pin has occurred since the last read of SUPC_SR.

1 (PRESENT): At least one wake-up due to the assertion of the WKUP1 pin has occurred since the last read of SUPC_SR.

• WKUPISx: WKUPx Input Status (cleared on read)

0 (DIS): The corresponding wake-up input is disabled, or was inactive at the time the debouncer triggered a wake-up

event.

1 (EN): The corresponding wake-up input was active at the time the debouncer triggered a wake-up event since the last

read of SUPC_SR.

393SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

18.5.9 System Controller Write Protection Mode Register

Name: SYSC_WPMR

Address: 0x400E18E4

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x525443 (“RTC” in ASCII).

See Section 18.4.8 ”Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key.

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x525443 PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit.

Always reads as 0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

394

19. General Purpose Backup Registers (GPBR)

19.1 Description

The System Controller embeds 640 bits of General Purpose Backup registers organized as 20 32-bit registers.

It is possible to generate an immediate clear of the content of General Purpose Backup registers 0 to 9 (first half) if

a Low-power Debounce event is detected on one of the wakeup pins, WKUP0 or WKUP1. The content of the other

General Purpose Backup registers (second half) remains unchanged.

The Supply Controller module must be programmed accordingly. In the register SUPC_WUMR in the Supply

Controller module, LPDBCCLR, LPDBCEN0 and/or LPDBCEN1 bit must be configured to 1 and LPDBC must be

other than 0.

If a Tamper event has been detected, it is not possible to write to the General Purpose Backup registers while the

LPDBCS0 or LPDBCS1 flags are not cleared in the Supply Controller Status Register (SUPC_SR).

19.2 Embedded Characteristics

 640 bits of General Purpose Backup Registers

395SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

19.3 General Purpose Backup Registers (GPBR) User Interface

Table 19-1. Register Mapping

Offset Register Name Access Reset

0x0 General Purpose Backup Register 0 SYS_GPBR0 Read/Write 0x00000000

...

0x64
General Purpose Backup Register

19
SYS_GPBR19 Read/Write 0x00000000

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

396

19.3.1 General Purpose Backup Register x

Name: SYS_GPBRx

Address: 0x400E1890

Access: Read/Write

These registers are reset at first power-up and on each loss of VDDIO.

• GPBR_VALUE: Value of GPBR x

If a Tamper event has been detected, it is not possible to write GPBR_VALUE as long as the LPDBCS0 or LPDBCS1 flag

has not been cleared in the Supply Controller Status Register (SUPC_SR).

31 30 29 28 27 26 25 24

GPBR_VALUE

23 22 21 20 19 18 17 16

GPBR_VALUE

15 14 13 12 11 10 9 8

GPBR_VALUE

7 6 5 4 3 2 1 0

GPBR_VALUE

397SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

20. Enhanced Embedded Flash Controller (EEFC)

20.1 Description

The Enhanced Embedded Flash Controller (EEFC) provides the interface of the Flash block with the 32-bit internal

bus.

Its 128-bit or 64-bit wide memory interface increases performance. It also manages the programming, erasing,

locking and unlocking sequences of the Flash using a full set of commands. One of the commands returns the

embedded Flash descriptor definition that informs the system about the Flash organization, thus making the

software generic.

20.2 Embedded Characteristics

 Increases Performance in Thumb-2 Mode with 128-bit or 64-bit-wide Memory Interface up to 120 MHz

 Code Loop Optimization

 128 Lock Bits, Each Protecting a Lock Region

 GPNVMx General-purpose GPNVM Bits

 One-by-one Lock Bit Programming

 Commands Protected by a Keyword

 Erase the Entire Flash

 Erase by Plane

 Erase by Sector

 Erase by Page

 Provides Unique Identifier

 Provides 512-byte User Signature Area

 Supports Erasing before Programming

 Locking and Unlocking Operations

 Supports Read of the Calibration Bits

20.3 Product Dependencies

20.3.1 Power Management

The Enhanced Embedded Flash Controller (EEFC) is continuously clocked. The Power Management Controller

has no effect on its behavior.

20.3.2 Interrupt Sources

The EEFC interrupt line is connected to the interrupt controller. Using the EEFC interrupt requires the interrupt

controller to be programmed first. The EEFC interrupt is generated only if the value of EEFC_FMR.FRDY is ‘1’.

20.4 Functional Description

20.4.1 Embedded Flash Organization

The embedded Flash interfaces directly with the internal bus. The embedded Flash is composed of:

Table 20-1. Peripheral IDs

Instance ID

EFC 6

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

398

 One memory plane organized in several pages of the same size for the code

 A separate 2 x 512-byte memory area which includes the unique chip identifier

 A separate 512-byte memory area for the user signature

 Two 128-bit or 64-bit read buffers used for code read optimization

 One 128-bit or 64-bit read buffer used for data read optimization

 One write buffer that manages page programming. The write buffer size is equal to the page size. This buffer

is write-only and accessible all along the 1 Mbyte address space, so that each word can be written to its final

address.

 Several lock bits used to protect write/erase operation on several pages (lock region). A lock bit is

associated with a lock region composed of several pages in the memory plane.

 Several bits that may be set and cleared through the EEFC interface, called general-purpose non-volatile

memory bits (GPNVM bits)

The embedded Flash size, the page size, the organization of lock regions and the definition of GPNVM bits are

specific to the device. The EEFC returns a descriptor of the Flash controller after a ‘Get Flash Descriptor’

command has been issued by the application (see Section 20.4.3.1 ”Get Flash Descriptor Command”).

Figure 20-1. Flash Memory Areas

@FBA+0x000
U
se

r S
ig
na

tu
re

 A
re

a

U
ni
qu

e
Id

en
tif
ie
r A

re
a

Unique Identifier

C
od

e
A
re

a

@FBA+0x1FF

@FBA+0x000

@FBA+0x3FF

@FBA+0x000

Write “Start Unique Identifier”

(Flash Command STUI)

Write “Start User Signature”

(Flash Command STUS)

@FBA+0x010

@FBA+0x010

Write “Stop Unique Identifier”

(Flash Command SPUI)

Write “Stop User signature”

(Flash Command SPUS)

FBA = Flash Base Address

399SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 20-2. Organization of Embedded Flash for Code

Start Address
Page 0

Lock Region 0

Lock Region 1

Memory Plane

Page (m-1)

Lock Region (n-1)

Page (n*m-1)Start Address + Flash size -1

Lock Bit 0

Lock Bit 1

Lock Bit (n-1)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

400

20.4.2 Read Operations

An optimized controller manages embedded Flash reads, thus increasing performance when the processor is

running in Thumb-2 mode by means of the 128- or 64-bit-wide memory interface.

The Flash memory is accessible through 8-, 16- and 32-bit reads.

As the Flash block size is smaller than the address space reserved for the internal memory area, the embedded

Flash wraps around the address space and appears to be repeated within it.

The read operations can be performed with or without wait states. Wait states must be programmed in the field

FWS in the Flash Mode register (EEFC_FMR). Defining FWS as 0 enables the single-cycle access of the

embedded Flash. For more details, refer to the section “Electrical Characteristics” of this datasheet.

20.4.2.1 128- or 64-bit Access Mode

By default, the read accesses of the Flash are performed through a 128-bit wide memory interface. It improves

system performance especially when two or three wait states are needed.

For systems requiring only 1 wait state, or to focus on current consumption rather than performance, the user can

select a 64-bit wide memory access via the bit EEFC_FMR.FAM.

For more details, refer to the section “Electrical Characteristics” of this datasheet.

20.4.2.2 Code Read Optimization

Code read optimization is enabled if the bit EEFC_FMR.SCOD is cleared.

A system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize sequential code fetch.

Note: Immediate consecutive code read accesses are not mandatory to benefit from this optimization.

The sequential code read optimization is enabled by default. If the bit EEFC_FMR.SCOD is set, these buffers are

disabled and the sequential code read is no longer optimized.

Figure 20-3. Code Read Optimization for FWS = 0

Note: When FWS is equal to 0, all the accesses are performed in a single-cycle access.

Another system of 2 x 128-bit or 2 x 64-bit buffers is added in order to optimize loop code fetch. Refer to

Section 20.4.2.3 ”Code Loop Optimization” for more details.

Flash Access

Buffer 0 (128 bits)

Master Clock

ARM Request

 (32-bit)

XXX

Data to ARM

Bytes 0–15 Bytes 16–31 Bytes 32–47

Bytes 0–15

Buffer 1 (128 bits)

Bytes 32–47

Bytes 0–3 Bytes 4–7 Bytes 8–11 Bytes 12–15 Bytes 16–19 Bytes 20–23 Bytes 24–27XXX

XXX Bytes 16–31

@ 0 @+4 @ +8 @+12 @+16 @+20 @+24 @+28 @+32

Bytes 28–31

anticipation of @16-31

401SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 20-4. Code Read Optimization for FWS = 3

Note: When FWS is between 1 and 3, in case of sequential reads, the first access takes (FWS + 1) cycles. The following accesses take

only one cycle.

20.4.2.3 Code Loop Optimization

Code loop optimization is enabled when the bit EEFC_FMR.CLOE is set.

When a backward jump is inserted in the code, the pipeline of the sequential optimization is broken and becomes

inefficient. In this case, the loop code read optimization takes over from the sequential code read optimization to

prevent the insertion of wait states. The loop code read optimization is enabled by default. In EEFC_FMR, if the bit

CLOE is reset to 0 or the bit SCOD is set, these buffers are disabled and the loop code read is not optimized.

When code loop optimization is enabled, if inner loop body instructions L0 to Ln are positioned from the 128-bit

Flash memory cell Mb0 to the memory cell Mp1, after recognition of a first backward branch, the first two Flash

memory cells Mb0 and Mb1 targeted by this branch are cached for fast access from the processor at the next loop

iteration.

Then by combining the sequential prefetch (described in Section 20.4.2.2 ”Code Read Optimization”) through the

loop body with the fast read access to the loop entry cache, the entire loop can be iterated with no wait state.

Figure 20-5 illustrates code loop optimization.

Figure 20-5. Code Loop Optimization

Flash Access

Buffer 0 (128 bits)

Master Clock

ARM Request

 (32-bit)

Data to ARM

Buffer 1 (128 bits)

0–3

XXX

XXX

Bytes 16–31

@ 0
@+4 @+8

Bytes 0–15 Bytes 16–31 Bytes 32–47 Bytes 48–6

Bytes 0–15

4–7 8–11 12–15

@+12 @+16 @+20

24–27 28–31 32–35 36–3916–19 20–23 40–43 44–47

@+24 @+28 @+32 @+36 @+40 @+44 @+48 @+52

Bytes 32–47

48–51

anticipation of @16-31 anticipation of @32-47

wait 3 cycles before

128-bit data is stable
@0/4/8/12 are ready

@16/20/24/28 are ready

LnLn-1Ln-2Ln-3Ln-4Ln-5L5L4L3L2L1L0

B1 B2 B3 B4 B5 B6 B7B0 P1 P2 P3 P4 P5 P6 P7P0

Mb0Mb0 Mb1 Mp0 Mp1

2×128-bit loop entry

cache
2×128-bit prefetch

buffer

L0 Loop Entry instruction

Ln Loop End instruction

Flash Memory

128-bit words

Mb0 Branch Cache 0

Mb1 Branch Cache 1

Mp0 Prefetch Buffer 0

Mp1 Prefetch Buffer 1

Backward address jump

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

402

20.4.2.4 Data Read Optimization

The organization of the Flash in 128 bits or 64 bits is associated with two 128-bit or 64-bit prefetch buffers and one

128-bit or 64-bit data read buffer, thus providing maximum system performance. This buffer is added in order to

store the requested data plus all the data contained in the 128-bit or 64-bit aligned data. This speeds up sequential

data reads if, for example, FWS is equal to 1 (see Figure 20-6). The data read optimization is enabled by default. If

the bit EEFC_FMR.SCOD is set, this buffer is disabled and the data read is no longer optimized.

Note: No consecutive data read accesses are mandatory to benefit from this optimization.

Figure 20-6. Data Read Optimization for FWS = 1

20.4.3 Flash Commands

The EEFC offers a set of commands to manage programming the Flash memory, locking and unlocking lock

regions, consecutive programming, locking and full Flash erasing, etc.

 The commands are listed in the following table.

Flash Access

Buffer (128 bits)

Master Clock

ARM Request

 (32-bit)

XXX

Data to ARM

Bytes 0–15 Bytes 16–31

Bytes 0–15

Bytes 0–3 4–7 8–11 12–15 16–19 20–23XXX

Bytes 16–31

@Byte 0 @ 4 @ 8 @ 12 @ 16 @ 20 @ 24 @ 28 @ 32 @ 36

XXX Bytes 32–47

24–27 28–31 32–35

Table 20-2. Set of Commands

Command Value Mnemonic

Get Flash descriptor 0x00 GETD

Write page 0x01 WP

Write page and lock 0x02 WPL

Erase page and write page 0x03 EWP

Erase page and write page then lock 0x04 EWPL

Erase all 0x05 EA

Erase pages 0x07 EPA

Set lock bit 0x08 SLB

Clear lock bit 0x09 CLB

Get lock bit 0x0A GLB

Set GPNVM bit 0x0B SGPB

Clear GPNVM bit 0x0C CGPB

403SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

In order to execute one of these commands, select the required command using the FCMD field in the Flash

Command register (EEFC_FCR). As soon as EEFC_FCR is written, the FRDY flag and the FVALUE field in the

Flash Result register (EEFC_FRR) are automatically cleared. Once the current command has completed, the

FRDY flag is automatically set. If an interrupt has been enabled by setting the bit EEFC_FMR.FRDY, the

corresponding interrupt line of the interrupt controller is activated. (Note that this is true for all commands except

for the STUI command. The FRDY flag is not set when the STUI command has completed.)

All the commands are protected by the same keyword, which must be written in the eight highest bits of

EEFC_FCR.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid command has no effect

on the whole memory plane, but the FCMDE flag is set in the Flash Status register (EEFC_FSR). This flag is

automatically cleared by a read access to EEFC_FSR.

When the current command writes or erases a page in a locked region, the command has no effect on the whole

memory plane, but the FLOCKE flag is set in EEFC_FSR. This flag is automatically cleared by a read access to

EEFC_FSR.

Get GPNVM bit 0x0D GGPB

Start read unique identifier 0x0E STUI

Stop read unique identifier 0x0F SPUI

Get CALIB bit 0x10 GCALB

Erase sector 0x11 ES

Write user signature 0x12 WUS

Erase user signature 0x13 EUS

Start read user signature 0x14 STUS

Stop read user signature 0x15 SPUS

Table 20-2. Set of Commands (Continued)

Command Value Mnemonic

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

404

Figure 20-7. Command State Chart

20.4.3.1 Get Flash Descriptor Command

This command provides the system with information on the Flash organization. The system can take full

advantage of this information. For instance, a device could be replaced by one with more Flash capacity, and so

the software is able to adapt itself to the new configuration.

To get the embedded Flash descriptor, the application writes the GETD command in EEFC_FCR. The first word of

the descriptor can be read by the software application in EEFC_FRR as soon as the FRDY flag in EEFC_FSR

rises. The next reads of EEFC_FRR provide the following word of the descriptor. If extra read operations to

EEFC_FRR are done after the last word of the descriptor has been returned, the EEFC_FRR value is 0 until the

next valid command.

Check if FRDY flag Set
No

Yes

Read Status: EEFC_FSR

Write FCMD and PAGENB in Flash Command Register

Check if FLOCKE flag Set

Check if FRDY flag Set
No

Read Status: EEFC_FSR

Yes

Yes
Locking region violation

No

Check if FCMDE flag Set
Yes

No

Bad keyword violation

Command Successful

405SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

20.4.3.2 Write Commands

Several commands are used to program the Flash.

Only 0 values can be programmed using Flash technology; 1 is the erased value. In order to program words in a

page, the page must first be erased. Commands are available to erase the full memory plane or a given number of

pages. With the EWP and EWPL commands, a page erase is done automatically before a page programming.

After programming, the page (the entire lock region) can be locked to prevent miscellaneous write or erase

sequences. The lock bit can be automatically set after page programming using WPL or EWPL commands.

Data to be programmed in the Flash must be written in an internal latch buffer before writing the programming

command in EEFC_FCR. Data can be written at their final destination address, as the latch buffer is mapped into

the Flash memory address space and wraps around within this Flash address space.

Byte and half-word AHB accesses to the latch buffer are not allowed. Only 32-bit word accesses are supported.

32-bit words must be written continuously, in either ascending or descending order. Writing the latch buffer in a

random order is not permitted. This prevents mapping a C-code structure to the latch buffer and accessing the

data of the structure in any order. It is instead recommended to fill in a C-code structure in SRAM and copy it in the

latch buffer in a continuous order.

Write operations in the latch buffer are performed with the number of wait states programmed for reading the

Flash.

The latch buffer is automatically re-initialized, i.e., written with logical ‘1’, after execution of each programming

command. However, after power-up, the latch buffer is not initialized. If only part of the page is to be written with

user data, the remaining part must be erased (written with ‘1’).

The programming sequence is the following:

1. Write the data to be programmed in the latch buffer.

2. Write the programming command in EEFC_FCR. This automatically clears the bit EEFC_FSR.FRDY.

3. When Flash programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by

setting the bit EEFC_FMR.FRDY, the interrupt line of the EEFC is activated.

Three errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Lock Error: The page to be programmed belongs to a locked region. A command must be run previously to

unlock the corresponding region.

 Flash Error: When programming is completed, the WriteVerify test of the Flash memory has failed.

Only one page can be programmed at a time. It is possible to program all the bits of a page (full page

programming) or only some of the bits of the page (partial page programming).

Table 20-3. Flash Descriptor Definition

Symbol Word Index Description

FL_ID 0 Flash interface description

FL_SIZE 1 Flash size in bytes

FL_PAGE_SIZE 2 Page size in bytes

FL_NB_PLANE 3 Number of planes

FL_PLANE[0] 4 Number of bytes in the plane

FL_NB_LOCK 4 + FL_NB_PLANE
Number of lock bits. A bit is associated with a lock region. A lock bit is

used to prevent write or erase operations in the lock region.

FL_LOCK[0] 4 + FL_NB_PLANE + 1 Number of bytes in the first lock region

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

406

Depending on the number of bits to be programmed within the page, the EEFC adapts the write operations

required to program the Flash.

When a ‘Write Page’ (WP) command is issued, the EEFC starts the programming sequence and all the bits written

at 0 in the latch buffer are cleared in the Flash memory array.

During programming, i.e., until EEFC_FSR.FDRY rises, access to the Flash is not allowed.

Full Page Programming

To program a full page, all the bits of the page must be erased before writing the latch buffer and issuing the WP

command. The latch buffer must be written in ascending order, starting from the first address of the page. See

Figure 20-8 "Full Page Programming".

Partial Page Programming

To program only part of a page using the WP command, the following constraints must be respected:

See Figure 20-9 "Partial Page Programming".

Programming Bytes

Individual bytes can be programmed using the Partial page programming mode.

Refer to Figure 20-10 "Programming Bytes in the Flash".

 Data to be programmed must be contained in integer multiples of 64-bit address-aligned

words.

 64-bit words can be programmed only if all the corresponding bits in the Flash array are

erased (at logical value ‘1’).

In this case, an area of 64 bits must be reserved for each byte.

407SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 20-8. Full Page Programming

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

0xX00

0xX04

0xX08

0xX0C

0xX10

0xX14

0xX18

0xX1C

0xX00

0xX04

0xX08

0xX0C

0xX10

0xX14

0xX18

0xX1C

0xX00

0xX04

0xX08

0xX0C

0xX10

0xX14

0xX18

0xX1C

Before programming: Unerased page in Flash array

CA FE CA FE

CA FE CA FE

CA FE CA FE

CA FE CA FE

CA FE CA FE

CA FE CA FE

CA FE CA FE

CA FE CA FE

Step 1: Flash array after page erase

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

address space

for

Page N

address space

for

latch buffer

Step 2: Writing a page in the latch buffer

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

CA FE CA FE

0xX00

0xX04

0xX08

0xX0C

0xX10

0xX14

0xX18

0xX1C

address space

for

Page N

Step 3: Page in Flash array after issuing

 WP command and FRDY=1

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

DE CA DE CA

FF FF FF FF

32 bits wide 32 bits wide

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

408

Figure 20-9. Partial Page Programming

32 bits wide 32 bits wide

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

0xX00

0xX04

0xX08

0xX0C

0xX10

0xX14

0xX18

0xX1C

Step 2: Flash array after programming

 64-bit at address 0xX08 (write latch buffer + WP)

CA FE CA FE

CA FE CA FE

FF FF FF FF

FF FF FF FF

address space

for

Page N

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

Step 1: Flash array after page erase

CA FE CA FE

CA FE CA FE

32 bits wide

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

0xX00

0xX04

0xX08

0xX0C

0xX10

0xX14

0xX18

0xX1C

Step 3: Flash array after programming

a second 64-bit data at address 0xX00

(write latch buffer + WP)

CA FE CA FE

CA FE CA FE

FF FF FF FF FF FF FF FF

FF FF FF FF

CA FE CA FE

CA FE CA FE

32 bits wide

0xX00

0xX04

0xX08

0xX0C

0xX10

0xX14

0xX18

0xX1C

Step 4: Flash array after programming

a 128-bit data word at address 0xX10

(write latch buffer + WP)

CA FE CA FE

CA FE CA FE

FF FF FF FF

CA FE CA FE

CA FE CA FE

CA FE CA FE

CA FE CA FE

CA FE CA FE

CA FE CA FE

409SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 20-10. Programming Bytes in the Flash

20.4.3.3 Erase Commands

Erase commands are allowed only on unlocked regions. Depending on the Flash memory, several commands can

be used to erase the Flash:

 Erase All Memory (EA): All memory is erased. The processor must not fetch code from the Flash memory.

 Erase Pages (EPA): 8 or 16 pages are erased in the Flash sector selected. The first page to be erased is

specified in the FARG[15:2] field of the EEFC_FCR. The first page number must be a multiple of 8, 16 or 32

depending on the number of pages to erase at the same time.

 Erase Sector (ES): A full memory sector is erased. Sector size depends on the Flash memory.

EEFC_FCR.FARG must be set with a page number that is in the sector to be erased.

If the processor is fetching code from the Flash memory while the EPA or ES command is being executed, the

processor accesses are stalled until the EPA command is completed. To avoid stalling the processor, the code can

be run out of internal SRAM.

The erase sequence is the following:

32 bits wide

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

0xX00

0xX04

0xX08

0xX0C

0xX10

0xX14

0xX18

0xX1C

FF FF FF FF

FF FF FF FF

address space

for

Page N

Step 1: Flash array after programming first byte (0xAA)

 64-bit used at address 0xX00 (write latch buffer + WP)

FF FF FF FF

xx xx xx xx

xx xx xx AA

32 bits wide

FF FF FF FF

FF FF FF FF

FF FF FF FF

FF FF FF FF

0xX00

0xX04

0xX08

0xX0C

0xX10

0xX14

0xX18

0xX1C

FF FF FF FF

xx xx xx xx

xx xx xx AA

Step 2: Flash array after programming second byte (0x55)

 64-bit used at address 0xX08 (write latch buffer + WP)

xx xx xx xx

xx xx xx 55

Note: The byte location shown here is for example only, it can be any byte location within a 64-bit word.

4 x 32 bits =

1 Flash word

4 x 32 bits =

1 Flash word

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

410

1. Erase starts as soon as one of the erase commands and the FARG field are written in EEFC_FCR.

̶ For the EPA command, the two lowest bits of the FARG field define the number of pages to be erased

(FARG[1:0]):

2. When erasing is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the

bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Three errors can be detected in EEFC_FSR after an erasing sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Lock Error: At least one page to be erased belongs to a locked region. The erase command has been

refused, no page has been erased. A command must be run previously to unlock the corresponding region.

 Flash Error: At the end of the erase period, the EraseVerify test of the Flash memory has failed.

20.4.3.4 Lock Bit Protection

Lock bits are associated with several pages in the embedded Flash memory plane. This defines lock regions in the

embedded Flash memory plane. They prevent writing/erasing protected pages.

The lock sequence is the following:

1. Execute the ‘Set Lock Bit’ command by writing EEFC_FCR.FCMD with the SLB command and
EEFC_FCR.FARG with a page number to be protected.

2. When the locking completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the

bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

3. The result of the SLB command can be checked running a ‘Get Lock Bit’ (GLB) command.

Note: The value of the FARG argument passed together with SLB command must not exceed the higher lock bit index

available in the product.

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has

failed.

It is possible to clear lock bits previously set. After the lock bits are cleared, the locked region can be erased or

programmed. The unlock sequence is the following:

1. Execute the ‘Clear Lock Bit’ command by writing EEFC_FCR.FCMD with the CLB command and
EEFC_FCR.FARG with a page number to be unprotected.

2. When the unlock completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the

bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note: The value of the FARG argument passed together with CLB command must not exceed the higher lock bit index

available in the product.

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has

failed.

Table 20-4. EEFC_FCR.FARG Field for EPA Command

FARG[1:0] Number of pages to be erased with EPA command

0 4 pages (only valid for small 8 KB sectors)

1 8 pages

2 16 pages

3 32 pages (not valid for small 8 KB sectors)

411SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The status of lock bits can be returned by the EEFC. The ‘Get Lock Bit’ sequence is the following:

1. Execute the ‘Get Lock Bit’ command by writing EEFC_FCR.FCMD with the GLB command. Field
EEFC_FCR.FARG is meaningless.

2. Lock bits can be read by the software application in EEFC_FRR. The first word read corresponds to the 32

first lock bits, next reads providing the next 32 lock bits as long as it is meaningful. Extra reads to

EEFC_FRR return 0.

For example, if the third bit of the first word read in EEFC_FRR is set, the third lock region is locked.

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has

failed.

Note: Access to the Flash in read is permitted when a ‘Set Lock Bit’, ‘Clear Lock Bit’ or ‘Get Lock Bit’ command is executed.

20.4.3.5 GPNVM Bit

GPNVM bits do not interfere with the embedded Flash memory plane. For more details, refer to the section

“Memories” of this datasheet.

The ‘Set GPNVM Bit’ sequence is the following:

1. Execute the ‘Set GPNVM Bit’ command by writing EEFC_FCR.FCMD with the SGPB command and
EEFC_FCR.FARG with the number of GPNVM bits to be set.

2. When the GPNVM bit is set, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled by setting the bit

EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

3. The result of the SGPB command can be checked by running a ‘Get GPNVM Bit’ (GGPB) command.

Note: The value of the FARG argument passed together with SGPB command must not exceed the higher GPNVM index

available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is detected only if

FARG is greater than 8.

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has

failed.

It is possible to clear GPNVM bits previously set. The ‘Clear GPNVM Bit’ sequence is the following:

1. Execute the ‘Clear GPNVM Bit’ command by writing EEFC_FCR.FCMD with the CGPB command and
EEFC_FCR.FARG with the number of GPNVM bits to be cleared.

2. When the clear completes, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by setting the bit

EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note: The value of the FARG argument passed together with CGPB command must not exceed the higher GPNVM index

available in the product. Flash data content is not altered if FARG exceeds the limit. Command Error is detected only if

FARG is greater than 8.

Two errors can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify or WriteVerify test of the Flash memory has

failed.

The status of GPNVM bits can be returned by the EEFC. The sequence is the following:

1. Execute the ‘Get GPNVM Bit’ command by writing EEFC_FCR.FCMD with the GGPB command. Field
EEFC_FCR.FARG is meaningless.

2. GPNVM bits can be read by the software application in EEFC_FRR. The first word read corresponds to the

32 first GPNVM bits, following reads provide the next 32 GPNVM bits as long as it is meaningful. Extra reads

to EEFC_FRR return 0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

412

For example, if the third bit of the first word read in EEFC_FRR is set, the third GPNVM bit is active.

One error can be detected in EEFC_FSR after a programming sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

Note: Access to the Flash in read is permitted when a ‘Set GPNVM Bit’, ‘Clear GPNVM Bit’ or ‘Get GPNVM Bit’ command is

executed.

20.4.3.6 Calibration Bit

Calibration bits do not interfere with the embedded Flash memory plane.

The calibration bits cannot be modified.

The status of calibration bits are returned by the EEFC. The sequence is the following:

1. Execute the ‘Get CALIB Bit’ command by writing EEFC_FCR.FCMD with the GCALB command. Field
EEFC_FCR.FARG is meaningless.

2. Calibration bits can be read by the software application in EEFC_FRR. The first word read corresponds to

the first 32 calibration bits. The following reads provide the next 32 calibration bits as long as it is meaningful.

Extra reads to EEFC_FRR return 0.

The 8/12 MHz internal RC oscillator is calibrated in production. This calibration can be read through the GCALB

command. Table 20-5 shows the bit implementation.

The RC calibration for the 4 MHz is set to ‘1000000’.

20.4.3.7 Security Bit Protection

When the security bit is enabled, access to the Flash through the SWD interface or through the Fast Flash

Programming interface is forbidden. This ensures the confidentiality of the code programmed in the Flash.

The security bit is GPNVM0.

Disabling the security bit can only be achieved by asserting the ERASE pin at ‘1’, and after a full Flash erase is

performed. When the security bit is deactivated, all accesses to the Flash are permitted.

20.4.3.8 Unique Identifier Area

Each device is programmed with a 128-bit unique identifier area . See Figure 20-1 "Flash Memory Areas".

The sequence to read the unique identifier area is the following:

1. Execute the ‘Start Read Unique Identifier’ command by writing EEFC_FCR.FCMD with the STUI com-
mand. Field EEFC_FCR.FARG is meaningless.

2. Wait until the bit EEFC_FSR.FRDY falls to read the unique identifier area. The unique identifier field is

located in the first 128 bits of the Flash memory mapping. The ‘Start Read Unique Identifier’ command

reuses some addresses of the memory plane for code, but the unique identifier area is physically different

from the memory plane for code.

3. To stop reading the unique identifier area, execute the ‘Stop Read Unique Identifier’ command by writing

EEFC_FCR.FCMD with the SPUI command. Field EEFC_FCR.FARG is meaningless.

4. When the SPUI command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled

by setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note that during the sequence, the software cannot be fetched from the Flash.

Table 20-5. Calibration Bit Indexes

Description EEFC_FRR Bits

8 MHz RC calibration output [28–22]

12 MHz RC calibration output [38–32]

413SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

20.4.3.9 User Signature Area

Each product contains a user signature area of 512-bytes. It can be used for storage. Read, write and erase of this

area is allowed.

See Figure 20-1 "Flash Memory Areas".

The sequence to read the user signature area is the following:

1. Execute the ‘Start Read User Signature’ command by writing EEFC_FCR.FCMD with the STUS com-
mand. Field EEFC_FCR.FARG is meaningless.

2. Wait until the bit EEFC_FSR.FRDY falls to read the user signature area. The user signature area is located

in the first 512 bytes of the Flash memory mapping. The ‘Start Read User Signature’ command reuses some

addresses of the memory plane but the user signature area is physically different from the memory plane

3. To stop reading the user signature area, execute the ‘Stop Read User Signature’ command by writing

EEFC_FCR.FCMD with the SPUS command. Field EEFC_FCR.FARG is meaningless.

4. When the SPUI command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled

by setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note that during the sequence, the software cannot be fetched from the Flash or from the second plane in case of

dual plane.

One error can be detected in EEFC_FSR after this sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

The sequence to write the user signature area is the following:

1. Write the full page, at any page address, within the internal memory area address space.

2. Execute the ‘Write User Signature’ command by writing EEFC_FCR.FCMD with the WUS command. Field

EEFC_FCR.FARG is meaningless.

3. When programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by

setting the bit EEFC_FMR.FRDY, the corresponding interrupt line of the interrupt controller is activated.

Two errors can be detected in EEFC_FSR after this sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the WriteVerify test of the Flash memory has failed.

The sequence to erase the user signature area is the following:

1. Execute the ‘Erase User Signature’ command by writing EEFC_FCR.FCMD with the EUS command.
Field EEFC_FCR.FARG is meaningless.

2. When programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by

setting the bit EEFC_FMR.FRDY, the corresponding interrupt line of the interrupt controller is activated.

Two errors can be detected in EEFC_FSR after this sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify test of the Flash memory has failed.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

414

20.5 Enhanced Embedded Flash Controller (EEFC) User Interface

The User Interface of the Embedded Flash Controller (EEFC) is integrated within the System Controller with base address

0x400E0A00.

Table 20-6. Register Mapping

Offset Register Name Access Reset State

0x00 EEFC Flash Mode Register EEFC_FMR Read/Write 0x0400_0000

0x04 EEFC Flash Command Register EEFC_FCR Write-only –

0x08 EEFC Flash Status Register EEFC_FSR Read-only 0x0000_0001

0x0C EEFC Flash Result Register EEFC_FRR Read-only 0x0

0x10–0x14 Reserved – – –

0x18–0xE4 Reserved – – –

415SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

20.5.1 EEFC Flash Mode Register

Name: EEFC_FMR

Address: 0x400E0A00

Access: Read/Write

• FRDY: Flash Ready Interrupt Enable

0: Flash ready does not generate an interrupt.

1: Flash ready (to accept a new command) generates an interrupt.

• FWS: Flash Wait State

This field defines the number of wait states for read and write operations:

FWS = Number of cycles for Read/Write operations - 1

• SCOD: Sequential Code Optimization Disable

0: The sequential code optimization is enabled.

1: The sequential code optimization is disabled.

No Flash read should be done during change of this field.

• FAM: Flash Access Mode

0: 128-bit access in Read mode only to enhance access speed.

1: 64-bit access in Read mode only to enhance power consumption.

No Flash read should be done during change of this field.

• CLOE: Code Loop Optimization Enable

0: The opcode loop optimization is disabled.

1: The opcode loop optimization is enabled.

No Flash read should be done during change of this field.

31 30 29 28 27 26 25 24

– – – – – CLOE – FAM

23 22 21 20 19 18 17 16

– – – – – – – SCOD

15 14 13 12 11 10 9 8

– – – – FWS

7 6 5 4 3 2 1 0

– – – – – – – FRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

416

20.5.2 EEFC Flash Command Register

Name: EEFC_FCR

Address: 0x400E0A04

Access: Write-only

• FCMD: Flash Command

31 30 29 28 27 26 25 24

FKEY

23 22 21 20 19 18 17 16

FARG

15 14 13 12 11 10 9 8

FARG

7 6 5 4 3 2 1 0

FCMD

Value Name Description

0x00 GETD Get Flash descriptor

0x01 WP Write page

0x02 WPL Write page and lock

0x03 EWP Erase page and write page

0x04 EWPL Erase page and write page then lock

0x05 EA Erase all

0x07 EPA Erase pages

0x08 SLB Set lock bit

0x09 CLB Clear lock bit

0x0A GLB Get lock bit

0x0B SGPB Set GPNVM bit

0x0C CGPB Clear GPNVM bit

0x0D GGPB Get GPNVM bit

0x0E STUI Start read unique identifier

0x0F SPUI Stop read unique identifier

0x10 GCALB Get CALIB bit

0x11 ES Erase sector

0x12 WUS Write user signature

0x13 EUS Erase user signature

0x14 STUS Start read user signature

0x15 SPUS Stop read user signature

417SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• FARG: Flash Command Argument

• FKEY: Flash Writing Protection Key

GETD, GLB,

GGPB, STUI,

SPUI, GCALB,

WUS, EUS, STUS,

SPUS, EA

Commands

requiring no

argument, including

Erase all command

FARG is meaningless, must be written with 0

ES
Erase sector

command
FARG must be written with any page number within the sector to be erased

EPA
Erase pages

command

FARG[1:0] defines the number of pages to be erased

The start page must be written in FARG[15:2].

FARG[1:0] = 0: Four pages to be erased. FARG[15:2] = Page_Number / 4

FARG[1:0] = 1: Eight pages to be erased. FARG[15:3] = Page_Number / 8, FARG[2]=0

FARG[1:0] = 2: Sixteen pages to be erased. FARG[15:4] = Page_Number / 16,

FARG[3:2]=0

FARG[1:0] = 3: Thirty-two pages to be erased. FARG[15:5] = Page_Number / 32,

FARG[4:2]=0

Refer to Table 20-4 “EEFC_FCR.FARG Field for EPA Command”.

WP, WPL, EWP,

EWPL

Programming

commands
FARG must be written with the page number to be programmed

SLB, CLB Lock bit commands FARG defines the page number to be locked or unlocked

SGPB, CGPB GPNVM commands FARG defines the GPNVM number to be programmed

Value Name Description

0x5A PASSWD
The 0x5A value enables the command defined by the bits of the register. If the field is written with a

different value, the write is not performed and no action is started.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

418

20.5.3 EEFC Flash Status Register

Name: EEFC_FSR

Address: 0x400E0A08

Access: Read-only

• FRDY: Flash Ready Status (cleared when Flash is busy)

0: The EEFC is busy.

1: The EEFC is ready to start a new command.

When set, this flag triggers an interrupt if the FRDY flag is set in EEFC_FMR.

This flag is automatically cleared when the EEFC is busy.

• FCMDE: Flash Command Error Status (cleared on read or by writing EEFC_FCR)

0: No invalid commands and no bad keywords were written in EEFC_FMR.

1: An invalid command and/or a bad keyword was/were written in EEFC_FMR.

• FLOCKE: Flash Lock Error Status (cleared on read)

0: No programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

1: Programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

• FLERR: Flash Error Status (cleared when a programming operation starts)

0: No Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has passed).

1: A Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has failed).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – FLERR FLOCKE FCMDE FRDY

419SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

20.5.4 EEFC Flash Result Register

Name: EEFC_FRR

Address: 0x400E0A0C

Access: Read-only

• FVALUE: Flash Result Value

The result of a Flash command is returned in this register. If the size of the result is greater than 32 bits, the next resulting

value is accessible at the next register read.

31 30 29 28 27 26 25 24

FVALUE

23 22 21 20 19 18 17 16

FVALUE

15 14 13 12 11 10 9 8

FVALUE

7 6 5 4 3 2 1 0

FVALUE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

420

21. Fast Flash Programming Interface (FFPI)

21.1 Description

The Fast Flash Programming Interface (FFPI) provides parallel high-volume programming using a standard gang

programmer. The parallel interface is fully handshaked and the device is considered to be a standard EEPROM.

Additionally, the parallel protocol offers an optimized access to all the embedded Flash functionalities.

Although the Fast Flash Programming mode is a dedicated mode for high volume programming, this mode is not

designed for in-situ programming.

21.2 Embedded Characteristics

 Programming Mode for High-volume Flash Programming Using Gang Programmer

̶ Offers Read and Write Access to the Flash Memory Plane

̶ Enables Control of Lock Bits and General-purpose NVM Bits

̶ Enables Security Bit Activation

̶ Disabled Once Security Bit is Set

 Parallel Fast Flash Programming Interface

̶ Provides an 16-bit Parallel Interface to Program the Embedded Flash

̶ Full Handshake Protocol

421SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

21.3 Parallel Fast Flash Programming

21.3.1 Device Configuration

In Fast Flash Programming mode, the device is in a specific test mode. Only a certain set of pins is significant. The

rest of the PIOs are used as inputs with a pull-up. The crystal oscillator is in bypass mode. Other pins must be left

unconnected.

Figure 21-1. 16-bit Parallel Programming Interface

NCMD PGMNCMD

RDY PGMRDY

NOE PGMNOE

NVALID PGMNVALID

MODE[3:0] PGMM[3:0]

DATA[15:0] PGMD[15:0]

XIN

TSTVDDIO

PGMEN0

PGMEN1

External
Clock

VDDIO

VDDCORE

VDDIO

VDDPLL

GND

VDDIO

Table 21-1. Signal Description List

Signal Name Function Type

Active

Level Comments

Power

VDDIO I/O Lines Power Supply Power – –

VDDCORE Core Power Supply Power – –

VDDPLL PLL Power Supply Power – –

GND Ground Ground – –

Clocks

XIN Main Clock Input Input – –

Test

TST Test Mode Select Input High Must be connected to VDDIO

PGMEN0 Test Mode Select Input High Must be connected to VDDIO

PGMEN1 Test Mode Select Input High Must be connected to VDDIO

PIO

PGMNCMD Valid command available Input Low Pulled-up input at reset

PGMRDY
0: Device is busy

1: Device is ready for a new command
Output High Pulled-up input at reset

PGMNOE Output Enable (active high) Input Low Pulled-up input at reset

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

422

21.3.2 Signal Names

Depending on the MODE settings, DATA is latched in different internal registers.

When MODE is equal to CMDE, then a new command (strobed on DATA[15:0] signals) is stored in the command

register.

PGMNVALID
0: DATA[15:0] is in input mode

1: DATA[15:0] is in output mode
Output Low Pulled-up input at reset

PGMM[3:0] Specifies DATA type (see Table 21-2) Input – Pulled-up input at reset

PGMD[15:0] Bi-directional data bus Input/Output – Pulled-up input at reset

Table 21-1. Signal Description List (Continued)

Signal Name Function Type

Active

Level Comments

Table 21-2. Mode Coding

MODE[3:0] Symbol Data

0000 CMDE Command Register

0001 ADDR0 Address Register LSBs

0010 ADDR1 –

0011 ADDR2 –

0100 ADDR3 Address Register MSBs

0101 DATA Data Register

Default IDLE No register

Table 21-3. Command Bit Coding

DATA[15:0] Symbol Command Executed

0x0011 READ Read Flash

0x0012 WP Write Page Flash

0x0022 WPL Write Page and Lock Flash

0x0032 EWP Erase Page and Write Page

0x0042 EWPL Erase Page and Write Page then Lock

0x0013 EA Erase All

0x0014 SLB Set Lock Bit

0x0024 CLB Clear Lock Bit

0x0015 GLB Get Lock Bit

0x0034 SGPB Set General Purpose NVM bit

0x0044 CGPB Clear General Purpose NVM bit

0x0025 GGPB Get General Purpose NVM bit

0x0054 SSE Set Security Bit

0x0035 GSE Get Security Bit

0x001F WRAM Write Memory

0x001E GVE Get Version

423SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

21.3.3 Entering Parallel Programming Mode

The following algorithm puts the device in Parallel Programming mode:

1. Apply the supplies as described in Table 21-1.

2. If an external clock is available, apply it to XIN within the VDDCORE POR reset time-out period, as defined

in the section “Electrical Characteristics”.

3. Wait for the end of this reset period.

4. Start a read or write handshaking.

21.3.4 Programmer Handshaking

A handshake is defined for read and write operations. When the device is ready to start a new operation (RDY

signal set), the programmer starts the handshake by clearing the NCMD signal. The handshaking is completed

once the NCMD signal is high and RDY is high.

21.3.4.1 Write Handshaking

For details on the write handshaking sequence, refer to Figure 21-2 and Table 21-4.

Figure 21-2. Parallel Programming Timing, Write Sequence

21.3.4.2 Read Handshaking

For details on the read handshaking sequence, refer to Figure 21-3 and Table 21-5.

NCMD

RDY

NOE

NVALID

DATA[15:0]

MODE[3:0]

1

2

3

4

5

Table 21-4. Write Handshake

Step Programmer Action Device Action Data I/O

1 Sets MODE and DATA signals Waits for NCMD low Input

2 Clears NCMD signal Latches MODE and DATA Input

3 Waits for RDY low Clears RDY signal Input

4 Releases MODE and DATA signals Executes command and polls NCMD high Input

5 Sets NCMD signal Executes command and polls NCMD high Input

6 Waits for RDY high Sets RDY Input

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

424

Figure 21-3. Parallel Programming Timing, Read Sequence

21.3.5 Device Operations

Several commands on the Flash memory are available. These commands are summarized in Table 21-3. Each

command is driven by the programmer through the parallel interface running several read/write handshaking

sequences.

When a new command is executed, the previous one is automatically achieved. Thus, chaining a read command

after a write automatically flushes the load buffer in the Flash.

NCMD

RDY

NOE

NVALID

DATA[15:0]

MODE[3:0]

1

2

3

4

5

6

7

9

8

ADDR

Adress IN Z Data OUT

10

11

X IN

12

13

Table 21-5. Read Handshake

Step Programmer Action Device Action DATA I/O

1 Sets MODE and DATA signals Waits for NCMD low Input

2 Clears NCMD signal Latch MODE and DATA Input

3 Waits for RDY low Clears RDY signal Input

4 Sets DATA signal in tristate Waits for NOE Low Input

5 Clears NOE signal – Tristate

6 Waits for NVALID low
Sets DATA bus in output mode and outputs

the flash contents.
Output

7 – Clears NVALID signal Output

8 Reads value on DATA Bus Waits for NOE high Output

9 Sets NOE signal – Output

10 Waits for NVALID high Sets DATA bus in input mode X

11 Sets DATA in output mode Sets NVALID signal Input

12 Sets NCMD signal Waits for NCMD high Input

13 Waits for RDY high Sets RDY signal Input

425SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

21.3.5.1 Flash Read Command

This command is used to read the contents of the Flash memory. The read command can start at any valid

address in the memory plane and is optimized for consecutive reads. Read handshaking can be chained; an

internal address buffer is automatically increased.

21.3.5.2 Flash Write Command

This command is used to write the Flash contents.

The Flash memory plane is organized into several pages. Data to be written are stored in a load buffer that

corresponds to a Flash memory page. The load buffer is automatically flushed to the Flash:

 before access to any page other than the current one

 when a new command is validated (MODE = CMDE)

The Write Page command (WP) is optimized for consecutive writes. Write handshaking can be chained; an

internal address buffer is automatically increased.

Table 21-6. Read Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE READ

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Read handshaking DATA *Memory Address++

5 Read handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Read handshaking DATA *Memory Address++

n+3 Read handshaking DATA *Memory Address++

...

Table 21-7. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WP or WPL or EWP or EWPL

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++

n+3 Write handshaking DATA *Memory Address++

...

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

426

The Flash command Write Page and Lock (WPL) is equivalent to the Flash Write Command. However, the lock

bit is automatically set at the end of the Flash write operation. As a lock region is composed of several pages, the

programmer writes to the first pages of the lock region using Flash write commands and writes to the last page of

the lock region using a Flash write and lock command.

The Flash command Erase Page and Write (EWP) is equivalent to the Flash Write Command. However, before

programming the load buffer, the page is erased.

The Flash command Erase Page and Write the Lock (EWPL) combines EWP and WPL commands.

21.3.5.3 Flash Full Erase Command

This command is used to erase the Flash memory planes.

All lock regions must be unlocked before the Full Erase command by using the CLB command. Otherwise, the

erase command is aborted and no page is erased.

21.3.5.4 Flash Lock Commands

Lock bits can be set using WPL or EWPL commands. They can also be set by using the Set Lock command

(SLB). With this command, several lock bits can be activated. A Bit Mask is provided as argument to the

command. When bit 0 of the bit mask is set, then the first lock bit is activated.

In the same way, the Clear Lock command (CLB) is used to clear lock bits.

Lock bits can be read using Get Lock Bit command (GLB). The nth lock bit is active when the bit n of the bit mask

is set.

21.3.5.5 Flash General-purpose NVM Commands

General-purpose NVM bits (GP NVM bits) can be set using the Set GPNVM command (SGPB). This command

also activates GP NVM bits. A bit mask is provided as argument to the command. When bit 0 of the bit mask is set,

then the first GP NVM bit is activated.

Table 21-8. Full Erase Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE EA

2 Write handshaking DATA 0

Table 21-9. Set and Clear Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE SLB or CLB

2 Write handshaking DATA Bit Mask

Table 21-10. Get Lock Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE GLB

2 Read handshaking DATA

Lock Bit Mask Status

0 = Lock bit is cleared

1 = Lock bit is set

427SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

In the same way, the Clear GPNVM command (CGPB) is used to clear general-purpose NVM bits. The general-

purpose NVM bit is deactivated when the corresponding bit in the pattern value is set to 1.

General-purpose NVM bits can be read using the Get GPNVM Bit command (GGPB). The nth GP NVM bit is

active when bit n of the bit mask is set.

21.3.5.6 Flash Security Bit Command

A security bit can be set using the Set Security Bit command (SSE). Once the security bit is active, the Fast Flash

programming is disabled. No other command can be run. An event on the Erase pin can erase the security bit

once the contents of the Flash have been erased.

Once the security bit is set, it is not possible to access FFPI. The only way to erase the security bit is to erase the

Flash.

To erase the Flash, perform the following steps:

1. Power-off the chip.

2. Power-on the chip with TST = 0.

3. Assert the ERASE pin for at least the ERASE pin assertion time as defined in the section “Electrical

Characteristics”.

4. Power-off the chip.

Return to FFPI mode to check that the Flash is erased.

21.3.5.7 Memory Write Command

This command is used to perform a write access to any memory location.

Table 21-11. Set/Clear GP NVM Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE SGPB or CGPB

2 Write handshaking DATA GP NVM bit pattern value

Table 21-12. Get GP NVM Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE GGPB

2 Read handshaking DATA

GP NVM Bit Mask Status

0 = GP NVM bit is cleared

1 = GP NVM bit is set

Table 21-13. Set Security Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE SSE

2 Write handshaking DATA 0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

428

The Memory Write command (WRAM) is optimized for consecutive writes. Write handshaking can be chained; an

internal address buffer is automatically increased.

21.3.5.8 Get Version Command

The Get Version (GVE) command retrieves the version of the FFPI interface.

Table 21-14. Write Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE WRAM

2 Write handshaking ADDR0 Memory Address LSB

3 Write handshaking ADDR1 Memory Address

4 Write handshaking DATA *Memory Address++

5 Write handshaking DATA *Memory Address++

...

n Write handshaking ADDR0 Memory Address LSB

n+1 Write handshaking ADDR1 Memory Address

n+2 Write handshaking DATA *Memory Address++

n+3 Write handshaking DATA *Memory Address++

...

Table 21-15. Get Version Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE GVE

2 Read handshaking DATA Version

429SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

22. Cortex-M Cache Controller (CMCC)

22.1 Description

The Cortex-M Cache Controller (CMCC) is a 4-Way set associative unified cache controller. It integrates a

controller, a tag directory, data memory, metadata memory and a configuration interface.

22.2 Embedded Characteristics

 Physically addressed and physically tagged

 L1 data cache set to 2 Kbytes

 L1 cache line size set to 16 Bytes

 L1 cache integrates 32 bus master interface

 Unified direct mapped cache architecture

 Unified 4-Way set associative cache architecture

 Write accesses forwarded, cache state not modified. Allocate on read.

 Round Robin victim selection policy

 Event Monitoring, with one programmable 32-bit counter

 Configuration registers accessible through Cortex-M Private Peripheral Bus (PPB)

 Cache interface includes cache maintenance operations registers

22.3 Block Diagram

Figure 22-1. Block Diagram

Cache

Controller

META INFO RAM

DATA RAM

TAG RAM

RAM

Interface

Cortex-M Interface

Memory Interface

Registers

Interface

Cortex-M

PPB

Cortex-M Memory Interface Bus

System Memory Bus

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

430

22.4 Functional Description

22.4.1 Cache Operation

On reset, the cache controller data entries are all invalidated and the cache is disabled. The cache is transparent

to processor operations. The cache controller is activated with its configuration registers. The configuration

interface is memory-mapped in the private peripheral bus.

Use the following sequence to enable the cache controller:

1. Verify that the cache controller is disabled by reading the value of the CSTS (Cache Controller Status) bit
of the Status register (CMCC_SR).

2. Enable the cache controller by writing a one to the CEN (Cache Enable) bit of the Control register

(CMCC_CTRL).

22.4.2 Cache Maintenance

If the contents seen by the cache have changed, the user must invalidate the cache entries. This can be done line-

by-line or for all cache entries.

22.4.2.1 Cache Invalidate-by-Line Operation

When an invalidate-by-line command is issued, the cache controller resets the valid bit information of the decoded

cache line. As the line is no longer valid, the replacement counter points to that line.

Use the following sequence to invalidate one line of cache:

1. Disable the cache controller by clearing the CEN bit of CMCC_CTRL.

2. Check the CSTS bit of CMCC_SR to verify that the cache is successfully disabled.

3. Perform an invalidate-by-line by configuring the bits INDEX and WAY in the Maintenance Register 1

(CMCC_MAINT1).

4. Enable the cache controller by writing a one the CEN bit of the CMCC_CTRL.

22.4.2.2 Cache Invalidate All Operation

To invalidate all cache entries, write a one to the INVALL bit of the Maintenance Register 0 (CMCC_MAINT0).

22.4.3 Cache Performance Monitoring

The Cortex-M cache controller includes a programmable 32-bit monitor counter. The monitor can be configured to

count the number of clock cycles, the number of data hits or the number of instruction hits.

Use the following sequence to activate the counter:

1. Configure the monitor counter by writing to the MODE field of the Monitor Configuration register
(CMCC_MCFG).

2. Enable the counter by writing a one to the MENABLE bit of the Monitor Enable register (CMCC_MEN).

3. If required, clear the counter by writing a one to the SWRST bit of the Monitor Control register

(CMCC_MCTRL).

4. Check the value of the monitor counter by reading the EVENT_CNT field of the CMCC_MSR.

431SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

22.5 Cortex-M Cache Controller (CMCC) User Interface

Table 22-1. Register Mapping

Offset Register Name Access Reset

0x00 Cache Controller Type Register CMCC_TYPE Read-only –

0x04 Cache Controller Configuration Register CMCC_CFG Read/Write 0x00000000

0x08 Cache Controller Control Register CMCC_CTRL Write-only –

0x0C Cache Controller Status Register CMCC_SR Read-only 0x00000001

0x10–0x1C Reserved – – –

0x20 Cache Controller Maintenance Register 0 CMCC_MAINT0 Write-only –

0x24 Cache Controller Maintenance Register 1 CMCC_MAINT1 Write-only –

0x28 Cache Controller Monitor Configuration Register CMCC_MCFG Read/Write 0x00000000

0x2C Cache Controller Monitor Enable Register CMCC_MEN Read/Write 0x00000000

0x30 Cache Controller Monitor Control Register CMCC_MCTRL Write-only –

0x34 Cache Controller Monitor Status Register CMCC_MSR Read-only 0x00000000

0x38–0xFC Reserved – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

432

22.5.1 Cache Controller Type Register

Name: CMCC_TYPE

Address: 0x400C4000

Access: Read-only

• AP: Access Port Access Allowed

0: Access Port Access is disabled.

1: Access Port Access is enabled.

• GCLK: Dynamic Clock Gating Supported

0: Cache controller does not support clock gating.

1: Cache controller uses dynamic clock gating.

• RANDP: Random Selection Policy Supported

0: Random victim selection is not supported.

1: Random victim selection is supported.

• LRUP: Least Recently Used Policy Supported

0: Least Recently Used Policy is not supported.

1: Least Recently Used Policy is supported.

• RRP: Random Selection Policy Supported

0: Random Selection Policy is not supported.

1: Random Selection Policy is supported.

• WAYNUM: Number of Ways

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– CLSIZE CSIZE

7 6 5 4 3 2 1 0

LCKDOWN WAYNUM RRP LRUP RANDP GCLK AP

Value Name Description

0 DMAPPED Direct Mapped Cache

1 ARCH2WAY 2-way set associative

2 ARCH4WAY 4-way set associative

3 ARCH8WAY 8-way set associative

433SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• LCKDOWN: Lockdown Supported

0: Lockdown is not supported.

1: Lockdown is supported.

• CSIZE: Data Cache Size

• CLSIZE: Cache LIne Size

Value Name Description

0 CSIZE_1KB Data cache size is 1 Kbyte

1 CSIZE_2KB Data cache size is 2 Kbytes

2 CSIZE_4KB Data cache size is 4 Kbytes

3 CSIZE_8KB Data cache size is 8 Kbytes

Value Name Description

0 CLSIZE_1KB Cache line size is 4 bytes

1 CLSIZE_2KB Cache line size is 8 bytes

2 CLSIZE_4KB Cache line size is 16 bytes

3 CLSIZE_8KB Cache line size is 32 bytes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

434

22.5.2 Cache Controller Configuration Register

Name: CMCC_CFG

Address: 0x400C4004

Access: Read/Write

• GCLKDIS: Disable Clock Gating

0: Clock gating is activated.

1: Clock gating is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – GCLKDIS

435SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

22.5.3 Cache Controller Control Register

Name: CMCC_CTRL

Address: 0x400C4008

Access: Write-only

• CEN: Cache Controller Enable

0: The cache controller is disabled.

1: The cache controller is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – CEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

436

22.5.4 Cache Controller Status Register

Name: CMCC_SR

Address: 0x400C400C

Access: Read-only

• CSTS: Cache Controller Status

0: The cache controller is disabled.

1: The cache controller is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – CSTS

437SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

22.5.5 Cache Controller Maintenance Register 0

Name: CMCC_MAINT0

Address: 0x400C4020

Access: Write-only

• INVALL: Cache Controller Invalidate All

0: No effect.

1: All cache entries are invalidated.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – INVALL

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

438

22.5.6 Cache Controller Maintenance Register 1

Name: CMCC_MAINT1

Address: 0x400C4024

Access: Write-only

• INDEX: Invalidate Index

This field indicates the cache line that is being invalidated.

The size of the INDEX field depends on the cache size:

For example:

– for 2 Kbytes: 5 bits

– for 4 Kbytes: 6 bits

– for 8 Kbytes: 7 bits

• WAY: Invalidate Way

31 30 29 28 27 26 25 24

WAY – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – INDEX

7 6 5 4 3 2 1 0

INDEX – – – –

Value Name Description

0 WAY0 Way 0 is selection for index invalidation

1 WAY1 Way 1 is selection for index invalidation

2 WAY2 Way 2 is selection for index invalidation

3 WAY3 Way 3 is selection for index invalidation

439SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

22.5.7 Cache Controller Monitor Configuration Register

Name: CMCC_MCFG

Address: 0x400C4028

Access: Read/Write

• MODE: Cache Controller Monitor Counter Mode

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – MODE

Value Name Description

0 CYCLE_COUNT Cycle counter

1 IHIT_COUNT Instruction hit counter

2 DHIT_COUNT Data hit counter

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

440

22.5.8 Cache Controller Monitor Enable Register

Name: CMCC_MEN

Address: 0x400C402C

Access: Read/Write

• MENABLE: Cache Controller Monitor Enable

0: The monitor counter is disabled.

1: The monitor counter is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – MENABLE

441SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

22.5.9 Cache Controller Monitor Control Register

Name: CMCC_MCTRL

Address: 0x400C4030

Access: Write-only

• SWRST: Monitor

0: No effect.

1: Resets the event counter register.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – SWRST

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

442

22.5.10 Cache Controller Monitor Status Register

Name: CMCC_MSR

Address: 0x400C4034

Access: Read-only

• EVENT_CNT: Monitor Event Counter

31 30 29 28 27 26 25 24

EVENT_CNT

23 22 21 20 19 18 17 16

EVENT_CNT

15 14 13 12 11 10 9 8

EVENT_CNT

7 6 5 4 3 2 1 0

EVENT_CNT

443SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

23. SAM-BA Boot Program for SAM4E Microcontrollers

23.1 Description

The SAM-BA Boot Program integrates an array of programs permitting download and/or upload into the different

memories of the product.

23.2 Embedded Characteristics

 Default Boot Program Stored in SAM4E Series Products

 Interface with SAM-BA Graphic User Interface

 SAM-BA Boot

̶ Supports Several Communication Media

 Serial Communication on UART0

 USB Device Port Communication up to 1M Byte/s

̶ USB Requirements

 External Crystal or Clock with the frequency of:

11.289 MHz

12.000 MHz

16.000 MHz

18.432 MHz

23.3 Hardware and Software Constraints

 SAM-BA Boot uses the first 2048 bytes of the SRAM for variables and stacks. The remaining available size

can be used for user's code.

 USB Requirements:

̶ External Crystal or External Clock(1) with frequency of:

 11.289 MHz

 12.000 MHz

 16.000 MHz

 18.432 MHz

 UART0 requirements: None

Note: 1. must be 2500 ppm and 1.8V Square Wave Signal.

Table 23-1. Pins Driven during Boot Program Execution

Peripheral Pin PIO Line

UART0 URXD0 PA9

UART0 UTXD0 PA10

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

444

23.4 Flow Diagram

The Boot Program implements the algorithm illustrated in Figure 23-1.

Figure 23-1. Boot Program Algorithm Flow Diagram

The SAM-BA Boot program seeks to detect a source clock either from the embedded main oscillator with external

crystal (main oscillator enabled) or from a supported frequency signal applied to the XIN pin (Main oscillator in

bypass mode).

If a clock is found from the two possible sources above, the boot program checks to verify that the frequency is one

of the supported external frequencies. If the frequency is one of the supported external frequencies, USB

activation is allowed, else (no clock or frequency other than one of the supported external frequencies), the internal

12 MHz RC oscillator is used as main clock and USB clock is not allowed due to frequency drift of the 12 MHz RC

oscillator.

23.5 Device Initialization

The initialization sequence is the following:

1. Stack setup

2. Set up the Embedded Flash Controller

3. External Clock detection (crystal or external clock on XIN)

4. If external crystal or clock with supported frequency, allow USB activation

5. Else, does not allow USB activation and use internal 12 MHz RC oscillator

6. Main oscillator frequency detection if no external clock detected

7. Switch Master Clock on Main Oscillator

8. C variable initialization

9. PLLA setup: PLLA is initialized to generate a 48 MHz clock

10. Disable of the Watchdog

11. Initialization of UART0 (115200 bauds, 8, N, 1)

12. Initialization of the USB Device Port (in case of USB activation allowed)

13. Wait for one of the following events:

1. Check if USB device enumeration has occurred

2. Check if characters have been received in UART0

14. Jump to SAM-BA Monitor (see Section 23.6 ”SAM-BA Monitor”)

Device
Setup

Character # received
from UART0?

Run SAM-BA Monitor

USB Enumeration
Successful ?

Yes

Run SAM-BA Monitor

Yes

No

No

445SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

23.6 SAM-BA Monitor

Once the communication interface is identified, the monitor runs in an infinite loop waiting for different commands

as shown in Table 23-2.

 Mode commands:

̶ Normal mode configures SAM-BA Monitor to send/receive data in binary format

̶ Terminal mode configures SAM-BA Monitor to send/receive data in ASCII format

 Write commands: Write a byte (O), a halfword (H) or a word (W) to the target

̶ Address: Address in hexadecimal

̶ Value: Byte, halfword or word to write in hexadecimal

 Read commands: Read a byte (o), a halfword (h) or a word (w) from the target

̶ Address: Address in hexadecimal

̶ Output: The byte, halfword or word read in hexadecimal

 Send a file (S): Send a file to a specified address

̶ Address: Address in hexadecimal

Note: There is a time-out on this command which is reached when the prompt ‘>’ appears before the end of the command

execution.

 Receive a file (R): Receive data into a file from a specified address

̶ Address: Address in hexadecimal

̶ NbOfBytes: Number of bytes in hexadecimal to receive

 Go (G): Jump to a specified address and execute the code

̶ Address: Address to jump in hexadecimal

 Get Version (V): Return the SAM-BA boot version

Note: In Terminal mode, when the requested command is performed, SAM-BA Monitor adds the following prompt sequence

to its answer: <LF>+<CR>+'>'.

Table 23-2. Commands Available through the SAM-BA Boot

Command Action Argument(s) Example

N Set Normal mode No argument N#

T Set Terminal mode No argument T#

O Write a byte Address, Value# O200001,CA#

o Read a byte Address,# o200001,#

H Write a half word Address, Value# H200002,CAFE#

h Read a half word Address,# h200002,#

W Write a word Address, Value# W200000,CAFEDECA#

w Read a word Address,# w200000,#

S Send a file Address,# S200000,#

R Receive a file Address, NbOfBytes# R200000,1234#

G Go Address# G200200#

V Display version No argument V#

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

446

23.6.1 UART0 Serial Port

Communication is performed through the UART0 initialized to 115200 Baud, 8, n, 1.

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal performing this

protocol can be used to send the application file to the target. The size of the binary file to send depends on the

SRAM size embedded in the product. In all cases, the size of the binary file must be lower than the SRAM size

because the Xmodem protocol requires some SRAM memory to work. See Section 23.3 ”Hardware and Software

Constraints”.

23.6.2 Xmodem Protocol

The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-character CRC-16 to

guarantee detection of a maximum bit error.

Xmodem protocol with CRC is accurate provided both sender and receiver report successful transmission. Each

block of the transfer looks like:

<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:

̶ <SOH> = 01 hex

̶ <blk #> = binary number, starts at 01, increments by 1, and wraps 0FFH to 00H (not to 01)

̶ <255-blk #> = 1’s complement of the blk#.

̶ <checksum> = 2 bytes CRC16

Figure 23-2 shows a transmission using this protocol.

Figure 23-2. Xmodem Transfer Example

23.6.3 USB Device Port

The device uses the USB communication device class (CDC) drivers to take advantage of the installed PC RS-232

software to talk over the USB. The CDC class is implemented in all releases of Windows®, beginning with

Windows 98SE. The CDC document, available at www.usb.org, describes a way to implement devices such as

ISDN modems and virtual COM ports.

The Vendor ID (VID) is Atmel’s vendor ID 0x03EB. The product ID (PID) is 0x6124. These references are used by

the host operating system to mount the correct driver. On Windows systems, the INF files contain the

correspondence between vendor ID and product ID.

Host Device

SOH 01 FE Data[128] CRC CRC

C

ACK

SOH 02 FD Data[128] CRC CRC

ACK

SOH 03 FC Data[100] CRC CRC

ACK

EOT

ACK

447SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

For more details about VID/PID for End Product/Systems, please refer to the Vendor ID form available from the

USB Implementers Forum on www.usb.org.

Atmel provides an INF example to see the device as a new serial port and also provides another custom driver

used by the SAM-BA application: atm6124.sys. Refer to the application note “USB Basic Application”, Atmel

literature number 6123, for more details.

23.6.3.1 Enumeration Process

The USB protocol is a master/slave protocol. This is the host that starts the enumeration sending requests to the

device through the control endpoint. The device handles standard requests as defined in the USB Specification.

The device also handles some class requests defined in the CDC class.

Unhandled requests are STALLed.

23.6.3.2 Communication Endpoints

There are two communication endpoints and endpoint 0 is used for the enumeration process. Endpoint 1 is a 64-

byte Bulk OUT endpoint and endpoint 2 is a 64-byte Bulk IN endpoint. SAM-BA Boot commands are sent by the

host through endpoint 1. If required, the message is split by the host into several data payloads by the host driver.

If the command requires a response, the host can send IN transactions to pick up the response.

Table 23-3. Handled Standard Requests

Request Definition

GET_DESCRIPTOR Returns the current device configuration value.

SET_ADDRESS Sets the device address for all future device access.

SET_CONFIGURATION Sets the device configuration.

GET_CONFIGURATION Returns the current device configuration value.

GET_STATUS Returns status for the specified recipient.

SET_FEATURE Set or Enable a specific feature.

CLEAR_FEATURE Clear or Disable a specific feature.

Table 23-4. Handled Class Requests

Request Definition

SET_LINE_CODING Configures DTE rate, stop bits, parity and number of character bits.

GET_LINE_CODING Requests current DTE rate, stop bits, parity and number of character bits.

SET_CONTROL_LINE_STATE RS-232 signal used to tell the DCE device the DTE device is now present.

http://www.usb.org

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

448

23.6.4 In Application Programming (IAP) Feature

The IAP feature is a function located in ROM that can be called by any software application.

When called, this function sends the desired FLASH command to the EEFC and waits for the Flash to be ready

(looping while the FRDY bit is not set in the EEFC_FSR).

Since this function is executed from ROM, this allows Flash programming (such as sector write) to be done by

code running in Flash.

The IAP function entry point is retrieved by reading the NMI vector in ROM (0x00800008).

This function takes one argument in parameter: the command to be sent to the EEFC.

This function returns the value of the EEFC_FSR.

IAP software code example:

(unsigned int) (*IAP_Function)(unsigned long);
void main (void){

unsigned long FlashSectorNum = 200; //
unsigned long flash_cmd = 0;
unsigned long flash_status = 0;
unsigned long EFCIndex = 0; // 0:EEFC0, 1: EEFC1

/* Initialize the function pointer (retrieve function address from NMI vector)
*/

IAP_Function = ((unsigned long) (*)(unsigned long))
0x00800008;

/* Send your data to the sector here */

/* build the command to send to EEFC */

flash_cmd = (0x5A << 24) | (FlashSectorNum << 8) |
AT91C_MC_FCMD_EWP;

/* Call the IAP function with appropriate command */

flash_status = IAP_Function (EFCIndex, flash_cmd);

}

449SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

24. Bus Matrix (MATRIX)

24.1 Description

The Bus Matrix (MATRIX) implements a multi-layer AHB, based on the AHB-Lite protocol, that enables parallel

access paths between multiple AHB masters and slaves in a system, thus increasing the overall bandwidth. The

Bus Matrix interconnects up to 7 AHB masters to up to 6 AHB slaves. The normal latency to connect a master to a

slave is one cycle except for the default master of the accessed slave which is connected directly (zero cycle

latency). The Bus Matrix user interface is compliant with ARM Advanced Peripheral Bus.

24.2 Embedded Characteristics

 Configurable Number of Masters (up to 7)

 Configurable Number of Slaves (up to 6)

 One Decoder for Each Master

 Several Possible Boot Memories for Each Master before Remap

 One Remap Function for Each Master

 Support for Long Bursts of 32, 64, 128 and up to the 256-beat Word Burst AHB Limit

 Enhanced Programmable Mixed Arbitration for Each Slave

̶ Round-Robin

̶ Fixed Priority

 Programmable Default Master for Each Slave

̶ No Default Master

̶ Last Accessed Default Master

̶ Fixed Default Master

 Deterministic Maximum Access Latency for Masters

 Zero or One Cycle Arbitration Latency for the First Access of a Burst

 Bus Lock Forwarding to Slaves

 Master Number Forwarding to Slaves

 One Special Function Register for Each Slave (not dedicated)

 Write Protection of User Interface Registers

24.2.1 Matrix Masters

The Bus Matrix manages 7 masters, which means that each master can perform an access concurrently with

others, to an available slave.

Each master has its own decoder, which is defined specifically for each master. In order to simplify the addressing,

all the masters have the same decodings.

24.2.2 Matrix Slaves

The Bus Matrix manages 6 slaves. Each slave has its own arbiter, allowing a different arbitration per slave.

Table 24-1. List of Bus Matrix Slaves

Slave 0 Internal SRAM

Slave 1 Internal ROM

Slave 2 Internal Flash

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

450

24.2.3 Master to Slave Access

All the Masters can normally access all the Slaves. However, some paths do not make sense, for example

allowing access from the Cortex-M4 S Bus to the Internal SRAM. Thus, these paths are forbidden or simply not

wired, and shown as “–” in Table 24-2.

Slave 3 Peripheral Bridge 0

Slave 4 Peripheral Bridge 1

Slave 5 External Bus Interface (EBI)

Table 24-1. List of Bus Matrix Slaves

Table 24-2. Master to Slave Access

Slaves Masters

0 1 2 3 4 5 6

Cortex-M4

I/D Bus

Cortex-M4 S

Bus PDC0 PDC1 DMAC Reserved EMAC

0 Internal SRAM – X X X X – X

1 Internal ROM X – X X X – X

2 Internal Flash X – – – – – –

3 Peripheral Bridge 0 – X X – X – –

4 Peripheral Bridge 1 – X – X X – –

5
External Bus Interface

(EBI)
– X X X X – X

451SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

24.3 Memory Mapping

The Bus Matrix provides one decoder for every AHB master interface. The decoder offers each AHB master

several memory mappings. Each memory area may be assigned to several slaves. Booting at the same address

while using different AHB slaves (i.e. external RAM, internal ROM or internal Flash, etc.) becomes possible.

The Bus Matrix user interface provides the Master Remap Control Register (MATRIX_MRCR), that performs

remap action for every master independently.

The Bus Matrix user interface provides Master Remap Control Register (MATRIX_MRCR) that performs remap

action for every master independently.

24.4 Special Bus Granting Mechanism

The Bus Matrix provides some speculative bus granting techniques in order to anticipate access requests from

masters. This mechanism reduces latency at first access of a burst, or for a single transfer, as long as the slave is

free from any other master access. It does not provide any benefit if the slave is continuously accessed by more

than one master, since arbitration is pipelined and has no negative effect on the slave bandwidth or access

latency.

This bus granting mechanism sets a different default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to its associated

default master. A slave can be associated with three kinds of default masters:

 No default master

 Last access master

 Fixed default master

To change from one type of default master to another, the Bus Matrix user interface provides the Slave

Configuration Registers, one for every slave, that set a default master for each slave. The Slave Configuration

Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field selects

the default master type (no default, last access master, fixed default master), whereas the 4-bit FIXED_DEFMSTR

field selects a fixed default master provided that DEFMSTR_TYPE is set to fixed default master. Please refer to

Section 24.12.2 “Bus Matrix Slave Configuration Registers”.

24.5 No Default Master

After the end of the current access, if no other request is pending, the slave is disconnected from all masters.

This configuration incurs one latency clock cycle for the first access of a burst after bus Idle. Arbitration without

default master may be used for masters that perform significant bursts or several transfers with no Idle in between,

or if the slave bus bandwidth is widely used by one or more masters.

This configuration provides no benefit on access latency or bandwidth when reaching maximum slave bus

throughput whatever the number of requesting masters.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

452

24.6 Last Access Master

After the end of the current access, if no other request is pending, the slave remains connected to the last master

that performed an access request.

This allows the Bus Matrix to remove the one latency cycle for the last master that accessed the slave. Other non

privileged masters still get one latency clock cycle if they want to access the same slave. This technique is useful

for masters that mainly perform single accesses or short bursts with some Idle cycles in between.

This configuration provides no benefit on access latency or bandwidth when reaching maximum slave bus

throughput whatever is the number of requesting masters.

24.7 Fixed Default Master

After the end of the current access, if no other request is pending, the slave connects to its fixed default master.

Unlike the last access master, the fixed default master does not change unless the user modifies it by software

(FIXED_DEFMSTR field of the related MATRIX_SCFG).

This allows the Bus Matrix arbiters to remove the one latency clock cycle for the fixed default master of the slave.

All requests attempted by the fixed default master do not cause any arbitration latency, whereas other non-

privileged masters will get one latency cycle. This technique is useful for a master that mainly performs single

accesses or short bursts with Idle cycles in between.

This configuration provides no benefit on access latency or bandwidth when reaching maximum slave bus

throughput, regardless of the number of requesting masters.

24.8 Arbitration

The Bus Matrix provides an arbitration mechanism that reduces latency when conflict cases occur, i.e. when two or

more masters try to access the same slave at the same time. One arbiter per AHB slave is provided, thus

arbitrating each slave specifically.

The Bus Matrix provides the user with the possibility of choosing between 2 arbitration types or mixing them for

each slave:

1. Round-robin Arbitration (default)

2. Fixed Priority Arbitration

The resulting algorithm may be complemented by selecting a default master configuration for each slave.

When re-arbitration must be done, specific conditions apply. See Section 24.8.1 “Arbitration Scheduling”.

24.8.1 Arbitration Scheduling

Each arbiter has the ability to arbitrate between two or more different master requests. In order to avoid burst

breaking and also to provide the maximum throughput for slave interfaces, arbitration may only take place during

the following cycles:

1. Idle Cycles: When a slave is not connected to any master or is connected to a master which is not cur-
rently accessing it.

2. Single Cycles: When a slave is currently doing a single access.

3. End of Burst Cycles: When the current cycle is the last cycle of a burst transfer. For defined length burst,

predicted end of burst matches the size of the transfer but is managed differently for undefined length burst.

See Section 24.8.1.1 “Undefined Length Burst Arbitration”

4. Slot Cycle Limit: When the slot cycle counter has reached the limit value indicating that the current master

access is too long and must be broken. See Section 24.8.1.2 “Slot Cycle Limit Arbitration”

453SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

24.8.1.1 Undefined Length Burst Arbitration

In order to prevent long AHB burst lengths that can lock the access to the slave for an excessive period of time, the

user can trigger the re-arbitration before the end of the incremental bursts. The re-arbitration period can be

selected from the following Undefined Length Burst Type (ULBT) possibilities:

1. Unlimited: no predetermined end of burst is generated. This value enables 1-Kbyte burst lengths.

2. 1-beat bursts: predetermined end of burst is generated at each single transfer during the INCR transfer.

3. 4-beat bursts: predetermined end of burst is generated at the end of each 4-beat boundary during INCR

transfer.

4. 8-beat bursts: predetermined end of burst is generated at the end of each 8-beat boundary during INCR

transfer.

5. 16-beat bursts: predetermined end of burst is generated at the end of each 16-beat boundary during INCR

transfer.

6. 32-beat bursts: predetermined end of burst is generated at the end of each 32-beat boundary during INCR

transfer.

7. 64-beat bursts: predetermined end of burst is generated at the end of each 64-beat boundary during INCR

transfer.

8. 128-beat bursts: predetermined end of burst is generated at the end of each 128-beat boundary during INCR

transfer.

The use of undefined length16-beat bursts, or less, is discouraged since this generally decreases significantly the

overall bus bandwidth due to arbitration and slave latencies at each first access of a burst.

If the master does not permanently and continuously request the same slave or has an intrinsically limited average

throughput, the ULBT should be left at its default unlimited value, knowing that the AHB specification natively limits

all word bursts to 256 beats and double-word bursts to 128 beats because of its 1 Kilobyte address boundaries.

Unless duly needed, the ULBT should be left at its default value of 0 for power saving.

This selection can be done through the ULBT field of the Master Configuration Registers (MATRIX_MCFG).

24.8.1.2 Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a very slow slave (e.g.,

an external low speed memory). At each arbitration time, a counter is loaded with the value previously written in

the SLOT_CYCLE field of the related Slave Configuration Register (MATRIX_SCFG) and decreased at each clock

cycle. When the counter elapses, the arbiter has the ability to re-arbitrate at the end of the current AHB bus access

cycle.

Unless a master has a very tight access latency constraint, which could lead to data overflow or underflow due to a

badly undersized internal FIFO with respect to its throughput, the Slot Cycle Limit should be disabled

(SLOT_CYCLE = 0) or set to its default maximum value in order not to inefficiently break long bursts performed by

some Atmel masters.

In most cases, this feature is not needed and should be disabled for power saving.

Warning: This feature cannot prevent any slave from locking its access indefinitely.

24.8.2 Arbitration Priority Scheme

The bus Matrix arbitration scheme is organized in priority pools.

Round-robin priority is used in the highest and lowest priority pools, whereas fixed level priority is used between

priority pools and in the intermediate priority pools.

For each slave, each master is assigned to one of the slave priority pools through the priority registers for slaves

(MxPR fields of MATRIX_PRAS and MATRIX_PRBS). When evaluating master requests, this programmed priority

level always takes precedence.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

454

After reset, all the masters belong to the lowest priority pool (MxPR = 0) and are therefore granted bus access in a

true round-robin order.

The highest priority pool must be specifically reserved for masters requiring very low access latency. If more than

one master belongs to this pool, they will be granted bus access in a biased round-robin manner which allows tight

and deterministic maximum access latency from AHB bus requests. In the worst case, any currently occurring

high-priority master request will be granted after the current bus master access has ended and other high priority

pool master requests, if any, have been granted once each.

The lowest priority pool shares the remaining bus bandwidth between AHB Masters.

Intermediate priority pools allow fine priority tuning. Typically, a moderately latency-critical master or a bandwidth-

only critical master will use such a priority level. The higher the priority level (MxPR value), the higher the master

priority.

All combinations of MxPR values are allowed for all masters and slaves. For example, some masters might be

assigned the highest priority pool (round-robin), and remaining masters the lowest priority pool (round-robin), with

no master for intermediate fix priority levels.

If more than one master requests the slave bus, regardless of the respective masters priorities, no master will be

granted the slave bus for two consecutive runs. A master can only get back-to-back grants so long as it is the only

requesting master.

24.8.2.1 Fixed Priority Arbitration

Fixed priority arbitration algorithm is the first and only arbitration algorithm applied between masters from distinct

priority pools. It is also used in priority pools other than the highest and lowest priority pools (intermediate priority

pools).

Fixed priority arbitration allows the Bus Matrix arbiters to dispatch the requests from different masters to the same

slave by using the fixed priority defined by the user in the MxPR field for each master in the Priority Registers,

MATRIX_PRAS and MATRIX_PRBS. If two or more master requests are active at the same time, the master with

the highest priority MxPR number is serviced first.

In intermediate priority pools, if two or more master requests with the same priority are active at the same time, the

master with the highest number is serviced first.

24.8.2.2 Round-Robin Arbitration

This algorithm is only used in the highest and lowest priority pools. It allows the Bus Matrix arbiters to properly

dispatch requests from different masters to the same slave. If two or more master requests are active at the same

time in the priority pool, they are serviced in a round-robin increasing master number order.

24.9 System I/O Configuration

The System I/O Configuration register (CCFG_SYSIO) allows to configure some I/O lines in System I/O mode

(such as JTAG, ERASE, USB, etc...) or as general purpose I/O lines. Enabling or disabling the corresponding I/O

lines in peripheral mode or in PIO mode (PIO_PER or PIO_PDR registers) in the PIO controller as no effect.

However, the direction (input or output), pull-up, pull-down and other mode control is still managed by the PIO

controller.

24.10 SMC NAND Flash Chip Select Configuration

The SMC Nand Flash Chip Select Configuration Register (CCFG_SMCNFCS) allow to manage the chip select

signal (NCSx) as assigned to NAND Flash or not.

Each NCSx can be individually assigned to Nand Flash or not. When the NCSx is assigned to NANDFLASH, the

signals NANDOE and NANDWE are used for the NCSx signals selected.

455SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

24.11 Write Protect Registers

To prevent any single software error that may corrupt the Bus Matrix behavior, the entire Bus Matrix address

space can be write-protected by setting the WPEN bit in the Bus Matrix Write Protect Mode Register

(MATRIX_WPMR).

If WPEN is at one and a write access in the Bus Matrix address space is detected, then the WPVS flag in the Bus

Matrix Write Protect Status Register (MATRIX_WPSR) is set and the field WPVSRC indicates in which register the

write access has been attempted.

The WPVS flag is reset by writing the Bus Matrix Write Protect Mode Register (MATRIX_WPMR) with the

appropriate access key WPKEY.

The protected registers are:

“Bus Matrix Master Configuration Registers”

“Bus Matrix Slave Configuration Registers”

“Bus Matrix Priority Registers A For Slaves”

“Bus Matrix Master Remap Control Register”

“Write Protect Mode Register”

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

456

24.12 Bus Matrix (MATRIX) User Interface

Table 24-3. Register Mapping

Offset Register Name Access Reset

0x0000 Master Configuration Register 0 MATRIX_MCFG0 Read-write 0x00000001

0x0004 Master Configuration Register 1 MATRIX_MCFG1 Read-write 0x00000000

0x0008 Master Configuration Register 2 MATRIX_MCFG2 Read-write 0x00000000

0x000C Master Configuration Register 3 MATRIX_MCFG3 Read-write 0x00000000

0x0010 Master Configuration Register 4 MATRIX_MCFG4 Read-write 0x00000000

0x0014 Master Configuration Register 5 MATRIX_MCFG5 Read-write 0x00000000

0x0018 Master Configuration Register 6 MATRIX_MCFG6 Read-write 0x00000000

0x001C-0x003C Reserved – – –

0x0040 Slave Configuration Register 0 MATRIX_SCFG0 Read-write 0x000001FF

0x0044 Slave Configuration Register 1 MATRIX_SCFG1 Read-write 0x000001FF

0x0048 Slave Configuration Register 2 MATRIX_SCFG2 Read-write 0x000001FF

0x004C Slave Configuration Register 3 MATRIX_SCFG3 Read-write 0x000001FF

0x0050 Slave Configuration Register 4 MATRIX_SCFG4 Read-write 0x000001FF

0x0054 Slave Configuration Register 5 MATRIX_SCFG5 Read-write 0x000001FF

0x0058-0x007C Reserved – – –

0x0080 Priority Register A for Slave 0 MATRIX_PRAS0 Read-write 0x33333333(1)

0x0084 Reserved – – –

0x0088 Priority Register A for Slave 1 MATRIX_PRAS1 Read-write 0x33333333(1)

0x008C Reserved – – –

0x0090 Priority Register A for Slave 2 MATRIX_PRAS2 Read-write 0x33333333(1)

0x0094 Reserved – – –

0x0098 Priority Register A for Slave 3 MATRIX_PRAS3 Read-write 0x33333333(1)

0x009C Reserved – – –

0x00A0 Priority Register A for Slave 4 MATRIX_PRAS4 Read-write 0x33333333(1)

0x00A4 Reserved – – –

0x00A8 Priority Register A for Slave 5 MATRIX_PRAS5 Read-write 0x33333333(1)

0x00AC Reserved – – –

0x00B4-0x00FC Reserved – – –

0x0100 Master Remap Control Register MATRIX_MRCR Read-write 0x00000000

0x0104 - 0x010C Reserved – – –

0x0110 Reserved – – –

0x0114 System I/O Configuration Register CCFG_SYSIO Read-write 0x00000000

0x0118 - 0x0120 Reserved – – –

0x0124
SMC NAND Flash Chip Select

Configuration Register
CCFG_SMCNFCS Read-write 0x00000000

457SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Notes: 1. Values in the Bus Matrix Priority Registers are product dependent.

0x0128 - 0x01E0 Reserved – – –

0x01E4 Write Protect Mode Register MATRIX_WPMR Read-write 0x00000000

0x01E8 Write Protect Status Register MATRIX_WPSR Read-only 0x00000000

Table 24-3. Register Mapping (Continued)

Offset Register Name Access Reset

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

458

24.12.1 Bus Matrix Master Configuration Registers

Name: MATRIX_MCFGx [x=0..6]

Address: 0x400E0200

Access: Read-write

This register can only be written if the WPEN bit is cleared in the “Write Protect Mode Register” .

• ULBT: Undefined Length Burst Type

0: Unlimited Length Burst

No predicted end of burst is generated, therefore INCR bursts coming from this master can only be broken if the Slave Slot

Cycle Limit is reached. If the Slot Cycle Limit is not reached, the burst is normally completed by the master, at the latest, on

the next AHB 1-Kbyte address boundary, allowing up to 256-beat word bursts or 128-beat double-word bursts.

This value should not be used in the very particular case of a master capable of performing back-to-back undefined length

bursts on a single slave, since this could indefinitely freeze the slave arbitration and thus prevent another master from

accessing this slave.

1: Single Access

The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR

burst or bursts sequence.

2: 4-beat Burst

The undefined length burst or bursts sequence is split into 4-beat bursts or less, allowing re-arbitration every 4 beats.

3: 8-beat Burst

The undefined length burst or bursts sequence is split into 8-beat bursts or less, allowing re-arbitration every 8 beats.

4: 16-beat Burst

The undefined length burst or bursts sequence is split into 16-beat bursts or less, allowing re-arbitration every 16 beats.

5: 32-beat Burst

The undefined length burst or bursts sequence is split into 32-beat bursts or less, allowing re-arbitration every 32 beats.

6: 64-beat Burst

The undefined length burst or bursts sequence is split into 64-beat bursts or less, allowing re-arbitration every 64 beats.

7: 128-beat Burst

The undefined length burst or bursts sequence is split into 128-beat bursts or less, allowing re-arbitration every 128 beats.

Unless duly needed, the ULBT should be left at its default 0 value for power saving.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – ULBT

459SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

24.12.2 Bus Matrix Slave Configuration Registers

Name: MATRIX_SCFGx [x=0..5]

Address: 0x400E0240

Access: Read-write

This register can only be written if the WPEN bit is cleared in the “Write Protect Mode Register” .

• SLOT_CYCLE: Maximum Bus Grant Duration for Masters

When SLOT_CYCLE AHB clock cycles have elapsed since the last arbitration, a new arbitration takes place to let another

master access this slave. If another master is requesting the slave bus, then the current master burst is broken.

If SLOT_CYCLE = 0, the Slot Cycle Limit feature is disabled and bursts always complete unless broken according to the

ULBT.

This limit has been placed in order to enforce arbitration so as to meet potential latency constraints of masters waiting for

slave access.

This limit must not be too small. Unreasonably small values break every burst and the Bus Matrix arbitrates without per-

forming any data transfer. The default maximum value is usually an optimal conservative choice.

In most cases, this feature is not needed and should be disabled for power saving.

See “Slot Cycle Limit Arbitration” for details.

• DEFMSTR_TYPE: Default Master Type

0: No Default Master

At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.

This results in a one clock cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master

having accessed it.

This results in not having one clock cycle latency when the last master tries to access the slave again.

2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the

number that has been written in the FIXED_DEFMSTR field.

This results in not having one clock cycle latency when the fixed master tries to access the slave again.

• FIXED_DEFMSTR: Fixed Default Master

This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a

master which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – FIXED_DEFMSTR DEFMSTR_TYPE

15 14 13 12 11 10 9 8

– – – – – – – SLOT_CYCLE

7 6 5 4 3 2 1 0

SLOT_CYCLE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

460

24.12.3 Bus Matrix Priority Registers A For Slaves

Name: MATRIX_PRASx [x=0..5]

Address: 0x400E0280 [0], 0x400E0288 [1], 0x400E0290 [2], 0x400E0298 [3], 0x400E02A0 [4], 0x400E02A8 [5]

Access: Read-write

This register can only be written if the WPE bit is cleared in the “Write Protect Mode Register” .

• MxPR: Master x Priority

Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

All the masters programmed with the same MxPR value for the slave make up a priority pool.

Round-robin arbitration is used in the lowest (MxPR = 0) and highest (MxPR = 3) priority pools.

Fixed priority is used in intermediate priority pools (MxPR = 1) and (MxPR = 2).

See “Arbitration Priority Scheme” for details.

31 30 29 28 27 26 25 24

– – – – – – M6PR

23 22 21 20 19 18 17 16

– – M5PR – – M4PR

15 14 13 12 11 10 9 8

– – M3PR – – M2PR

7 6 5 4 3 2 1 0

– – M1PR – – M0PR

461SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

24.12.4 Bus Matrix Master Remap Control Register

Name: MATRIX_MRCR

Address: 0x400E0300

Access: Read-write

This register can only be written if the WPEN bit is cleared in the “Write Protect Mode Register” .

• RCBx: Remap Command Bit for Master x

0: Disable remapped address decoding for the selected Master

1: Enable remapped address decoding for the selected Master

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– RCB6 RCB5 RCB4 RCB3 RCB2 RCB1 RCB0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

462

24.12.5 System I/O Configuration Register

Name: CCFG_SYSIO

Address: 0x400E0314

Access: Read-write

Reset: 0x0000_0000

• SYSIO4: PB4 or TDI Assignment

0 = TDI function selected.

1 = PB4 function selected.

• SYSIO5: PB5 or TDO/TRACESWO Assignment

0 = TDO/TRACESWO function selected.

1 = PB5 function selected.

• SYSIO6: PB6 or TMS/SWDIO Assignment

0 = TMS/SWDIO function selected.

1 = PB6 function selected.

• SYSIO7: PB7 or TCK/SWCLK Assignment

0 = TCK/SWCLK function selected.

1 = PB7 function selected.

• SYSIO10: PB10 or DDM Assignment

0 = DDM function selected.

1 = PB10 function selected.

• SYSIO11: PB11 or DDP Assignment

0 = DDP function selected.

1 = PB11 function selected.

• SYSIO12: PB12 or ERASE Assignment

0 = ERASE function selected.

1 = PB12 function selected.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – SYSIO12 SYSIO11 SYSIO10 – –

7 6 5 4 3 2 1 0

SYSIO7 SYSIO6 SYSIO5 SYSIO4 – – – –

463SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

24.12.6 SMC NAND Flash Chip Select Configuration Register

Name: CCFG_SMCNFCS

Address: 0x400E0324

Access: Read-write

Reset: 0x0000_0000

• SMC_NFCS0: SMC NAND Flash Chip Select 0 Assignment

0 = NCS0 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS0)

1 = NCS0 is assigned to a NAND Flash (NANDOE and NANWE used for NCS0)

• SMC_NFCS1: SMC NAND Flash Chip Select 1 Assignment

0 = NCS1 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS1)

1 = NCS1 is assigned to a NAND Flash (NANDOE and NANWE used for NCS1)

• SMC_NFCS2: SMC NAND Flash Chip Select 2 Assignment

0 = NCS2 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS2)

1 = NCS2 is assigned to a NAND Flash (NANDOE and NANWE used for NCS2)

• SMC_NFCS3: SMC NAND Flash Chip Select 3 Assignment

0 = NCS3 is not assigned to a NAND Flash (NANDOE and NANWE not used for NCS3)

1 = NCS3 is assigned to a NAND Flash (NANDOE and NANWE used for NCS3)

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – SMC_NFCS3 SMC_NFCS2 SMC_NFCS1 SMC_NFCS0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

464

24.12.7 Write Protect Mode Register

Name: MATRIX_WPMR

Address: 0x400E03E4

Access: Read-write

For more details on MATRIX_WPMR, please refer to Section 24.11 “Write Protect Registers”.

The protected registers are:

“Bus Matrix Master Configuration Registers”

“Bus Matrix Slave Configuration Registers”

“Bus Matrix Priority Registers A For Slaves”

“Bus Matrix Master Remap Control Register”

“Write Protect Mode Register”

• WPEN: Write Protect Enable

0: Disables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

1: Enables the Write Protect if WPKEY corresponds to 0x4D4154 (“MAT” in ASCII).

Protects the entire Bus Matrix address space from address offset 0x000 to 0x1FC.

• WPKEY: Write Protect KEY (Write-only)

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x4D4154 PASSWD

Writing any other value in this field aborts the write operation

of the WPEN bit.

Always reads as 0.

465SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

24.12.8 Write Protect Status Register

Name: MATRIX_WPSR

Address: 0x400E03E8

Access: Read-only

For more details on MATRIX_WPSR, please refer to Section 24.11 “Write Protect Registers”.

• WPVS: Write Protect Violation Status

0: No Write Protect Violation has occurred since the last write of the MATRIX_WPMR.

1: At least one Write Protect Violation has occurred since the last write of the MATRIX_WPMR.

• WPVSRC: Write Protect Violation Source

When WPVS is active, this field indicates the register address offset in which a write access has been attempted.

Otherwise it reads as 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

466

25. DMA Controller (DMAC)

25.1 Description

The DMA Controller (DMAC) is an AHB-central DMA controller core that transfers data from a source peripheral to

a destination peripheral over one or more AMBA buses. One channel is required for each source/destination pair.

In the most basic configuration, the DMAC has one master interface and one channel. The master interface reads

the data from a source and writes it to a destination. Two AMBA transfers are required for each DMAC data

transfer. This is also known as a dual-access transfer.

The DMAC is programmed via the APB interface.

25.2 Embedded Characteristics

 1 AHB-Lite Master Interfaces

 DMA Module Supports the Following Transfer Schemes: Peripheral-to-Memory, Memory-to-Peripheral,

Peripheral-to-Peripheral and Memory-to-Memory

 Source and Destination Operate independently on BYTE (8-bit), HALF-WORD (16-bit) and WORD (32-bit)

 Supports Hardware and Software Initiated Transfers

 Supports Multiple Buffer Chaining Operations

 Supports Incrementing/decrementing/fixed Addressing Mode Independently for Source and Destination

 Programmable Arbitration Policy, Modified Round Robin and Fixed Priority are Available

 Supports Specified Length and Unspecified Length AMBA AHB Burst Access to Maximize Data Bandwidth

 AMBA APB Interface Used to Program the DMA Controller

 4 DMA Channels 16 External Request Lines

 Embedded FIFO

 Channel Locking and Bus Locking Capability

 Register Write Protection

467SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.3 DMA Controller Peripheral Connections

The DMA Controller handles the transfer between peripherals and memory and receives triggers from the

peripherals listed in the following table.

Table 25-1. DMA Channel Definition

Instance Name Transmit/Receive DMA Channel Number

HSMCI Transmit/Receive 0

SPI Transmit 1

SPI Receive 2

USART0 Transmit 3

USART0 Receive 4

USART1 Transmit 5

USART1 Receive 6

AES Transmit 11

AES Receive 12

PWM Transmit 13

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

468

25.4 Block Diagram

Figure 25-1. DMA Controller (DMAC) Block Diagram

25.5 Product Dependencies

25.5.1 Interrupt Sources

The DMAC interrupt line is connected to one of the internal sources of the interrupt controller. Using the DMAC

interrupt requires prior programming of the interrupt controller.

DMA Destination

DMA Channel 0

DMA Destination

Control State Machine

Destination Pointer

Management

DMA Source

Control State Machine

Source Pointer

Management

DMA FIFO Controller

DMA FIFO

Up to 64 bytes

DMA Channel 0

Read data path

from source

DMA Channel 0

Write data path

to destination

DMA Channel 1

DMA Channel 2

DMA Channel n

External

Triggers

Soft

Triggers

DMA

REQ/ACK

Interface

Trigger Manager

DMA Interrupt

Controller

Status

Registers

Configuration

Registers

Atmel APB rev2 Interface

DMA AHB Lite Master Interface 0

DMA Global Control

and Data Mux
DMA Global

Request Arbiter

DMA Source

Requests Pool
DMA Read

Datapath Bundles

DMA

Atmel

APB

Interface

DMA Interrupt

DMA

Hardware

Handshaking

Interface

AMBA AHB Layer 0

Table 25-2. Peripheral IDs

Instance ID

DMAC 20

469SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.6 Functional Description

25.6.1 Basic Definitions

Source peripheral: Device on an AMBA layer from where the DMAC reads data, which is then stored in the

channel FIFO. The source peripheral teams up with a destination peripheral to form a channel.

Destination peripheral: Device to which the DMAC writes the stored data from the FIFO (previously read from the

source peripheral).

Memory: Source or destination that is always “ready” for a DMAC transfer and does not require a handshaking

interface to interact with the DMAC.

Programmable Arbitration Policy: Modified Round Robin and Fixed Priority are available by means of the

ARB_CFG bit in the Global Configuration Register (DMAC_GCFG). The fixed priority is linked to the channel

number. The highest DMAC channel number has the highest priority.

Channel: Read/write datapath between a source peripheral on one configured AMBA layer and a destination

peripheral on the same or different AMBA layer that occurs through the channel FIFO. If the source peripheral is

not memory, then a source handshaking interface is assigned to the channel. If the destination peripheral is not

memory, then a destination handshaking interface is assigned to the channel. Source and destination

handshaking interfaces can be assigned dynamically by programming the channel registers.

Master interface: DMAC is a master on the AHB bus reading data from the source and writing it to the destination

over the AHB bus.

Slave interface: The APB interface over which the DMAC is programmed. The slave interface in practice could be

on the same layer as any of the master interfaces or on a separate layer.

Handshaking interface: A set of signal registers that conform to a protocol and handshake between the DMAC

and source or destination peripheral to control the transfer of a single or chunk transfer between them. This

interface is used to request, acknowledge, and control a DMAC transaction. A channel can receive a request

through one of two types of handshaking interface: hardware or software.

Hardware handshaking interface: Uses hardware signals to control the transfer of a single or chunk transfer

between the DMAC and the source or destination peripheral.

Software handshaking interface: Uses software registers to control the transfer of a single or chunk transfer

between the DMAC and the source or destination peripheral. No special DMAC handshaking signals are needed

on the I/O of the peripheral. This mode is useful for interfacing an existing peripheral to the DMAC without

modifying it.

Transfer hierarchy: Figure 25-2 illustrates the hierarchy between DMAC transfers, buffer transfers, chunk or

single, and AMBA transfers (single or burst) for non-memory peripherals. Figure 25-3 shows the transfer hierarchy

for memory.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

470

Figure 25-2. DMAC Transfer Hierarchy for Non-Memory Peripheral

Figure 25-3. DMAC Transfer Hierarchy for Memory

Buffer: A buffer of DMAC data. The amount of data (length) is determined by the flow controller. For transfers

between the DMAC and memory, a buffer is broken directly into a sequence of AMBA bursts and AMBA single

transfers.

For transfers between the DMAC and a non-memory peripheral, a buffer is broken into a sequence of DMAC

transactions (single and chunks). These are in turn broken into a sequence of AMBA transfers.

Transaction: A basic unit of a DMAC transfer as determined by either the hardware or software handshaking

interface. A transaction is only relevant for transfers between the DMAC and a source or destination peripheral if

the source or destination peripheral is a non-memory device. There are two types of transactions: single transfer

and chunk transfer.

̶ Single transfer: The length of a single transaction is always 1 and is converted to a single AMBA

access.

̶ Chunk transfer: The length of a chunk is programmed into the DMAC. The chunk is then converted

into a sequence of AHB access.DMAC executes each AMBA burst transfer by performing incremental

bursts that are no longer than 16 beats.

DMAC transfer: Software controls the number of buffers in a DMAC transfer. Once the DMAC transfer has

completed, then hardware within the DMAC disables the channel and can generate an interrupt to signal the

completion of the DMAC transfer. It is then possible to reprogram the channel for a new DMAC transfer.

DMAC Transfer DMA Transfer

Level

Buffer Buffer Buffer
Buffer Transfer

Level

Chunk

Transfer
Chunk

Transfer

Chunk

Transfer

Single

Transfer

DMA Transaction

Level

Burst
Transfer

AMBA
Burst

Transfer

AMBA
Burst

Transfer

AMBA
Single

Transfer

AMBA
AMBA Transfer

Level
Single

Transfer

AMBA

DMAC Transfer DMA Transfer

Level

Buffer Buffer Buffer
Buffer Transfer

Level

Burst
Transfer

AMBA
Burst

Transfer

AMBA
Burst

Transfer

AMBA
Single

Transfer

AMBA
AMBA Transfer

Level

471SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Single-buffer DMAC transfer: Consists of a single buffer.

Multi-buffer DMAC transfer: A DMAC transfer may consist of multiple DMAC buffers. Multi-buffer DMAC

transfers are supported through buffer chaining (linked list pointers), auto-reloading of channel registers, and

contiguous buffers. The source and destination can independently select which method to use.

̶ Linked lists (buffer chaining) – A descriptor pointer (DSCR) points to the location in system memory

where the next linked list item (LLI) exists. The LLI is a set of registers that describe the next buffer

(buffer descriptor) and a descriptor pointer register. The DMAC fetches the LLI at the beginning of

every buffer when buffer chaining is enabled.

̶ Contiguous buffers – Where the address of the next buffer is selected to be a continuation from the

end of the previous buffer.

Channel locking: Software can program a channel to keep the AHB master interface by locking the arbitration for

the master bus interface for the duration of a DMAC transfer, buffer, or chunk.

Bus locking: Software can program a channel to maintain control of the AMBA bus by asserting hmastlock for the

duration of a DMAC transfer, buffer, or transaction (single or chunk). Channel locking is asserted for the duration of

bus locking at a minimum.

25.6.2 Memory Peripherals

Figure 25-3 on page 470 shows the DMAC transfer hierarchy of the DMAC for a memory peripheral. There is no

handshaking interface with the DMAC, and therefore the memory peripheral can never be a flow controller. Once

the channel is enabled, the transfer proceeds immediately without waiting for a transaction request. The alternative

to not having a transaction-level handshaking interface is to allow the DMAC to attempt AMBA transfers to the

peripheral once the channel is enabled. If the peripheral slave cannot accept these AMBA transfers, it inserts wait

states onto the bus until it is ready; it is not recommended that more than 16 wait states be inserted onto the bus.

By using the handshaking interface, the peripheral can signal to the DMAC that it is ready to transmit/receive data,

and then the DMAC can access the peripheral without the peripheral inserting wait states onto the bus.

25.6.3 Handshaking Interface

Handshaking interfaces are used at the transaction level to control the flow of single or chunk transfers. The

operation of the handshaking interface is different and depends on whether the peripheral or the DMAC is the flow

controller.

The peripheral uses the handshaking interface to indicate to the DMAC that it is ready to transfer/accept data over

the AMBA bus. A non-memory peripheral can request a DMAC transfer through the DMAC using one of two

handshaking interfaces:

 Hardware handshaking

 Software handshaking

Software selects between the hardware or software handshaking interface on a per-channel basis. Software

handshaking is accomplished through memory-mapped registers, while hardware handshaking is accomplished

using a dedicated handshaking interface.

25.6.3.1 Software Handshaking

When the slave peripheral requires the DMAC to perform a DMAC transaction, it communicates this request by

sending an interrupt to the CPU or interrupt controller.

The interrupt service routine then uses the software registers to initiate and control a DMAC transaction. These

software registers are used to implement the software handshaking interface.

The SRC_H2SEL/DST_H2SEL bit in the Channel Configuration Register (DMAC_CFGx) must be cleared to

enable software handshaking.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

472

When the peripheral is not the flow controller, then the Software Last Transfer Flag Register (DMAC_LAST) is not

used, and the values in these registers are ignored.

Chunk Transactions

Writing a ‘1’ to the Software Chunk Transfer Request Register (DMAC_CREQ[2x]) starts a source chunk

transaction request, where x is the channel number. Writing a ‘1’ to the DMAC_CREQ[2x+1] register starts a

destination chunk transfer request, where x is the channel number.

Upon completion of the chunk transaction, the hardware clears the DMAC_CREQ[2x] or DMAC_CREQ[2x+1].

Single Transactions

Writing a ‘1’ to the Software Single Request Register (DMAC_SREQ[2x]) starts a source single transaction

request, where x is the channel number. Writing a ‘1’ to the DMAC_SREQ[2x+1] register starts a destination single

transfer request, where x is the channel number.

Upon completion of the chunk transaction, the hardware clears the DMAC_SREQ[x] or DMAC_SREQ[2x+1].

The software can poll the relevant channel bi t in the DMAC_CREQ[2x]/DMAC_CREQ[2x+1] and

DMAC_SREQ[x]/DMAC_SREQ[2x+1] registers. When both are 0, then either the requested chunk or single

transaction has completed.

25.6.4 DMAC Transfer Types

A DMAC transfer may consist of single or multi-buffer transfers. On successive buffers of a multi-buffer transfer,

DMAC_SADDRx/DMAC_DADDRx in the DMAC are reprogrammed using either of the following methods:

 Buffer chaining using linked lists

 Contiguous address between buffers

On successive buffers of a multi-buffer transfer, the DMAC_CTRLAx and DMAC_CTRLBx registers in the DMAC

are reprogrammed using either of the following methods:

 Buffer chaining using linked lists

When buffer chaining using linked lists is the multi-buffer method of choice, and on successive buffers,

DMAC_DSCRx in the DMAC is reprogrammed using the following method:

 Buffer chaining using linked lists

A buffer descriptor (LLI) consists of the following registers: DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx,

DMAC_CTRLAx, and DMAC_CTRLBx. These registers, along with DMAC_CFGx, are used by the DMAC to set

up and describe the buffer transfer.

25.6.4.1 Multi-buffer Transfers

Buffer Chaining Using Linked Lists

In this case, the DMAC reprograms the channel registers prior to the start of each buffer by fetching the buffer

descriptor for that buffer from system memory. This is known as an LLI update.

DMAC buffer chaining is supported by using a descriptor pointer register (DMAC_DSCRx) that stores the address

in memory of the next buffer descriptor. Each buffer descriptor contains the corresponding buffer descriptor

(DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx, DMAC_CTRLAx DMAC_CTRLBx).

To set up buffer chaining, a sequence of linked lists must be programmed in memory.

DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx, DMAC_CTRLAx and DMAC_CTRLBx are fetched from

system memory on an LLI update. The updated content of DMAC_CTRLAx is written back to memory on buffer

completion. Figure 25-4 on page 473 shows how to use chained linked lists in memory to define multi-buffer

transfers using buffer chaining.

473SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The Linked List multi-buffer transfer is initiated by programming DMAC_DSCRx with DSCRx(0) (LLI(0) base

address) different from zero. Other fields and registers are ignored and overwritten when the descriptor is retrieved

from memory.

The last transfer descriptor must be written to memory with its next descriptor address set to 0.

Figure 25-4. Multi-Buffer Transfer Using Linked List

25.6.4.2 Programming DMAC for Multiple Buffer Transfers

Notes: 1. USR means that the register field is manually programmed by the user.

2. CONT means that address are contiguous.

3. LLI means that the register field is updated with the content of the linked list item.

Contiguous Address Between Buffers

In this case, the address between successive buffers is selected to be a continuation from the end of the previous

buffer. Enabling the source or destination address to be contiguous between buffers is a function of the fields

DMAC_CTRLAx.SRC_DSCR and DMAC_CTRLAx.DST_DSCR.

Suspension of Transfers Between Buffers

At the end of every buffer transfer, an end of buffer interrupt is asserted if:

 the channel buffer interrupt is unmasked, DMAC_EBCIMR.BTCx = ‘1’, where x is the channel number.

Note: The Buffer Transfer Completed Interrupt is generated at the completion of the buffer transfer to the destination.

At the end of a chain of multiple buffers, an end of linked list interrupt is asserted if:

 the channel end of the Chained Buffer Transfer Completed Interrupt is unmasked, DMAC_EBCIMR.CBTCx

= ‘1’, when n is the channel number.

Table 25-3. Multiple Buffers Transfer Management

Transfer Type SRC_DSCR DST_DSCR BTSIZE DSCR SADDR DADDR

Other

Fields

1 Single Buffer or Last Buffer of a multiple buffer transfer – – USR(1) 0 USR(1) USR(1) USR(1)

2 Multi-buffer transfer with contiguous DADDR 0 1 LLI(3) USR(1) LLI(3) CONT(2) LLI(3)

3 Multi-buffer transfer with contiguous SADDR 1 0 LLI(3) USR(1) CONT(2) LLI(3) LLI(3)

4 Multi-buffer transfer with LLI support 0 0 LLI(3) USR(1) LLI(3) LLI(3) LLI(3)

System Memory

SADDRx= DSCRx(0) + 0x0

DADDRx= DSCRx(0) + 0x4

CTRLAx= DSCRx(0) + 0x8

CTRLBx= DSCRx(0) + 0xC

DSCRx(1)= DSCRx(0) + 0x10

SADDRx= DSCRx(1) + 0x0

DADDRx= DSCRx(1) + 0x4

CTRLBx= DSCRx(1) + 0x8

CTRLBx= DSCRx(1) + 0xC

DSCRx(2)= DSCRx(1) + 0x10

DSCRx(0) DSCRx(2)

(points to 0 if

LLI(1) is the last

transfer descriptor

DSCRx(1)

LLI(0) LLI(1)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

474

25.6.4.3 Ending Multi-buffer Transfers

All multi-buffer transfers must end as shown in Row 1 of Table 25-3 on page 473. At the end of every buffer

transfer, the DMAC samples the row number, and if the DMAC is in Row 1 state, then the previous buffer

transferred was the last buffer and the DMAC transfer is terminated.

For rows 2, 3, 4, 5, and 6 (DMAC_CRTLBx.AUTO cleared), the user must set up the last buffer descriptor in

memory so that LLI.DMAC_DSCRx is set to 0.

25.6.5 Programming a Channel

Four registers, DMAC_DSCRx, DMAC_CTRLAx, DMAC_CTRLBx and DMAC_CFGx, need to be programmed to

set up whether single or multi-buffer transfers take place, and which type of multi-buffer transfer is used. The

different transfer types are shown in Table 25-3 on page 473.

The “BTSIZE”, “SADDR” and “DADDR” columns in the table indicate where the values of DMAC_SADDRx,

DMAC_DADDRx, DMAC_CTRLAx, DMAC_CTRLBx, and DMAC_DSCRx are obtained for the next buffer transfer

when multi-buffer DMAC transfers are enabled.

25.6.5.1 Programming Examples

Single-buffer Transfer (Row 1)

1. Read the ENAx bit in the DMAC Channel Handler Status Register (DMAC_CHSR) to choose a free (dis-
abled) channel.

2. Clear any pending interrupts on the channel from the previous DMAC transfer by reading the DMAC Error,

Buffer Transfer and Chained Buffer Transfer Status Register (DMAC_EBCISR).

3. Program the following channel registers:

a. Write the starting source address in DMAC_SADDRx for channel x.

b. Write the starting destination address in DMAC_DADDRx for channel x.

c. Write the next descriptor address in DMA_DSCRx for channel x with 0x0.

d. Program DMAC_CTRLAx, DMAC_CTRLBx and DMAC_CFGx according to Row 1 as shown in Table

25-3 on page 473.

e. Write the control information for the DMAC transfer in DMAC_CTRLAx and DMAC_CTRLBx for chan-
nel x. For example, in the register, it is possible to program the following:

̶ i. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow

control device by programming the FC field in DMAC_CTRLBx.

̶ ii. Set up the transfer characteristics, such as:

– Transfer width for the source in the SRC_WIDTH field.

– Transfer width for the destination in the DST_WIDTH field.

– Incrementing/decrementing or fixed address for source in SRC_INCR field.

– Incrementing/decrementing or fixed address for destination in DST_INCR field.

f. Write the channel configuration information into DMAC_CFGx for channel x.

̶ i. Designate the handshaking interface type (hardware or software) for the source and destination

peripherals. This is not required for memory. This step requires programming the

SRC_H2SEL/DST_H2SEL bits, respectively. Writing a ‘1’ activates the hardware handshaking

interface to handle source/destination requests. Writing a ‘0’ activates the software handshaking

interface to handle source/destination requests.

̶ ii. If the hardware handshaking interface is activated for the source or destination peripheral, assign a

handshaking interface to the source and destination peripheral. This requires programming the

SRC_PER and DST_PER bits, respectively.

475SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

4. After the DMAC selected channel has been programmed, enable the channel by setting the ENAx bit in the

DMAC Channel Handler Enable Register (DMAC_CHER), where x is the channel number. Make sure that

the ENABLE bit (register bit 0) in DMAC_EN is set.

5. Source and destination request single and chunk DMAC transactions to transfer the buffer of data (assuming

non-memory peripherals). The DMAC acknowledges at the completion of every transaction (chunk and

single) in the buffer and carries out the buffer transfer.

6. Once the transfer completes, the hardware sets the interrupts and disables the channel. At this time, you can

either respond to the Buffer Transfer Completed Interrupt or Chained Buffer Transfer Completed Interrupt, or

poll for the DMAC_CHSR.ENAx bit until it is cleared by hardware, to detect when the transfer is complete.

Multi-buffer Transfer with Linked List for Source and Linked List for Destination (Row 4)

1. Read the DMAC_CHSR to choose a free (disabled) channel.

2. Set up the chain of Linked List Items (otherwise known as buffer descriptors) in memory. Write the control

information in the LLI.DMAC_CTRLAx and LLI.DMAC_CTRLBx registers location of the buffer descriptor for

each LLI in memory (see Figure 25-5 on page 476) for channel x. For example, in the register, it is possible

to program the following:

a. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow con-
trol device by programming the FC field in DMAC_CTRLBx.

b. Set up the transfer characteristics, such as:

̶ i. Transfer width for the source in the SRC_WIDTH field.

̶ ii. Transfer width for the destination in the DST_WIDTH field.

̶ v. Incrementing/decrementing or fixed address for source in SRC_INCR field.

̶ vi. Incrementing/decrementing or fixed address for destination DST_INCR field.

3. Write the channel configuration information into DMAC_CFGx for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and destination
peripherals. This is not required for memory. This step requires programming the
SRC_H2SEL/DST_H2SEL bits, respectively. Writing a ‘1’ activates the hardware handshaking inter-
face to handle source/destination requests for the specific channel. Writing a ‘0’ activates the
software handshaking interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination peripheral, assign the
handshaking interface to the source and destination peripheral. This requires programming the
SRC_PER and DST_PER bits, respectively.

4. Make sure that the LLI.DMAC_CTRLBx register locations of all LLI entries in memory (except the last) are

set as shown in Row 4 of Table 25-3 on page 473. The LLI.DMAC_CTRLBx register of the last Linked List

Item must be set as described in Row 1 of Table 25-3. Figure 25-4 on page 473 shows a Linked List

example with two list items.

5. Make sure that the LLI.DMAC_DSCRx register locations of all LLI entries in memory (except the last) are

non-zero and point to the base address of the next Linked List Item.

6. Make sure that the LLI.DMAC_SADDRx/LLI.DMAC_DADDRx register locations of all LLI entries in memory

point to the start source/destination buffer address preceding that LLI fetch.

7. Make sure that the LLI.DMAC_CTRLAx.DONE bit of the LLI.DMAC_CTRLAx register locations of all LLI

entries in memory are cleared.

8. Clear any pending interrupts on the channel from the previous DMAC transfer by reading DMAC_EBCISR.

9. Program DMAC_CTRLBx and DMAC_CFGx according to Row 4 as shown in Table 25-3 on page 473.

10. Program DMAC_DSCRx with DMAC_DSCRx(0), the pointer to the first Linked List item.

11. Finally, enable the channel by setting the DMAC_CHER.ENAx bit, where x is the channel number. The

transfer is performed.

12. The DMAC fetches the first LLI from the location pointed to by DMAC_DSCRx(0).

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

476

Note: The LLI.DMAC_SADDRx, LLI.DMAC_DADDRx, LLI.DMAC_DSCRx, LLI.DMAC_CTRLAx and LLI.DMAC_CTRLBx

registers are fetched. The DMAC automatically reprograms the DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx,

DMAC_CTRLBx and DMAC_CTRLAx channel registers from the DMAC_DSCRx(0).

13. Source and destination request single and chunk DMAC transactions to transfer the buffer of data (assuming

non-memory peripheral). The DMAC acknowledges at the completion of every transaction (chunk and

single) in the buffer and carries out the buffer transfer.

14. Once the buffer of data is transferred, the DMAC_CTRLAx register is written out to system memory at the

same location and on the same layer where it was originally fetched, that is, the location of the

DMAC_CTRLAx register of the linked list item fetched prior to the start of the buffer transfer. Only

DMAC_CTRLAx register is written out because only the DMAC_CTRLAx.BTSIZE and

DMAC_CTRLAX.DONE bits have been updated by DMAC hardware. Additionally, the

DMAC_CTRLAx.DONE bit is asserted when the buffer transfer has completed.

Note: Do not poll the DMAC_CTRLAx.DONE bit in the DMAC memory map. Instead, poll the LLI.DMAC_CTRLAx.DONE bit

in the LLI for that buffer. If the poll LLI.DMAC_CTRLAx.DONE bit is asserted, then this buffer transfer has completed.

This LLI.DMAC_CTRLAx.DONE bit was cleared at the start of the transfer.

15. The DMAC does not wait for the buffer interrupt to be cleared, but continues fetching the next LLI from the

memory location pointed to by current DMAC_DSCRx and automatically reprograms the DMAC_SADDRx,

DMAC_DADDRx, DMAC_DSCRx, DMAC_CTRLAx and DMAC_CTRLBx channel registers. The DMAC

transfer continues until the DMAC determines that the DMAC_CTRLBx and DMAC_DSCRx registers at the

end of a buffer transfer match as described in Row 1 of Table 25-3 on page 473. The DMAC then knows that

the previous buffer transferred was the last buffer in the DMAC transfer. The DMAC transfer might look like

that shown in Figure 25-5 on page 476.

Figure 25-5. Multi-buffer with Linked List Address for Source and Destination

If the user needs to execute a DMAC transfer where the source and destination address are contiguous but the

amount of data to be transferred is greater than the maximum buffer size DMAC_CTRLAx.BTSIZE, then this can

be achieved using the type of multi-buffer transfer as shown in Figure 25-6 on page 477.

SADDR(2)

SADDR(1)

SADDR(0)

DADDR(2)

DADDR(1)

DADDR(0)

Buffer 2

Buffer 1

Buffer 0 Buffer 0

Buffer 1

Buffer 2

Address of

Source Layer

Address of

Destination Layer

Source Buffers Destination Buffers

477SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 25-6. Multi-buffer with Linked Address for Source and Destination Buffers are Contiguous

The DMAC transfer flow is shown in Figure 25-7 on page 478.

SADDR(2)

SADDR(1)

SADDR(0)

DADDR(2)

DADDR(1)

DADDR(0)

Buffer 2

Buffer 1

Buffer 0

Buffer 0

Buffer 1

Buffer 2

Address of

Source Layer
Address of

Destination Layer

Source Buffers Destination Buffers

SADDR(3)

Buffer 2

DADDR(3)

Buffer 2

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

478

Figure 25-7. DMAC Transfer Flow for Source and Destination Linked List Address

Multi-buffer DMAC Transfer with Linked List for Source and Contiguous Destination Address (Row 2)

1. Read the DMAC_CHSR to choose a free (disabled) channel.

2. Set up the linked list in memory. Write the control information in the LLI.DMAC_CTRLAx and

LLI.DMAC_CTRLBx register location of the buffer descriptor for each LLI in memory for channel x. For

example, in the register, it is possible to program the following:

Channel enabled by

software

LLI Fetch

Hardware reprograms

SADDRx, DADDRx, CTRLA/Bx, DSCRx

DMAC buffer transfer

Writeback of DMAC_CTRLAx

register in system memory

Is DMAC in

Row 1 of

DMAC State Machine Table?

Channel disabled by

hardware

Chained Buffer Transfer Completed

Interrupt generated here

DMAC Chained Buffer Transfer

Completed Interrupt generated here

yes

no

479SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

a. Set up the transfer type (memory or non-memory peripheral for source and destination) and flow con-
trol device by programming the FC field in DMAC_CTRLBx.

b. Set up the transfer characteristics, such as:

̶ i. Transfer width for the source in the SRC_WIDTH field.

̶ ii. Transfer width for the destination in the DST_WIDTH field.

̶ v. Incrementing/decrementing or fixed address for source in SRC_INCR field.

̶ vi. Incrementing/decrementing or fixed address for destination DST_INCR field.

3. Write the starting destination address in DMAC_DADDRx for channel x.

Note: The values in the LLI.DMAC_DADDRx register location of each Linked List Item (LLI) in memory, although fetched

during an LLI fetch, are not used.

4. Write the channel configuration information into DMAC_CFGx for channel x.

a. Designate the handshaking interface type (hardware or software) for the source and destination
peripherals. This is not required for memory. This step requires programming the
SRC_H2SEL/DST_H2SEL bits, respectively. Writing a ‘1’ activates the hardware handshaking inter-
face to handle source/destination requests for the specific channel. Writing a ‘0’ activates the
software handshaking interface to handle source/destination requests.

b. If the hardware handshaking interface is activated for the source or destination peripheral, assign the
handshaking interface to the source and destination peripherals. This requires programming the
SRC_PER and DST_PER bits, respectively.

5. Make sure that all LLI.DMAC_CTRLBx register locations of the LLI (except the last) are set as shown in Row

2 of Table 25-3 on page 473, while the LLI.DMAC_CTRLBx register of the last Linked List item must be set

as described in Row 1 of Table 25-3. Figure 25-4 on page 473 shows a Linked List example with two list

items.

6. Make sure that the LLI.DMAC_DSCRx register locations of all LLIs in memory (except the last) are non-zero

and point to the next Linked List Item.

7. Make sure that the LLI.DMAC_SADDRx register locations of all LLIs in memory point to the start source

buffer address proceeding that LLI fetch.

8. Make sure that the LLI.DMAC_CTRLAx.DONE bit of the LLI.DMAC_CTRLAx register locations of all LLIs in

memory is cleared.

9. Clear any pending interrupts on the channel from the previous DMAC transfer by reading the interrupt status

register.

10. Program DMAC_CTRLAx, DMAC_CTRLBx and DMAC_CFGx according to Row 2 as shown in Table 25-3

on page 473.

11. Program DMAC_DSCRx with DMAC_DSCRx(0), the pointer to the first Linked List item.

12. Finally, enable the channel by setting the DMAC_CHER.ENAx bit. The transfer is performed. Make sure that

the ENABLE bit (register bit 0) in DMAC_EN is set.

13. The DMAC fetches the first LLI from the location pointed to by DMAC_DSCRx(0).

Note: The LLI.DMAC_SADDRx, LLI.DMAC_DADDRx, LLI.DMAC_DSCRx and LLI.DMAC_CTRLA/Bx registers are fetched.

The LLI.DMAC_DADDRx register location of the LLI, although fetched, is not used. The DMAC_DADDRx register in

the DMAC remains unchanged.

14. Source and destination requests single and chunk DMAC transactions to transfer the buffer of data

(assuming non-memory peripherals). The DMAC acknowledges at the completion of every transaction

(chunk and single) in the buffer and carries out the buffer transfer.

15. Once the buffer of data is transferred, the DMAC_CTRLAx register is written out to the system memory at

the same location and on the same layer where it was originally fetched, that is, the location of the

DMAC_CTRLAx register of the linked list item fetched prior to the start of the buffer transfer. Only

DMAC_CTRLAx register is written out because only the DMAC_CTRLAx.BTSIZE and

DMAC_CTRLAX.DONE fields have been updated by DMAC hardware. Additionally, the

DMAC_CTRLAx.DONE bit is asserted when the buffer transfer has completed.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

480

Note: Do not poll the DMAC_CTRLAx.DONE bit in the DMAC memory map. Instead, poll the LLI.DMAC_CTRLAx.DONE bit

in the LLI for that buffer. If the poll LLI.DMAC_CTRLAx.DONE bit is asserted, then this buffer transfer has completed.

This LLI.DMAC_CTRLAx.DONE bit was cleared at the start of the transfer.

16. The DMAC does not wait for the buffer interrupt to be cleared, but continues and fetches the next LLI from

the memory location pointed to by the current DMAC_DSCRx register, then automatically reprograms the

DMAC_SADDRx, DMAC_CTRLAx, DMAC_CTRLBx and DMAC_DSCRx channel registers.

DMAC_DADDRx is left unchanged. The DMAC transfer continues until the DMAC samples the

DMAC_CTRLAx, DMAC_CTRLBx and DMAC_DSCRx registers at the end of a buffer transfer match that

described in Row 1 of Table 25-3 on page 473. The DMAC then knows that the previous buffer transferred

was the last buffer in the DMAC transfer.

The DMAC transfer might look like that shown in Figure 25-8. Note that the destination address is decrementing.

Figure 25-8. DMAC Transfer with Linked List Source Address and Contiguous Destination Address

The DMAC transfer flow is shown in Figure 25-9 on page 481.

SADDR(2)

SADDR(1)

SADDR(0)

DADDR(2)

DADDR(1)

DADDR(0)

Buffer 2

Buffer 1

Buffer 0

Buffer 0

Buffer 1

Buffer 2

Address of

Source Layer
Address of

Destination Layer

Source Buffers Destination Buffers

481SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 25-9. DMAC Transfer Flow for Linked List Source Address and Contiguous Destination Address

25.6.6 Disabling a Channel Prior to Transfer Completion

Under normal operation, the software enables a channel by setting the DMAC_CHER.ENAx bit, and the hardware

disables a channel on transfer completion by clearing the DMAC_CHSR.ENAx bit.

The recommended way for software to disable a channel without losing data is to use the SUSPx bit in conjunction

with the EMPTx bit in the DMAC_CHSR.

Channel enabled by

software

LLI Fetch

Hardware reprograms

SADDRx, CTRLAx,CTRLBx, DSCRx

DMAC buffer transfer

Writeback of control

information of LLI

Is DMAC in

Row 1 ?

Channel disabled by

hardware

Buffer Transfer Completed

Interrupt generated here

DMAC Chained Buffer Transfer

Completed Interrupt generated here
yes

no

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

482

1. If the software chooses to disable a channel n prior to the DMAC transfer completion, then it can set the
DMAC_CHER.SUSPx bit to instruct the DMAC to halt all transfers from the source peripheral. Therefore,
the channel FIFO receives no new data.

2. The software can now poll the DMAC_CHSR.EMPTx bit until it indicates that the channel n FIFO is empty,

where n is the channel number.

3. The DMAC_CHER.ENAx bit can then be cleared by software once the channel n FIFO is empty, where n is

the channel number.

When DMAC_CTRLAx.SRC_WIDTH is less than DMAC_CTRLAx.DST_WIDTH and the DMAC_CHSRx.SUSPx

bit is high, the DMAC_CHSRx.EMPTx is asserted once the contents of the FIFO does not permit a single word of

DMAC_CTRLAx.DST_WIDTH to be formed. However, there may still be data in the channel FIFO but not enough

to form a single transfer of DMAC_CTRLAx.DST_WIDTH width. In this configuration, once the channel is disabled,

the remaining data in the channel FIFO are not transferred to the destination peripheral. It is permitted to remove

the channel from the suspension state by by setting the DMAC_CHDR.RESx bit. The DMAC transfer completes in

the normal manner. n defines the channel number.

Note: If a channel is disabled by software, an active single or chunk transaction is not guaranteed to receive an

acknowledgement.

25.6.6.1 Abnormal Transfer Termination

A DMAC transfer may be terminated abruptly by software by clearing the channel enable bit, DMAC_CHER.ENAx,

where x is the channel number. This does not mean that the channel is disabled immediately after the

DMAC_CHSR.ENAx bit is cleared over the APB interface. Consider this as a request to disable the channel. The

DMAC_CHSR.ENAx must be polled and then it must be confirmed that the channel is disabled by reading back 0.

The software may terminate all channels abruptly by clearing the general enable bit in the DMAC Enable Register

(DMAC_EN.ENABLE). Again, this does not mean that all channels are disabled immediately after the

DMAC_EN.ENABLE bit is cleared over the APB slave interface. Consider this as a request to disable all channels.

The DMAC_CHSR.ENABLE must be polled and then it must be confirmed that all channels are disabled by

reading back ‘0’.

Note: If the channel enable bit is cleared while there is data in the channel FIFO, this data is not sent to the destination

peripheral and is not present when the channel is re-enabled. For read sensitive source peripherals, such as a source

FIFO, this data is therefore lost. When the source is not a read sensitive device (i.e., memory), disabling a channel

without waiting for the channel FIFO to empty may be acceptable as the data is available from the source peripheral

upon request and is not lost.

Note: If a channel is disabled by software, an active single or chunk transaction is not guaranteed to receive an

acknowledgement.

25.6.7 Register Write Protection

To prevent any single software error from corrupting DMAC behavior, certain registers in the address space can

be write-protected by setting the WPEN bit in the “DMAC Write Protection Mode Register” (DMAC_WPMR).

If a write access to a write-protected register is detected, the WPVS bit in the “DMAC Write Protection Status

Register” (DMAC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been

attempted.

The WPVS bit is automatically cleared after reading the DMAC_WPSR.

The following registers can be write-protected:

 “DMAC Global Configuration Register”

 “DMAC Enable Register”

 “DMAC Channel x [x = 0..3] Source Address Register”

 “DMAC Channel x [x = 0..3] Destination Address Register”

 “DMAC Channel x [x = 0..3] Descriptor Address Register”

 “DMAC Channel x [x = 0..3] Control A Register”

483SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 “DMAC Channel x [x = 0..3] Control B Register”

 “DMAC Channel x [x = 0..3] Configuration Register”

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

484

25.7 DMAC Software Requirements

 There must not be any write operation to channel registers in an active channel after the channel enable is

made HIGH. If any channel parameters must be reprogrammed, this can only be done after disabling the

DMAC channel.

 The channel registers DMAC_SADDRx and DMAC_DADDRx must be programmed with a byte, half-word

and word aligned address depending on the source width and destination width.

 After the software disables a channel by writing into the DMAC Channel Handler Disable Register, it must re-

enable the channel only after it has polled a ‘0’ in the DMAC Channel Handler Status Register. This is

because the current AHB Burst must terminate properly.

 If the value of field DMAC_CTRLAx.BTSIZE is configured to zero and the DMAC has been defined as the

flow controller, the channel is automatically disabled.

 Multiple transfers involving the same peripheral must not be programmed and enabled on different channels,

unless this peripheral integrates several hardware handshaking interfaces.

 When a peripheral has been defined as the flow controller, the targeted DMAC channel must be enabled

before the peripheral. If this is not done and the first DMAC request is also the last transfer, the DMAC

channel might miss a Last Transfer Flag.

485SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8 DMA Controller (DMAC) User Interface

Table 25-4. Register Mapping

Offset Register Name Access Reset

0x000 DMAC Global Configuration Register DMAC_GCFG Read/Write 0x10

0x004 DMAC Enable Register DMAC_EN Read/Write 0x0

0x008 DMAC Software Single Request Register DMAC_SREQ Read/Write 0x0

0x00C
DMAC Software Chunk Transfer Request

Register
DMAC_CREQ Read/Write 0x0

0x010 DMAC Software Last Transfer Flag Register DMAC_LAST Read/Write 0x0

0x014 Reserved – – –

0x018

DMAC Error, Chained Buffer Transfer

Completed Interrupt and Buffer Transfer

Completed Interrupt Enable Register

DMAC_EBCIER Write-only –

0x01C

DMAC Error, Chained Buffer Transfer

Completed Interrupt and Buffer Transfer

Completed Interrupt Disable Register

DMAC_EBCIDR Write-only –

0x020

DMAC Error, Chained Buffer Transfer

Completed Interrupt and Buffer transfer

completed Mask Register

DMAC_EBCIMR Read-only 0x0

0x024

DMAC Error, Chained Buffer Transfer

Completed Interrupt and Buffer transfer

completed Status Register

DMAC_EBCISR Read-only 0x0

0x028 DMAC Channel Handler Enable Register DMAC_CHER Write-only –

0x02C DMAC Channel Handler Disable Register DMAC_CHDR Write-only –

0x030 DMAC Channel Handler Status Register DMAC_CHSR Read-only 0x00FF0000

0x034–0x038 Reserved – – –

0x03C+ch_num*(0x28)+(0x0) DMAC Channel Source Address Register DMAC_SADDR Read/Write 0x0

0x03C+ch_num*(0x28)+(0x4) DMAC Channel Destination Address Register DMAC_DADDR Read/Write 0x0

0x03C+ch_num*(0x28)+(0x8) DMAC Channel Descriptor Address Register DMAC_DSCR Read/Write 0x0

0x03C+ch_num*(0x28)+(0xC) DMAC Channel Control A Register DMAC_CTRLA Read/Write 0x0

0x03C+ch_num*(0x28)+(0x10) DMAC Channel Control B Register DMAC_CTRLB Read/Write 0x0

0x03C+ch_num*(0x28)+(0x14) DMAC Channel Configuration Register DMAC_CFG Read/Write 0x01000000

0x03C+ch_num*(0x28)+(0x18) Reserved – – –

0x03C+ch_num*(0x28)+(0x1C) Reserved – – –

0x03C+ch_num*(0x28)+(0x20) Reserved – – –

0x03C+ch_num*(0x28)+(0x24) Reserved – – –

0x1E4 DMAC Write Protection Mode Register DMAC_WPMR Read/Write 0x0

0x1E8 DMAC Write Protection Status Register DMAC_WPSR Read-only 0x0

0x1EC–0x1FC Reserved – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

486

25.8.1 DMAC Global Configuration Register

Name: DMAC_GCFG

Address: 0x400C0000

Access: Read/Write

Note: Bit fields 0, 1, 2, and 3 have a default value of 0. This should not be changed.

This register can only be written if the WPEN bit is cleared in “DMAC Write Protection Mode Register” .

• ARB_CFG: Arbiter Configuration

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – ARB_CFG – – – –

Value Name Description

0 FIXED Fixed priority arbiter (see “Basic Definitions”)

1 ROUND_ROBIN Modified round robin arbiter.

487SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8.2 DMAC Enable Register

Name: DMAC_EN

Address: 0x400C0004

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “DMAC Write Protection Mode Register” .

• ENABLE: General Enable of DMA

0: DMA Controller is disabled.

1: DMA Controller is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – ENABLE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

488

25.8.3 DMAC Software Single Request Register

Name: DMAC_SREQ

Address: 0x400C0008

Access: Read/Write

• DSREQx: Destination Request

Request a destination single transfer on channel i.

• SSREQx: Source Request

Request a source single transfer on channel i.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

DSREQ3 SSREQ3 DSREQ2 SSREQ2 DSREQ1 SSREQ1 DSREQ0 SSREQ0

489SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8.4 DMAC Software Chunk Transfer Request Register

Name: DMAC_CREQ

Address: 0x400C000C

Access: Read/Write

• DCREQx: Destination Chunk Request

Request a destination chunk transfer on channel i.

• SCREQx: Source Chunk Request

Request a source chunk transfer on channel i.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

DCREQ3 SCREQ3 DCREQ2 SCREQ2 DCREQ1 SCREQ1 DCREQ0 SCREQ0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

490

25.8.5 DMAC Software Last Transfer Flag Register

Name: DMAC_LAST

Address: 0x400C0010

Access: Read/Write

• DLASTx: Destination Last

Writing one to DLASTx prior to writing one to DSREQx or DCREQx indicates that this destination request is the last trans-

fer of the buffer.

• SLASTx: Source Last

Writing one to SLASTx prior to writing one to SSREQx or SCREQx indicates that this source request is the last transfer of

the buffer.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

DLAST3 SLAST3 DLAST2 SLAST2 DLAST1 SLAST1 DLAST0 SLAST0

491SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8.6 DMAC Error, Buffer Transfer and Chained Buffer Transfer Interrupt Enable Register

Name: DMAC_EBCIER

Address: 0x400C0018

Access: Write-only

• BTCx: Buffer Transfer Completed [3:0]

Buffer Transfer Completed Interrupt Enable Register. Set the relevant bit in the BTC field to enable the interrupt for channel

i.

• CBTCx: Chained Buffer Transfer Completed [3:0]

Chained Buffer Transfer Completed Interrupt Enable Register. Set the relevant bit in the CBTC field to enable the interrupt

for channel i.

• ERRx: Access Error [3:0]

Access Error Interrupt Enable Register. Set the relevant bit in the ERR field to enable the interrupt for channel i.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – ERR3 ERR2 ERR1 ERR0

15 14 13 12 11 10 9 8

– – – – CBTC3 CBTC2 CBTC1 CBTC0

7 6 5 4 3 2 1 0

– – – – BTC3 BTC2 BTC1 BTC0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

492

25.8.7 DMAC Error, Buffer Transfer and Chained Buffer Transfer Interrupt Disable Register

Name: DMAC_EBCIDR

Address: 0x400C001C

Access: Write-only

• BTCx: Buffer Transfer Completed [3:0]

Buffer transfer completed Disable Interrupt Register. When set, a bit of the BTC field disables the interrupt from the rele-

vant DMAC channel.

• CBTCx: Chained Buffer Transfer Completed [3:0]

Chained Buffer transfer completed Disable Register. When set, a bit of the CBTC field disables the interrupt from the rele-

vant DMAC channel.

• ERRx: Access Error [3:0]

Access Error Interrupt Disable Register. When set, a bit of the ERR field disables the interrupt from the relevant DMAC

channel.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – ERR3 ERR2 ERR1 ERR0

15 14 13 12 11 10 9 8

– – – – CBTC3 CBTC2 CBTC1 CBTC0

7 6 5 4 3 2 1 0

– – – – BTC3 BTC2 BTC1 BTC0

493SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8.8 DMAC Error, Buffer Transfer and Chained Buffer Transfer Interrupt Mask Register

Name: DMAC_EBCIMR

Address: 0x400C0020

Access: Read-only

• BTCx: Buffer Transfer Completed [3:0]

0: Buffer Transfer Completed Interrupt is disabled for channel i.

1: Buffer Transfer Completed Interrupt is enabled for channel i.

• CBTCx: Chained Buffer Transfer Completed [3:0]

0: Chained Buffer Transfer interrupt is disabled for channel i.

1: Chained Buffer Transfer interrupt is enabled for channel i.

• ERRx: Access Error [3:0]

0: Transfer Error Interrupt is disabled for channel i.

1: Transfer Error Interrupt is enabled for channel i.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – ERR3 ERR2 ERR1 ERR0

15 14 13 12 11 10 9 8

– – – – CBTC3 CBTC2 CBTC1 CBTC0

7 6 5 4 3 2 1 0

– – – – BTC3 BTC2 BTC1 BTC0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

494

25.8.9 DMAC Error, Buffer Transfer and Chained Buffer Transfer Status Register

Name: DMAC_EBCISR

Address: 0x400C0024

Access: Read-only

• BTCx: Buffer Transfer Completed [3:0]

When BTC[i] is set, Channel i buffer transfer has terminated.

• CBTCx: Chained Buffer Transfer Completed [3:0]

When CBTC[i] is set, Channel i Chained buffer has terminated. LLI Fetch operation is disabled.

• ERRx: Access Error [3:0]

When ERR[i] is set, Channel i has detected an AHB Read or Write Error Access.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – ERR3 ERR2 ERR1 ERR0

15 14 13 12 11 10 9 8

– – – – CBTC3 CBTC2 CBTC1 CBTC0

7 6 5 4 3 2 1 0

– – – – BTC3 BTC2 BTC1 BTC0

495SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8.10 DMAC Channel Handler Enable Register

Name: DMAC_CHER

Address: 0x400C0028

Access: Write-only

• ENAx: Enable [3:0]

When set, a bit of the ENA field enables the relevant channel.

• SUSPx: Suspend [3:0]

When set, a bit of the SUSP field freezes the relevant channel and its current context.

• KEEPx: Keep on [3:0]

When set, a bit of the KEEP field resumes the current channel from an automatic stall state.

31 30 29 28 27 26 25 24

– – – – KEEP3 KEEP2 KEEP1 KEEP0

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – SUSP3 SUSP2 SUSP1 SUSP0

7 6 5 4 3 2 1 0

– – – – ENA3 ENA2 ENA1 ENA0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

496

25.8.11 DMAC Channel Handler Disable Register

Name: DMAC_CHDR

Address: 0x400C002C

Access: Write-only

• DISx: Disable [3:0]

Write one to this field to disable the relevant DMAC Channel. The content of the FIFO is lost and the current AHB access is

terminated. Software must poll DIS[3:0] field in the DMAC_CHSR register to be sure that the channel is disabled.

• RESx: Resume [3:0]

Write one to this field to resume the channel transfer restoring its context.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – RES3 RES2 RES1 RES0

7 6 5 4 3 2 1 0

– – – – DIS3 DIS2 DIS1 DIS0

497SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8.12 DMAC Channel Handler Status Register

Name: DMAC_CHSR

Address: 0x400C0030

Access: Read-only

• ENAx: Enable [3:0]

A one in any position of this field indicates that the relevant channel is enabled.

• SUSPx: Suspend [3:0]

A one in any position of this field indicates that the channel transfer is suspended.

• EMPTx: Empty [3:0]

A one in any position of this field indicates that the relevant channel is empty.

• STALx: Stalled [3:0]

A one in any position of this field indicates that the relevant channel is stalling.

31 30 29 28 27 26 25 24

– – – – STAL3 STAL2 STAL1 STAL0

23 22 21 20 19 18 17 16

– – – – EMPT3 EMPT2 EMPT1 EMPT0

15 14 13 12 11 10 9 8

– – – – SUSP3 SUSP2 SUSP1 SUSP0

7 6 5 4 3 2 1 0

– – – – ENA3 ENA2 ENA1 ENA0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

498

25.8.13 DMAC Channel x [x = 0..3] Source Address Register

Name: DMAC_SADDRx [x = 0..3]

Address: 0x400C003C [0], 0x400C0064 [1], 0x400C008C [2], 0x400C00B4 [3]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “DMAC Write Protection Mode Register” .

• SADDR: Channel x Source Address

This register must be aligned with the source transfer width.

31 30 29 28 27 26 25 24

SADDR

23 22 21 20 19 18 17 16

SADDR

15 14 13 12 11 10 9 8

SADDR

7 6 5 4 3 2 1 0

SADDR

499SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8.14 DMAC Channel x [x = 0..3] Destination Address Register

Name: DMAC_DADDRx [x = 0..3]

Address: 0x400C0040 [0], 0x400C0068 [1], 0x400C0090 [2], 0x400C00B8 [3]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “DMAC Write Protection Mode Register” .

• DADDR: Channel x Destination Address

This register must be aligned with the destination transfer width.

31 30 29 28 27 26 25 24

DADDR

23 22 21 20 19 18 17 16

DADDR

15 14 13 12 11 10 9 8

DADDR

7 6 5 4 3 2 1 0

DADDR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

500

25.8.15 DMAC Channel x [x = 0..3] Descriptor Address Register

Name: DMAC_DSCRx [x = 0..3]

Address: 0x400C0044 [0], 0x400C006C [1], 0x400C0094 [2], 0x400C00BC [3]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “DMAC Write Protection Mode Register” .

• DSCR: Buffer Transfer Descriptor Address

This address is word aligned.

31 30 29 28 27 26 25 24

DSCR

23 22 21 20 19 18 17 16

DSCR

15 14 13 12 11 10 9 8

DSCR

7 6 5 4 3 2 1 0

DSCR – –

501SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8.16 DMAC Channel x [x = 0..3] Control A Register

Name: DMAC_CTRLAx [x = 0..3]

Address: 0x400C0048 [0], 0x400C0070 [1], 0x400C0098 [2], 0x400C00C0 [3]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “DMAC Write Protection Mode Register” on page 506.

• BTSIZE: Buffer Transfer Size

The transfer size relates to the number of transfers to be performed, that is, for writes it refers to the number of source

width transfers to perform when DMAC is flow controller. For reads, BTSIZE refers to the number of transfers completed on

the Source Interface. When this field is cleared, the DMAC module is automatically disabled when the relevant channel is

enabled.

• SRC_WIDTH: Transfer Width for the Source

• DST_WIDTH: Transfer Width for the Destination

• DONE: Current Descriptor Stop Command and Transfer Completed Memory Indicator

0: The transfer is performed.

1: If SOD bit in DMAC_CFG is set to true, then the DMAC is automatically disabled when an LLI updates the content of this

register.

The DONE bit is written back to memory at the end of the current descriptor transfer.

31 30 29 28 27 26 25 24

DONE – DST_WIDTH – – SRC_WIDTH

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

BTSIZE

7 6 5 4 3 2 1 0

BTSIZE

Value Name Description

00 BYTE The transfer size is set to 8-bit width

01 HALF_WORD The transfer size is set to 16-bit width

1X WORD The transfer size is set to 32-bit width

Value Name Description

00 BYTE The transfer size is set to 8-bit width

01 HALF_WORD The transfer size is set to 16-bit width

1X WORD The transfer size is set to 32-bit width

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

502

25.8.17 DMAC Channel x [x = 0..3] Control B Register

Name: DMAC_CTRLBx [x = 0..3]

Address: 0x400C004C [0], 0x400C0074 [1], 0x400C009C [2], 0x400C00C4 [3]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “DMAC Write Protection Mode Register” .

• SRC_DSCR: Source Address Descriptor

0 (FETCH_FROM_MEM): Source address is updated when the descriptor is fetched from the memory.

1 (FETCH_DISABLE): Buffer Descriptor Fetch operation is disabled for the source.

• DST_DSCR: Destination Address Descriptor

0 (FETCH_FROM_MEM): Destination address is updated when the descriptor is fetched from the memory.

1 (FETCH_DISABLE): Buffer Descriptor Fetch operation is disabled for the destination.

• FC: Flow Control

This field defines which device controls the size of the buffer transfer, also referred to as the Flow Controller.

• SRC_INCR: Incrementing, Decrementing or Fixed Address for the Source

• DST_INCR: Incrementing, Decrementing or Fixed Address for the Destination

31 30 29 28 27 26 25 24

– IEN DST_INCR – – SRC_INCR

23 22 21 20 19 18 17 16

– FC DST_DSCR – – – SRC_DSCR

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

Value Name Description

00 MEM2MEM_DMA_FC Memory-to-Memory Transfer DMAC is flow controller

01 MEM2PER_DMA_FC Memory-to-Peripheral Transfer DMAC is flow controller

10 PER2MEM_DMA_FC Peripheral-to-Memory Transfer DMAC is flow controller

11 PER2PER_DMA_FC Peripheral-to-Peripheral Transfer DMAC is flow controller

Value Name Description

00 INCREMENTING The source address is incremented

01 DECREMENTING The source address is decremented

10 FIXED The source address remains unchanged

Value Name Description

00 INCREMENTING The destination address is incremented

01 DECREMENTING The destination address is decremented

10 FIXED The destination address remains unchanged

503SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• IEN: Interrupt Enable Not

0: When the buffer transfer is completed, the BTCx flag is set in the DMAC_EBCISR. This bit is active low.

1: When the buffer transfer is completed, the BTCx flag is not set.

If this bit is cleared, when the buffer transfer is completed, the BTCx flag is set in the DMAC_EBCISR.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

504

25.8.18 DMAC Channel x [x = 0..3] Configuration Register

Name: DMAC_CFGx [x = 0..3]

Address: 0x400C0050 [0], 0x400C0078 [1], 0x400C00A0 [2], 0x400C00C8 [3]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in “DMAC Write Protection Mode Register” on page 506

• SRC_PER: Source with Peripheral identifier

Channel x Source Request is associated with peripheral identifier coded SRC_PER handshaking interface.

• DST_PER: Destination with Peripheral identifier

Channel x Destination Request is associated with peripheral identifier coded DST_PER handshaking interface.

• SRC_H2SEL: Software or Hardware Selection for the Source

0 (SW): Software handshaking interface is used to trigger a transfer request.

1 (HW): Hardware handshaking interface is used to trigger a transfer request.

• DST_H2SEL: Software or Hardware Selection for the Destination

0 (SW): Software handshaking interface is used to trigger a transfer request.

1 (HW): Hardware handshaking interface is used to trigger a transfer request.

• SOD: Stop On Done

0 (DISABLE): STOP ON DONE disabled, the descriptor fetch operation ignores the DMAC_CTRLAx.DONE bit.

1 (ENABLE): STOP ON DONE activated, the DMAC module is automatically disabled if DMAC_CTRLAx.DONE bit is set.

• LOCK_IF: Interface Lock

0 (DISABLE): Interface Lock capability is disabled

1 (ENABLE): Interface Lock capability is enabled

• LOCK_B: Bus Lock

0 (DISABLE): AHB Bus Locking capability is disabled.

1(ENABLE): AHB Bus Locking capability is enabled.

31 30 29 28 27 26 25 24

– – FIFOCFG – AHB_PROT

23 22 21 20 19 18 17 16

– LOCK_IF_L LOCK_B LOCK_IF – – – SOD

15 14 13 12 11 10 9 8

– – DST_H2SEL – – – SRC_H2SEL –

7 6 5 4 3 2 1 0

DST_PER SRC_PER

505SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• LOCK_IF_L: Master Interface Arbiter Lock

0 (CHUNK): The Master Interface Arbiter is locked by the channel x for a chunk transfer.

1 (BUFFER): The Master Interface Arbiter is locked by the channel x for a buffer transfer.

• AHB_PROT: AHB Protection

AHB_PROT field provides additional information about a bus access and is primarily used to implement some level of

protection.

• FIFOCFG: FIFO Configuration

HPROT[3] HPROT[2] HPROT[1] HPROT[0] Description

1 Data access

AHB_PROT[0]
0: User Access

1: Privileged Access

AHB_PROT[1]
0: Not Bufferable

1: Bufferable

AHB_PROT[2]
0: Not cacheable

1: Cacheable

Value Name Description

00 ALAP_CFG The largest defined length AHB burst is performed on the destination AHB interface.

01 HALF_CFG When half FIFO size is available/filled, a source/destination request is serviced.

10 ASAP_CFG
When there is enough space/data available to perform a single AHB access, then the

request is serviced.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

506

25.8.19 DMAC Write Protection Mode Register

Name: DMAC_WPMR

Address: 0x400C01E4

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the Write Protection if WPKEY corresponds to 0x444D41 (“DMA” in ASCII).

1: Enables the Write Protection if WPKEY corresponds to 0x444D41 (“DMA” in ASCII).

See Section 25.6.7 ”Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x444D41 PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit.

Always reads as 0.

507SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25.8.20 DMAC Write Protection Status Register

Name: DMAC_WPSR

Address: 0x400C01E8

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of the DMAC_WPSR.

1: A write protection violation has occurred since the last read of the DMAC_WPSR. If this violation is an unauthorized

attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

508

26. Peripheral DMA Controller (PDC)

26.1 Description

The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the target memories.

The link between the PDC and a serial peripheral is operated by the AHB to APB bridge.

The user interface of each PDC channel is integrated into the user interface of the peripheral it serves. The user

interface of mono-directional channels (receive-only or transmit-only) contains two 32-bit memory pointers and two

16-bit counters, one set (pointer, counter) for the current transfer and one set (pointer, counter) for the next

transfer. The bidirectional channel user interface contains four 32-bit memory pointers and four 16-bit counters.

Each set (pointer, counter) is used by the current transmit, next transmit, current receive and next receive.

Using the PDC decreases processor overhead by reducing its intervention during the transfer. This lowers

significantly the number of clock cycles required for a data transfer, improving microcontroller performance.

To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and receive signals.

When the programmed data is transferred, an end of transfer interrupt is generated by the peripheral itself.

26.2 Embedded Characteristics

 Performs Transfers to/from APB Communication Serial Peripherals

 Supports Half-duplex and Full-duplex Peripherals

509SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

26.3 Block Diagram

Figure 26-1. Block Diagram

PDCFULL DUPLEX

PERIPHERAL

THR

RHR

PDC Channel A

PDC Channel B

Control

Status & Control
Control

PDC Channel C

HALF DUPLEX

PERIPHERAL

THR

Status & Control

RECEIVE or TRANSMIT

PERIPHERAL

RHR or THR

Control

Control

RHR

PDC Channel D

Status & Control

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

510

26.4 Functional Description

26.4.1 Configuration

The PDC channel user interface enables the user to configure and control data transfers for each channel. The

user interface of each PDC channel is integrated into the associated peripheral user interface.

The user interface of a serial peripheral, whether it is full- or half-duplex, contains four 32-bit pointers (RPR,

RNPR, TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR, TNCR). However, the transmit and

receive parts of each type are programmed differently: the transmit and receive parts of a full-duplex peripheral

can be programmed at the same time, whereas only one part (transmit or receive) of a half-duplex peripheral can

be programmed at a time.

32-bit pointers define the access location in memory for the current and next transfer, whether it is for read

(transmit) or write (receive). 16-bit counters define the size of the current and next transfers. It is possible, at any

moment, to read the number of transfers remaining for each channel.

The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for each channel. The

status for each channel is located in the associated peripheral status register. Transfers can be enabled and/or

disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in the peripheral’s Transfer Control register.

At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These flags are visible in

the peripheral Status register (ENDRX, ENDTX, RXBUFF, and TXBUFE). Refer to Section 26.4.3 and to the

associated peripheral user interface.

The peripheral where a PDC transfer is configured must have its peripheral clock enabled. The peripheral clock

must be also enabled to access the PDC register set associated to this peripheral.

26.4.2 Memory Pointers

Each full-duplex peripheral is connected to the PDC by a receive channel and a transmit channel. Both channels

have 32-bit memory pointers that point to a receive area and to a transmit area, respectively, in the target memory.

Each half-duplex peripheral is connected to the PDC by a bidirectional channel. This channel has two 32-bit

memory pointers, one for current transfer and the other for next transfer. These pointers point to transmit or

receive data depending on the operating mode of the peripheral.

Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented respectively by 1,

2 or 4 bytes.

If a memory pointer address changes in the middle of a transfer, the PDC channel continues operating using the

new address.

26.4.3 Transfer Counters

Each channel has two 16-bit counters, one for the current transfer and the one for the next transfer. These

counters define the size of data to be transferred by the channel. The current transfer counter is decremented first

as the data addressed by the current memory pointer starts to be transferred. When the current transfer counter

reaches zero, the channel checks its next transfer counter. If the value of the next counter is zero, the channel

stops transferring data and sets the appropriate flag. If the next counter value is greater than zero, the values of

the next pointer/next counter are copied into the current pointer/current counter and the channel resumes the

transfer, whereas next pointer/next counter get zero/zero as values.At the end of this transfer, the PDC channel

sets the appropriate flags in the Peripheral Status register.

The following list gives an overview of how status register flags behave depending on the counters’ values:

 ENDRX flag is set when the PDC Receive Counter Register (PERIPH_RCR) reaches zero.

 RXBUFF flag is set when both PERIPH_RCR and the PDC Receive Next Counter Register

(PERIPH_RNCR) reach zero.

511SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 ENDTX flag is set when the PDC Transmit Counter Register (PERIPH_TCR) reaches zero.

 TXBUFE flag is set when both PERIPH_TCR and the PDC Transmit Next Counter Register

(PERIPH_TNCR) reach zero.

These status flags are described in the Transfer Status Register (PERIPH_PTSR).

26.4.4 Data Transfers

The serial peripheral triggers its associated PDC channels’ transfers using transmit enable (TXEN) and receive

enable (RXEN) flags in the transfer control register integrated in the peripheral’s user interface.

When the peripheral receives external data, it sends a Receive Ready signal to its PDC receive channel which

then requests access to the Matrix. When access is granted, the PDC receive channel starts reading the

peripheral Receive Holding register (RHR). The read data are stored in an internal buffer and then written to

memory.

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit channel which then

requests access to the Matrix. When access is granted, the PDC transmit channel reads data from memory and

transfers the data to the Transmit Holding register (THR) of its associated peripheral. The same peripheral sends

data depending on its mechanism.

26.4.5 PDC Flags and Peripheral Status Register

Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the PDC returns flags

to the peripheral. All these flags are only visible in the peripheral’s Status register.

Depending on whether the peripheral is half- or full-duplex, the flags belong to either one single channel or two

different channels.

26.4.5.1 Receive Transfer End

The receive transfer end flag is set when PERIPH_RCR reaches zero and the last data has been transferred to

memory.

This flag is reset by writing a non-zero value to PERIPH_RCR or PERIPH_RNCR.

26.4.5.2 Transmit Transfer End

The transmit transfer end flag is set when PERIPH_TCR reaches zero and the last data has been written to the

peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

26.4.5.3 Receive Buffer Full

The receive buffer full flag is set when PERIPH_RCR reaches zero, with PERIPH_RNCR also set to zero and the

last data transferred to memory.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

26.4.5.4 Transmit Buffer Empty

The transmit buffer empty flag is set when PERIPH_TCR reaches zero, with PERIPH_TNCR also set to zero and

the last data written to peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

512

26.5 Peripheral DMA Controller (PDC) User Interface

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user

depending on the function and the desired peripheral.

Table 26-1. Register Mapping

Offset Register Name Access Reset

0x00 Receive Pointer Register PERIPH(1)_RPR Read/Write 0

0x04 Receive Counter Register PERIPH_RCR Read/Write 0

0x08 Transmit Pointer Register PERIPH_TPR Read/Write 0

0x0C Transmit Counter Register PERIPH_TCR Read/Write 0

0x10 Receive Next Pointer Register PERIPH_RNPR Read/Write 0

0x14 Receive Next Counter Register PERIPH_RNCR Read/Write 0

0x18 Transmit Next Pointer Register PERIPH_TNPR Read/Write 0

0x1C Transmit Next Counter Register PERIPH_TNCR Read/Write 0

0x20 Transfer Control Register PERIPH_PTCR Write-only –

0x24 Transfer Status Register PERIPH_PTSR Read-only 0

513SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

26.5.1 Receive Pointer Register

Name: PERIPH_RPR

Access: Read/Write

• RXPTR: Receive Pointer Register

RXPTR must be set to receive buffer address.

When a half-duplex peripheral is connected to the PDC, RXPTR = TXPTR.

31 30 29 28 27 26 25 24

RXPTR

23 22 21 20 19 18 17 16

RXPTR

15 14 13 12 11 10 9 8
RXPTR

7 6 5 4 3 2 1 0

RXPTR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

514

26.5.2 Receive Counter Register

Name: PERIPH_RCR

Access: Read/Write

• RXCTR: Receive Counter Register

RXCTR must be set to receive buffer size.

When a half-duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0: Stops peripheral data transfer to the receiver.

1–65535: Starts peripheral data transfer if the corresponding channel is active.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
RXCTR

7 6 5 4 3 2 1 0

RXCTR

515SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

26.5.3 Transmit Pointer Register

Name: PERIPH_TPR

Access: Read/Write

• TXPTR: Transmit Counter Register

TXPTR must be set to transmit buffer address.

When a half-duplex peripheral is connected to the PDC, RXPTR = TXPTR.

31 30 29 28 27 26 25 24

TXPTR

23 22 21 20 19 18 17 16

TXPTR

15 14 13 12 11 10 9 8
TXPTR

7 6 5 4 3 2 1 0

TXPTR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

516

26.5.4 Transmit Counter Register

Name: PERIPH_TCR

Access: Read/Write

• TXCTR: Transmit Counter Register

TXCTR must be set to transmit buffer size.

When a half-duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0: Stops peripheral data transfer to the transmitter.

1–65535: Starts peripheral data transfer if the corresponding channel is active.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
TXCTR

7 6 5 4 3 2 1 0

TXCTR

517SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

26.5.5 Receive Next Pointer Register

Name: PERIPH_RNPR

Access: Read/Write

• RXNPTR: Receive Next Pointer

RXNPTR contains the next receive buffer address.

When a half-duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

31 30 29 28 27 26 25 24

RXNPTR

23 22 21 20 19 18 17 16

RXNPTR

15 14 13 12 11 10 9 8
RXNPTR

7 6 5 4 3 2 1 0

RXNPTR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

518

26.5.6 Receive Next Counter Register

Name: PERIPH_RNCR

Access: Read/Write

• RXNCTR: Receive Next Counter

RXNCTR contains the next receive buffer size.

When a half-duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
RXNCTR

7 6 5 4 3 2 1 0

RXNCTR

519SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

26.5.7 Transmit Next Pointer Register

Name: PERIPH_TNPR

Access: Read/Write

• TXNPTR: Transmit Next Pointer

TXNPTR contains the next transmit buffer address.

When a half-duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.

31 30 29 28 27 26 25 24

TXNPTR

23 22 21 20 19 18 17 16

TXNPTR

15 14 13 12 11 10 9 8
TXNPTR

7 6 5 4 3 2 1 0

TXNPTR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

520

26.5.8 Transmit Next Counter Register

Name: PERIPH_TNCR

Access: Read/Write

• TXNCTR: Transmit Counter Next

TXNCTR contains the next transmit buffer size.

When a half-duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
TXNCTR

7 6 5 4 3 2 1 0

TXNCTR

521SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

26.5.9 Transfer Control Register

Name: PERIPH_PTCR

Access: Write-only

• RXTEN: Receiver Transfer Enable

0: No effect.

1: Enables PDC receiver channel requests if RXTDIS is not set.

When a half-duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the

transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half-duplex peripheral.

• RXTDIS: Receiver Transfer Disable

0: No effect.

1: Disables the PDC receiver channel requests.

When a half-duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmit-

ter channel requests.

• TXTEN: Transmitter Transfer Enable

0: No effect.

1: Enables the PDC transmitter channel requests.

When a half-duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not

set. It is forbidden to set both TXTEN and RXTEN for a half-duplex peripheral.

• TXTDIS: Transmitter Transfer Disable

0: No effect.

1: Disables the PDC transmitter channel requests.

When a half-duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver

channel requests.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – TXTDIS TXTEN

7 6 5 4 3 2 1 0

– – – – – – RXTDIS RXTEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

522

26.5.10 Transfer Status Register

Name: PERIPH_PTSR

Access: Read-only

• RXTEN: Receiver Transfer Enable

0: PDC receiver channel requests are disabled.

1: PDC receiver channel requests are enabled.

• TXTEN: Transmitter Transfer Enable

0: PDC transmitter channel requests are disabled.

1: PDC transmitter channel requests are enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – TXTEN

7 6 5 4 3 2 1 0

– – – – – – – RXTEN

523SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27. Static Memory Controller (SMC)

27.1 Description

The External Bus Interface (EBI) is designed to ensure the successful data transfer between several external

devices and the ARM-based microcontroller. The Static Memory Controller (SMC) is part of the EBI.

The SMC handles several types of external memory and peripheral devices, such as SRAM, PSRAM, PROM,

EPROM, EEPROM, LCD Module, NOR Flash and NAND Flash.

The SMC generates the signals that control the access to the external memory devices or peripheral devices. It

has 4 chip selects, a 24-bit address bus, and an 8-bit data bus. Separate read and write control signals allow for

direct memory and peripheral interfacing. Read and write signal waveforms are fully adjustable.

The SMC can manage wait requests from external devices to extend the current access. The SMC is provided with

an automatic Slow clock mode. In Slow clock mode, it switches from user-programmed waveforms to slow-rate

specific waveforms on read and write signals. The SMC supports asynchronous burst read in Page mode access

for page sizes up to 32 bytes.

The external data bus can be scrambled/unscrambled by means of user keys.

27.2 Embedded Characteristics

 Four Chip Selects Available

 16-Mbyte Address Space per Chip Select

 8-bit Data Bus

 Zero Wait State Scrambling/Unscrambling Function with User Key

 Word, Halfword, Byte Transfers

 Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select

 Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select

 Programmable Data Float Time per Chip Select

 External Wait Request

 Automatic Switch to Slow Clock Mode

 Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes

 Register Write Protection

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

524

27.3 I/O Lines Description

27.4 Multiplexed Signals

27.5 Product Dependencies

27.5.1 I/O Lines

The pins used for interfacing the SMC are multiplexed with the PIO lines. The programmer must first program the

PIO controller to assign the SMC pins to their peripheral function. If I/O lines of the SMC are not used by the

application, they can be used for other purposes by the PIO Controller.

Table 27-1. I/O Line Description

Name Description Type Active Level

NCS[3:0] Static Memory Controller Chip Select Lines Output Low

NRD Read Signal Output Low

NWE Write Enable Signal Output Low

A[23:0] Address Bus Output –

D[7:0] Data Bus I/O –

NWAIT External Wait Signal Input Low

NANDCS NAND Flash Chip Select Line Output Low

NANDOE NAND Flash Output Enable Output Low

NANDWE NAND Flash Write Enable Output Low

NANDALE NAND Flash Address Latch Enable Output –

NANDCLE NAND Flash Command Latch Enable Output –

Table 27-2. Static Memory Controller (SMC) Multiplexed Signals

Multiplexed Signals Related Function

A22 NANDCLE NAND Flash Command Latch Enable

A21 NANDALE NAND Flash Address Latch Enable

Table 27-3. I/O Lines

Instance Signal I/O Line Peripheral

SMC A0 PC18 A

SMC A1 PC19 A

SMC A2 PC20 A

SMC A3 PC21 A

SMC A4 PC22 A

SMC A5 PC23 A

SMC A6 PC24 A

SMC A7 PC25 A

SMC A8 PC26 A

SMC A9 PC27 A

525SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.5.2 Power Management

The SMC is clocked through the Power Management Controller (PMC), thus the programmer must first configure

the PMC to enable the SMC clock.

SMC A10 PC28 A

SMC A11 PC29 A

SMC A12 PC30 A

SMC A13 PC31 A

SMC A14 PA18 C

SMC A15 PA19 C

SMC A16 PA20 C

SMC A17 PA0 C

SMC A18 PA1 C

SMC A19 PA23 C

SMC A20 PA24 C

SMC A21/NANDALE PC16 A

SMC A22/NANDCLE PC17 A

SMC A23 PA25 C

SMC D0 PC0 A

SMC D1 PC1 A

SMC D2 PC2 A

SMC D3 PC3 A

SMC D4 PC4 A

SMC D5 PC5 A

SMC D6 PC6 A

SMC D7 PC7 A

SMC NANDOE PC9 A

SMC NANDWE PC10 A

SMC NCS0 PC14 A

SMC NCS1 PC15 A

SMC NCS1 PD18 A

SMC NCS2 PA22 C

SMC NCS3 PC12 A

SMC NCS3 PD19 A

SMC NRD PC11 A

SMC NWAIT PC13 A

SMC NWE PC8 A

Table 27-3. I/O Lines

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

526

27.6 External Memory Mapping

The SMC provides up to 24 address lines, A[23:0]. This allows each chip select line to address up to 16 Mbytes of

memory.

If the physical memory device connected on one chip select is smaller than 16 Mbytes, it wraps around and

appears to be repeated within this space. The SMC correctly handles any valid access to the memory device

within the page (see Figure 27-1).

Figure 27-1. Memory Connections for Four External Devices

27.7 Connection to External Devices

27.7.1 Data Bus Width

The data bus width is 8 bits.

Figure 27-2 shows how to connect a 512-Kbyte × 8-bit memory on NCS2.

Figure 27-2. Memory Connection for an 8-bit Data Bus

NRD

NWE

A[23:0]

D[7:0]

8

Memory Enable

Memory Enable

Memory Enable

Memory Enable

Output Enable

Write Enable

A[23:0]

D[7:0]

NCS3

NCS0

NCS1

NCS2

NCS[0] - NCS[3]

 SMC

24

SMC

A1

NWE

NRD

NCS[2]

A1

Write Enable

Output Enable

Memory Enable

D[7:0] D[7:0]

A[18:2]A[18:2]

A0 A0

527SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.7.2 NAND Flash Support

The SMC integrates circuitry that interfaces to NAND Flash devices.

The NAND Flash logic is driven by the SMC. Configuration is done via the SMC_NFCSx field in the

CCFG_SMCNFCS register in the Bus Matrix. For details on this register, refer to the section “Bus Matrix

(MATRIX)” of this datasheet. The external NAND Flash device is accessed via the address space reserved for the

chip select programmed.

The user can connect up to four NAND Flash devices with separate chip selects.

The NAND Flash logic drives the read and write command signals of the SMC on the NANDOE and NANDWE

signals when the NCSx programmed is active. NANDOE and NANDWE are disabled as soon as the transfer

address fails to lie in the NCSx programmed address space.

Figure 27-3. NAND Flash Signal Multiplexing on SMC Pins

Notes: 1. NCSx is active when CCFG_SMCNFCS.SMC_NFCSx=1.

2. When the NAND Flash logic is activated, (SMC_NFCSx=1), the NWE pin can be used only in Peripheral mode

(NWE function). If the NWE function is not used for other external memories (SRAM, LCD), it must be configured

in one of the following modes:

– PIO Input with pull-up enabled (default state after reset)

– PIO Output set at level 1

The address latch enable and command latch enable signals on the NAND Flash device are driven by address bits

A22 and A21of the address bus. Any bit of the address bus can also be used for this purpose. The command,

address or data words on the data bus of the NAND Flash device use their own addresses within the NCSx

address space (configured in the register CCFG_SMCNFCS in the Bus Matrixe). The chip enable (CE) signal of

the device and the ready/busy (R/B) signals are connected to PIO lines. The CE signal then remains asserted

even when NAND Flash chip select is not selected, preventing the device from returning to Standby mode. The

NANDCS output signal should be used in accordance with the external NAND Flash device type.

Two types of CE behavior exist depending on the NAND Flash device:

 Standard NAND Flash devices require that the CE pin remains asserted low continuously during the read

busy period to prevent the device from returning to Standby mode. Since the SMC asserts the NCSx signal

high, it is necessary to connect the CE pin of the NAND Flash device to a GPIO line, in order to hold it low

during the busy period preceding data read out.

 This restriction has been removed for “CE don’t care” NAND Flash devices. The NCSx signal can be directly

connected to the CE pin of the NAND Flash device.

Figure 27-4 illustrates both topologies: Standard and “CE don’t care” NAND Flash.

SMC

NRD

NWE

NANDOE

NANDWE

NAND Flash Logic

NCSx

NANDWE

NANDOE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

528

Figure 27-4. Standard and “CE don’t care” NAND Flash Application Examples

D[7:0]

ALE

NANDWE

NOE

NWE

A[22:21]

CLE

AD[7:0]

PIO R/B

SMC

CE

NAND Flash

PIO

NCSx Not Connected

NANDOE

D[7:0]

ALE

NANDWE

NOE

NWE

A[22:21]

CLE

AD[7:0]

PIO R/B

SMC

CE

“CE don’t care”
NAND Flash

NCSx

NANDOE

529SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.8 Application Example

27.8.1 Implementation Examples

Hardware configurations are given for illustration only. The user should refer to the manufacturer web site to check

for memory device availability.

For hardware implementation examples, refer to the evaluation kit schematics for this microcontroller, which show

examples of a connection to an LCD module and NAND Flash.

27.8.1.1 8-bit NAND Flash

Hardware Configuration

Software Configuration

Perform the following configuration:

1. Select the chip select used to drive the NAND Flash by setting the bit CCFG_SMCNFCS.SMC_NFCSx.

2. Reserve A21 / A22 for ALE / CLE functions. Address and Command Latches are controlled by setting the

address bits A21 and A22, respectively, during accesses.

3. NANDOE and NANDWE signals are multiplexed with PIO lines. Thus, the dedicated PIOs must be

programmed in Peripheral mode in the PIO controller.

4. Configure a PIO line as an input to manage the Ready/Busy signal.

5. Configure SMC CS3 Setup, Pulse, Cycle and Mode according to NAND Flash timings, the data bus width

and the system bus frequency.

In this example, the NAND Flash is not addressed as a “CE don’t care”. To address it as a “CE don’t care”, connect

NCS3 (if SMC_NFCS3 is set) to the NAND Flash CE.

D6

D0

D3
D4

D2
D1

D5

D7

NANDOE
NANDWE
(ANY PIO)

(ANY PIO)

ALE
CLE

D[0..7]

3V3

3V3

2 Gb
TSOP48 PACKAGE

U1 K9F2G08U0MU1 K9F2G08U0M

WE18

N.C6

VCC 37

CE9

RE8

N.C20

WP19

N.C5

N.C1

N.C2

N.C3

N.C4

N.C21

N.C22

N.C23

N.C24

R/B7

N.C26

N.C 27
N.C 28

I/O0 29

N.C 34
N.C 35

VSS 36

PRE 38
N.C 39

VCC 12

VSS 13

ALE17

N.C11
N.C10

N.C14

N.C15

CLE16

N.C25

N.C 33

I/O1 30

I/O3 32
I/O2 31

N.C 47

N.C 46

N.C 45

I/O7 44
I/O6 43
I/O5 42
I/O4 41

N.C 40

N.C 48R2 10KR2 10K

C2

100NF

C2

100NF

R1 10KR1 10K

C1
100NF
C1
100NF

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

530

27.8.1.2 NOR Flash

Hardware Configuration

Software Configuration

Configure the SMC CS0 Setup, Pulse, Cycle and Mode depending on Flash timings and system bus frequency.

A21

A1

A0

A2
A3
A4
A5
A6
A7
A8

A15

A9

A12
A13

A11
A10

A14

A16

D6

D0

D3
D4

D2
D1

D5

D7

A17

A20

A18
A19

D[0..7]

A[0..21]

NRST
NWE

NCS0
NRD

3V3

3V3
C2
100NF
C2
100NF

C1
100NF
C1
100NF

U1U1

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

A21
A20
A19

WE
RESET

WP

OE
CE
VPP

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

VCCQ

VSS
VSS

VCC

531SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.9 Standard Read and Write Protocols

In the following sections, NCS represents one of the NCS[0..3] chip select lines.

27.9.1 Read Waveforms

The read cycle is shown in Figure 27-5.

The read cycle starts with the address setting on the memory address bus.

Figure 27-5. Standard Read Cycle

27.9.1.1 NRD Waveform

The NRD signal is characterized by a setup timing, a pulse width and a hold timing.

 NRD_SETUP— NRD setup time is defined as the setup of address before the NRD falling edge;

 NRD_PULSE—NRD pulse length is the time between NRD falling edge and NRD rising edge;

 NRD_HOLD—NRD hold time is defined as the hold time of address after the NRD rising edge.

27.9.1.2 NCS Waveform

The NCS signal can be divided into a setup time, pulse length and hold time:

 NCS_RD_SETUP—NCS setup time is defined as the setup time of address before the NCS falling edge.

 NCS_RD_PULSE—NCS pulse length is the time between NCS falling edge and NCS rising edge;

 NCS_RD_HOLD—NCS hold time is defined as the hold time of address after the NCS rising edge.

27.9.1.3 Read Cycle

The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where address is set on

the address bus to the point where address may change. The total read cycle time is defined as:

NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD,

as well as

NRD_CYCLE = NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD

A[23:0]

NCS

NRD_SETUP NRD_PULSE NRD_HOLD

MCK

NRD

D[7:0]

NCS_RD_SETUP NCS_RD_PULSE NCS_RD_HOLD

NRD_CYCLE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

532

All NRD and NCS timings are defined separately for each chip select as an integer number of Master Clock cycles.

The NRD_CYCLE field is common to both the NRD and NCS signals, thus the timing period is of the same

duration.

NRD_CYCLE, NRD_SETUP, and NRD_PULSE implicitly define the NRD_HOLD value as:

NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE

NRD_CYCLE, NCS_RD_SETUP, and NCS_RD_PULSE implicitly define the NCS_RD_HOLD value as:

NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE

27.9.1.4 Null Delay Setup and Hold

If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain active continuously

in case of consecutive read cycles in the same memory (see Figure 27-6).

Figure 27-6. No Setup, No Hold on NRD and NCS Read Signals

27.9.1.5 Null Pulse

Programming a null pulse is not permitted. The pulse must be at least set to 1. A null value leads to unpredictable

behavior.

27.9.2 Read Mode

As NCS and NRD waveforms are defined independently of one other, the SMC needs to know when the read data

is available on the data bus. The SMC does not compare NCS and NRD timings to know which signal rises first.

The READ_MODE bit in the SMC_MODE register of the corresponding chip select indicates which signal of NRD

and NCS controls the read operation.

27.9.2.1 Read is Controlled by NRD (SMC_MODE.READ_MODE = 1):

Figure 27-7 shows the waveforms of a read operation of a typical asynchronous RAM. The read data is available

tPAC C af ter the fal l ing edge of NRD, and turns to ‘Z’ after the r is ing edge of NRD. In this case,

SMC_MODE.READ_MODE must be set to 1 (read is controlled by NRD), to indicate that data is available with the

MCK

NRD_PULSE

NCS_RD_PULSE

NRD_CYCLE

NRD_PULSE NRD_PULSE

NCS_RD_PULSE NCS_RD_PULSE

NRD_CYCLE NRD_CYCLE

A[23:0]

NCS

NRD

D[7:0]

533SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

rising edge of NRD. The SMC samples the read data internally on the rising edge of Master Clock that generates

the rising edge of NRD, whatever the programmed waveform of NCS may be.

Figure 27-7. SMC_MODE.READ_MODE = 1: Data is sampled by SMC before the rising edge of NRD

Data Sampling

tPACC

MCK

A[23:0]

NCS

NRD

D[7:0]

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

534

27.9.2.2 Read is Controlled by NCS (SMC_MODE.READ_MODE = 0)

Figure 27-8 shows the typical read cycle of an LCD module. The read data is valid tPACC after the falling edge of the

NCS signal and remains valid until the rising edge of NCS. Data must be sampled when NCS is raised. In this

case, the SMC_MODE.READ_MODE must be set to 0 (read is controlled by NCS): the SMC internally samples

the data on the rising edge of Master Clock that generates the rising edge of NCS, whatever the programmed

waveform of NRD may be.

Figure 27-8. SMC_MODE.READ_MODE = 0: Data is Sampled by SMC Before the Rising Edge of NCS

Data Sampling

tPACC

MCK

D[7:0]

A[23:0]

NCS

NRD

535SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.9.3 Write Waveforms

The write protocol is similar to the read protocol. It is depicted in Figure 27-9. The write cycle starts with the

address setting on the memory address bus.

27.9.3.1 NWE Waveforms

The NWE signal is characterized by a setup timing, a pulse width and a hold timing.

 NWE_SETUP—the NWE setup time is defined as the setup of address and data before the NWE falling

edge;

 NWE_PULSE—the NWE pulse length is the time between NWE falling edge and NWE rising edge;

 NWE_HOLD—the NWE hold time is defined as the hold time of address and data after the NWE rising edge.

27.9.3.2 NCS Waveforms

The NCS signal waveforms in write operation are not the same that those applied in read operations, but are

separately defined:

 NCS_WR_SETUP—the NCS setup time is defined as the setup time of address before the NCS falling

edge.

 NCS_WR_PULSE—the NCS pulse length is the time between NCS falling edge and NCS rising edge;

 NCS_WR_HOLD—the NCS hold time is defined as the hold time of address after the NCS rising edge.

Figure 27-9. Write Cycle

27.9.3.3 Write Cycle

The write_cycle time is defined as the total duration of the write cycle; that is, from the time where address is set

on the address bus to the point where address may change. The total write cycle time is defined as:

NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD,

as well as

NWE_CYCLE = NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD

A[23:0]

NCS

NWE_SETUP NWE_PULSE NWE_HOLD

MCK

NWE

NCS_WR_SETUP NCS_WR_PULSE NCS_WR_HOLD

NWE_CYCLE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

536

All NWE and NCS (write) timings are defined separately for each chip select as an integer number of Master Clock

cycles. The NWE_CYCLE field is common to both the NWE and NCS signals, thus the timing period is of the same

duration.

NWE_CYCLE, NWE_SETUP, and NWE_PULSE implicitly define the NWE_HOLD value as:

NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE

NWE_CYCLE, NCS_WR_SETUP, and NCS_WR_PULSE implicitly define the NCS_WR_HOLD value as:

NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE

27.9.3.4 Null Delay Setup and Hold

If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active continuously in

case of consecutive write cycles in the same memory (see Figure 27-10). However, for devices that perform write

operations on the rising edge of NWE or NCS, such as SRAM, either a setup or a hold must be programmed.

Figure 27-10. Null Setup and Hold Values of NCS and NWE in Write Cycle

27.9.3.5 Null Pulse

Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to unpredictable

behavior.

27.9.4 Write Mode

The bit WRITE_MODE in the SMC_MODE register of the corresponding chip select indicates which signal controls

the write operation.

27.9.4.1 Write is Controlled by NWE (SMC.MODE.WRITE_MODE = 1):

Figure 27-11 shows the waveforms of a write operation with SMC_MODE.WRITE_MODE set . The data is put on

the bus during the pulse and hold steps of the NWE signal. The internal data buffers are switched to Output mode

after the NWE_SETUP time, and until the end of the write cycle, regardless of the programmed waveform on NCS.

NCS

MCK

NWE

D[7:0]

NWE_PULSE

NCS_WR_PULSE

NWE_CYCLE

NWE_PULSE

NCS_WR_PULSE

NWE_CYCLE

NWE_PULSE

NCS_WR_PULSE

NWE_CYCLE

A[23:0]

537SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 27-11. SMC_MODE.WRITE_MODE = 1. Write Operation is Controlled by NWE

27.9.4.2 Write is Controlled by NCS (SMC.MODE.WRITE_MODE = 0)

Figure 27-12 shows the waveforms of a write operation with SMC_MODE.WRITE_MODE cleared. The data is put

on the bus during the pulse and hold steps of the NCS signal. The internal data buffers are switched to Output

mode after the NCS_WR_SETUP time, and until the end of the write cycle, regardless of the programmed

waveform on NWE.

Figure 27-12. WRITE_MODE = 0. Write Operation is Controlled by NCS

MCK

D[7:0]

NCS

A[23:0]

NWE

MCK

D[7:0]

NCS

NWE

A[23:0]

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

538

27.9.5 Register Write Protection

To prevent any single software error that may corrupt SMC behavior, the registers listed below can be write-

protected by setting the WPEN bit in the SMC Write Protection Mode register (SMC_WPMR).

If a write access in a write-protected register is detected, the WPVS flag in the SMC Write Protection Status

register (SMC_WPSR) is set and the field WPVSRC indicates in which register the write access has been

attempted.

The WPVS flag is automatically cleared after reading the SSMC_WPSR.

The following registers can be write-protected:

 “SMC Setup Register”

 “SMC Pulse Register”

 “SMC Cycle Register”

 “SMC Mode Register”

27.9.6 Coding Timing Parameters

All timing parameters are defined for one chip select and are grouped together in one register according to their

type.

The SMC_SETUP register groups the definition of all setup parameters:

̶ NRD_SETUP

̶ NCS_RD_SETUP

̶ NWE_SETUP

̶ NCS_WR_SETUP

The SMC_PULSE register groups the definition of all pulse parameters:

̶ NRD_PULSE

̶ NCS_RD_PULSE

̶ NWE_PULSE

̶ NCS_WR_PULSE

The SMC_CYCLE register groups the definition of all cycle parameters:

̶ NRD_CYCLE

̶ NWE_CYCLE

Table 27-4 shows how the timing parameters are coded and their permitted range.

Table 27-4. Coding and Range of Timing Parameters

Coded Value Number of Bits Effective Value

Permitted Range

Coded Value Effective Value

setup [5:0] 6 128 × setup[5] + setup[4:0] 0 ≤ 31 0 ≤ 128+31

pulse [6:0] 7 256 × pulse[6] + pulse[5:0] 0 ≤ 63 0 ≤ 256+63

cycle [8:0] 9 256 × cycle[8:7] + cycle[6:0] 0 ≤ 127

0 ≤ 256+127

0 ≤ 512+127

0 ≤ 768+127

539SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.9.7 Reset Values of Timing Parameters

Table 27-5 gives the default value of timing parameters at reset.

27.9.8 Usage Restriction

The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP and PULSE

parameters is larger than the corresponding CYCLE parameter, this leads to unpredictable behavior of the SMC.

 For read operations:

Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the memory

interface because of the propagation delay of theses signals through external logic and pads. If positive

setup and hold values must be verified, then it is strictly recommended to program non-null values so as to

cover possible skews between address, NCS and NRD signals.

 For write operations:

If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address and NCS

signal after the rising edge of NWE. This is true for SMC_MODE.WRITE_MODE = 1 only. See Section

27.11.2 ”Early Read Wait State”.

 For read and write operations:

A null value for pulse parameters is forbidden and may lead to unpredictable behavior.

In read and write cycles, the setup and hold time parameters are defined in reference to the address bus.

For external devices that require setup and hold time between NCS and NRD signals (read), or between

NCS and NWE signals (write), these setup and hold times must be converted into setup and hold times in

reference to the address bus.

27.10 Scrambling/Unscrambling Function

The external data bus can be scrambled to prevent recovery of intellectual property data located in off-chip

memories by means of data analysis at the package pin level of either the microcontroller or the memory device.

The scrambling and unscrambling are performed on-the-fly without additional wait states.

The scrambling/unscrambling function can be enabled or disabled by configuring the CSxSE bits in the SMC Off-

Chip Memory Scrambling Register (SMC_OCMS).

When multiple chip selects are handled, the scrambling function per chip select is configurable using the CSxSE

bits in the SMC_OCMS register.

The scrambling method depends on two user-configurable key registers, SMC_KEY1 and SMC_KEY2. These key

registers cannot be read. They can be written once after a system reset.

The scrambling user key or the seed for key generation must be securely stored in a reliable non-volatile memory

in order to recover data from the off-chip memory. Any data scrambled with a given key cannot be recovered if the

key is lost.

Table 27-5. Reset Values of Timing Parameters

Parameter Reset Value Definition

SMC_SETUP 0x01010101 All setup timings are set to 1.

SMC_PULSE 0x01010101 All pulse timings are set to 1.

SMC_CYCLE 0x00030003
The read and write operations continue for 3 Master Clock cycles and

provide one hold cycle.

WRITE_MODE 1 Write is controlled with NWE.

READ_MODE 1 Read is controlled with NRD.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

540

27.11 Automatic Wait States

Under certain circumstances, the SMC automatically inserts idle cycles between accesses to avoid bus contention

or operation conflict.

27.11.1 Chip Select Wait States

The SMC always inserts an idle cycle between two transfers on separate chip selects. This idle cycle ensures that

there is no bus contention between the de-activation of one device and the activation of the next one.

During chip select wait state, all control lines are turned inactive: NWR, NCS[0..3], NRD lines are all set to 1.

Figure 27-13 illustrates a chip select wait state between access on chip select 0 and chip select 2.

Figure 27-13. Chip Select Wait State between a Read Access on NCS0 and a Write Access on NCS2

27.11.2 Early Read Wait State

In some cases, the SMC inserts a wait state cycle between a write access and a read access to allow time for the

write cycle to end before the subsequent read cycle begins. This wait state is not generated in addition to a chip

select wait state. The early read cycle thus only occurs between a write and read access to the same memory

device (same chip select).

An early read wait state is automatically inserted if at least one of the following conditions is valid:

 if the write controlling signal has no hold time and the read controlling signal has no setup time (Figure 27-

14).

 in NCS Write controlled mode (SMC_MODE.WRITE_MODE = 0), if there is no hold timing on the NCS

signal and the NCS_RD_SETUP parameter is set to 0, regardless of the Read mode (Figure 27-15). The

write operation must end with a NCS rising edge. Without an Early Read Wait State, the write operation

could not complete properly.

 in NWE controlled mode (SMC_MODE.WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD = 0),

the feedback of the write control signal is used to control address, data, and chip select lines. If the external

A[23:0]

NCS0

NRD_CYCLE

Chip Select
Wait State

NWE_CYCLE

MCK

NCS2

NRD

NWE

D[7:0]

Read to Write
Wait State

541SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

write control signal is not inactivated as expected due to load capacitances, an Early Read Wait State is

inserted and address, data and control signals are maintained one more cycle. See Figure 27-16.

Figure 27-14. Early Read Wait State: Write with No Hold Followed by Read with No Setup

Figure 27-15. Early Read Wait State: NCS-controlled write with no hold followed by a read with no NCS setup

write cycle Early Read
wait state

MCK

NRD

NWE

read cycle

no setup

no hold

D[7:0]

A[23:0]

write cycle
(WRITE_MODE = 0)

Early Read
wait state

MCK

NRD

NCS

read cycle

no setupno hold

D[7:0]

A[23:0]

(READ_MODE = 0 or READ_MODE = 1)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

542

Figure 27-16. Early Read Wait State: NWE-controlled write with no hold followed by a read with one set-up cycle

27.11.3 Reload User Configuration Wait State

The user may change any of the configuration parameters by writing the SMC user interface.

When detecting that a new user configuration has been written in the user interface, the SMC inserts a wait state

before starting the next access. This “reload user configuration wait state” is used by the SMC to load the new set

of parameters to apply to next accesses.

The reload configuration wait state is not applied in addition to the chip select wait state. If accesses before and

after re-programming the user interface are made to different devices (chip selects), then one single chip select

wait state is applied.

On the other hand, if accesses before and after writing the user interface are made to the same device, a reload

configuration wait state is inserted, even if the change does not concern the current chip select.

27.11.3.1 User Procedure

To insert a reload configuration wait state, the SMC detects a write access to any SMC_MODE register of the user

interface. If the user only modifies timing registers (SMC_SETUP, SMC_PULSE, SMC_CYCLE registers) in the

user interface, he must validate the modification by writing the SMC_MODE, even if no change was made on the

mode parameters.

The user must not change the configuration parameters of an SMC chip select (Setup, Pulse, Cycle, Mode) if

accesses are performed on this CS during the modification. Any change of the chip select parameters, while

fetching the code from a memory connected on this CS, may lead to unpredictable behavior. The instructions used

to modify the parameters of an SMC chip select can be executed from the internal RAM or from a memory

connected to another CS.

A[25:2]

write cycle
(WRITE_MODE = 1)

Early Read
wait state

MCK

NRD

internal write controlling signal

external write controlling signal
(NWE)

D[7:0]

read cycle

no hold read setup = 1

(READ_MODE = 0 or READ_MODE = 1)

543SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.11.3.2 Slow Clock Mode Transition

A reload configuration wait state is also inserted when the Slow Clock mode is entered or exited, after the end of

the current transfer (see Section 27.14 ”Slow Clock Mode”).

27.11.4 Read to Write Wait State

Due to an internal mechanism, a wait cycle is always inserted between consecutive read and write SMC accesses.

This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states when they are to be

inserted. See Figure 27-13.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

544

27.12 Data Float Wait States

Some memory devices are slow to release the external bus. For such devices, it is necessary to add wait states

(data float wait states) after a read access:

 before starting a read access to a different external memory

 before starting a write access to the same device or to a different external one.

The da ta f l oa t ou tpu t t ime (t D F) f o r each ex te rna l memory dev ice i s p rog rammed in the

SMC_MODE.TDF_CYCLES field for the corresponding chip select. The value of SMC_MODE.TDF_CYCLES

indicates the number of data float wait cycles (between 0 and 15) before the external device releases the bus, and

represents the time allowed for the data output to go to high impedance after the memory is disabled.

Data float wait states do not delay internal memory accesses. Hence, a single access to an external memory with

long tDF will not slow down the execution of a program from internal memory.

The da ta f l oa t wa i t s ta tes management depends on SMC_MODE.READ_MODE and the

SMC_MODE.TDF_MODE fields for the corresponding chip select.

27.12.1 SMC_MODE.READ_MODE

Setting SMC_MODE.READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turning off the

tri-state buffers of the external memory device. The Data Float Period then begins after the rising edge of the NRD

signal and lasts SMC_MODE.TDF_CYCLES MCK cycles.

When the read operation is controlled by the NCS signal (SMC_MODE.READ_MODE = 0), the TDF field gives the

number of MCK cycles during which the data bus remains busy after the rising edge of NCS.

Figure 27-17 illustrates the Data Float Period in NRD-controlled mode (SMC_MODE.READ_MODE =1), assuming

a data float period of 2 cycles (SMC_MODE.TDF_CYCLES = 2). Figure 27-18 shows the read operation when

controlled by NCS (SMC_MODE.READ_MODE = 0) and SMC_MODE.TDF_CYCLES = 3.

Figure 27-17. TDF Period in NRD Controlled Read Access (TDF = 2)

NCS

NRD controlled read operation

tpacc

MCK

NRD

D[7:0]

TDF = 2 clock cycles

A[23:0]

545SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 27-18. TDF Period in NCS Controlled Read Operation (TDF = 3)

27.12.2 TDF Optimization Enabled (SMC_MODE.TDF_MODE = 1)

When SMC_MODE.TDF_MODE is set to 1 (TDF optimization is enabled), the SMC takes advantage of the setup

period of the next access to optimize the number of wait states cycle to insert.

Figure 27-19 shows a read access controlled by NRD, followed by a write access controlled by NWE, on chip

select 0. Chip select 0 has been programmed with:

NRD_HOLD = 4; SMC_MODE.READ_MODE = 1 (NRD controlled)

NWE_SETUP = 3; SMC_MODE.WRITE_MODE = 1 (NWE controlled)

SMC_MODE.TDF_CYCLES = 6; SMC_MODE.TDF_MODE = 1 (optimization enabled).

NCS

TDF = 3 clock cycles

tpacc

MCK

D[7:0]

NCS controlled read operation

A[23:0]

NRD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

546

Figure 27-19. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins

27.12.3 TDF Optimization Disabled (SMC_MODE.TDF_MODE = 0)

When optimization is disabled, TDF wait states are inserted at the end of the read transfer, so that the data float

period is ended when the second access begins. If the hold period of the read1 controlling signal overlaps the data

float period, no additional tdf wait states will be inserted.

Figure 27-20, Figure 27-21 and Figure 27-22 illustrate the cases:

 read access followed by a read access on another chip select,

 read access followed by a write access on another chip select,

 read access followed by a write access on the same chip select,

with no TDF optimization.

NCS0

MCK

NRD

NWE

D[7:0]

Read to Write
Wait State

TDF_CYCLES = 6

read access on NCS0 (NRD controlled)

NRD_HOLD= 4

NWE_SETUP= 3

write access on NCS0 (NWE controlled)

547SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 27-20. TDF Optimization Disabled (TDF Mode = 0): TDF wait states between 2 read accesses on different chip selects

Figure 27-21. TDF Mode = 0: TDF wait states between a read and a write access on different chip selects

TDF_CYCLES = 6

TDF_CYCLES = 6 TDF_MODE = 0

A[23:0]

read1 cycle

Chip Select
Wait State

MCK

read1 controlling signal
(NRD)

read2 controlling signal
(NRD)

D[7:0]

read1 hold = 1

read 2 cycle

read2 setup = 1

5 TDF WAIT STATES

(optimization disabled)

TDF_CYCLES = 4

TDF_CYCLES = 4 TDF_MODE = 0
 (optimization disabled)

A[23:0]

read1 cycle

Chip Select
 Wait State

Read to Write
Wait State

MCK

read1 controlling signal
(NRD)

write2 controlling signal
(NWE)

D[7:0]

read1 hold = 1

write2 cycle

write2 setup = 1

2 TDF WAIT STATES

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

548

Figure 27-22. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select

27.13 External Wait

Any access can be extended by an external device using the NWAIT input signal of the SMC. The

SMC_MODE.EXNW_MODE field on the corresponding chip select must be set either to “10” (Frozen mode) or

“11” (Ready mode). When SMC_MODE.EXNW_MODE is set to “00” (disabled), the NWAIT signal is simply

ignored on the corresponding chip select. The NWAIT signal delays the read or write operation in regards to the

read or write controlling signal, depending on the Read and Write modes of the corresponding chip select.

27.13.1 Restriction

When SMC_MODE.EXNW_MODE is enabled, it is mandatory to program at least one hold cycle for the

read/write controlling signal. For that reason, the NWAIT signal cannot be used in Page mode (Section

27.15 ”Asynchronous Page Mode”), or in Slow clock mode (Section 27.14 ”Slow Clock Mode”).

The NWAIT signal is assumed to be a response of the external device to the read/write request of the SMC. Then

NWAIT is examined by the SMC only in the pulse state of the read or write controlling signal. The assertion of the

NWAIT signal outside the expected period has no impact on SMC behavior.

TDF_CYCLES = 5

TDF_CYCLES = 5
TDF_MODE = 0

(optimization disabled)

A[23:0]

read1 cycle

Read to Write
Wait State

MCK

read1 controlling signal
(NRD)

write2 controlling signal
(NWE)

D[7:0]

read1 hold = 1

write2 cycle

write2 setup = 1

4 TDF WAIT STATES

549SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.13.2 Frozen Mode

When the external device asserts the NWAIT signal (active low), and after internal synchronization of this signal,

the SMC state is frozen, i.e., SMC internal counters are frozen, and all control signals remain unchanged. When

the resynchronized NWAIT signal is deasserted, the SMC completes the access, resuming the access from the

point where it was stopped. See Figure 27-23. This mode must be selected when the external device uses the

NWAIT signal to delay the access and to freeze the SMC.

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure 27-24.

Figure 27-23. Write Access with NWAIT Assertion in Frozen Mode (SMC_MODE.EXNW_MODE = 10)

EXNW_MODE = 10 (Frozen)

WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE = 5

NCS_WR_PULSE = 7

A[23:0]

MCK

NWE

NCS

4 3 2 1 1 1 01

456 3 2 2 2 2 1 0

Write cycle

D[7:0]

NWAIT

FROZEN STATE

internally synchronized

NWAIT signal

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

550

Figure 27-24. Read Access with NWAIT Assertion in Frozen Mode (SMC_MODE.EXNW_MODE = 10)

EXNW_MODE = 10 (Frozen)
READ_MODE = 0 (NCS_controlled)

NRD_PULSE = 2, NRD_HOLD = 6
NCS_RD_PULSE =5, NCS_RD_HOLD =3

A[23:0]

MCK

NCS

NRD 1 0

4 3

4 3

2

5 5 5

2 2 0
2 1 0

2 1 0

1

Read cycle

Assertion is ignored

NWAIT

internally synchronized
NWAIT signal

FROZEN STATE

551SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.13.3 Ready Mode

In Ready mode (SMC_MODE.EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins the

access by down counting the setup and pulse counters of the read/write controlling signal. In the last cycle of the

pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 27-25 and Figure 27-26. After deassertion, the

access is completed: the hold step of the access is performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to indicate its ability

to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the pulse of the

controlling read/write signal, it has no impact on the access length as shown in Figure 27-26.

Figure 27-25. NWAIT Assertion in Write Access: Ready Mode (SMC_MODE.EXNW_MODE = 11)

EXNW_MODE = 11 (Ready mode)
WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE = 5
NCS_WR_PULSE = 7

A[23:0]

MCK

NWE

NCS

4 3 2 1 0 00

456 3 2 1 1 1 0

Write cycle

D[7:0]

NWAIT

internally synchronized
NWAIT signal

Wait STATE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

552

Figure 27-26. NWAIT Assertion in Read Access: Ready Mode (SMC_MODE.EXNW_MODE = 11)

EXNW_MODE = 11(Ready mode)
READ_MODE = 0 (NCS_controlled)

NRD_PULSE = 7
NCS_RD_PULSE =7

A[23:0]

MCK

NCS

NRD

456 3 2 0 0

0

1

456 3 2 11

Read cycle

Assertion is ignored

NWAIT

internally synchronized
NWAIT signal

Wait STATE

Assertion is ignored

553SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.13.4 NWAIT Latency and Read/Write Timings

There may be a latency between the assertion of the read/write controlling signal and the assertion of the NWAIT

signal by the device. The programmed pulse length of the read/write controlling signal must be at least equal to

this latency plus the 2 cycles of resynchronization + one cycle. Otherwise, the SMC may enter the hold state of the

access without detecting the NWAIT signal assertion. This is true in Frozen mode as well as in Ready mode. This

is illustrated on Figure 27-27.

When SMC_MODE.EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the read

and write controlling signal of at least:

Minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle

Figure 27-27. NWAIT Latency

EXNW_MODE = 10 or 11

READ_MODE = 1 (NRD_controlled)

NRD_PULSE = 5

A[23:0]

MCK

NRD

4 3 2 1 0 00

Read cycle

minimal pulse length

NWAIT latency

NWAIT

intenally synchronized

NWAIT signal

WAIT STATE

2 cycle resynchronization

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

554

27.14 Slow Clock Mode

The SMC is able to automatically apply a set of “Slow clock mode” read/write waveforms when an internal signal

driven by the Power Management Controller is asserted because MCK has been turned to a very slow clock rate

(typically 32kHz clock rate). In this mode, the user-programmed waveforms are ignored and the Slow clock mode

waveforms are applied. This mode is provided so as to avoid reprogramming the User Interface with appropriate

waveforms at a very slow clock rate. When activated, the Slow clock mode is active on all chip selects.

27.14.1 Slow Clock Mode Waveforms

Figure 27-28 illustrates the read and write operations in Slow clock mode. They are valid on all chip selects. Table

27-6 indicates the value of read and write parameters in Slow clock mode.

Figure 27-28. Read/Write Cycles in Slow Clock Mode

A[23:0]

NCS

1

MCK

NWE 1

1

NWE_CYCLE = 3

A[23:0]

MCK

NRD

NRD_CYCLE = 2

1

1
NCS

SLOW CLOCK MODE WRITE SLOW CLOCK MODE READ

Table 27-6. Read and Write Timing Parameters in Slow Clock Mode

Read Parameters Duration (cycles) Write Parameters Duration (cycles)

NRD_SETUP 1 NWE_SETUP 1

NRD_PULSE 1 NWE_PULSE 1

NCS_RD_SETUP 0 NCS_WR_SETUP 0

NCS_RD_PULSE 2 NCS_WR_PULSE 3

NRD_CYCLE 2 NWE_CYCLE 3

555SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.14.2 Switching from (to) Slow Clock Mode to (from) Normal Mode

When switching from Slow clock mode to Normal mode, the current Slow clock mode transfer is completed at a

high clock rate, with the set of Slow clock mode parameters.See Figure 27-29. The external device may not be fast

enough to support such timings.

Figure 27-30 illustrates the recommended procedure to switch from one mode to the other.

Figure 27-29. Clock Rate Transition Occurs while the SMC is Performing a Write Operation

Figure 27-30. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow Clock

Mode

A[23:0]

NCS

1

MCK

NWE

11

NWE_CYCLE = 3

SLOW CLOCK MODE WRITE

Slow Clock Mode
internal signal from PMC

1 1 1 2 3 2

NWE_CYCLE = 7

NORMAL MODE WRITE

Slow clock mode
transition is detected:

Reload Configuration Wait State

This write cycle finishes with the slow clock mode set
of parameters after the clock rate transition

SLOW CLOCK MODE WRITE

A[23:0]

NCS

1

MCK

NWE

11

SLOW CLOCK MODE WRITE

Slow Clock Mode

internal signal from PMC

2 3 2

NORMAL MODE WRITEIDLE STATE

Reload Con�guration

Wait State

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

556

27.15 Asynchronous Page Mode

The SMC supports asynchronous burst reads in Page mode, provided that the Page mode is enabled

(SMC_MODE.PMEN =1). The page size must be configured in the SMC_MODE register (PS field) to 4, 8, 16 or 32

bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte page) is always

aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The MSB of data address defines the

address of the page in memory, the LSB of address define the address of the data in the page as detailed in Table

27-7.

With Page mode memory devices, the first access to one page (tpa) takes longer than the subsequent accesses to

the page (tsa) as shown in Figure 27-31. When in Page mode, the SMC enables the user to define different read

timings for the first access within one page, and next accesses within the page.

Note: 1. “A” denotes the address bus of the memory device.

27.15.1 Protocol and Timings in Page Mode

Figure 27-31 shows the NRD and NCS timings in Page mode access.

Figure 27-31. Page Mode Read Protocol (Address MSB and LSB are defined in Table 27-7)

The NRD and NCS signals are held low during all read transfers, whatever the programmed values of the setup

and hold timings in the User Interface may be. Moreover, the NRD and NCS timings are identical. The pulse length

of the first access to the page is defined with the NCS_RD_PULSE field of the SMC_PULSE register. The pulse

length of subsequent accesses within the page are defined using the NRD_PULSE parameter.

Table 27-7. Page Address and Data Address within a Page

Page Size Page Address(1) Data Address in the Page

4 bytes A[23:2] A[1:0]

8 bytes A[23:3] A[2:0]

16 bytes A[23:4] A[3:0]

32 bytes A[23:5] A[4:0]

A[MSB]

NCS

MCK

NRD

D[7:0]

NCS_RD_PULSE NRD_PULSENRD_PULSE

tsatpa tsa

A[LSB]

557SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

In Page mode, the programming of the read timings is described in Table 27-8:

The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE timings as page

access timing (tpa) and the NRD_PULSE for accesses to the page (tsa), even if the programmed value for tpa is

shorter than the programmed value for tsa.

27.15.2 Page Mode Restriction

The Page mode is not compatible with the use of the NWAIT signal. Using the Page mode and the NWAIT signal

may lead to unpredictable behavior.

27.15.3 Sequential and Non-sequential Accesses

If the chip select and the MSB of addresses as defined in Table 27-7 are identical, then the current access lies in

the same page as the previous one, and no page break occurs.

Using this information, all data within the same page, sequential or not sequential, are accessed with a minimum

access time (tsa). Figure 27-32 illustrates access to an 8-bit memory device in Page mode, with 8-byte pages.

Access to D1 causes a page access with a long access time (tpa). Accesses to D3 and D7, though they are not

sequential accesses, only require a short access time (tsa).

If the MSB of addresses are different, the SMC performs the access of a new page. In the same way, if the chip

select is different from the previous access, a page break occurs. If two sequential accesses are made to the Page

mode memory, but separated by an other internal or external peripheral access, a page break occurs on the

second access because the chip select of the device was deasserted between both accesses.

Table 27-8. Programming of Read Timings in Page Mode

Parameter Value Definition

READ_MODE ‘x’ No impact

NCS_RD_SETUP ‘x’ No impact

NCS_RD_PULSE tpa Access time of first access to the page

NRD_SETUP ‘x’ No impact

NRD_PULSE tsa Access time of subsequent accesses in the page

NRD_CYCLE ‘x’ No impact

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

558

Figure 27-32. Access to Non-Sequential Data within the Same Page

A[23:3]

A[2], A1, A0

NCS

MCK

NRD

Page address

A1 A3 A7

D[7:0]

NCS_RD_PULSE NRD_PULSENRD_PULSE

D1 D3 D7

559SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.16 Static Memory Controller (SMC) User Interface

The SMC is programmed using the registers listed in Table 27-9. For each chip select, a set of four registers is used to pro-

gram the parameters of the external device connected on it. In Table 27-9, “CS_number” denotes the chip select number.

16 bytes (0x10) are required per chip select.

Note: The user must confirm the SMC configuration by writing any one of the SMC_MODE registers.

Notes: 1. All unlisted offset values are considered as ‘reserved’.

Table 27-9. Register Mapping

Offset Register Name Access Reset

0x10 x CS_number + 0x00 SMC Setup Register SMC_SETUP Read/Write 0x01010101

0x10 x CS_number + 0x04 SMC Pulse Register SMC_PULSE Read/write 0x01010101

0x10 x CS_number + 0x08 SMC Cycle Register SMC_CYCLE Read/Write 0x00030003

0x10 x CS_number + 0x0C SMC Mode Register SMC_MODE Read/Write 0x10000003

0x80 SMC Off-Chip Memory Scrambling Register SMC_OCMS Read/Write 0x00000000

0x84 SMC Off-Chip Memory Scrambling KEY1 Register SMC_KEY1 Write-once 0x00000000

0x88 SMC Off-Chip Memory Scrambling KEY2 Register SMC_KEY2 Write-once 0x00000000

 0xE4 SMC Write Protection Mode Register SMC_WPMR Read/Write 0x00000000

 0xE8 SMC Write Protection Status Register SMC_WPSR Read-only 0x00000000

 0xEC-0xFC Reserved – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

560

27.16.1 SMC Setup Register

Name: SMC_SETUP[0..3]

Address: 0x40060000 [0], 0x40060010 [1], 0x40060020 [2], 0x40060030 [3]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “SMC Write Protection Mode Register” .

• NWE_SETUP: NWE Setup Length

The NWE signal setup length is defined as:

NWE setup length = (128* NWE_SETUP[5] + NWE_SETUP[4:0]) clock cycles

• NCS_WR_SETUP: NCS Setup Length in WRITE Access

In write access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_WR_SETUP[5] + NCS_WR_SETUP[4:0]) clock cycles

• NRD_SETUP: NRD Setup Length

The NRD signal setup length is defined in clock cycles as:

NRD setup length = (128* NRD_SETUP[5] + NRD_SETUP[4:0]) clock cycles

• NCS_RD_SETUP: NCS Setup Length in READ Access

In read access, the NCS signal setup length is defined as:

NCS setup length = (128* NCS_RD_SETUP[5] + NCS_RD_SETUP[4:0]) clock cycles

31 30 29 28 27 26 25 24

– – NCS_RD_SETUP

23 22 21 20 19 18 17 16

– – NRD_SETUP

15 14 13 12 11 10 9 8

– – NCS_WR_SETUP

7 6 5 4 3 2 1 0

– – NWE_SETUP

561SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.16.2 SMC Pulse Register

Name: SMC_PULSE[0..3]

Address: 0x40060004 [0], 0x40060014 [1], 0x40060024 [2], 0x40060034 [3]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “SMC Write Protection Mode Register” .

• NWE_PULSE: NWE Pulse Length

The NWE signal pulse length is defined as:

NWE pulse length = (256* NWE_PULSE[6] + NWE_PULSE[5:0]) clock cycles

The NWE pulse length must be at least 1 clock cycle.

• NCS_WR_PULSE: NCS Pulse Length in WRITE Access

In write access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles

The NCS pulse length must be at least 1 clock cycle.

• NRD_PULSE: NRD Pulse Length

In standard read access, the NRD signal pulse length is defined in clock cycles as:

NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles

The NRD pulse length must be at least 1 clock cycle.

In Page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.

• NCS_RD_PULSE: NCS Pulse Length in READ Access

In standard read access, the NCS signal pulse length is defined as:

NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles

The NCS pulse length must be at least 1 clock cycle.

In Page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.

31 30 29 28 27 26 25 24

– NCS_RD_PULSE

23 22 21 20 19 18 17 16

– NRD_PULSE

15 14 13 12 11 10 9 8

– NCS_WR_PULSE

7 6 5 4 3 2 1 0

– NWE_PULSE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

562

27.16.3 SMC Cycle Register

Name: SMC_CYCLE[0..3]

Address: 0x40060008 [0], 0x40060018 [1], 0x40060028 [2], 0x40060038 [3]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “SMC Write Protection Mode Register” .

• NWE_CYCLE: Total Write Cycle Length

The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse

and hold steps of the NWE and NCS signals. It is defined as:

Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE[6:0]) clock cycles

• NRD_CYCLE: Total Read Cycle Length

The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse

and hold steps of the NRD and NCS signals. It is defined as:

Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles

31 30 29 28 27 26 25 24

– – – – – – – NRD_CYCLE

23 22 21 20 19 18 17 16

NRD_CYCLE

15 14 13 12 11 10 9 8

– – – – – – – NWE_CYCLE

7 6 5 4 3 2 1 0

NWE_CYCLE

563SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.16.4 SMC Mode Register

Name: SMC_MODE[0..3]

Address: 0x4006000C [0], 0x4006001C [1], 0x4006002C [2], 0x4006003C [3]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “SMC Write Protection Mode Register” .

The user must confirm the SMC configuration by writing any one of the SMC_MODE registers.

• READ_MODE: Read Mode

0: The read operation is controlled by the NCS signal.

– If TDF cycles are programmed, the external bus is marked busy after the rising edge of NCS.

– If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NCS.

1: The read operation is controlled by the NRD signal.

– If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.

– If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NRD.

• WRITE_MODE: Write Mode

0: The write operation is controlled by the NCS signal.

– If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NCS.

1: The write operation is controlled by the NWE signal.

– If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NWE.

• EXNW_MODE: NWAIT Mode

The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of

the read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be pro-

grammed for the read and write controlling signal.

31 30 29 28 27 26 25 24

– – PS – – – PMEN

23 22 21 20 19 18 17 16

– – – TDF_MODE TDF_CYCLES

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – EXNW_MODE – – WRITE_MODE READ_MODE

Value Name Description

0 DISABLED Disabled–The NWAIT input signal is ignored on the corresponding chip select.

1 – Reserved

2 FROZEN
Frozen Mode–If asserted, the NWAIT signal freezes the current read or write cycle. After

deassertion, the read/write cycle is resumed from the point where it was stopped.

3 READY

Ready Mode–The NWAIT signal indicates the availability of the external device at the end

of the pulse of the controlling read or write signal, to complete the access. If high, the

access normally completes. If low, the access is extended until NWAIT returns high.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

564

• TDF_CYCLES: Data Float Time

This field gives the integer number of clock cycles required by the external device to release the data after the rising edge

of the read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDF_CYCLES period. The

external bus cannot be used by another chip select during TDF_CYCLES + 1 cycles. From 0 up to 15 TDF_CYCLES can

be set.

• TDF_MODE: TDF Optimization

0: TDF optimization disabled–the number of TDF wait states is inserted before the next access begins.

1: TDF optimization enabled–the number of TDF wait states is optimized using the setup period of the next read/write

access.

• PMEN: Page Mode Enabled

0: Standard read is applied.

1: Asynchronous burst read in page mode is applied on the corresponding chip select.

• PS: Page Size

If page mode is enabled, this field indicates the size of the page in bytes.

Value Name Description

0 4_BYTE 4-byte page

1 8_BYTE 8-byte page

2 16_BYTE 16-byte page

3 32_BYTE 32-byte page

565SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.16.5 SMC Off-Chip Memory Scrambling Register

Name: SMC_OCMS

Address: 0x40060080

Access: Read/Write

• CSxSE: Chip Select (x = 0 to 3) Scrambling Enable

0: Disable scrambling for CSx.

1: Enable scrambling for CSx.

• SMSE: Static Memory Controller Scrambling Enable

0: Disable scrambling for SMC access.

1: Enable scrambling for SMC access.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – CS3SE CS2SE CS1SE CS0SE

7 6 5 4 3 2 1 0

– – – – – – – SMSE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

566

27.16.6 SMC Off-Chip Memory Scrambling Key1 Register

Name: SMC_KEY1

Address: 0x40060084

Access: Write-once(1)

Note: 1. ‘Write-once’ access indicates that the first write access after a system reset prevents any further modification of the value of

this register.

2.

• KEY1: Off-Chip Memory Scrambling (OCMS) Key Part 1

When off-chip memory scrambling is enabled, KEY1 and KEY2 values determine data scrambling.

31 30 29 28 27 26 25 24

KEY1

23 22 21 20 19 18 17 16

KEY1

15 14 13 12 11 10 9 8

KEY1

7 6 5 4 3 2 1 0

KEY1

567SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.16.7 SMC Off-Chip Memory Scrambling Key2 Register

Name: SMC_KEY2

Address: 0x40060088

Access: Write-once(1)

Notes: 1. ‘Write-once’ access indicates that the first write access after a system reset prevents any further modification of the value of

this register.

2.

• KEY2: Off-Chip Memory Scrambling (OCMS) Key Part 2

When off-chip memory scrambling is enabled, KEY1 and KEY2 values determine data scrambling.

31 30 29 28 27 26 25 24

KEY2

23 22 21 20 19 18 17 16

KEY2

15 14 13 12 11 10 9 8

KEY2

7 6 5 4 3 2 1 0

KEY2

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

568

27.16.8 SMC Write Protection Mode Register

Name: SMC_WPMR

Address: 0x400600E4

Access: Read/Write

• WPEN: Write Protect Enable

0: Disables the write protection if WPKEY corresponds to 0x534D43 (“SMC” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x534D43 (“SMC” in ASCII).

See Section 27.9.5 ”Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

— — — — — — — WPEN

Value Name Description

0x534D43 PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit. Always reads

as 0.

569SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27.16.9 SMC Write Protection Status Register

Name: SMC_WPSR

Address: 0x400600E8

Type: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of the SMC_WPSR register.

1: A write protection violation has occurred since the last read of the SMC_WPSR register. If this violation is an unauthor-

ized attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

— — — — — — — —

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

— — — — — — — WPVS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

570

28. Clock Generator

28.1 Description

The Clock Generator user interface is embedded within the Power Management Controller and is described in

Section 29.18 ”Power Management Controller (PMC) User Interface”. However, the Clock Generator registers are

named CKGR_.

28.2 Embedded Characteristics

The Clock Generator is made up of:

 A low-power 32768 Hz crystal oscillator with Bypass mode

 A low-power embedded 32 kHz (typical) RC oscillator

 A 3 to 20 MHz crystal or ceramic resonator-based oscillator, which can be bypassed.

 A factory-trimmed embedded RC oscillator. Three output frequencies can be selected: 4/8/12 MHz. By

default 4 MHz is selected.

 A 80 to 240 MHz programmable PLL (input from 3 to 32 MHz), capable of providing the clock MCK to the

processor and to the peripherals.

It provides the following clocks:

 SLCK, the slow clock, which is the only permanent clock within the system.

 MAINCK is the output of the main clock oscillator selection: either the crystal or ceramic resonator-based

oscillator or 4/8/12 MHz RC oscillator.

 PLLACK is the output of the divider and 80 to 240 MHz programmable PLL (PLLA).

571SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

28.3 Block Diagram

Figure 28-1. Clock Generator Block Diagram

ControlStatus

MOSCSEL

XIN

XOUT

XIN32

XOUT32

0

1

Embedded

4/8/12 MHz

RC Oscillator

en

32768 Hz

Crystal

Oscillator

or external

oscillator

en

Embedded

32 kHz

RC Oscillator

Clock Generator

XTALSEL (SUPC_CR)

Slow Clock

SLCK

Main Clock

MAINCK

Power

Management

Controller

CKGR_MOR

OSCBYPASS (SUPC_MR)

0

1

PLLA Clock

PLLACK

3–20 MHz

Crystal

or

Ceramic

Resonator

Oscillator

PLLA and
Divider/2

PLLADIV2

PMC_MCKR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

572

28.4 Slow Clock

The Supply Controller embeds a slow clock generator that is supplied with the VDDIO power supply. As soon as

VDDIO is supplied, both the 32768 Hz crystal oscillator and the embedded 32 kHz (typical) RC oscillator are

powered up, but only the RC oscillator is enabled. This allows the slow clock to be valid in a short time (about

100 µs).

The slow clock is generated either by the 32768 Hz crystal oscillator or by the embedded 32 kHz (typical) RC

oscillator.

The selection of the slow clock source is made via the XTALSEL bit in the Supply Controller Control Register

(SUPC_CR).

The OSCSEL bit of the Supply Controller Status Register (SUPC_SR) and the OSCSELS bit of the PMC Status

Register (PMC_SR) report which oscillator is selected as the slow clock source. PMC_SR.OSCSELS informs

when the switch sequence initiated by a new value written in SUPC_CR.XTALSEL is done.

28.4.1 Embedded 32 kHz (typical) RC Oscillator

By default, the embedded 32 kHz (typical) RC oscillator is enabled and selected. The user has to take into account

the possible drifts of this oscillator. More details are given in the section “DC Characteristics”.

This oscillator is disabled by clearing the SUPC_CR.XTALSEL.

28.4.2 32768 Hz Crystal Oscillator

The Clock Generator integrates a low-power 32768 Hz crystal oscillator. To use this oscillator, the XIN32 and

XOUT32 pins must be connected to a 32768 Hz crystal. Two external capacitors must be wired as shown in Figure

28-2. More details are given in the section “DC Characteristics”.

Note that the user is not obliged to use the 32768 Hz crystal oscillator and can use the 32 kHz (typical) RC

oscillator instead.

Figure 28-2. Typical 32768 Hz Crystal Oscillator Connection

The 32768 Hz crystal oscillator provides a more accurate frequency than the 32 kHz (typical) RC oscillator.

To select the 32768 Hz crystal oscillator as the source of the slow clock, the bit SUPC_CR.XTALSEL must be set.

This results in a sequence which first configures the PIO lines multiplexed with XIN32 and XOUT32 to be driven by

the slow clock oscillator, then enables the 32768 Hz crystal oscillator and then disables the 32 kHz (typical) RC

oscillator to save power. The switch of the slow clock source is glitch-free.

Reverting to the 32 kHz (typical) RC oscillator is only possible by shutting down the VDDIO power supply. If the

user does not need the 32768 Hz crystal oscillator, the XIN32 and XOUT32 pins can be left unconnected since by

default the XIN32 and XOUT32 system I/O pins are in PIO input mode with pull-up after reset.

The user can also set the 32768 Hz crystal oscillator in Bypass mode instead of connecting a crystal. In this case,

the user must provide the external clock signal on XIN32. The input characteristics of the XIN32 pin are given in

the section “Electrical Characteristics”. To enter Bypass mode, the OSCBYPASS bit of the Supply Controller Mode

Register (SUPC_MR) must be set prior to setting SUPC_CR.XTALSEL.

XIN32 XOUT32 GND

32768 Hz

Crystal

573SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

28.5 Main Clock

Figure 28-3 shows the main clock block diagram.

Figure 28-3. Main Clock Block Diagram

The main clock has two sources:

 A 4/8/12 MHz RC oscillator with a fast start-up time and that is selected by default to start the system

 A 3 to 20 MHz crystal or ceramic resonator-based oscillator which can be bypassed

28.5.1 Embedded 4/8/12 MHz RC Oscillator

After reset, the 4/8/12 MHz RC oscillator is enabled with the 4 MHz frequency selected. This oscillator is selected

as the source of MAINCK. MAINCK is the default clock selected to start the system.

The 4/8/12 MHz RC oscillator frequencies are calibrated in production except for the lowest frequency which is not

calibrated.

Refer to the section “DC Characteristics”.

XIN

XOUT

MOSCXTEN

MOSCXTST

MOSCXTS

Main Clock

Frequency

Counter

MAINF

SLCK

Slow Clock

3–20 MHz

Crystal

or

Ceramic Resonator

Oscillator

3–20 MHz

Oscillator

Counter

MOSCRCEN

Fast RC

Oscillator

MOSCRCS

MOSCRCF

MOSCRCEN

MOSCXTEN

MOSCSEL

MOSCSEL MOSCSELS

1

0

MAINCK

Main Clock

MAINCK

Main Clock

Ref.

RCMEAS

CKGR_MCFR

CKGR_MOR CKGR_MOR

CKGR_MOR

PMC_SR

PMC_SR

CKGR_MOR

CKGR_MOR

CKGR_MOR

CKGR_MOR

CKGR_MOR

CKGR_MCFR

PMC_SR

CKGR_MCFR

MAINFRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

574

The software can disable or enable the 4/8/12 MHz RC oscillator with the MOSCRCEN bit in the Clock Generator

Main Oscillator Register (CKGR_MOR).

The output frequency of the RC oscillator can be selected among 4/8/12 MHz. The selection is done via the

CKGR_MOR.MOSCRCF field. When changing the frequency selection, the MOSCRCS bit in the Power

Management Controller Status Register (PMC_SR) is automatically cleared and MAINCK is stopped until the

oscillator is stabilized. Once the oscillator is stabilized, MAINCK restarts and PMC_SR.MOSCRCS is set.

When disabling the main clock by clearing the CKGR_MOR.MOSCRCEN bit, the PMC_SR.MOSCRCS bit is

automatically cleared, indicating the main clock is off.

Setting the MOSCRCS bit in the Power Management Controller Interrupt Enable Register (PMC_IER) can trigger

an interrupt to the processor.

When main clock (MAINCK) is not used to drive the processor and frequency monitor (SLCKis used instead), it is

recommended to disable the 4/8/12 MHz RC oscillator and 3 to 20 MHz crystal oscillator.

The CAL4, CAL8 and CAL12 values in the PMC Oscillator Calibration Register (PMC_OCR) are the default values

set by Atmel during production. These values are stored in a specific Flash memory area different from the

memory plane for code. These values cannot be modified by the user and cannot be erased by a Flash erase

command or by the ERASE pin. Values written by the user application in PMC_OCR are reset after each power up

or peripheral reset.

28.5.2 4/8/12 MHz RC Oscillator Clock Frequency Adjustment

It is possible for the user to adjust the 4/8/12 MHz RC oscillator frequency through PMC_OCR. By default,

SEL4/8/12 bits are cleared, so the RC oscillator will be driven with Flash calibration bits which are programmed

during chip production.

The user can adjust the trimming of the 4/8/12 MHz RC oscillator through this register. This can be used to

compensate derating factors such as temperature and voltage, thus providing greater accuracy.

In order to calibrate the RC oscillator lower frequency, SEL bit must be set to 1 and a frequency value must be

configured in the field CAL4. Likewise, SEL8/12 bit must be set to 1 and a trim value must be configured in the field

CAL8/12 in order to adjust the other frequencies of the RC oscillator.

However, the adjustment can not be done to the frequency from which the RC oscillator is operating. For example,

while running from the lower possible frequency, the user can adjust the other frequencies but not the lowest one.

At any time, it is possible to restart a measurement of the frequency of the selected clock via the RCMEAS bit in

Main Clock Frequency Register (CKGR_MCFR). Thus, when CKGR_MCFR.MAINFRDY reads 1, another read

access on CKGR_MCFR provides an image of the frequency on CKGR_MCFR.MAINF field. The software can

calculate the error with an expected frequency and correct the CAL (or CAL8/CAL12) field accordingly. This may

be used to compensate frequency drift due to derating factors such as temperature and/or voltage.

28.5.3 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator

After reset, the 3 to 20 MHz crystal or ceramic resonator-based oscillator is disabled and is not selected as the

source of MAINCK.

As the source of MAINCK, the 3 to 20 MHz crystal or ceramic resonator-based oscillator provides a very precise

frequency. The software enables or disables this oscillator in order to reduce power consumption via

CKGR_MOR.MOSCXTEN.

When disabling this oscillator by clearing the CKGR_MOR.MOSCXTEN, PMC_SR.MOSCXTS is automatically

cleared, indicating the 3 to 20 MHz crystal oscillator is off.

When enabling this oscillator, the user must initiate the start-up time counter. The start-up time depends on the

characteristics of the external device connected to this oscillator.

575SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

When CKGR_MOR.MOSCXTEN and CKGR_MOR.MOSCXTST are written to enable this oscillator, the XIN and

XOUT pins are automatically switched into Oscillator mode. PMC_SR.MOSCXTS is cleared and the counter starts

counting down on the slow clock divided by 8 from the CKGR_MOR.MOSCXTST value. Since the

CKGR_MOR.MOSCXTST value is coded with 8 bits, the maximum start-up time is about 62 ms.

When the start-up time counter reaches 0, PMC_SR.MOSCXTS is set, indicating that the 3 to 20 MHz crystal

oscillator is stabilized. Setting the MOSCXTS bit in the Interrupt Mask Register (PMC_IMR) can trigger an interrupt

to the processor.

28.5.4 Main Clock Source Selection

The user can select the source of the main clock from either the 4/8/12 MHz RC oscillator, the 3 to 20 MHz crystal

oscillator or the ceramic resonator-based oscillator.

The advantage of the 4/8/12 MHz RC oscillator is its fast start-up time. By default, this oscillator is selected to start

the system and when entering Wait mode.

The advantage of the 3 to 20 MHz crystal oscillator or ceramic resonator-based oscillator is its precise frequency.

The selection of the oscillator is made by writing CKGR_MOR.MOSCSEL. The switch of the main clock source is

gl i tch-free, so there is no need to run out of SLCK, PLLACK in order to change the select ion.

PMC_SR.MOSCSELS indicates when the switch sequence is done.

Setting PMC_IMR.MOSCSELS triggers an interrupt to the processor.

Enabling the 4/8/12 MHz RC oscillator (MOSCRCEN = 1) and changing its frequency (MOSCCRF) at the same

time is not allowed.

This oscillator must be enabled first and its frequency changed in a second step.

28.5.5 Bypassing the 3 to 20 MHz Crystal Oscillator

Prior to bypassing the 3 to 20 MHz crystal oscillator, the external clock frequency provided on the XIN pin must be

stable and within the values specified in the XIN Clock characteristics in the section “Electrical Characteristics”.

The sequence is as follows:

1. Ensure that an external clock is connected on XIN.

2. Enable the bypass by writing a 1 to CKGR_MOR.MOSCXTBY.

3. Disable the 3 to 20 MHz crystal oscillator by writing a 0 to bit CKGR_MOR.MOSCXTEN.

28.5.6 Main Clock Frequency Counter

The frequency counter is managed by CKGR_MCFR.

During the measurement period, the frequency counter increments at the main clock speed.

A measurement is started in the following cases:

 When the RCMEAS bit of CKGR_MCFR is written to 1.

 When the 4/8/12 MHz RC oscillator is selected as the source of main clock and when this oscillator becomes

stable (i.e., when the MOSCRCS bit is set)

 When the 3 to 20 MHz crystal or ceramic resonator-based oscillator is selected as the source of main clock

and when this oscillator becomes stable (i.e., when the MOSCXTS bit is set)

 When the main clock source selection is modified

The measurement period ends at the 16th falling edge of slow clock, the MAINFRDY bit in CKGR_MCFR is set

and the counter stops counting. Its value can be read in the MAINF field of CKGR_MCFR and gives the number of

clock cycles during 16 periods of slow clock, so that the frequency of the 4/8/12 MHz RC oscillator or 3 to 20 MHz

crystal or ceramic resonator-based oscillator can be determined.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

576

28.5.7 Switching Main Clock between the RC Oscillator and the Crystal Oscillator

When switching the source of the main clock between the RC oscillator and the crystal oscillator, both oscillators

must be enabled. After completion of the switch, the unused oscillator can be disabled.

If switching to the crystal oscillator, a check must be carried out to ensure that the oscillator is present and that its

frequency is valid. Follow the sequence below:

1. Select the slow clock as MCK by configuring bit CSS = 0 in the Master Clock Register (PMC_MCKR)).

2. Wait for PMC_SR.MCKRDY flag in PMC_SR to rise.

3. Enable the crystal oscillator by setting CKGR_MOR.MOSCXTEN. Configure the CKGR_MOR. MOSCXTST

field with the crystal oscillator start-up time as defined in the section “Electrical Characteristics”.

4. Wait for PMC_SR.MOSCXTS flag to rise, indicating the end of a start-up period of the crystal oscillator.

5. Select the crystal oscillator as the source of the main clock by setting CKGR_MOR.MOSCSEL.

6. Read CKGR_MOR.MOSCSEL until its value equals 1.

7. Check the status of PMC_SR.MOSCSELS flag:

̶ If MOSCSELS = 1: There is a crystal oscillator connected.

a. Initiate a new frequency measurement by setting CKGR_MCFR.RCMEAS.

b. Read CKGR_MCFR.MAINFRDY until its value equals 1.

c. Read CKGR_MCFR.MAINF and compute the value of the crystal frequency.

d. If the MAINF value is valid, the main clock can be switched to the crystal oscillator.

̶ If MOSCSELS = 0:

a. There is no crystal oscillator connected or the crystal oscillator is out of specification.

b. Select the RC oscillator as the source of the main clock by clearing CKGR_MOR.MOSCSEL.

577SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

28.6 Divider and PLL Block

The device features one divider block and one PLL block that permit a wide range of frequencies to be selected on

either the master clock, the processor clock or the programmable clock outputs. A 48 MHz clock signal is provided

to the embedded USB device port regardless of the frequency of the main clock.

Figure 28-4 shows the block diagram of the divider and PLL blocks.

Figure 28-4. Divider and PLL Block Diagram

28.6.1 Divider and Phase Lock Loop Programming

The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is cleared, the output of the

corresponding divider and the PLL output is a continuous signal at level 0. On reset, each DIV field is cleared, thus

the corresponding PLL input clock is stuck at 0.

The PLL (PLLA) allows multiplication of the divider’s outputs. The PLL clock signal has a frequency that depends

on the respective source signal frequency and on the parameters DIV (DIVA) and MUL (MULA). The factor applied

to the source signal frequency is (MUL + 1)/DIV. When MUL is written to 0 or DIV = 0, the PLL is disabled and its

power consumption is saved. Note that there is a delay of two SLCK clock cycles between the disable command

and the real disable of the PLL. Re-enabling the PLL can be performed by writing a value higher than 0 in the MUL

field and DIV higher than 0.

Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK (LOCKA) bit in PMC_SR is

automatically cleared. The values written in the PLLCOUNT field (PLLACOUNT) in CKGR_PLLR (CKGR_PLLAR)

are loaded in the PLL counter. The PLL counter then decrements at the speed of the slow clock until it reaches 0.

At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt to the processor. The user has to load the

number of slow clock cycles required to cover the PLL transient time into the PLLCOUNT field.

The PLL clock can be divided by 2 by writing the PLLDIV2 (PLLADIV2) bit in PMC_MCKR.

To avoid programming the PLL with a multiplication factor that is too high, the user can saturate the multiplication

factor value sent to the PLL by setting the PLLA_MMAX field in PMC_PMMR.

It is prohibited to change the frequency of the 4/8/12 MHz RC oscillator or to change the source of the main clock

in CKGR_MOR while the master clock source is the PLL and the PLL reference clock is the 4/8/12 MHz RC

oscillator.

The user must:

1. Switch on the 4/8/12 MHz RC oscillator by writing a 1 to the CSS field of PMC_MCKR.

2. Change the frequency (MOSCRCF) or oscillator selection (MOSCSEL) in CKGR_MOR.

3. Wait for MOSCRCS (if frequency changes) or MOSCSELS (if oscillator selection changes) in PMC_SR.

4. Disable and then enable the PLL.

5. Wait for the LOCK flag in PMC_SR.

Divider

DIVA

PLLA

MULA

PLLACOUNT

LOCKASLCK

MAINCK PLLACK

PLLA

Counter

CKGR_PLLAR CKGR_PLLAR

CKGR_PLLAR

PMC_SR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

578

6. Switch back to the PLL by writing the appropriate value to the CSS field of PMC_MCKR.

579SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29. Power Management Controller (PMC)

29.1 Description

The Power Management Controller (PMC) optimizes power consumption by controlling all system and user

peripheral clocks. The PMC enables/disables the clock inputs to many of the peripherals and the Cortex-M4

processor.

The Supply Controller selects either the embedded 32 kHz RC oscillator or the 32768 Hz crystal oscillator. The

unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup, the chip runs out of the master clock using the 4/8/12 MHz RC oscillator running at 4 MHz.

The user can trim the 8 and 12 MHz RC oscillator frequencies by software.

29.2 Embedded Characteristics

The PMC provides the following clocks:

 MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating frequency of the

device. It is available to the modules running permanently, such as the Enhanced Embedded Flash

Controller.

 Processor Clock (HCLK) , automatically switched off when entering the processor in Sleep Mode

 Free-running processor Clock (FCLK)

 The Cortex-M4 SysTick external clock

 UDP Clock (UDPCK), required by USB Device Port operations

 Peripheral Clocks, provided to the embedded peripherals (USART, SPI, TWI, TC, etc.) and independently

controllable.

 Programmable Clock Outputs (PCKx), selected from the clock generator outputs to drive the device PCK

pins

The PMC also provides the following features on clocks:

 A 3 to 20 MHz crystal oscillator clock failure detector

 A 32768 Hz crystal oscillator frequency monitor

 A frequency counter on main clock

 An adjustable 4/8/12 MHz RC oscillator frequency

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

580

29.3 Block Diagram

Figure 29-1. General Clock Block Diagram

29.4 Master Clock Controller

The Master Clock Controller provides selection and division of the master clock (MCK). MCK is the source clock of

the peripheral clocks. The master clock is selected from one of the clocks provided by the Clock Generator.

Selecting the slow clock provides a slow clock signal to the whole device. Selecting the main clock saves power

consumption of the PLL. The Master Clock Controller is made up of a clock selector and a prescaler.

The master clock selection is made by writing the CSS field (Clock Source Selection) in PMC_MCKR.

The prescaler supports the division by a power of 2 of the selected clock between 1 and 64, and the division by 3.

The PRES field in PMC_MCKR programs the prescaler.

Each time PMC_MCKR is written to define a new master clock, the MCKRDY bit is cleared in PMC_SR. It reads 0

until the master clock is established. Then, the MCKRDY bit is set and can trigger an interrupt to the processor.

This feature is useful when switching from a high-speed clock to a lower one to inform the software when the

change is actually done.

Main Clock

MAINCK

PLLA Clock

PLLACK

MCK

periph_clk[..]

int

SLCK

MAINCK

PLLACK

Prescaler

/1,/2,/3,/4,/8,

/16,/32,/64

HCLK

Processor

Clock

Controller

 Sleep Mode

Master Clock Controller

 (PMC_MCKR)

Clock Controller

(PMC_PCERx) ON/OFF

Prescaler
/1,/2,/4,/8,

/16,/32,/64
pck[..]

ON/OFF

FCLK

SysTick
Divider

/8

SLCK

MAINCK

PLLACK

Processor Clock

Free Running Clock

Master Clock

Programmable Clock Controller

 (PMC_PCKx)

PRES

PRESCSS

CSS

MCK

USB FS Clock

USB_48M

Divider

/1,/2,/3,...,/16

USB Clock Controller (PMC_USB)

USBDIV

Peripherals

Slow Clock

SCLK

ON/OFF

(P
M

C
_
S

C
E

R
/S

C
D

R
)

3-20 MHz
Crystal

or
Ceramic

Resonator
Oscillator

Embedded

4/8/12 MHz

RC Oscillator

ControlStatus

MOSCSEL

XIN

XOUT

XIN32

XOUT32

0

1

en

32768 Hz

Crystal

Oscillator

or external

oscillator

en

Embedded

32 kHz

RC Oscillator

Clock Generator

XTALSEL (SUPC_CR)

Power

Management

Controller

CKGR_MOR

OSCBYPASS (SUPC_MR)

0

1

PLLA and
Divider/2

PLLADIV2

PMC_MCKR

581SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 29-2. Master Clock Controller

29.5 Processor Clock Controller

The PMC features a Processor Clock Controller (HCLK) that implements the processor Sleep mode. These

processor clock can be disabled by executing the WFI (WaitForInterrupt) or the WFE (WaitForEvent) processor

instruction while the LPM bit is at 0 in the PMC Fast Startup Mode Register (PMC_FSMR).

The Processor Clock Controller HCLK is enabled after a reset and is automatically re-enabled by any enabled

interrupt. The processor Sleep mode is entered by disabling the processor clock, which is automatically re-enabled

by any enabled fast or normal interrupt, or by the reset of the product.

When processor Sleep mode is entered, the current instruction is finished before the clock is stopped, but this

does not prevent data transfers from other masters of the system bus.

29.6 SysTick Clock

The SysTick calibration value is fixed to 15000 which allows the generation of a time base of 1 ms with SysTick

clock to the maximum frequency on MCK divided by 8.

29.7 USB Clock Controller

The user can select the PLLA output as the USB source clock by writing the USBS bit in PMC_USB. If using the

USB, the user must program the PLL to generate an appropriate frequency depending on the USBDIV bit in the

USB Clock Register (PMC_USB).

When the PLL output is stable, i.e., the LOCK bit is set, the USB device FS clock can be enabled by setting the

UDP, bit in the System Clock Enable Register (PMC_SCER). To save power on this peripheral when it is not

used, the user can set the UDP, bit in the System Clock Disable Register (PMC_SCDR). The UDP, bit in the

System Clock Status Register (PMC_SCSR) gives the activity of this clock. The USB device port requires both the

48 MHz signal and the peripheral clock. The USB peripheral clock may be controlled by means of the Master Clock

Controller.

Figure 29-3. USB Clock Controller

SLCK

Master Clock

Prescaler
MCK

PRESCSS

MAINCK

PLLACK

To the Processor

Clock Controller (HCLK)

PMC_MCKR PMC_MCKR

USB

Source

Clock

UDP Clock (UDPCK)

UDP

USBDIV

Divider

/1,/2,/3,.../16

PMC_USB PMC_SCER,

PMC_SDER

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

582

29.8 Peripheral Clock Controller

The PMC controls the clocks of each embedded peripheral by means of the Peripheral Clock Controller. The user

can individually enable and disable the clock on the peripherals.

The user can also enable and disable these clocks by writing Peripheral Clock Enable 0 (PMC_PCER0),

Peripheral Clock Disable 0 (PMC_PCDR0), Peripheral Clock Enable 1 (PMC_PCER1) and Peripheral Clock

Disable 1 (PMC_PCDR1) registers. The status of the peripheral clock activity can be read in the Peripheral Clock

Status Register (PMC_PCSR0) and Peripheral Clock Status Register (PMC_PCSR1).

When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are automatically

disabled after a reset.

To stop a peripheral, it is recommended that the system software wait until the peripheral has executed its last

programmed operation before disabling the clock. This is to avoid data corruption or erroneous behavior of the

system.

The bit number within the Peripheral Clock Control registers (PMC_PCER0–1, PMC_PCDR0–1, and

PMC_PCSR0–1) is the Peripheral Identifier defined at the product level. The bit number corresponds to the

interrupt source number assigned to the peripheral.

29.9 Free-Running Processor Clock

The free-running processor clock (FCLK)used for sampling interrupts and clocking debug blocks ensures that

interrupts can be sampled, and sleep events can be traced, while the processor is sleeping. It is connected to

master clock (MCK).

29.10 Programmable Clock Output Controller

The PMC controls three signals to be output on external pins, PCKx. Each signal can be independently

programmed via the Programmable Clock Registers (PMC_PCKx).

PCKx can be independently selected between the slow clock (SLCK), the main clock (MAINCK), the PLLA clock

(PLLACK),and the master clock (MCK) by writing the CSS field in PMC_PCKx. Each output signal can also be

divided by a power of 2 between 1 and 64 by writing the PRES (Prescaler) field in PMC_PCKx.

Each output signal can be enabled and disabled by writing a 1 to the corresponding PCKx bit of PMC_SCER and

PMC_SCDR, respectively. Status of the active programmable output clocks are given in the PCKx bits of

PMC_SCSR.

The PCKRDYx status flag in PMC_SR indicates that the programmable clock is actually what has been

programmed in the programmable clock registers.

As the Programmable Clock Controller does not manage with glitch prevention when switching clocks, it is strongly

recommended to disable the programmable clock before any configuration change and to re-enable it after the

change is actually performed.

29.11 Fast Startup

At exit from Wait mode, the device allows the processor to restart in less than 10 microseconds only if the C-code

function that manages the Wait mode entry and exit is linked to and executed from on-chip SRAM.

The fast startup time cannot be achieved if the first instruction after an exit is located in the embedded Flash.

If fast startup is not required, or if the first instruction after a Wait mode exit is located in embedded Flash, see

Section 29.12 ”Startup from Embedded Flash”.

583SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Prior to instructing the device to enter Wait mode:

1. Select the 4/8/12 MHz RC oscillator as the master clock source (the CSS field in PMC_MCKR must be
written to 1).

2. Disable the PLL if enabled.

3. Clear the internal wake-up sources.

The system enters Wait mode either by setting the WAITMODE bit in CKGR_MOR, or by executing the

WaitForEvent (WFE) instruction of the processor while the LPM bit is at 1 in PMC_FSMR. Immediately after setting

the WAITMODE bit or using the WFE instruction, wait for the MCKRDY bit to be set in PMC_SR.

A fast startup is enabled upon the detection of a programmed level on one the wake-up input pins WKUPx (up to

16 inputs, see Peripheral Signal Multiplexing on I/O Lines section for exact number) or upon an active alarm from

the RTC, RTT and USB Controller. The polarity of each wake-up input is programmable by writing the PMC Fast

Startup Polarity Register (PMC_FSPR).

WARNING: The duration of the WKUPx pins active level must be greater than four main clock cycles.

The fast startup circuitry, as shown in Figure 29-4, is fully asynchronous and provides a fast startup signal to the

PMC. As soon as the fast startup signal is asserted, the embedded 4/8/12 MHz RC oscillator restarts

automatically.

When entering Wait mode, the embedded Flash can be placed in one of the Low-power modes (Deep-power-

down or Standby modes) depending on the configuration of the FLPM field in the PMC_FSMR. The FLPM field

can be programmed at anytime and its value will be applied to the next Wait mode period.

The power consumption reduction is optimal when configuring 1 (Deep-power-down mode) in field FLPM. If 0 is

programmed (Standby mode), the power consumption is slightly higher than in Deep-power-down mode.

When programming 2 in field FLPM, the Wait mode Flash power consumption is equivalent to that of the Active

mode when there is no read access on the Flash.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

584

Figure 29-4. Fast Startup Circuitry

Each wake-up input pin and alarm can be enabled to generate a fast startup event by setting the corresponding bit

in PMC_FSMR.

The user interface does not provide any status for fast startup, but the user can easily recover this information by

reading the PIO Controller and the status registers of the RTC, RTT and USB Controller.

29.12 Startup from Embedded Flash

The inherent start-up time of the embedded Flash cannot provide a fast startup of the system.

If system fast start-up time is not required, the first instruction after a Wait mode exit can be located in the

embedded Flash. Under these conditions, prior to entering Wait mode, the Flash controller must be programmed

to perform access in 0 wait-state. Refer to the section “Enhanced Embedded Flash Controller (EEFC)”.

The procedure and conditions to enter Wait mode and the circuitry to exit Wait mode are strictly the same as fast

startup (see Section 29.11 ”Fast Startup”).

29.13 Main Clock Failure Detector

The clock failure detector monitors the 3 to 20 MHz crystal oscillator or ceramic resonator-based oscillator to

identify a failure of this oscillator when selected as main clock.

The clock failure detector can be enabled or disabled by bit CFDEN in CKGR_MOR. After a VDDCORE reset, the

detector is disabled. However, if the oscillator is disabled (MOSCXTEN = 0), the detector is also disabled.

To initialize the clock failure detector, follow the sequence below:

1. The 4/8/12 MHz RC oscillator must be selected as the source of MAINCK.

2. MCK must select MAINCK.

fast_restartWKUP15

FSTT15

FSTP15

WKUP1

FSTT1

FSTP1

WKUP0

FSTT0

FSTP0

RTTAL

RTCAL

USBAL

RTT Alarm

RTC Alarm

USB Alarm

585SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

3. Enable the clock failure detector by setting the bit CFDEN.

4. PMC_SR must be read two slow clock cycles after enabling the clock failure detector. The value read is

meaningless.

The clock failure detector is now initialized and MCK can select another clock source by programming the CSS

field in PMC_MCKR.

A failure is detected by means of a counter incrementing on the main clock and detection logic is triggered by the

32 kHz (typical) RC oscillator which is automatically enabled when CFDEN=1.

The counter is cleared when the 32 kHz (typical) RC oscillator clock signal is low and enabled when the signal is

high. Thus, the failure detection time is one RC oscillator period. If, during the high level period of the 32 kHz

(typical) RC oscillator clock signal, less than eight 3 to 20 MHz crystal oscillator clock periods have been counted,

then a failure is reported.

If a failure of the main clock is detected, bit CFDEV in PMC_SR indicates a failure event and generates an

interrupt if the corresponding interrupt source is enabled. The interrupt remains active until a read occurs in

PMC_SR. The user can know the status of the clock failure detection at any time by reading the CFDS bit in

PMC_SR.

Figure 29-5. Clock Failure Detection (Example)

If the 3 to 20 MHz crystal oscillator or ceramic resonator-based oscillator is selected as the source clock of

MAINCK (MOSCSEL in CKGR_MOR = 1), and if MCK source is PLLACK (CSS = 2), a clock failure detection

automatically forces MAINCK to be the source clock for MCK. Then, regardless of the PMC configuration, a clock

failure detection automatically forces the 4/8/12 MHz RC oscillator to be the source clock for MAINCK. If this

oscillator is disabled when a clock failure detection occurs, it is automatically re-enabled by the clock failure

detection mechanism.

It takes two 32 kHz (typical) RC oscillator clock cycles to detect and switch from the 3 to 20 MHz crystal oscillator,

to the 4/8/12 MHz RC oscillator if the source master clock (MCK) is main clock (MAINCK), or three 32 kHz (typical)

RC oscillator clock cycles if the source of MCK is PLLACK.

A clock failure detection activates a fault output that is connected to the Pulse Width Modulator (PWM) Controller.

With this connection, the PWM controller is able to force its outputs and to protect the driven device, if a clock

failure is detected.

The user can know the status of the clock failure detector at any time by reading the FOS bit in PMC_SR.

This fault output remains active until the defect is detected and until it is cleared by the bit FOCLR in the PMC Fault

Output Clear Register (PMC_FOCR).

29.14 32768 Hz Crystal Oscillator Frequency Monitor

The frequency of the 32768 Hz crystal oscillator can be monitored by means of logic driven by the 4/8/12 MHz RC

oscillator known as a reliable clock source. This function is enabled by configuring the XT32KFME bit of

CKGR_MOR. The SEL4/SEL8/SEL12 bits of PMC_OCR must be cleared.

Main Crytal Clock

SLCK

Note: ratio of clock periods is for illustration purposes only

CDFEV

CDFS

Read PMC_SR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

586

An error flag (XT32KERR in PMC_SR) is asserted when the 32768 Hz crystal oscillator frequency is out of the

±10% nominal frequency value (i.e., 32768 Hz). The error flag can be cleared only if the slow clock frequency

monitoring is disabled.

The monitored clock frequency is declared invalid if at least four consecutive clock period measurement results are

over the nominal period ±10%.

Due to the possible frequency variation of the embedded 4/8/12 MHz RC oscillator acting as reference clock for

the monitor logic, any 32768 Hz crystal oscillator frequency deviation over ±10% of the nominal frequency is

systematically reported as an error by the XT32KERR bit in PMC_SR. Between -1% and -10% and +1% and

+10%, the error is not systematically reported.

Thus only a crystal running at 32768 Hz frequency ensures that the error flag will not be asserted. The permitted

drift of the crystal is 10000 ppm (1%), which allows any standard crystal to be used.

If the 4/8/12 MHz RC frequency needs to be changed while the slow clock frequency monitor is operating, the

monitoring must be stopped prior to changing the 4/8/12 MHz RC frequency. It can then be re-enabled as soon as

MOSCRCS is set in PMC_SR.

The error flag can be defined as an interrupt source of the PMC by setting the XT32KERR bit of PMC_IER.

29.15 Programming Sequence

1. If the 3 to 20 MHz crystal oscillator is not required, the PLL and divider can be directly configured (Step

6.) else this oscillator must be started (Step 2.).

2. Enable the 3 to 20 MHz crystal oscillator by setting the MOSCXTEN field in CKGR_MOR:

The user can define a start-up time. This is done by writing a value in the MOSCXTST field in CKGR_MOR.

Once this register has been correctly configured, the user must wait for MOSCXTS field in PMC_SR to be

set. This is done either by polling MOSCXTS in PMC_SR, or by waiting for the interrupt line to be raised if

the associated interrupt source (MOSCXTS) has been enabled in PMC_IER.

3. Switch the MAINCK to the 3 to 20 MHz crystal oscillator by setting MOSCSEL in CKGR_MOR.

4. Wait for the MOSCSELS to be set in PMC_SR to ensure the switch is complete.

5. Check the main clock frequency:

This main clock frequency can be measured via CKGR_MCFR.

Read CKGR_MCFR until the MAINFRDY field is set, after which the user can read the MAINF field in

CKGR_MCFR by performing an additional read. This provides the number of main clock cycles that have

been counted during a period of 16 slow clock cycles.

If MAINF = 0, switch the MAINCK to the 4/8/12 MHz RC Oscillator by clearing MOSCSEL in CKGR_MOR. If

MAINF ≠ 0, proceed to Step 6.

6. Set PLLx and Divider (if not required, proceed to Step 7.):

In the names PLLx, DIVx, MULx, LOCKx, PLLxCOUNT, and CKGR_PLLxR, ‘x’ represents A.

All parameters needed to configure PLLx and the divider are located in CKGR_PLLxR.

The DIVx field is used to control the divider itself. This parameter can be programmed between 0 and 127.

Divider output is divider input divided by DIVx parameter. By default, DIVx field is cleared which means that

the divider and PLLx are turned off.

The MULx field is the PLLx multiplier factor. This parameter can be programmed between 0 and 80. If MULx

is cleared, PLLx will be turned off, otherwise the PLLx output frequency is PLLx input frequency multiplied by

(MULx + 1).

When the 4/8/12 MHz RC oscillator frequency is 4 MHz, the accuracy of the measurement is

±40% as this frequency is not trimmed during production. Therefore, ±10% accuracy is

obtained only if the RC oscillator frequency is configured for 8 or 12 MHz.

587SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The PLLxCOUNT field specifies the number of slow clock cycles before the LOCKx bit is set in the PMC_SR

after CKGR_PLLxR has been written.

Once CKGR_PLLxR has been written, the user must wait for the LOCKx bit to be set in the PMC_SR. This

can be done either by polling LOCKx in PMC_SR or by waiting for the interrupt line to be raised if the

associated interrupt source (LOCKx) has been enabled in PMC_IER. All fields in CKGR_PLLxR can be

programmed in a single write operation. If at some stage one of the following parameters, MULx or DIVx is

modified, the LOCKx bit goes low to indicate that PLLx is not yet ready. When PLLx is locked, LOCKx is set

again. The user must wait for the LOCKx bit to be set before using the PLLx output clock.

7. Select the master clock and processor clock

The master clock and the processor clock are configurable via PMC_MCKR.

The CSS field is used to select the clock source of the master clock and processor clock dividers. By default,

the selected clock source is the main clock.

The PRES field is used to define the processor clock and master clock prescaler. The user can choose

between different values (1, 2, 3, 4, 8, 16, 32, 64). Prescaler output is the selected clock source frequency

divided by the PRES value.

Once the PMC_MCKR has been written, the user must wait for the MCKRDY bit to be set in the PMC_SR.

This can be done either by polling MCKRDY in PMC_SR or by waiting for the interrupt line to be raised if the

associated interrupt source (MCKRDY) has been enabled in PMC_IER. PMC_MCKR must not be

programmed in a single write operation. The programming sequence for PMC_MCKR is as follows:

 If a new value for CSS field corresponds to PLL clock,

̶ Program the PRES field in PMC_MCKR.

̶ Wait for the MCKRDY bit to be set in PMC_SR.

̶ Program the CSS field in PMC_MCKR.

̶ Wait for the MCKRDY bit to be set in PMC_SR.

 If a new value for CSS field corresponds to main clock or slow clock,

̶ Program the CSS field in PMC_MCKR.

̶ Wait for the MCKRDY bit to be set in the PMC_SR.

̶ Program the PRES field in PMC_MCKR.

̶ Wait for the MCKRDY bit to be set in PMC_SR.

If at some stage, parameters CSS or PRES are modified, the MCKRDY bit goes low to indicate that the

master clock and the processor clock are not yet ready. The user must wait for MCKRDY bit to be set again

before using the master and processor clocks.

Note: IF PLLx clock was selected as the master clock and the user decides to modify it by writing in CKGR_PLLxR, the

MCKRDY flag will go low while PLLx is unlocked. Once PLLx is locked again, LOCKx goes high and MCKRDY is set.

While PLLx is unlocked, the master clock selection is automatically changed to slow clock for PLLA. For further

information, see Section 29.16.2 ”Clock Switching Waveforms”.

Code Example:

write_register(PMC_MCKR,0x00000001)
wait (MCKRDY=1)
write_register(PMC_MCKR,0x00000011)
wait (MCKRDY=1)

The master clock is main clock divided by 2.

8. Select the programmable clocks

Programmable clocks are controlled via registers, PMC_SCER, PMC_SCDR and PMC_SCSR.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

588

Programmable clocks can be enabled and/or disabled via PMC_SCER and PMC_SCDR. Three

programmable clocks can be used. PMC_SCSR indicates which programmable clock is enabled. By default

all programmable clocks are disabled.

PMC_PCKx registers are used to configure programmable clocks.

The CSS field is used to select the programmable clock divider source. Several clock options are available:

main clock, slow clock, master clock, PLLACK. The slow clock is the default clock source.

The PRES field is used to control the programmable clock prescaler. It is possible to choose between

different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler input divided by PRES

parameter. By default, the PRES value is cleared which means that PCKx is equal to slow clock.

Once PMC_PCKx register has been configured, the corresponding programmable clock must be enabled

and the user is constrained to wait for the PCKRDYx bit to be set in the PMC_SR. This can be done either by

polling PCKRDYx in PMC_SR or by waiting for the interrupt line to be raised if the associated interrupt

source (PCKRDYx) has been enabled in PMC_IER. All parameters in PMC_PCKx can be programmed in a

single write operation.

If the CSS and PRES parameters are to be modified, the corresponding programmable clock must be

disabled first. The parameters can then be modified. Once this has been done, the user must re-enable the

programmable clock and wait for the PCKRDYx bit to be set.

9. Enable the peripheral clocks

Once all of the previous steps have been completed, the peripheral clocks can be enabled and/or disabled

via registers PMC_PCER0, PMC_PCER, PMC_PCDR0 and PMC_PCDR.

29.16 Clock Switching Details

29.16.1 Master Clock Switching Timings

Table 29-1 gives the worst case timings required for the master clock to switch from one selected clock to another

one. This is in the event that the prescaler is de-activated. When the prescaler is activated, an additional time of 64

clock cycles of the newly selected clock has to be added.

Notes: 1. PLL designates the PLLA .

2. PLLCOUNT designates PLLACOUNT .

Table 29-1. Clock Switching Timings (Worst Case)

From Main Clock SLCK PLL Clock

To

Main Clock –
4 x SLCK +

2.5 x Main Clock

3 x PLL Clock +

4 x SLCK +

1 x Main Clock

SLCK
0.5 x Main Clock +

4.5 x SLCK
–

3 x PLL Clock +

5 x SLCK

PLL Clock

0.5 x Main Clock +

4 x SLCK +

PLLCOUNT x SLCK +

2.5 x PLLx Clock

2.5 x PLL Clock +

5 x SLCK +

PLLCOUNT x SLCK

2.5 x PLL Clock +

4 x SLCK +

PLLCOUNT x SLCK

589SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.16.2 Clock Switching Waveforms

Figure 29-6. Switch Master Clock from Slow Clock to PLLx Clock

Figure 29-7. Switch Master Clock from Main Clock to Slow Clock

Slow Clock

LOCK

MCKRDY

Master Clock

Write PMC_MCKR

PLLx Clock

Slow Clock

Main Clock

MCKRDY

Master Clock

Write PMC_MCKR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

590

Figure 29-8. Change PLLx Programming

Figure 29-9. Programmable Clock Output Programming

Slow Clock

Slow Clock

PLLx Clock

LOCKx

MCKRDY

Master Clock

Write CKGR_PLLxR

PLLx Clock

PCKRDY

PCKx Output

Write PMC_PCKx

Write PMC_SCER

Write PMC_SCDR PCKx is disabled

PCKx is enabled

PLL Clock is selected

591SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.17 Register Write Protection

To prevent any single software error from corrupting PMC behavior, certain registers in the address space can be

write-protected by setting the WPEN bit in the “PMC Write Protection Mode Register” (PMC_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the “PMC Write Protection Status

Register” (PMC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been

attempted.

The WPVS bit is automatically cleared after reading the PMC_WPSR.

The following registers can be write-protected:

 “PMC System Clock Enable Register”

 “PMC System Clock Disable Register”

 “PMC Peripheral Clock Enable Register 0”

 “PMC Peripheral Clock Disable Register 0”

 “PMC Clock Generator Main Oscillator Register”

 “PMC Clock Generator Main Clock Frequency Register”

 “PMC Clock Generator PLLA Register”

 “PMC Master Clock Register”

 “PMC USB Clock Register”

 “PMC Programmable Clock Register”

 “PMC Fast Startup Mode Register”

 “PMC Fast Startup Polarity Register”

 “PMC Peripheral Clock Enable Register 1”

 “PMC Peripheral Clock Disable Register 1”

 “PMC Oscillator Calibration Register”

 “PLL Maximum Multiplier Value Register”

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

592

29.18 Power Management Controller (PMC) User Interface

Table 29-2. Register Mapping

Offset Register Name Access Reset

0x0000 System Clock Enable Register PMC_SCER Write-only –

0x0004 System Clock Disable Register PMC_SCDR Write-only –

0x0008 System Clock Status Register PMC_SCSR Read-only 0x0000_0001

0x000C Reserved – – –

0x0010 Peripheral Clock Enable Register 0 PMC_PCER0 Write-only –

0x0014 Peripheral Clock Disable Register 0 PMC_PCDR0 Write-only –

0x0018 Peripheral Clock Status Register 0 PMC_PCSR0 Read-only 0x0000_0000

0x001C Reserved – – –

0x0020 Main Oscillator Register CKGR_MOR Read/Write 0x0000_0008

0x0024 Main Clock Frequency Register CKGR_MCFR Read/Write 0x0000_0000

0x0028 PLLA Register CKGR_PLLAR Read/Write 0x0000_3F00

0x002C Reserved – – –

0x0030 Master Clock Register PMC_MCKR Read/Write 0x0000_0001

0x0034 Reserved – – –

0x0038 USB Clock Register PMC_USB Read/Write 0x0000_0000

0x003C Reserved – – –

0x0040 Programmable Clock 0 Register PMC_PCK0 Read/Write 0x0000_0000

0x0044 Programmable Clock 1 Register PMC_PCK1 Read/Write 0x0000_0000

0x0048 Programmable Clock 2 Register PMC_PCK2 Read/Write 0x0000_0000

0x004C–0x005C Reserved – – –

0x0060 Interrupt Enable Register PMC_IER Write-only –

0x0064 Interrupt Disable Register PMC_IDR Write-only –

0x0068 Status Register PMC_SR Read-only 0x0003_0008

0x006C Interrupt Mask Register PMC_IMR Read-only 0x0000_0000

0x0070 Fast Startup Mode Register PMC_FSMR Read/Write 0x0000_0000

0x0074 Fast Startup Polarity Register PMC_FSPR Read/Write 0x0000_0000

0x0078 Fault Output Clear Register PMC_FOCR Write-only –

0x007C–0x00E0 Reserved – – –

0x00E4 Write Protection Mode Register PMC_WPMR Read/Write 0x0000_0000

0x00E8 Write Protection Status Register PMC_WPSR Read-only 0x0000_0000

0x00EC–0x00FC Reserved – – –

0x0100 Peripheral Clock Enable Register 1 PMC_PCER1 Write-only –

0x0104 Peripheral Clock Disable Register 1 PMC_PCDR1 Write-only –

0x0108 Peripheral Clock Status Register 1 PMC_PCSR1 Read-only 0x0000_0000

0x010C Reserved – – –

593SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Note: If an offset is not listed in the table it must be considered as “reserved”.

0x0110 Oscillator Calibration Register PMC_OCR Read/Write 0x0040_4040

0x0114–0x0120 Reserved – – –

0x0130 PLL Maximum Multiplier Value Register PMC_PMMR Read/Write 0x07FF_07FF

0x0134–0x144 Reserved – – –

Table 29-2. Register Mapping (Continued)

Offset Register Name Access Reset

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

594

29.18.1 PMC System Clock Enable Register

Name: PMC_SCER

Address: 0x400E0400

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• UDP: USB Device Port Clock Enable

0: No effect.

1: Enables the 48 MHz clock (UDPCK) of the USB Device Port.

• PCKx: Programmable Clock x Output Enable

0: No effect.

1: Enables the corresponding Programmable Clock output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

UDP – – – – – – –

595SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.2 PMC System Clock Disable Register

Name: PMC_SCDR

Address: 0x400E0404

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• UDP: USB Device Port Clock Disable

0: No effect.

1: Disables the 48 MHz clock (UDPCK) of the USB Device Port.

• PCKx: Programmable Clock x Output Disable

0: No effect.

1: Disables the corresponding Programmable Clock output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

UDP – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

596

29.18.3 PMC System Clock Status Register

Name: PMC_SCSR

Address: 0x400E0408

Access: Read-only

• UDP: USB Device Port Clock Status

0: The 48 MHz clock (UDPCK) of the USB Device Port is disabled.

1: The 48 MHz clock (UDPCK) of the USB Device Port is enabled.

• PCKx: Programmable Clock x Output Status

0: The corresponding Programmable Clock output is disabled.

1: The corresponding Programmable Clock output is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – PCK2 PCK1 PCK0

7 6 5 4 3 2 1 0

UDP – – – – – – –

597SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.4 PMC Peripheral Clock Enable Register 0

Name: PMC_PCER0

Address: 0x400E0410

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PIDx: Peripheral Clock x Enable

0: No effect.

1: Enables the corresponding peripheral clock.

Note: PIDx refers to identifiers defined in the section “Peripheral Identifiers”. Other peripherals can be enabled in PMC_PCER1 (Section

29.18.22 ”PMC Peripheral Clock Enable Register 1”).

Note: Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

598

29.18.5 PMC Peripheral Clock Disable Register 0

Name: PMC_PCDR0

Address: 0x400E0414

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PIDx: Peripheral Clock x Disable

0: No effect.

1: Disables the corresponding peripheral clock.

Note: PIDx refers to identifiers defined in the section “Peripheral Identifiers”. Other peripherals can be disabled in PMC_PCDR1

(Section 29.18.23 ”PMC Peripheral Clock Disable Register 1”).

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 – – – – – – –

599SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.6 PMC Peripheral Clock Status Register 0

Name: PMC_PCSR0

Address: 0x400E0418

Access: Read-only

• PIDx: Peripheral Clock x Status

0: The corresponding peripheral clock is disabled.

1: The corresponding peripheral clock is enabled.

Note: PIDx refers to identifiers defined in the section “Peripheral Identifiers”. Other peripherals status can be read in PMC_PCSR1

(Section 29.18.24 ”PMC Peripheral Clock Status Register 1”).

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

600

29.18.7 PMC Clock Generator Main Oscillator Register

Name: CKGR_MOR

Address: 0x400E0420

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• MOSCXTEN: 3 to 20 MHz Crystal Oscillator Enable

A crystal must be connected between XIN and XOUT.

0: The 3 to 20 MHz crystal oscillator is disabled.

1: The 3 to 20 MHz crystal oscillator is enabled. MOSCXTBY must be cleared.

When MOSCXTEN is set, the MOSCXTS flag is set once the crystal oscillator start-up time is achieved.

• MOSCXTBY: 3 to 20 MHz Crystal Oscillator Bypass

0: No effect.

1: The 3 to 20 MHz crystal oscillator is bypassed. MOSCXTEN must be cleared. An external clock must be connected on

XIN.

When MOSCXTBY is set, the MOSCXTS flag in PMC_SR is automatically set.

Clearing MOSCXTEN and MOSCXTBY bits resets the MOSCXTS flag.

Note: When the crystal oscillator bypass is disabled (MOSCXTBY = 0), the MOSCXTS flag must be read at 0 in PMC_SR before
enabling the crystal oscillator (MOSCXTEN = 1).

• WAITMODE: Wait Mode Command (Write-only)

0: No effect.

1: Puts the device in Wait mode.

• MOSCRCEN: 4/8/12 MHz RC Oscillator Enable

0: The 4/8/12 MHz RC oscillator is disabled.

1: The 4/8/12 MHz RC oscillator is enabled.

When MOSCRCEN is set, the MOSCRCS flag is set once the RC oscillator start-up time is achieved.

31 30 29 28 27 26 25 24

– – – – – XT32KFME CFDEN MOSCSEL

23 22 21 20 19 18 17 16

KEY

15 14 13 12 11 10 9 8

MOSCXTST

7 6 5 4 3 2 1 0

– MOSCRCF MOSCRCEN WAITMODE MOSCXTBY MOSCXTEN

601SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• MOSCRCF: 4/8/12 MHz RC Oscillator Frequency Selection

At startup, the RC oscillator frequency is 4 MHz.

Note: MOSCRCF must be changed only if MOSCRCS is set in the PMC_SR. Therefore MOSCRCF and MOSCRCEN cannot be

changed at the same time.

• MOSCXTST: 3 to 20 MHz Crystal Oscillator Start-up Time

Specifies the number of slow clock cycles multiplied by 8 for the crystal oscillator start-up time.

• KEY: Write Access Password

• MOSCSEL: Main Clock Oscillator Selection

0: The 4/8/12 MHz RC oscillator is selected.

1: The 3 to 20 MHz crystal oscillator is selected.

• CFDEN: Clock Failure Detector Enable

0: The clock failure detector is disabled.

1: The clock failure detector is enabled.

Note: 1. The 32 kHz (typical) RC oscillator is automatically enabled when CFDEN=1.

2. Refer to Section 29.13 ”Main Clock Failure Detector” for CFDEN initialization.

• XT32KFME: 32768 Hz Crystal Oscillator Frequency Monitoring Enable

0: The 32768 Hz crystal oscillator frequency monitoring is disabled.

1: The 32768 Hz crystal oscillator frequency monitoring is enabled.

Value Name Description

0 4_MHz The RC oscillator frequency is at 4 MHz (default)

1 8_MHz The RC oscillator frequency is at 8 MHz

2 12_MHz The RC oscillator frequency is at 12 MHz

Value Name Description

0x37 PASSWD
Writing any other value in this field aborts the write operation.

Always reads as 0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

602

29.18.8 PMC Clock Generator Main Clock Frequency Register

Name: CKGR_MCFR

Address: 0x400E0424

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• MAINF: Main Clock Frequency

Gives the number of main clock cycles within 16 slow clock periods. To calculate the frequency of the measured clock:

fMAINCK = (MAINF × fSLCK) / 16

where frequency is in MHz.

• MAINFRDY: Main Clock Frequency Measure Ready

0: MAINF value is not valid or the measured oscillator is disabled or a measure has just been started by means of

RCMEAS.

1: The measured oscillator has been enabled previously and MAINF value is available.

Note: To ensure that a correct value is read on the MAINF field, the MAINFRDY flag must be read at 1 then another read access must

be performed on the register to get a stable value on the MAINF field.

• RCMEAS: Restart Main Clock Source Frequency Measure (write-only)

0: No effect.

1: Restarts measuring of the frequency of the main clock source. MAINF will carry the new frequency as soon as a low to

high transition occurs on the MAINFRDY flag.

The measure is performed on the main frequency (i.e. not limited to RC oscillator only), but if the main clock frequency

source is the 3 to 20 MHz crystal oscillator, the restart of measuring is not needed because of the well known stability of

crystal oscillators.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – RCMEAS – – – MAINFRDY

15 14 13 12 11 10 9 8

MAINF

7 6 5 4 3 2 1 0

MAINF

603SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.9 PMC Clock Generator PLLA Register

Name: CKGR_PLLAR

Address: 0x400E0428

Access: Read/Write

Possible limitations on PLLA input frequencies and multiplier factors should be checked before using the PMC.

Warning: Bit 29 must always be set to 1 when programming the CKGR_PLLAR.

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• DIVA: PLLA Front_End Divider

0: Divider output is stuck at 0 and PLLA is disabled.

1: Divider is bypassed (divide by 1) PLLA is enabled

2–255: Clock is divided by DIVA

• PLLACOUNT: PLLA Counter

Specifies the number of Slow Clock cycles before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written.

• MULA: PLLA Multiplier

0: The PLLA is deactivated (PLLA also disabled if DIVA = 0).

1 up to 80 = The PLLA Clock frequency is the PLLA input frequency multiplied by MULA + 1.

Unlisted values are forbidden.

• ONE: Must Be Set to 1

Bit 29 must always be set to 1 when programming the CKGR_PLLAR.

31 30 29 28 27 26 25 24

– – ONE – – MULA

23 22 21 20 19 18 17 16

MULA

15 14 13 12 11 10 9 8

– – PLLACOUNT

7 6 5 4 3 2 1 0

DIVA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

604

29.18.10 PMC Master Clock Register

Name: PMC_MCKR

Address: 0x400E0430

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• CSS: Master Clock Source Selection

• PRES: Processor Clock Prescaler

• PLLADIV2: PLLA Divisor by 2

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – PLLADIV2 – – – –

7 6 5 4 3 2 1 0

– PRES – – CSS

Value Name Description

0 SLOW_CLK Slow Clock is selected

1 MAIN_CLK Main Clock is selected

2 PLLA_CLK PLLA Clock is selected

Value Name Description

0 CLK_1 Selected clock

1 CLK_2 Selected clock divided by 2

2 CLK_4 Selected clock divided by 4

3 CLK_8 Selected clock divided by 8

4 CLK_16 Selected clock divided by 16

5 CLK_32 Selected clock divided by 32

6 CLK_64 Selected clock divided by 64

7 CLK_3 Selected clock divided by 3

PLLADIV2 PLLA Clock Division

0 PLLA clock frequency is divided by 1.

1 PLLA clock frequency is divided by 2.

605SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.11 PMC USB Clock Register

Name: PMC_USB

Address: 0x400E0438

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• USBDIV: Divider for USB Clock

USB Clock is Input clock divided by USBDIV + 1.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – USBDIV

7 6 5 4 3 2 1 0

– – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

606

29.18.12 PMC Programmable Clock Register

Name: PMC_PCKx

Address: 0x400E0440

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• CSS: Master Clock Source Selection

• PRES: Programmable Clock Prescaler

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– PRES – CSS

Value Name Description

0 SLOW_CLK Slow Clock is selected

1 MAIN_CLK Main Clock is selected

2 PLLA_CLK PLLA Clock is selected

4 MCK Master Clock is selected

Value Name Description

0 CLK_1 Selected clock

1 CLK_2 Selected clock divided by 2

2 CLK_4 Selected clock divided by 4

3 CLK_8 Selected clock divided by 8

4 CLK_16 Selected clock divided by 16

5 CLK_32 Selected clock divided by 32

6 CLK_64 Selected clock divided by 64

607SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.13 PMC Interrupt Enable Register

Name: PMC_IER

Address: 0x400E0460

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• MOSCXTS: 3 to 20 MHz Crystal Oscillator Status Interrupt Enable

• LOCKA: PLLA Lock Interrupt Enable

• MCKRDY: Master Clock Ready Interrupt Enable

• PCKRDYx: Programmable Clock Ready x Interrupt Enable

• MOSCSELS: Main Clock Source Oscillator Selection Status Interrupt Enable

• MOSCRCS: 4/8/12 MHz RC Oscillator Status Interrupt Enable

• CFDEV: Clock Failure Detector Event Interrupt Enable

• XT32KERR: 32768 Hz Crystal Oscillator Error Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – XT32KERR – – CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8

– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0

– – – – MCKRDY – LOCKA MOSCXTS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

608

29.18.14 PMC Interrupt Disable Register

Name: PMC_IDR

Address: 0x400E0464

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• MOSCXTS: 3 to 20 MHz Crystal Oscillator Status Interrupt Disable

• LOCKA: PLLA Lock Interrupt Disable

• MCKRDY: Master Clock Ready Interrupt Disable

• PCKRDYx: Programmable Clock Ready x Interrupt Disable

• MOSCSELS: Main Clock Source Oscillator Selection Status Interrupt Disable

• MOSCRCS: 4/8/12 MHz RC Oscillator Status Interrupt Disable

• CFDEV: Clock Failure Detector Event Interrupt Disable

• XT32KERR: 32768 Hz Oscillator Error Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – XT32KERR – – CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8

– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0

– – – – MCKRDY – LOCKA MOSCXTS

609SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.15 PMC Status Register

Name: PMC_SR

Address: 0x400E0468

Access: Read-only

• MOSCXTS: 3 to 20 MHz Crystal Oscillator Status

0: 3 to 20 MHz crystal oscillator is not stabilized.

1: 3 to 20 MHz crystal oscillator is stabilized.

• LOCKA: PLLA Lock Status

0: PLLA is not locked

1: PLLA is locked.

• MCKRDY: Master Clock Status

0: Master Clock is not ready.

1: Master Clock is ready.

• OSCSELS: Slow Clock Oscillator Selection

0: Embedded 32 kHz RC oscillator is selected.

1: 32768 Hz crystal oscillator is selected.

• PCKRDYx: Programmable Clock Ready Status

0: Programmable Clock x is not ready.

1: Programmable Clock x is ready.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – XT32KERR FOS CFDS CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8

– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0

OSCSELS – – – MCKRDY – LOCKA MOSCXTS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

610

• MOSCSELS: Main Clock Source Oscillator Selection Status

0: Selection is in progress.

1: Selection is done.

• MOSCRCS: 4/8/12 MHz RC Oscillator Status

0: 4/8/12 MHz RC oscillator is not stabilized.

1: 4/8/12 MHz RC oscillator is stabilized.

• CFDEV: Clock Failure Detector Event

0: No clock failure detection of the 3 to 20 MHz crystal oscillator has occurred since the last read of PMC_SR.

1: At least one clock failure detection of the 3 to 20 MHz crystal oscillator has occurred since the last read of PMC_SR.

• CFDS: Clock Failure Detector Status

0: A clock failure of the 3 to 20 MHz crystal oscillator is not detected.

1: A clock failure of the 3 to 20 MHz crystal oscillator is detected.

• FOS: Clock Failure Detector Fault Output Status

0: The fault output of the clock failure detector is inactive.

1: The fault output of the clock failure detector is active.

• XT32KERR: 32768 Hz Crystal Oscillator Error

0: The frequency of the 32768 Hz crystal oscillator is correct (32768 Hz +/- 1%) or the monitoring is disabled.

1: The frequency of the 32768 Hz crystal oscillator is incorrect or has been incorrect for an elapsed period of time since the

monitoring has been enabled.

611SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.16 PMC Interrupt Mask Register

Name: PMC_IMR

Address: 0x400E046C

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• MOSCXTS: 3 to 20 MHz Crystal Oscillator Status Interrupt Mask

• LOCKA: PLLA Lock Interrupt Mask

• MCKRDY: Master Clock Ready Interrupt Mask

• PCKRDYx: Programmable Clock Ready x Interrupt Mask

• MOSCSELS: Main Clock Source Oscillator Selection Status Interrupt Mask

• MOSCRCS: 4/8/12 MHz RC Oscillator Status Interrupt Mask

• CFDEV: Clock Failure Detector Event Interrupt Mask

• XT32KERR: 32768 Hz Oscillator Error Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – XT32KERR – – CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8

– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0

– – – – MCKRDY – LOCKA MOSCXTS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

612

29.18.17 PMC Fast Startup Mode Register

Name: PMC_FSMR

Address: 0x400E0470

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• FSTT0–FSTT15: Fast Startup Input Enable 0 to 15

0: The corresponding wake-up input has no effect on the PMC.

1: The corresponding wake-up input enables a fast restart signal to the PMC.

• RTTAL: RTT Alarm Enable

0: The RTT alarm has no effect on the PMC.

1: The RTT alarm enables a fast restart signal to the PMC.

• RTCAL: RTC Alarm Enable

0: The RTC alarm has no effect on the PMC.

1: The RTC alarm enables a fast restart signal to the PMC.

• USBAL: USB Alarm Enable

0: The USB alarm has no effect on the PMC.

1: The USB alarm enables a fast restart signal to the PMC.

• LPM: Low-power Mode

0: The WaitForInterrupt (WFI) or the WaitForEvent (WFE) instruction of the processor makes the processor enter Sleep

mode.

1: The WaitForEvent (WFE) instruction of the processor makes the system to enter Wait mode.

• FLPM: Flash Low-power Mode

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– FLPM LPM – USBAL RTCAL RTTAL

15 14 13 12 11 10 9 8

FSTT15 FSTT14 FSTT13 FSTT12 FSTT11 FSTT10 FSTT9 FSTT8

7 6 5 4 3 2 1 0

FSTT7 FSTT6 FSTT5 FSTT4 FSTT3 FSTT2 FSTT1 FSTT0

Value Name Description

0 FLASH_STANDBY Flash is in Standby Mode when system enters Wait Mode

1 FLASH_DEEP_POWERDOWN Flash is in Deep-power-down mode when system enters Wait Mode

2 FLASH_IDLE Idle mode

613SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.18 PMC Fast Startup Polarity Register

Name: PMC_FSPR

Address: 0x400E0474

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• FSTPx: Fast Startup Input Polarityx

Defines the active polarity of the corresponding wake-up input. If the corresponding wake-up input is enabled and at the

FSTP level, it enables a fast restart signal.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

FSTP15 FSTP14 FSTP13 FSTP12 FSTP11 FSTP10 FSTP9 FSTP8

7 6 5 4 3 2 1 0

FSTP7 FSTP6 FSTP5 FSTP4 FSTP3 FSTP2 FSTP1 FSTP0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

614

29.18.19 PMC Fault Output Clear Register

Name: PMC_FOCR

Address: 0x400E0478

Access: Write-only

• FOCLR: Fault Output Clear

Clears the clock failure detector fault output.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – FOCLR

615SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.20 PMC Write Protection Mode Register

Name: PMC_WPMR

Address: 0x400E04E4

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x504D43 (“PMC” in ASCII).

See Section 29.17 ”Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x504D43 PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit. Always
reads as 0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

616

29.18.21 PMC Write Protection Status Register

Name: PMC_WPSR

Address: 0x400E04E8

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of the PMC_WPSR.

1: A write protection violation has occurred since the last read of the PMC_WPSR. If this violation is an unauthorized

attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

617SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.22 PMC Peripheral Clock Enable Register 1

Name: PMC_PCER1

Address: 0x400E0500

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PIDx: Peripheral Clock x Enable

0: No effect.

1: Enables the corresponding peripheral clock.

Notes: 1. The values for PIDx are defined in the section “Peripheral Identifiers”.

2. Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

PID47 PID46 PID45 PID44 PID43 PID42 PID41 PID40

7 6 5 4 3 2 1 0

PID39 PID38 PID37 PID36 PID35 PID34 PID33 PID32

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

618

29.18.23 PMC Peripheral Clock Disable Register 1

Name: PMC_PCDR1

Address: 0x400E0504

Access: Write-only

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PIDx: Peripheral Clock x Disable

0: No effect.

1: Disables the corresponding peripheral clock.

Note: The values for PIDx are defined in the section “Peripheral Identifiers”.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

PID47 PID46 PID45 PID44 PID43 PID42 PID41 PID40

7 6 5 4 3 2 1 0

PID39 PID38 PID37 PID36 PID35 PID34 PID33 PID32

619SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.24 PMC Peripheral Clock Status Register 1

Name: PMC_PCSR1

Address: 0x400E0508

Access: Read-only

• PIDx: Peripheral Clock x Status

0: The corresponding peripheral clock is disabled.

1: The corresponding peripheral clock is enabled.

Note: The values for PIDx are defined in the section “Peripheral Identifiers”.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

PID47 PID46 PID45 PID44 PID43 PID42 PID41 PID40

7 6 5 4 3 2 1 0

PID39 PID38 PID37 PID36 PID35 PID34 PID33 PID32

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

620

29.18.25 PMC Oscillator Calibration Register

Name: PMC_OCR

Address: 0x400E0510

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• CAL4: RC Oscillator Calibration bits for 4 MHz

Calibration bits applied to the RC Oscillator when SEL4 is set.

• SEL4: Selection of RC Oscillator Calibration bits for 4 MHz

0: Default value stored in Flash memory.

1: Value written by user in CAL4 field of this register.

• CAL8: RC Oscillator Calibration bits for 8 MHz

Calibration bits applied to the RC Oscillator when SEL8 is set.

• SEL8: Selection of RC Oscillator Calibration bits for 8 MHz

0: Factory-determined value stored in Flash memory.

1: Value written by user in CAL8 field of this register.

• CAL12: RC Oscillator Calibration bits for 12 MHz

Calibration bits applied to the RC Oscillator when SEL12 is set.

• SEL12: Selection of RC Oscillator Calibration bits for 12 MHz

0: Factory-determined value stored in Flash memory.

1: Value written by user in CAL12 field of this register.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

SEL12 CAL12

15 14 13 12 11 10 9 8

SEL8 CAL8

7 6 5 4 3 2 1 0

SEL4 CAL4

621SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.18.26 PLL Maximum Multiplier Value Register

Name: PMC_PMMR

Address: 0x400E0530

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the “PMC Write Protection Mode Register” .

• PLLA_MMAX: PLLA Maximum Allowed Multiplier Value

Defines the maximum value of multiplication factor that can be sent to PLLA. Any value of the MULA field (see “PMC Clock

Generator PLLA Register”) above PLLA_MMAX is saturated to PLLA_MMAX. PLLA_MMAX write operation is cancelled in

the following cases:

• The value of MULA is currently saturated by PLLA_MMAX

• The user is trying to write a value of PLLA_MMAX that is smaller than the current value of MULA

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – PLLA_MMAX

7 6 5 4 3 2 1 0

PLLA_MMAX

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

622

30. Advanced Encryption Standard (AES)

30.1 Description

The Advanced Encryption Standard (AES) is compliant with the American FIPS (Federal Information Processing

Standard) Publication 197 specification.

The AES supports all five confidentiality modes of operation for symmetrical key block cipher algorithms (ECB,

CBC, OFB, CFB and CTR), as specified in the NIST Special Publication 800-38A Recommendation. It is

compatible with all these modes via DMA Controller channels, minimizing processor intervention for large buffer

transfers.

The 128-bit/192-bit/256-bit key is stored in four/six/eight 32-bit write-only AES Key Word registers

(AES_KEYWR0–3).

The 128-bit input data and initialization vector (for some modes) are each stored in four 32-bit write-only AES Input

Data registers (AES_IDATAR0–3) and AES Initialization Vector registers (AES_IVR0–3).

As soon as the initialization vector, the input data and the key are configured, the encryption/decryption process

may be started. Then the encrypted/decrypted data are ready to be read out on the four 32-bit AES Output Data

registers (AES_ODATAR0–3) or through the DMA channels.

30.2 Embedded Characteristics

 Compliant with FIPS Publication 197, Advanced Encryption Standard (AES)

 128-bit/192-bit/256-bit Cryptographic Key

 12/14/16 Clock Cycles Encryption/Decryption Processing Time with a 128-bit/192-bit/256-bit Cryptographic

Key

 Double Input Buffer Optimizes Runtime

 Support of the Modes of Operation Specified in the NIST Special Publication 800-38A:

̶ Electronic Code Book (ECB)

̶ Cipher Block Chaining (CBC) including CBC-MAC

̶ Cipher Feedback (CFB)

̶ Output Feedback (OFB)

̶ Counter (CTR)

 8, 16, 32, 64 and 128-bit Data Sizes Possible in CFB Mode

 Last Output Data Mode Allows Optimized Message Authentication Code (MAC) Generation

 Connection to DMA Optimizes Data Transfers for all Operating Modes

30.3 Product Dependencies

30.3.1 Power Management

The AES may be clocked through the Power Management Controller (PMC), so the programmer must first to

configure the PMC to enable the AES clock.

30.3.2 Interrupt Sources

The AES interface has an interrupt line connected to the Interrupt Controller.

623SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Handling the AES interrupt requires programming the Interrupt Controller before configuring the AES.

30.4 Functional Description

The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic algorithm that can be used to

protect electronic data. The AES algorithm is a symmetric block cipher that can encrypt (encipher) and decrypt

(decipher) information.

Encryption converts data to an unintelligible form called ciphertext. Decrypting the ciphertext converts the data

back into its original form, called plaintext. The CIPHER bit in the AES Mode register (AES_MR) allows selection

between the encryption and the decryption processes.

The AES is capable of using cryptographic keys of 128/192/256 bits to encrypt and decrypt data in blocks of 128

bits. This 128-bit/192-bit/256-bit key is defined in the AES_KEYWRx.

The input to the encryption processes of the CBC, CFB, and OFB modes includes, in addition to the plaintext, a

128-bit data block called the initialization vector (IV), which must be set in the AES_IVRx. The initialization vector

is used in an initial step in the encryption of a message and in the corresponding decryption of the message. The

AES_IVRx are also used by the CTR mode to set the counter value.

30.4.1 AES Register Endianness

In ARM processor-based products, the system bus and processors manipulate data in little-endian form. The AES

interface requires little-endian format words. However, in accordance with the protocol of the FIPS 197

specification, data is collected, processed and stored by the AES algorithm in big-endian form.

The following example illustrates how to configure the AES:

If the first 64 bits of a message (according to FIPS 197, i.e., big-endian format) to be processed is

0xcafedeca_01234567, then the AES_IDATAR0 and AES_IDATAR1 registers must be written with the following

pattern:

 AES_IDATAR0 = 0xcadefeca

 AES_IDATAR1 = 0x67452301

30.4.2 Operation Modes

The AES supports the following modes of operation:

 ECB: Electronic Code Book

 CBC: Cipher Block Chaining

 OFB: Output Feedback

 CFB: Cipher Feedback

̶ CFB8 (CFB where the length of the data segment is 8 bits)

̶ CFB16 (CFB where the length of the data segment is 16 bits)

̶ CFB32 (CFB where the length of the data segment is 32 bits)

̶ CFB64 (CFB where the length of the data segment is 64 bits)

̶ CFB128 (CFB where the length of the data segment is 128 bits)

 CTR: Counter

The data pre-processing, post-processing and data chaining for the concerned modes are automatically

performed. Refer to the NIST Special Publication 800-38A for more complete information.

Table 30-1. Peripheral IDs

Instance ID

AES 39

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

624

These modes are selected by setting the OPMOD field in the AES_MR.

In CFB mode, five data sizes are possible (8, 16, 32, 64 or 128 bits), configurable by means of the CFBS field in

the AES_MR (Section 30.5.2 “AES Mode Register”).

In CTR mode, the size of the block counter embedded in the module is 16 bits. Therefore, there is a rollover after

processing 1 megabyte of data. If the file to be processed is greater than 1 megabyte, this file must be split into

fragments of 1 megabyte or less for the first fragment if the initial value of the counter is greater than 0. Prior to

loading the first fragment into AES_IDATARx, AES_IVRx must be fully programmed with the initial counter value.

For any fragment, after the transfer is completed and prior to transferring the next fragment, AES_IVRx must be

programmed with the appropriate counter value.

If the initial value of the counter is greater than 0 and the data buffer size to be processed is greater than 1 Mbyte,

the size of the first fragment to be processed must be 1 Mbyte minus 16 × (initial value) to prevent a rollover of the

internal 1-bit counter.

To have a sequential increment, the counter value must be programmed with the value programmed for the

previous fragment + 216 (or less for the first fragment).

All AES_IVRx fields must be programmed to take into account the possible carry propagation.

30.4.3 Double Input Buffer

The AES_IDATARx can be double-buffered to reduce the runtime of large files.

This mode allows writing a new message block when the previous message block is being processed. This is only

possible when DMA accesses are performed (SMOD = 0x2).

The DUALBUFF bit in the AES_MR must be set to ‘1’ to access the double buffer.

30.4.4 Start Modes

The SMOD field in the AES_MR allows selection of the encryption (or decryption) Start mode.

30.4.4.1 Manual Mode

The sequence order is as follows:

1. Write the AES_MR with all required fields, including but not limited to SMOD and OPMOD.

2. Write the 128-bit/192-bit/256-bit key in the AES_KEYWRx.

3. Write the initialization vector (or counter) in the AES_IVRx.

Note: The AES_IVRx concern all modes except ECB.

4. Set the bit DATRDY (Data Ready) in the AES Interrupt Enable register (AES_IER), depending on whether

an interrupt is required or not at the end of processing.

5. Write the data to be encrypted/decrypted in the authorized AES_IDATARx (see Table 30-2).

6. Set the START bit in the AES Control register (AES_CR) to begin the encryption or the decryption process.

7. When processing completes, the DATRDY flag in the AES Interrupt Status register (AES_ISR) is raised. If

an interrupt has been enabled by setting the DATRDY bit in the AES_IER, the interrupt line of the AES is

activated.

8. When software reads one of the AES_ODATARx, the DATRDY bit is automatically cleared.

Table 30-2. Authorized Input Data Registers

Operation Mode Input Data Registers to Write

ECB All

CBC All

OFB All

128-bit CFB All

625SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Note: In 64-bit CFB mode, writing to AES_IDATAR2 and AES_IDATAR3 is not allowed and may lead to errors in processing.

Note: In 32, 16, and 8-bit CFB modes, writing to AES_IDATAR1, AES_IDATAR2 and AES_IDATAR3 is not allowed and may

lead to errors in processing.

30.4.4.2 Auto Mode

The Auto Mode is similar to the manual one, except that in this mode, as soon as the correct number of

AES_IDATARx is written, processing is automatically started without any action in the AES_CR.

30.4.4.3 DMA Mode

The DMA Controller can be used in association with the AES to perform an encryption/decryption of a buffer

without any action by software during processing.

The SMOD field in the AES_MR must be configured to 0x2 and the DMA must be configured with non-incremental

addresses.

The start address of any transfer descriptor must be configured with the address of AES_IDATAR0.

The DMA chunk size configuration depends on the AES mode of operation and is listed in Table 30-3 “DMA Data

Transfer Type for the Different Operation Modes”.

When writing data to AES with a first DMA channel, data are first fetched from a memory buffer (source data). It is

recommended to configure the size of source data to “words” even for CFB modes. On the contrary, the

destination data size depends on the mode of operation. When reading data from the AES with the second DMA

channel, the source data is the data read from AES and data destination is the memory buffer. In this case, the

source data size depends on the AES mode of operation and is listed in Table 30-3.

30.4.5 Last Output Data Mode

This mode is used to generate cryptographic checksums on data (MAC) by means of cipher block chaining

encryption algorithm (CBC-MAC algorithm for example).

 64-bit CFB AES_IDATAR0 and AES_IDATAR1

 32-bit CFB AES_IDATAR0

 16-bit CFB AES_IDATAR0

 8-bit CFB AES_IDATAR0

CTR All

Table 30-2. Authorized Input Data Registers

Operation Mode Input Data Registers to Write

Table 30-3. DMA Data Transfer Type for the Different Operation Modes

Operation Mode Chunk Size Destination/Source Data Transfer Type

ECB 4 Word

CBC 4 Word

OFB 4 Word

CFB 128-bit 4 Word

CFB 64-bit 1 Word

CFB 32-bit 1 Word

CFB 16-bit 1 Half-word

CFB 8-bit 1 Byte

CTR 4 Word

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

626

After each end of encryption/decryption, the output data are available either on the AES_ODATARx for Manual

and Auto mode or at the address specified in the receive buffer pointer for DMA mode (see Table 30-4 “Last

Output Data Mode Behavior versus Start Modes”).

The Last Output Data (LOD) bit in the AES_MR al lows retr ieval of only the last data of several

encryption/decryption processes.

Therefore, there is no need to define a read buffer in DMA mode.

This data are only available on the AES_ODATARx.

30.4.5.1 Manual and Auto Modes

If AES_MR.LOD = 0

The DATRDY flag is cleared when at least one of the AES_ODATARx is read (see Figure 30-1).

Figure 30-1. Manual and Auto Modes with AES_MR.LOD = 0

If the user does not want to read the AES_ODATARx between each encryption/decryption, the DATRDY flag will

not be cleared. If the DATRDY flag is not cleared, the user cannot know the end of the following

encryptions/decryptions.

If AES_MR.LOD = 1

This mode is optimized to process AES CPC-MAC operating mode.

The DATRDY flag is cleared when at least one AES_IDATAR is written (see Figure 30-2). No more AES_ODATAR

reads are necessary between consecutive encryptions/decryptions.

Figure 30-2. Manual and Auto Modes with AES_MR.LOD = 1

Encryption or Decryption Process

Read the AES_ODATARx

Write START bit in AES_CR (Manual mode)

DATRDY

Write AES_IDATARx register(s) (Auto mode)

or

Write AES_IDATARx register(s)

Write START bit in AES_CR (Manual mode)

Write AES_IDATARx register(s) (Auto mode)

or

Encryption or Decryption Process

DATRDY

627SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

30.4.5.2 DMA Mode

If AES_MR.LOD = 0

This mode may be used for all AES operating modes except CBC-MAC where AES_MR.LOD = 1 mode is

recommended.

The end of the encryption/decryption is indicated by the end of DMA transfer associated to AES_ODATARx (see

Figure 30-3). Two DMA channels are required: one for writing message blocks to AES_IDATARx and one to obtain

the result from AES_ODATARx.

Figure 30-3. DMA Transfer with AES_MR.LOD = 0

If AES_MR.LOD = 1

This mode is optimized to process AES CBC-MAC operating mode.

The user must first wait for the DMA buffer transfer complete flag, then for the flag DATRDY to rise to ensure that

the encryption/decryption is completed (see Figure 30-4).

In this case, no receive buffers are required.

The output data are only available on the AES_ODATARx.

Figure 30-4. DMA Transfer with AES_MR.LOD = 1

Table 30-4 summarizes the different cases.

Enable DMA Channels associated to AES_IDATARx and AES_ODATARx

Multiple Encryption or Decryption Processes

DMA Buffer transfer

 complete flag

 /channel n

DMA Buffer transfer

 complete flag

 /channel m

Message fully processed

(cipher or decipher) last

block can be read

Write accesses into AES_IDATARx

Read accesses into AES_ODATARx

DATRDY

Enable DMA Channels associated with AES_IDATARx and AES_ODATARx registers

Multiple Encryption or Decryption Processes

DMA status flag for

end of buffer transfer

Message fully processed

(cipher or decipher)

MAC result can be read

Write accesses into AES_IDATARx

Message fully transferred

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

628

Note: 1. Depending on the mode, there are other ways of clearing the DATRDY flag. See Section 30.5.6 “AES Interrupt Status

Register”.

Warning: In DMA mode, reading the AES_ODATARx before the last data transfer may lead to unpredictable results.

Table 30-4. Last Output Data Mode Behavior versus Start Modes

Sequence

Manual and Auto Modes DMA Transfer

AES_MR.LOD = 0 AES_MR.LOD = 1 AES_MR.LOD = 0 AES_MR.LOD = 1

DATRDY Flag

Clearing Condition(1)

At least one

AES_ODATAR must be

read

At least one

AES_IDATAR must be

written

Not used Managed by the DMA

End of

Encryption/Decryption

Notification

DATRDY DATRDY

2 DMA Buffer transfer

complete flags (channel

m and channel n)

DMA buffer transfer

complete flag, then AES

DATRDY flag

Encrypted/Decrypted

Data Result Location
In the AES_ODATARx In the AES_ODATARx

At the address specified

in the Channel Buffer

Transfer Descriptor

In the AES_ODATARx

629SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

30.4.6 Security Features

30.4.6.1 Unspecified Register Access Detection

When an unspecified register access occurs, the URAD flag in the AES_ISR is raised. Its source is then reported

in the Unspecified Register Access Type (URAT) field. Only the last unspecified register access is available

through the URAT field.

Several kinds of unspecified register accesses can occur:

 Input Data register written during the data processing when SMOD = IDATAR0_START

 Output Data register read during data processing

 Mode register written during data processing

 Output Data register read during sub-keys generation

 Mode register written during sub-keys generation

 Write-only register read access

The URAD bit and the URAT field can only be reset by the SWRST bit in the AES_CR.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

630

30.5 Advanced Encryption Standard (AES) User Interface

Table 30-5. Register Mapping

Offset Register Name Access Reset

0x00 Control Register AES_CR Write-only –

0x04 Mode Register AES_MR Read/Write 0x0

0x08–0x0C Reserved – – –

0x10 Interrupt Enable Register AES_IER Write-only –

0x14 Interrupt Disable Register AES_IDR Write-only –

0x18 Interrupt Mask Register AES_IMR Read-only 0x0

0x1C Interrupt Status Register AES_ISR Read-only 0x0

0x20 Key Word Register 0 AES_KEYWR0 Write-only –

0x24 Key Word Register 1 AES_KEYWR1 Write-only –

0x28 Key Word Register 2 AES_KEYWR2 Write-only –

0x2C Key Word Register 3 AES_KEYWR3 Write-only –

0x30 Key Word Register 4 AES_KEYWR4 Write-only –

0x34 Key Word Register 5 AES_KEYWR5 Write-only –

0x38 Key Word Register 6 AES_KEYWR6 Write-only –

0x3C Key Word Register 7 AES_KEYWR7 Write-only –

0x40 Input Data Register 0 AES_IDATAR0 Write-only –

0x44 Input Data Register 1 AES_IDATAR1 Write-only –

0x48 Input Data Register 2 AES_IDATAR2 Write-only –

0x4C Input Data Register 3 AES_IDATAR3 Write-only –

0x50 Output Data Register 0 AES_ODATAR0 Read-only 0x0

0x54 Output Data Register 1 AES_ODATAR1 Read-only 0x0

0x58 Output Data Register 2 AES_ODATAR2 Read-only 0x0

0x5C Output Data Register 3 AES_ODATAR3 Read-only 0x0

0x60 Initialization Vector Register 0 AES_IVR0 Write-only –

0x64 Initialization Vector Register 1 AES_IVR1 Write-only –

0x68 Initialization Vector Register 2 AES_IVR2 Write-only –

0x6C Initialization Vector Register 3 AES_IVR3 Write-only –

0x70–0xAC Reserved – – –

0xB0–0xFC Reserved – – –

631SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

30.5.1 AES Control Register

Name: AES_CR

Address: 0x40004000

Access: Write-only

• START: Start Processing

0: No effect.

1: Starts manual encryption/decryption process.

• SWRST: Software Reset

0: No effect.

1: Resets the AES. A software-triggered hardware reset of the AES interface is performed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – SWRST

7 6 5 4 3 2 1 0

– – – – – – – START

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

632

30.5.2 AES Mode Register

Name: AES_MR

Address: 0x40004004

Access: Read/Write

• CIPHER: Processing Mode

0: Decrypts data.

1: Encrypts data.

• DUALBUFF: Dual Input Buffer

• PROCDLY: Processing Delay

Processing Time = N × (PROCDLY + 1)

where

N = 10 when KEYSIZE = 0

N = 12 when KEYSIZE = 1

N = 14 when KEYSIZE = 2

The processing time represents the number of clock cycles that the AES needs in order to perform one

encryption/decryption.

Note: The best performance is achieved with PROCDLY equal to 0.

• SMOD: Start Mode

Values which are not listed in the table must be considered as “reserved”.

If a DMA transfer is used, configure SMOD to 0x2. Refer to Section 30.4.4.3 “DMA Mode” for more details.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CKEY – CFBS

15 14 13 12 11 10 9 8

LOD OPMOD KEYSIZE SMOD

7 6 5 4 3 2 1 0

PROCDLY DUALBUFF – – CIPHER

Value Name Description

0 INACTIVE AES_IDATARx cannot be written during processing of previous block.

1 ACTIVE
AES_IDATARx can be written during processing of previous block when SMOD = 2. It speeds

up the overall runtime of large files.

Value Name Description

0
MANUAL_STAR

T
Manual Mode

1 AUTO_START Auto Mode

2 IDATAR0_START AES_IDATAR0 access only Auto Mode (DMA)

633SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• KEYSIZE: Key Size

Values which are not listed in the table must be considered as “reserved”.

• OPMOD: Operation Mode

Values which are not listed in the table must be considered as “reserved”.

For CBC-MAC operating mode, set OPMOD to CBC and LOD to 1.

• LOD: Last Output Data Mode

0: No effect.

After each end of encryption/decryption, the output data are available either on the output data registers (Manual and Auto

modes) or at the address specified in the Channel Buffer Transfer Descriptor for DMA mode.

In Manual and Auto modes, the DATRDY flag is cleared when at least one of the Output Data registers is read.

1: The DATRDY flag is cleared when at least one of the Input Data Registers is written.

No more Output Data Register reads is necessary between consecutive encryptions/decryptions (see Section 30.4.5 “Last

Output Data Mode”).

Warning: In DMA mode, reading to the Output Data registers before the last data encryption/decryption process may lead to

unpredictable results.

• CFBS: Cipher Feedback Data Size

Values which are not listed in table must be considered as “reserved”.

Value Name Description

0 AES128 AES Key Size is 128 bits

1 AES192 AES Key Size is 192 bits

2 AES256 AES Key Size is 256 bits

Value Name Description

0 ECB ECB: Electronic Code Book mode

1 CBC CBC: Cipher Block Chaining mode

2 OFB OFB: Output Feedback mode

3 CFB CFB: Cipher Feedback mode

4 CTR CTR: Counter mode (16-bit internal counter)

Value Name Description

0 SIZE_128BIT 128-bit

1 SIZE_64BIT 64-bit

2 SIZE_32BIT 32-bit

3 SIZE_16BIT 16-bit

4 SIZE_8BIT 8-bit

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

634

• CKEY: Key

Value Name Description

0xE PASSWD

This field must be written with 0xE the first time the AES_MR is programmed. For subsequent

programming of the AES_MR, any value can be written, including that of 0xE.

Always reads as 0.

635SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

30.5.3 AES Interrupt Enable Register

Name: AES_IER

Address: 0x40004010

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• DATRDY: Data Ready Interrupt Enable

• URAD: Unspecified Register Access Detection Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – URAD

7 6 5 4 3 2 1 0

– – – – – – – DATRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

636

30.5.4 AES Interrupt Disable Register

Name: AES_IDR

Address: 0x40004014

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• DATRDY: Data Ready Interrupt Disable

• URAD: Unspecified Register Access Detection Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – URAD

7 6 5 4 3 2 1 0

– – – – – – – DATRDY

637SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

30.5.5 AES Interrupt Mask Register

Name: AES_IMR

Address: 0x40004018

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• DATRDY: Data Ready Interrupt Mask

• URAD: Unspecified Register Access Detection Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – URAD

7 6 5 4 3 2 1 0

– – – – – – – DATRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

638

30.5.6 AES Interrupt Status Register

Name: AES_ISR

Address: 0x4000401C

Access: Read-only

• DATRDY: Data Ready (cleared by setting bit START or bit SWRST in AES_CR or by reading AES_ODATARx)

0: Output data not valid.

1: Encryption or decryption process is completed.

Note: If AES_MR.LOD = 1: In Manual and Auto mode, the DATRDY flag can also be cleared by writing at least one AES_IDATARx.

• URAD: Unspecified Register Access Detection Status (cleared by writing SWRST in AES_CR)

0: No unspecified register access has been detected since the last SWRST.

1: At least one unspecified register access has been detected since the last SWRST.

• URAT: Unspecified Register Access (cleared by writing SWRST in AES_CR)

Only the last Unspecified Register Access Type is available through the URAT field.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

URAT – – – URAD

7 6 5 4 3 2 1 0

– – – – – – – DATRDY

Value Name Description

0 IDR_WR_PROCESSING Input Data register written during the data processing when SMOD = 0x2 mode.

1 ODR_RD_PROCESSING Output Data register read during the data processing.

2 MR_WR_PROCESSING Mode register written during the data processing.

3 ODR_RD_SUBKGEN Output Data register read during the sub-keys generation.

4 MR_WR_SUBKGEN Mode register written during the sub-keys generation.

5 WOR_RD_ACCESS Write-only register read access.

639SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

30.5.7 AES Key Word Register x

Name: AES_KEYWRx [x=0..7]

Address: 0x40004020

Access: Write-only

• KEYW: Key Word

The four/six/eight 32-bit Key Word registers set the 128-bit/192-bit/256-bit cryptographic key used for AES

encryption/decryption.

AES_KEYWR0 corresponds to the first word of the key and respectively AES_KEYWR3/AES_KEYWR5/AES_KEYWR7 to

the last one.

These registers are write-only to prevent the key from being read by another application.

31 30 29 28 27 26 25 24

KEYW

23 22 21 20 19 18 17 16

KEYW

15 14 13 12 11 10 9 8

KEYW

7 6 5 4 3 2 1 0

KEYW

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

640

30.5.8 AES Input Data Register x

Name: AES_IDATARx [x=0..3]

Address: 0x40004040

Access: Write-only

• IDATA: Input Data Word

The four 32-bit Input Data registers set the 128-bit data block used for encryption/decryption.

AES_IDATAR0 corresponds to the first word of the data to be encrypted/decrypted, and AES_IDATAR3 to the last one.

These registers are write-only to prevent the input data from being read by another application.

31 30 29 28 27 26 25 24

IDATA

23 22 21 20 19 18 17 16

IDATA

15 14 13 12 11 10 9 8

IDATA

7 6 5 4 3 2 1 0

IDATA

641SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

30.5.9 AES Output Data Register x

Name: AES_ODATARx [x=0..3]

Address: 0x40004050

Access: Read-only

• ODATA: Output Data

The four 32-bit Output Data registers contain the 128-bit data block that has been encrypted/decrypted.

AES_ODATAR0 corresponds to the first word, AES_ODATAR3 to the last one.

31 30 29 28 27 26 25 24

ODATA

23 22 21 20 19 18 17 16

ODATA

15 14 13 12 11 10 9 8

ODATA

7 6 5 4 3 2 1 0

ODATA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

642

30.5.10 AES Initialization Vector Register x

Name: AES_IVRx [x=0..3]

Address: 0x40004060

Access: Write-only

• IV: Initialization Vector

The four 32-bit Initialization Vector registers set the 128-bit Initialization Vector data block that is used by some modes of

operation as an additional initial input.

AES_IVR0 corresponds to the first word of the Initialization Vector, AES_IVR3 to the last one.

These registers are write-only to prevent the Initialization Vector from being read by another application.

For CBC, OFB and CFB modes, the IV input value corresponds to the initialization vector.

For CTR mode, the IV input value corresponds to the initial counter value.

Note: These registers are not used in ECB mode and must not be written.

31 30 29 28 27 26 25 24

IV

23 22 21 20 19 18 17 16

IV

15 14 13 12 11 10 9 8

IV

7 6 5 4 3 2 1 0

IV

643SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31. Controller Area Network (CAN)

31.1 Description

The CAN controller provides all the features required to implement the serial communication protocol CAN defined

by Robert Bosch GmbH, the CAN specification as referred to by ISO/11898A (2.0 Part A and 2.0 Part B) for high

speeds and ISO/11519-2 for low speeds. The CAN Controller is able to handle all types of frames (Data, Remote,

Error and Overload) and achieves a bitrate of 1 Mbit/s.

CAN controller accesses are made through configuration registers. 8 independent message objects (mailboxes)

are implemented.

Any mailbox can be programmed as a reception buffer block (even non-consecutive buffers). For the reception of

defined messages, one or several message objects can be masked without participating in the buffer feature. An

interrupt is generated when the buffer is full. According to the mailbox configuration, the first message received

can be locked in the CAN controller registers until the application acknowledges it, or this message can be

discarded by new received messages.

Any mailbox can be programmed for transmission. Several transmission mailboxes can be enabled in the same

time. A priority can be defined for each mailbox independently.

An internal 16-bit timer is used to stamp each received and sent message. This timer starts counting as soon as

the CAN controller is enabled. This counter can be reset by the application or automatically after a reception in the

last mailbox in Time Triggered Mode.

The CAN controller offers optimized features to support the Time Triggered Communication (TTC) protocol.

31.2 Embedded Characteristics

 Fully Compliant with CAN 2.0 Part A and 2.0 Part B

 Bit Rates up to 1 Mbit/s

 8 Object Oriented Mailboxes with the Following Properties:

̶ CAN Specification 2.0 Part A or 2.0 Part B Programmable for Each Message

̶ Object Configurable in Receive (with Overwrite or Not) or Transmit Modes

̶ Independent 29-bit Identifier and Mask Defined for Each Mailbox

̶ 32-bit Access to Data Registers for Each Mailbox Data Object

̶ Uses a 16-bit Timestamp on Receive and Transmit Messages

̶ Hardware Concatenation of ID Masked Bitfields To Speed Up Family ID Processing

 16-bit Internal Timer for Timestamping and Network Synchronization

 Programmable Reception Buffer Length up to 8 Mailbox Objects

 Priority Management between Transmission Mailboxes

 Autobaud and Listening Mode

 Low-power Mode and Programmable Wake-up on Bus Activity or by the Application

 Data, Remote, Error and Overload Frame Handling

 Register Write Protection

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

644

31.3 Block Diagram

Figure 31-1. CAN Block Diagram

31.4 Application Block Diagram

Figure 31-2. Application Block Diagram

31.5 I/O Lines Description

Internal Bus

CAN Interrupt

CANRX

Controller Area Network

PIO

CANTX

Error Counter

User Interface

PMC

Peripheral
clock

Mailbox
Priority
Encoder

MB0

MBx
(x = number of mailboxes - 1)

Control
&

Status

CAN Protocol Controller

MB1

Software

Software

CAN Controller

Transceiver

ImplementationLayers

CAN-based Application Layer

CAN-based Profiles

CAN Data Link Layer

CAN Physical Layer

Table 31-1. I/O Lines Description

Name Description Type

CANRX CAN Receive Serial Data Input

CANTX CAN Transmit Serial Data Output

645SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.6 Product Dependencies

31.6.1 I/O Lines

The pins used for interfacing the CAN may be multiplexed with the PIO lines. The programmer must first program

the PIO controller to assign the desired CAN pins to their peripheral function. If I/O lines of the CAN are not used

by the application, they can be used for other purposes by the PIO Controller.

31.6.2 Power Management

The programmer must first enable the CAN clock in the Power Management Controller (PMC) before using the

CAN.

A Low-power mode is defined for the CAN controller. If the application does not require CAN operations, the CAN

clock can be stopped when not needed and be restarted later. Before stopping the clock, the CAN Controller must

be in Low-power mode to complete the current transfer. After restarting the clock, the application must disable the

Low-power mode of the CAN controller.

31.6.3 Interrupt Sources

The CAN interrupt line is connected on one of the internal sources of the interrupt controller. Using the CAN

interrupt requires the interrupt controller to be programmed first. Note that it is not recommended to use the CAN

interrupt line in edge-sensitive mode.

31.7 CAN Controller Features

31.7.1 CAN Protocol Overview

The Controller Area Network (CAN) is a multi-master serial communication protocol that efficiently supports real-

time control with a very high level of security with bit rates up to 1 Mbit/s.

The CAN protocol supports four different frame types:

 Data frames: They carry data from a transmitter node to the receiver nodes. The overall maximum data

frame length is 108 bits for a standard frame and 128 bits for an extended frame.

 Remote frames: A destination node can request data from the source by sending a remote frame with an

identifier that matches the identifier of the required data frame. The appropriate data source node then

sends a data frame as a response to this node request.

 Error frames: An error frame is generated by any node that detects a bus error.

 Overload frames: They provide an extra delay between the preceding and the successive data frames or

remote frames.

Table 31-2. I/O Lines

Instance Signal I/O Line Peripheral

CAN0 CANRX0 PB3 A

CAN0 CANTX0 PB2 A

CAN1 CANRX1 PC12 C

CAN1 CANTX1 PC15 C

Table 31-3. Peripheral IDs

Instance ID

CAN0 37

CAN1 38

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

646

The Atmel CAN controller provides the CPU with full functionality of the CAN protocol V2.0 Part A and V2.0 Part B.

It minimizes the CPU load in communication overhead. The Data Link Layer and part of the physical layer are

automatically handled by the CAN controller itself.

The CPU reads or writes data or messages via the CAN controller mailboxes. An identifier is assigned to each

mailbox. The CAN controller encapsulates or decodes data messages to build or to decode bus data frames.

Remote frames, error frames and overload frames are automatically handled by the CAN controller under

supervision of the software application.

31.7.2 Mailbox Organization

The CAN module has 8 buffers, also called channels or mailboxes. An identifier that corresponds to the CAN

identifier is defined for each active mailbox. Message identifiers can match the standard frame identifier or the

extended frame identifier. This identifier is defined for the first time during the CAN initialization, but can be

dynamically reconfigured later so that the mailbox can handle a new message family. Several mailboxes can be

configured with the same ID.

Each mailbox can be configured in receive or in transmit mode independently. The mailbox object type is defined

in the MOT field of the CAN_MMRx.

31.7.2.1 Message Acceptance Procedure

If the MIDE field in the CAN_MIDx register is set, the mailbox can handle the extended format identifier; otherwise,

the mailbox handles the standard format identifier. Once a new message is received, its ID is masked with the

CAN_MAMx value and compared with the CAN_MIDx value. If accepted, the message ID is copied to the

CAN_MIDx register.

Figure 31-3. Message Acceptance Procedure

If a mailbox is dedicated to receiving several messages (a family of messages) with different IDs, the acceptance

mask defined in the CAN_MAMx register must mask the variable part of the ID family. Once a message is

received, the application must decode the masked bits in the CAN_MIDx. To speed up the decoding, masked bits

are grouped in the family ID register (CAN_MFIDx).

For example, if the following message IDs are handled by the same mailbox:

ID0 101000100100010010000100 0 11 00b
ID1 101000100100010010000100 0 11 01b
ID2 101000100100010010000100 0 11 10b
ID3 101000100100010010000100 0 11 11b
ID4 101000100100010010000100 1 11 00b
ID5 101000100100010010000100 1 11 01b

CAN_MIDx CAN_MAMx Message Received

& &

==

Message Accepted

Message Refused
No

Yes

CAN_MFIDx

647SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

ID6 101000100100010010000100 1 11 10b
ID7 101000100100010010000100 1 11 11b

The CAN_MIDx and CAN_MAMx of Mailbox x must be initialized to the corresponding values:

CAN_MIDx = 001 101000100100010010000100 x 11 xxb
CAN_MAMx = 001 111111111111111111111111 0 11 00b

If Mailbox x receives a message with ID6, then CAN_MIDx and CAN_MFIDx are set:

CAN_MIDx = 001 101000100100010010000100 1 11 10b
CAN_MFIDx = 00000000000000000000000000000110b

If the application associates a handler for each message ID, it may define an array of pointers to functions:

void (*pHandler[8])(void);

When a message is received, the corresponding handler can be invoked using CAN_MFIDx register and there is

no need to check masked bits:

unsigned int MFID0_register;
MFID0_register = Get_CAN_MFID0_Register();
// Get_CAN_MFID0_Register() returns the value of the CAN_MFID0 register
pHandler[MFID0_register]();

31.7.2.2 Receive Mailbox

When the CAN module receives a message, it looks for the first available mailbox with the lowest number and

compares the received message ID with the mailbox ID. If such a mailbox is found, then the message is stored in

its data registers. Depending on the configuration, the mailbox is disabled as long as the message has not been

acknowledged by the application (Receive only), or, if new messages with the same ID are received, then they

overwrite the previous ones (Receive with overwrite).

It is also possible to configure a mailbox in Consumer Mode. In this mode, after each transfer request, a remote

frame is automatically sent. The first answer received is stored in the corresponding mailbox data registers.

Several mailboxes can be chained to receive a buffer. They must be configured with the same ID in Receive Mode,

except for the last one, which can be configured in Receive with Overwrite Mode. The last mailbox can be used to

detect a buffer overflow.

31.7.2.3 Transmit Mailbox

When transmitting a message, the message length and data are written to the transmit mailbox with the correct

identifier. For each transmit mailbox, a priority is assigned. The controller automatically sends the message with

the highest priority first (set with the field PRIOR in CAN_MMRx).

It is also possible to configure a mailbox in Producer Mode. In this mode, when a remote frame is received, the

mailbox data are sent automatically. By enabling this mode, a producer can be done using only one mailbox

instead of two: one to detect the remote frame and one to send the answer.

Table 31-4. Receive Mailbox Objects

Object Type Description

Receive
The first message received is stored in mailbox data registers. Data remain available until the next transfer

request.

Receive with overwrite

The last message received is stored in mailbox data register. The next message always overwrites the

previous one. The application has to check whether a new message has not overwritten the current one

while reading the data registers.

Consumer
A remote frame is sent by the mailbox. The answer received is stored in mailbox data register. This extends

Receive mailbox features. Data remain available until the next transfer request.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

648

Table 31-5. Transmit Mailbox Objects

Object Type Description

Transmit

The message stored in the mailbox data registers will try to win the bus arbitration immediately or later

according to or not the Time Management Unit configuration (see Section 31.7.3).

The application is notified that the message has been sent or aborted.

Producer
The message prepared in the mailbox data registers will be sent after receiving the next remote frame. This

extends transmit mailbox features.

649SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.7.3 Time Management Unit

The CAN Controller integrates a free-running 16-bit internal timer. The counter is driven by the bit clock of the CAN

bus line. It is enabled when the CAN controller is enabled (CANEN set in the CAN_MR). It is automatically cleared

in the following cases:

 after a reset

 when the CAN controller is in Low-power mode is enabled (LPM bit set in the CAN_MR and SLEEP bit set in

the CAN_SR)

 after a reset of the CAN controller (CANEN bit in the CAN_MR)

 in Time-triggered Mode, when a message is accepted by the last mailbox (rising edge of the MRDY signal in

the CAN_MSRlast_mailbox_number register).

The application can also reset the internal timer by setting TIMRST in the CAN_TCR. The current value of the

internal timer is always accessible by reading the CAN_TIM register.

When the timer rolls-over from FFFFh to 0000h, TOVF (Timer Overflow) signal in the CAN_SR is set. TOVF bit in

the CAN_SR is cleared by reading the CAN_SR. Depending on the corresponding interrupt mask in the CAN_IMR,

an interrupt is generated while TOVF is set.

In a CAN network, some CAN devices may have a larger counter. In this case, the application can also decide to

freeze the internal counter when the timer reaches FFFFh and to wait for a restart condition from another device.

This feature is enabled by setting TIMFRZ in the CAN_MR. The CAN_TIM register is frozen to the FFFFh value. A

clear condition described above restarts the timer. A timer overflow (TOVF) interrupt is triggered.

To monitor the CAN bus activity, the CAN_TIM register is copied to the CAN _TIMESTP register after each start of

frame or end of frame and a TSTP interrupt is triggered. If TEOF bit in the CAN_MR is set, the value is captured at

each End Of Frame, else it is captured at each Start Of Frame. Depending on the corresponding mask in the

CAN_IMR, an interrupt is generated while TSTP is set in the CAN_SR. TSTP bit is cleared by reading the

CAN_SR.

The time management unit can operate in one of the two following modes:

 Timestamping mode: The value of the internal timer is captured at each Start Of Frame or each End Of

Frame

 Time Triggered mode: A mailbox transfer operation is triggered when the internal timer reaches the mailbox

trigger.

Timestamping Mode is enabled by clearing TTM field in the CAN_MR. Time Triggered Mode is enabled by setting

TTM field in the CAN_MR.

31.7.4 CAN 2.0 Standard Features

31.7.4.1 CAN Bit Timing Configuration

All controllers on a CAN bus must have the same bit rate and bit length. At different clock frequencies of the

individual controllers, the bit rate has to be adjusted by the time segments.

The CAN protocol specification partitions the nominal bit time into four different segments.

Figure 31-4. Partition of the CAN Bit Time

SYNC_SEG PROP_SEG PHASE_SEG1 PHASE_SEG2

NOMINAL BIT TIME

Sample Point

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

650

 SYNC SEG: SYNChronization Segment

This part of the bit time is used to synchronize the various nodes on the bus. An edge is expected to lie

within this segment. It is one TQ long.

 PROP SEG: PROPagation Segment

This part of the bit time is used to compensate for the physical delay times within the network. It is twice the

sum of the signal’s propagation time on the bus line, the input comparator delay, and the output driver delay.

It is programmable to be 1,2,..., 8 TQ long.

This parameter is defined in the PROPAG field of the ”CAN Baudrate Register”.

 PHASE SEG1, PHASE SEG2: PHASE Segment 1 and 2

The Phase-Buffer-Segments are used to compensate for edge phase errors. These segments can be

lengthened (PHASE SEG1) or shortened (PHASE SEG2) by resynchronization.

Phase Segment 1 is programmable to be 1, 2, ..., 8 TQ long.

Phase Segment 2 length has to be at least as long as the Information Processing Time (IPT) and may not be

more than the length of Phase Segment 1.

These parameters are defined in the PHASE1 and PHASE2 fields of the ”CAN Baudrate Register”.

 TIME QUANTUM

The TIME QUANTUM (TQ) is a fixed unit of time derived from the peripheral clock period. The total number

of TIME QUANTA in a bit time is programmable from 8 to 25.

 INFORMATION PROCESSING TIME

The Information Processing Time (IPT) is the time required for the logic to determine the bit level of a

sampled bit. The IPT begins at the sample point, is measured in TQ and is fixed at two TQ for the Atmel

CAN. Since Phase Segment 2 also begins at the sample point and is the last segment in the bit time,

PHASE SEG2 shall not be less than the IPT.

 SAMPLE POINT

The SAMPLE POINT is the point in time at which the bus level is read and interpreted as the value of that

respective bit. Its location is at the end of PHASE_SEG1.

 SJW: ReSynchronization Jump Width

The ReSynchronization Jump Width defines the limit to the amount of lengthening or shortening of the phase

segments.

SJW is programmable to be the minimum of PHASE SEG1 and four TQ.

If the SMP field in the CAN_BR is set, then the incoming bit stream is sampled three times with a period of half a

CAN clock period, centered on sample point.

In the CAN controller, the length of a bit on the CAN bus is determined by the parameters (BRP, PROPAG,

PHASE1 and PHASE2).

The time quantum is calculated as follows:

Note: The BRP field must be within the range [1, 0x7F], i.e., BRP = 0 is not authorized.

tBIT tCSC tPRS tPHS1 tPHS2+ + +=

tCSC BRP 1+() tperipheral clock⁄=

tPRS tCSC PROPAG 1+()×=

tPHS1 tCSC PHASE1 1+()×=

tPHS2 tCSC PHASE2 1+()×=

651SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

To compensate for phase shifts between clock oscillators of different controllers on the bus, the CAN controller

must resynchronize on any relevant signal edge of the current transmission. The resynchronization shortens or

lengthens the bit time so that the position of the sample point is shifted with regard to the detected edge. The

resynchronization jump width (SJW) defines the maximum of time by which a bit period may be shortened or

lengthened by resynchronization.

Figure 31-5. CAN Bit Timing

tSJW tCSC SJW 1+()×=

SYNC_
SEG

PROP_SEG PHASE_SEG1 PHASE_SEG2

NOMINAL BIT TIME

Sample Point Transmission Point

Peripheral clock

CAN clock

tCSC tPRS tPHS1 tPHS2

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

652

Example of bit timing determination for CAN baudrate of 500 kbit/s:

fPeripheral clock = 48 MHz

CAN baudrate = 500 kbit/s => bit time = 2 µs

Delay of the bus driver: 50 ns

Delay of the receiver: 30 ns

Delay of the bus line (20 m): 110 ns

The total number of time quanta in a bit time must be comprised between 8 and 25. If we fix the bit time to 16

time quanta:

tCSC = 1 time quanta = bit time / 16 = 125 ns

=> BRP = (tCSC x fperipheral clock) - 1 = 5

The propagation segment time is equal to twice the sum of the signal’s propagation time on the bus line, the

receiver delay and the output driver delay:

tPRS = 2 * (50+30+110) ns = 380 ns = 3 tCSC

=> PROPAG = tPRS/tCSC - 1 = 2

The remaining time for the two phase segments is:

tPHS1 + tPHS2 = bit time - tCSC - tPRS = (16 - 1 - 3)tCSC

tPHS1 + tPHS2 = 12 tCSC

Because this number is even, we choose tPHS2 = tPHS1 (else we would choose tPHS2 = tPHS1 + tCSC).

tPHS1 = tPHS2 = (12/2) tCSC = 6 tCSC

=> PHASE1 = PHASE2 = tPHS1/tCSC - 1 = 5

The resynchronization jump width must comprise between one tCSC and the minimum of four tCSC and tPHS1.

We choose its maximum value:

tSJW = Min(4 tCSC,tPHS1) = 4 tCSC

=> SJW = tSJW/tCSC - 1 = 3

Finally: CAN_BR = 0x00053255

CAN Bus Synchronization

Two types of synchronization are distinguished: “hard synchronization” at the start of a frame and

“resynchronization” inside a frame. After a hard synchronization, the bit time is restarted with the end of the

SYNC_SEG segment, regardless of the phase error. Resynchronization causes a reduction or increase in the bit

time so that the position of the sample point is shifted with respect to the detected edge.

The effect of resynchronization is the same as that of hard synchronization when the magnitude of the phase error

of the edge causing the resynchronization is less than or equal to the programmed value of the resynchronization

jump width (tSJW).

When the magnitude of the phase error is larger than the resynchronization jump width and

 the phase error is positive, then PHASE_SEG1 is lengthened by an amount equal to the resynchronization

jump width.

653SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 the phase error is negative, then PHASE_SEG2 is shortened by an amount equal to the resynchronization

jump width.

Figure 31-6. CAN Resynchronization

Autobaud Mode

The autobaud feature is enabled by setting the ABM field in the CAN_MR. In this mode, the CAN controller is only

listening to the line without acknowledging the received messages. It can not send any message. The errors flags

are updated. The bit timing can be adjusted until no error occurs (good configuration found). In this mode, the error

counters are frozen. To go back to the standard mode, the ABM bit must be cleared in the CAN_MR.

31.7.4.2 Error Detection

There are five different error types that are not mutually exclusive. Each error concerns only specific fields of the

CAN data frame (refer to the Bosch CAN specification for their correspondence):

 CRC error (CERR bit in the CAN_SR): With the CRC, the transmitter calculates a checksum for the CRC bit

sequence from the Start of Frame bit until the end of the Data Field. This CRC sequence is transmitted in the

CRC field of the Data or Remote Frame.

 Bit-stuffing error (SERR bit in the CAN_SR): If a node detects a sixth consecutive equal bit level during the

bit-stuffing area of a frame, it generates an Error Frame starting with the next bit-time.

 Bit error (BERR bit in CAN_SR): A bit error occurs if a transmitter sends a dominant bit but detects a

recessive bit on the bus line, or if it sends a recessive bit but detects a dominant bit on the bus line. An error

frame is generated and starts with the next bit time.

 Form Error (FERR bit in the CAN_SR): If a transmitter detects a dominant bit in one of the fix-formatted

segments CRC Delimiter, ACK Delimiter or End of Frame, a form error has occurred and an error frame is

generated.

 Acknowledgment error (AERR bit in the CAN_SR): The transmitter checks the Acknowledge Slot, which is

transmitted by the transmitting node as a recessive bit, contains a dominant bit. If this is the case, at least

SYNC_

SEG
PROP_SEG PHASE_SEG1 PHASE_SEG2

SYNC_

SEG
PROP_SEG PHASE_SEG1 PHASE_SEG2

Phase error
Phase error (max Tsjw)

SYNC_

SEG

SYNC_

SEG

SYNC_

SEG
PROP_SEG PHASE_SEG1PHASE_SEG2

SYNC_

SEG
PHASE_SEG2

SYNC_

SEG
PROP_SEG PHASE_SEG1

PHASE_

SEG2
SYNC_

SEG
PHASE_SEG2

Phase error

Nominal

Sample point

Sample point

after resynchronization

Nominal

Sample point
Sample point

after resynchronization

THE PHASE ERROR IS POSITIVE

(the transmitter is slower than the receiver)

Received

data bit

Received

data bit

Nominal bit time

(before resynchronization)

Bit time with

resynchronization

Bit time with

resynchronization

Phase error (max Tsjw)

Nominal bit time

(before resynchronization)

THE PHASE ERROR IS NEGATIVE

(the transmitter is faster than the receiver)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

654

one other node has received the frame correctly. If not, an Acknowledge Error has occurred and the

transmitter will start in the next bit-time an Error Frame transmission.

Fault Confinement

To distinguish between temporary and permanent failures, every CAN controller has two error counters: REC

(Receive Error Counter) and TEC (Transmit Error Counter). The two counters are incremented upon detected

errors and are decremented upon correct transmissions or receptions, respectively. Depending on the counter

values, the state of the node changes: the initial state of the CAN controller is Error Active, meaning that the

controller can send Error Active flags. The controller changes to the Error Passive state if there is an accumulation

of errors. If the CAN controller fails or if there is an extreme accumulation of errors, there is a state transition to Bus

Off.

Figure 31-7. Line Error Mode

An error active unit takes part in bus communication and sends an active error frame when the CAN controller

detects an error.

An error passive unit cannot send an active error frame. It takes part in bus communication, but when an error is

detected, a passive error frame is sent. Also, after a transmission, an error passive unit waits before initiating

further transmission.

A bus off unit is not allowed to have any influence on the bus.

For fault confinement, two errors counters (TEC and REC) are implemented. These counters are accessible via

the CAN_ECR. The state of the CAN controller is automatically updated according to these counter values. If the

CAN controller enters Error Active state, then the ERRA bit is set in the CAN_SR. The corresponding interrupt is

pending while the interrupt is not masked in the CAN_IMR. If the CAN controller enters Error Passive Mode, then

the ERRP bit is set in the CAN_SR and an interrupt remains pending while the ERRP bit is set in the CAN_IMR. If

the CAN enters Bus Off Mode, then the BOFF bit is set in the CAN_SR. As for ERRP and ERRA, an interrupt is

pending while the BOFF bit is set in the CAN_IMR.

When one of the error counters values exceeds 96, an increased error rate is indicated to the controller through

the WARN bit in CAN_SR, but the node remains error active. The corresponding interrupt is pending while the

interrupt is set in the CAN_IMR.

Refer to the Bosch CAN specification v2.0 for details on fault confinement.

Error Interrupt Handler

ERRA, WARN, ERRP and BOFF (CAN_SR) store the key transitions of the CAN bus status as defined in Figure

31-7 on page 654. The transitions depend on the TEC and REC (CAN_ECR) values as described in Section

“Fault Confinement” on page 654.

These flags are latched to keep from triggering a spurious interrupt in case these bits are used as the source of an

interrupt. Thus, these flags may not reflect the current status of the CAN bus.

ERROR

ACTIVE

ERROR

PASSIVE
 BUS OFF

TEC > 255

Init

TEC > 127

or

REC > 127

TEC < 127

and

REC < 127

128 occurences of 11 consecutive recessive bits

or

CAN controller reset

655SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The current CAN bus state can be determined by reading the TEC and REC fields of CAN_ECR.

31.7.4.3 Overload

The overload frame is provided to request a delay of the next data or remote frame by the receiver node (“Request

overload frame”) or to signal certain error conditions (“Reactive overload frame”) related to the intermission field

respectively.

Reactive overload frames are transmitted after detection of the following error conditions:

 Detection of a dominant bit during the first two bits of the intermission field

 Detection of a dominant bit in the last bit of EOF by a receiver, or detection of a dominant bit by a receiver or

a transmitter at the last bit of an error or overload frame delimiter

The CAN controller can generate a request overload frame automatically after each message sent to one of the

CAN controller mailboxes. This feature is enabled by setting the OVL bit in the CAN_MR.

Reactive overload frames are automatically handled by the CAN controller even if the OVL bit in the CAN_MR is

not set. An overload flag is generated in the same way as an error flag, but error counters do not increment.

31.7.5 Low-power Mode

In Low-power mode, the CAN controller cannot send or receive messages. All mailboxes are inactive.

In Low-power mode, the SLEEP signal in the CAN_SR is set; otherwise, the WAKEUP signal in the CAN_SR is

set. These two bits are exclusive except after a CAN controller reset (WAKEUP and SLEEP are stuck at 0 after a

reset). After power-up reset, the Low-power mode is disabled and the WAKEUP bit is set in the CAN_SR only after

detection of 11 consecutive recessive bits on the bus.

31.7.5.1 Enabling Low-power Mode

A software application can enable Low-power mode by setting the LPM bit in the CAN_MR global register. The

CAN controller enters Low-power mode once all pending transmit messages are sent.

When the CAN controller enters Low-power mode, the SLEEP signal in the CAN_SR is set. Depending on the

corresponding mask in the CAN_IMR, an interrupt is generated while SLEEP is set.

The SLEEP signal in the CAN_SR is automatically cleared once WAKEUP is set. The WAKEUP signal is

automatically cleared once SLEEP is set.

Reception is disabled while the SLEEP signal is set to one in the CAN_SR. It is important to note that those

messages with higher priority than the last message transmitted can be received between the LPM command and

entry in Low-power mode.

Once in Low-power mode, the CAN controller clock can be switched off by programming the chip’s Power

Management Controller (PMC). The CAN controller drains only the static current.

Error counters are disabled while the SLEEP signal is set to one.

Thus, to enter Low-power mode, the software application must:

̶ Set LPM field in the CAN_MR

̶ Wait for SLEEP signal rising

Now the CAN Controller clock can be disabled. This is done by programming the Power Management Controller

(PMC).

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

656

Figure 31-8. Enabling Low-power Mode

31.7.5.2 Disabling Low-power Mode

The CAN controller can be awake after detecting a CAN bus activity. Bus activity detection is done by an external

module that may be embedded in the chip. When it is notified of a CAN bus activity, the software application

disables Low-power mode by programming the CAN controller.

To disable Low-power mode, the software application must:

̶ Enable the CAN Controller clock. This is done by programming the Power Management Controller

(PMC).

̶ Clear the LPM field in the CAN_MR

The CAN controller synchronizes itself with the bus activity by checking for eleven consecutive “recessive” bits.

Once synchronized, the WAKEUP signal in the CAN_SR is set.

Depending on the corresponding mask in the CAN_IMR, an interrupt is generated while WAKEUP is set. The

SLEEP signal in the CAN_SR is automatically cleared once WAKEUP is set. WAKEUP signal is automatically

cleared once SLEEP is set.

If no message is being sent on the bus, then the CAN controller is able to send a message eleven bit times after

disabling Low-power mode.

If there is bus activity when Low-power mode is disabled, the CAN controller is synchronized with the bus activity

in the next interframe. The previous message is lost (see Figure 31-9).

SLEEP

(CAN_SR)

MRDY

(CAN_MSR1)

LPM

(CAN_MR)

LPEN= 1

CAN BUS

MRDY

(CAN_MSR3)

Mailbox 1 Mailbox 3

Arbitration lost

WAKEUP

(CAN_SR)

0x0CAN_TIM

657SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 31-9. Disabling Low-power Mode

SLEEP

(CAN_SR)

MRDY

(CAN_MSRx)

LPM

(CAN_MR)

CAN BUS

Bus Activity Detected

Message x

Interframe synchronization

WAKEUP

(CAN_SR)

Message lost

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

658

31.8 Functional Description

31.8.1 CAN Controller Initialization

After power-up reset, the CAN controller is disabled. The CAN controller clock must be activated by the Power

Management Controller (PMC) and the CAN controller interrupt line must be enabled by the interrupt controller.

The CAN controller must be initialized with the CAN network parameters. The CAN_BR defines the sampling point

in the bit time period. CAN_BR must be set before the CAN controller is enabled.

The CAN controller is enabled by setting the CANEN bit in the CAN_MR. At this stage, the internal CAN controller

state machine is reset, error counters are reset to 0, and error flags are reset to 0.

Once the CAN controller is enabled, bus synchronization is done automatically by scanning eleven recessive bits.

The WAKEUP bit in the CAN_SR is automatically set to 1 when the CAN controller is synchronized (WAKEUP and

SLEEP are stuck at 0 after a reset).

The CAN controller can start listening to the network in Autobaud Mode. In this case, the error counters are locked

and a mailbox may be configured in Receive Mode. By scanning error flags, the CAN_BR values synchronized

with the network. Once no error has been detected, the application disables the Autobaud Mode, clearing the ABM

bit in the CAN_MR.

Figure 31-10. Possible Initialization Procedure

31.8.2 CAN Controller Interrupt Handling

There are two different types of interrupts. One type of interrupt is a message-object related interrupt, the other is

a system interrupt that handles errors or system-related interrupt sources.

Errors?

No

Yes

(ABM == 1 and CANEN == 1)

CANEN = 1 (ABM == 0)

ABM = 0 and CANEN = 0

(CAN_SR or CAN_MSRx)

Change CAN_BR value

End of Initialization

Configure a Mailbox in Reception Mode

Enable CAN Controller Interrupt Line

Enable CAN Controller Clock

(Interrupt Controller)

(PMC)

659SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

All interrupt sources can be masked by writing the corresponding field in the CAN_IDR. They can be unmasked by

writing to the CAN_IER. After a power-up reset, all interrupt sources are disabled (masked). The current mask

status can be checked by reading the CAN_IMR.

The CAN_SR gives all interrupt source states.

The following events may initiate one of the two interrupts:

 Message object interrupt

̶ Data registers in the mailbox object are available to the application. In Receive Mode, a new message

was received. In Transmit Mode, a message was transmitted successfully.

̶ A sent transmission was aborted.

 System interrupts

̶ Bus off interrupt: The CAN module enters the bus off state.

̶ Error passive interrupt: The CAN module enters Error Passive Mode.

̶ Error Active Mode: The CAN module is neither in Error Passive Mode nor in Bus Off mode.

̶ Warn Limit interrupt: The CAN module is in Error-active Mode, but at least one of its error counter

value exceeds 96.

̶ Wake-up interrupt: This interrupt is generated after a wake-up and a bus synchronization.

̶ Sleep interrupt: This interrupt is generated after a Low-power mode enable once all pending

messages in transmission have been sent.

̶ Internal timer counter overflow interrupt: This interrupt is generated when the internal timer rolls over.

̶ Timestamp interrupt: This interrupt is generated after the reception or the transmission of a start of

frame or an end of frame. The value of the internal counter is copied in the CAN_TIMESTP register.

All interrupts are cleared by clearing the interrupt source except for the internal timer counter overflow interrupt and

the timestamp interrupt. These interrupts are cleared by reading the CAN_SR.

31.8.3 CAN Controller Message Handling

31.8.3.1 Receive Handling

Two modes are available to configure a mailbox to receive messages. In Receive Mode, the first message

received is stored in the mailbox data register. In Receive with Overwrite Mode, the last message received is

stored in the mailbox.

Simple Receive Mailbox

A mailbox is in Receive Mode once the MOT field in the CAN_MMRx has been configured. Message ID and

Message Acceptance Mask must be set before the Receive Mode is enabled.

After Receive Mode is enabled, the MRDY flag in the CAN_MSR is automatically cleared until the first message is

received. When the first message has been accepted by the mailbox, the MRDY flag is set. An interrupt is pending

for the mailbox while the MRDY flag is set. This interrupt can be masked depending on the mailbox flag in the

CAN_IMR global register.

Message data are stored in the mailbox data register until the software application notifies that data processing

has ended. This is done by asking for a new transfer command, setting the MTCR flag in the CAN_MCRx. This

automatically clears the MRDY signal.

The MMI flag in the CAN_MSRx notifies the software that a message has been lost by the mailbox. This flag is set

when messages are received while MRDY is set in the CAN_MSRx. This flag is cleared by reading the

CAN_MSRs register. A receive mailbox prevents from overwriting the first message by new ones while MRDY flag

is set in the CAN_MSRx. See Figure 31-11.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

660

Figure 31-11. Receive Mailbox

Note: In the case of ARM architecture, CAN_MSRx, CAN_MDLx, CAN_MDHx can be read using an optimized ldm assembler

instruction.

Receive with Overwrite Mailbox

A mailbox is in Receive with Overwrite Mode once the MOT field in the CAN_MMRx has been configured.

Message ID and Message Acceptance masks must be set before Receive Mode is enabled.

After Receive Mode is enabled, the MRDY flag in the CAN_MSR is automatically cleared until the first message is

received. When the first message has been accepted by the mailbox, the MRDY flag is set. An interrupt is pending

for the mailbox while the MRDY flag is set. This interrupt is masked depending on the mailbox flag in the CAN_IMR

global register.

If a new message is received while the MRDY flag is set, this new message is stored in the mailbox data register,

overwriting the previous message. The MMI flag in the CAN_MSRx notifies the software that a message has been

dropped by the mailbox. This flag is cleared when reading the CAN_MSRx.

The CAN controller may store a new message in the CAN data registers while the application reads them. To

check that CAN_MDHx and CAN_MDLx do not belong to different messages, the application must check the MMI

bit in the CAN_MSRx before and after reading CAN_MDHx and CAN_MDLx. If the MMI flag is set again after the

data registers have been read, the software application has to re-read CAN_MDHx and CAN_MDLx (see Figure

31-12).

Message 1 Message 2 lost Message 3

Message 3 Message 1

Reading CAN_MSRx

Reading CAN_MDHx & CAN_MDLx

Writing CAN_MCRx

MMI

(CAN_MSRx)

MRDY

(CAN_MSRx)

CAN BUS

(CAN_MDLx

CAN_MDHx)

MTCR

(CAN_MCRx)

Message ID = CAN_MIDx

661SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 31-12. Receive with Overwrite Mailbox

Chaining Mailboxes

Several mailboxes may be used to receive a buffer split into several messages with the same ID. In this case, the

mailbox with the lowest number is serviced first. In the receive and receive with overwrite modes, the field PRIOR

in the CAN_MMRx has no effect. If Mailbox 0 and Mailbox 5 accept messages with the same ID, the first message

is received by Mailbox 0 and the second message is received by Mailbox 5. Mailbox 0 must be configured in

Receive Mode (i.e., the first message received is considered) and Mailbox 5 must be configured in Receive with

Overwrite Mode. Mailbox 0 cannot be configured in Receive with Overwrite Mode; otherwise, all messages are

accepted by this mailbox and Mailbox 5 is never serviced.

If several mailboxes are chained to receive a buffer split into several messages, all mailboxes except the last one

(with the highest number) must be configured in Receive Mode. The first message received is handled by the first

mailbox, the second one is refused by the first mailbox and accepted by the second mailbox, the last message is

accepted by the last mailbox and refused by previous ones (see Figure 31-13).

Message 1 Message 2 Message 3

Message 3 Message 1

Reading CAN_MSRx

Reading CAN_MDHx & CAN_MDLx

Writing CAN_MCRx

MMI

(CAN_MSRx)

MRDY

(CAN_MSRx)

CAN BUS

(CAN_MDLx

CAN_MDHx)

MTCR

(CAN_MCRx)

Message ID = CAN_MIDx

Message 4

Message 2 Message 4

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

662

Figure 31-13. Chaining Three Mailboxes to Receive a Buffer Split into Three Messages

If the number of mailboxes is not sufficient (the MMI flag of the last mailbox raises), the user must read each data

received on the last mailbox in order to retrieve all the messages of the buffer split (see Figure 31-14).

Figure 31-14. Chaining Three Mailboxes to Receive a Buffer Split into Four Messages

MMI

(CAN_MSRx)

MRDY

(CAN_MSRx)

CAN BUS Message s1

Reading CAN_MSRx, CAN_MSRy and CAN_MSRz

Writing MBx MBy MBz in CAN_TCR

Reading CAN_MDH & CAN_MDL for mailboxes x, y and z

MMI

(CAN_MSRy)

MRDY

(CAN_MSRy)

MMI

(CAN_MSRz)

MRDY

(CAN_MSRz)

Message s2 Message s3

Buffer split in 3 messages

MMI

(CAN_MSRx)

MRDY

(CAN_MSRx)

CAN BUS Message s1

Reading CAN_MSRx, CAN_MSRy and CAN_MSRz

Writing MBx MBy MBz in CAN_TCR

Reading CAN_MDH & CAN_MDL for mailboxes x, y and z

MMI

(CAN_MSRy)

MRDY

(CAN_MSRy)

MMI

(CAN_MSRz)

MRDY

(CAN_MSRz)

Message s2 Message s3

Buffer split in 4 messages

Message s4

663SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.8.3.2 Transmission Handling

A mailbox is in Transmit Mode once the MOT field in the CAN_MMRx has been configured. Message ID and

Message Acceptance mask must be set before Receive Mode is enabled.

After Transmit Mode is enabled, the MRDY flag in the CAN_MSR is automatically set until the first command is

sent. When the MRDY flag is set, the software application can prepare a message to be sent by writing to the

CAN_MDx registers. The message is sent once the software asks for a transfer command setting the MTCR bit

and the message data length in the CAN_MCRx.

The MRDY flag remains at zero as long as the message has not been sent or aborted. It is important to note that

no access to the mailbox data register is allowed while the MRDY flag is cleared. An interrupt is pending for the

mailbox while the MRDY flag is set. This interrupt can be masked depending on the mailbox flag in the CAN_IMR

global register.

It is also possible to send a remote frame setting the MRTR bit instead of setting the MDLC field. The answer to

the remote frame is handled by another reception mailbox. In this case, the device acts as a consumer but with the

help of two mailboxes. It is possible to handle the remote frame emission and the answer reception using only one

mailbox configured in Consumer Mode. Refer to the section “Remote Frame Handling” on page 664.

Several messages can try to win the bus arbitration in the same time. The message with the highest priority is sent

first. Several transfer request commands can be generated at the same time by setting MBx bits in the CAN_TCR.

The priority is set in the PRIOR field of the CAN_MMRx. Priority 0 is the highest priority, priority 15 is the lowest

priority. Thus it is possible to use a part of the message ID to set the PRIOR field. If two mailboxes have the same

priority, the message of the mailbox with the lowest number is sent first. Thus if mailbox 0 and mailbox 5 have the

same priority and have a message to send at the same time, then the message of the mailbox 0 is sent first.

Setting the MACR bit in the CAN_MCRx aborts the transmission. Transmission for several mailboxes can be

aborted by writing MBx fields in the CAN_ACR. If the message is being sent when the abort command is set, then

the application is notified by the MRDY bit set and not the MABT in the CAN_MSRx. Otherwise, if the message

has not been sent, then the MRDY and the MABT are set in the CAN_MSR.

When the bus arbitration is lost by a mailbox message, the CAN controller tries to win the next bus arbitration with

the same message if this one still has the highest priority. Messages to be sent are re-tried automatically until they

win the bus arbitration. This feature can be disabled by setting the bit DRPT in the CAN_MR. In this case if the

message was not sent the first time it was transmitted to the CAN transceiver, it is automatically aborted. The

MABT flag is set in the CAN_MSRx until the next transfer command.

Figure 31-15 shows three MBx message attempts being made (MRDY of MBx set to 0).

The first MBx message is sent, the second is aborted and the last one is trying to be aborted but too late because

it has already been transmitted to the CAN transceiver.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

664

Figure 31-15. Transmitting Messages

31.8.3.3 Remote Frame Handling

Producer/consumer model is an efficient means of handling broadcasted messages. The push model allows a

producer to broadcast messages; the pull model allows a customer to ask for messages.

Figure 31-16. Producer / Consumer Model

In Pull Mode, a consumer transmits a remote frame to the producer. When the producer receives a remote frame,

it sends the answer accepted by one or many consumers. Using transmit and receive mailboxes, a consumer must

dedicate two mailboxes, one in Transmit Mode to send remote frames, and at least one in Receive Mode to

capture the producer’s answer. The same structure is applicable to a producer: one reception mailbox is required

to get the remote frame and one transmit mailbox to answer.

Mailboxes can be configured in Producer or Consumer Mode. A lonely mailbox can handle the remote frame and

the answer. With 8 mailboxes, the CAN controller can handle 8 independent producers/consumers.

MTCR
(CAN_MCRx)

MRDY
(CAN_MSRx)

CAN BUS MBx message

Reading CAN_MSRx

Writing CAN_MDHx &
 CAN_MDLx

MBx message

MACR
(CAN_MCRx)

Abort MBx message Try to Abort MBx message

MABT
(CAN_MSRx)

CAN Data Frame

CAN Remote Frame

CAN Data Frame

Indication(s)
Request

Request(s)
Indications

Response

Confirmation(s)

PUSH MODEL

PULL MODEL

Producer

Producer

Consumer

Consumer

665SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Producer Configuration

A mailbox is in Producer Mode once the MOT field in the CAN_MMRx has been configured. Message ID and

Message Acceptance masks must be set before Receive Mode is enabled.

After Producer Mode is enabled, the MRDY flag in the CAN_MSR is automatically set until the first transfer

command. The software application prepares data to be sent by writing to the CAN_MDHx and the CAN_MDLx

registers, then by setting the MTCR bit in the CAN_MCRx. Data is sent after the reception of a remote frame as

soon as it wins the bus arbitration.

The MRDY flag remains at zero as long as the message has not been sent or aborted. No access to the mailbox

data register can be done while MRDY flag is cleared. An interrupt is pending for the mailbox while the MRDY flag

is set. This interrupt can be masked according to the mailbox flag in the CAN_IMR global register.

If a remote frame is received while no data are ready to be sent (signal MRDY set in the CAN_MSRx), then the

MMI signal is set in the CAN_MSRx. This bit is cleared by reading the CAN_MSRx.

The MRTR field in the CAN_MSRx has no meaning. This field is used only when using Receive and Receive with

Overwrite modes.

After a remote frame has been received, the mailbox functions like a transmit mailbox. The message with the

highest priority is sent first. The transmitted message may be aborted by setting the MACR bit in the CAN_MCR.

Please refer to the section “Transmission Handling” on page 663.

Figure 31-17. Producer Handling

Consumer Configuration

A mailbox is in Consumer Mode once the MOT field in the CAN_MMRx has been configured. Message ID and

Message Acceptance masks must be set before Receive Mode is enabled.

After Consumer Mode is enabled, the MRDY flag in the CAN_MSR is automatically cleared until the first transfer

request command. The software application sends a remote frame by setting the MTCR bit in the CAN_MCRx or

the MBx bit in the global CAN_TCR. The application is notified of the answer by the MRDY flag set in the

CAN_MSRx. The application can read the data contents in the CAN_MDHx and CAN_MDLx registers. An interrupt

is pending for the mailbox while the MRDY flag is set. This interrupt can be masked according to the mailbox flag

in the CAN_IMR global register.

The MRTR bit in the CAN_MCRx has no effect. This field is used only when using Transmit Mode.

After a remote frame has been sent, the consumer mailbox functions as a reception mailbox. The first message

received is stored in the mailbox data registers. If other messages intended for this mailbox have been sent while

the MRDY flag is set in the CAN_MSRx, they will be lost. The application is notified by reading the MMI bit in the

CAN_MSRx. The read operation automatically clears the MMI flag.

If several messages are answered by the Producer, the CAN controller may have one mailbox in consumer

configuration, zero or several mailboxes in Receive Mode and one mailbox in Receive with Overwrite Mode. In this

MTCR

(CAN_MCRx)

MRDY

(CAN_MSRx)

CAN BUS Remote Frame Message 1

Message 1

Message 2

(CAN_MDLx

CAN_MDHx)

MMI

(CAN_MSRx)

Remote Frame Remote Frame

Message 2

Reading CAN_MSRx

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

666

case, the consumer mailbox must have a lower number than the Receive with Overwrite mailbox. The transfer

command can be triggered for all mailboxes at the same time by setting several MBx fields in the CAN_TCR.

Figure 31-18. Consumer Handling

31.8.4 CAN Controller Timing Modes

Using the free running 16-bit internal timer, the CAN controller can be set in one of the two following timing modes:

 Timestamping Mode: The value of the internal timer is captured at each Start Of Frame or each End Of

Frame.

 Time Triggered Mode: The mailbox transfer operation is triggered when the internal timer reaches the

mailbox trigger.

Timestamping Mode is enabled by clearing the TTM bit in the CAN_MR. Time Triggered Mode is enabled by

setting the TTM bit in the CAN_MR.

31.8.4.1 Timestamping Mode

Each mailbox has its own timestamp value. Each time a message is sent or received by a mailbox, the 16-bit value

MTIMESTAMP of the CAN_TIMESTP register is transferred to the LSB bits of the CAN_MSRx. The value read in

the CAN_MSRx corresponds to the internal timer value at the Start Of Frame or the End Of Frame of the message

handled by the mailbox.

Figure 31-19. Mailbox Timestamp

MTCR

(CAN_MCRx)

MRDY

(CAN_MSRx)

CAN BUS Remote Frame Message x

Message y

Message y

(CAN_MDLx

CAN_MDHx)

MMI

(CAN_MSRx)

Remote Frame

Message x

TEOF

(CAN_MR)

MTIMESTAMP

(CAN_MSRx)

CAN_TIM

CAN BUS

MTIMESTAMP

(CAN_MSRy)

Message 1 Message 2

Start of Frame

TIMESTAMP

(CAN_TSTP)

End of Frame

Timestamp 1

Timestamp 1

Timestamp 2

Timestamp 2

667SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.8.4.2 Time Triggered Mode

In Time Triggered Mode, basic cycles can be split into several time windows. A basic cycle starts with a reference

message. Each time a window is defined from the reference message, a transmit operation should occur within a

pre-defined time window. A mailbox must not win the arbitration in a previous time window, and it must not be

retried if the arbitration is lost in the time window.

Figure 31-20. Time Triggered Principle

Time Trigger Mode is enabled by setting the TTM field in the CAN_MR. In Time Triggered Mode, as in Timestamp

Mode, the CAN_TIMESTP field captures the values of the internal counter, but the MTIMESTAMP fields in the

CAN_MSRx registers are not active and are read at 0.

Synchronization by a Reference Message

In Time Triggered Mode, the internal timer counter is automatically reset when a new message is received in the

last mailbox. This reset occurs after the reception of the End Of Frame on the rising edge of the MRDY signal in

the CAN_MSRx. This allows synchronization of the internal timer counter with the reception of a reference

message and the start a new time window.

Transmitting within a Time Window

A time mark is defined for each mailbox. It is defined in the 16-bit MTIMEMARK field of the CAN_MMRx. At each

internal timer clock cycle, the value of the CAN_TIM is compared with each mailbox time mark. When the internal

timer counter reaches the MTIMEMARK value, an internal timer event for the mailbox is generated for the mailbox.

In Time Triggered Mode, transmit operations are delayed until the internal timer event for the mailbox. The

application prepares a message to be sent by setting the MTCR in the CAN_MCRx. The message is not sent until

the CAN_TIM value is less than the MTIMEMARK value defined in the CAN_MMRx.

If the transmit operation is failed, i.e., the message loses the bus arbitration and the next transmit attempt is

delayed until the next internal time trigger event. This prevents overlapping the next time window, but the message

is still pending and is retried in the next time window when CAN_TIM value equals the MTIMEMARK value. It is

also possible to prevent a retry by setting the DRPT field in the CAN_MR.

Freezing the Internal Timer Counter

The internal counter can be frozen by setting TIMFRZ in the CAN_MR. This prevents an unexpected roll-over

when the counter reaches FFFFh. When this occurs, it automatically freezes until a new reset is issued, either due

to a message received in the last mailbox or any other reset counter operations. The TOVF bit in the CAN_SR is

set when the counter is frozen. The TOVF bit in the CAN_SR is cleared by reading the CAN_SR. Depending on

the corresponding interrupt mask in the CAN_IMR, an interrupt is generated when TOVF is set.

Reference

Message

Reference

Message

Global Time

Time Cycle

Time Windows for Messages

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

668

Figure 31-21. Time Triggered Operations

MRDY

(CAN_MSRlast_mailbox_number)

CAN_TIM

CAN BUS

MRDY

(CAN_MSRx)

End of Frame

Timer Event x MTIMEMARKx == CAN_TIM

Timer Event y

MRDY

(CAN_MSRy)

MTIMEMARKy == CAN_TIM

Cleared by software

Internal Counter Reset

Message x

Arbitration Lost
Message y

Arbitration Win

Reference

Message Message y

 MRDY

(CAN_MSRlast_mailbox_number)

CAN_TIM

CAN BUS

MRDY

(CAN_MSRx)

End of Frame

Timer Event x MTIMEMARKx == CAN_TIM

Cleared by software

Internal Counter Reset

Message x

Arbitration Win

Reference

Message Message x

Basic Cycle

Time Window

Basic Cycle

Time Window

669SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.8.5 Register Write Protection

To prevent any single software error that may corrupt CAN behavior, the registers listed below can be write-

protected by setting the WPEN bit in the CAN Write Protection Mode Register (CAN_WPMR).

If a write access in a write-protected register is detected, then the WPVS flag in the CAN Write Protection Status

Register (CAN_WPSR) is set and the field WPVSRC indicates in which register the write access has been

attempted.

The WPVS flag is automatically reset after reading the CAN_WPSR.

The following registers can be write-protected:

 CAN Mode Register

 CAN Baudrate Register

 CAN Message Mode Register

 CAN Message Acceptance Mask Register

 CAN Message ID Register

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

670

31.9 Controller Area Network (CAN) User Interface

2. Mailbox number ranges from 0 to 7.

Table 31-6. Register Mapping

Offset Register Name Access Reset

0x0000 Mode Register CAN_MR Read/Write 0x0

0x0004 Interrupt Enable Register CAN_IER Write-only –

0x0008 Interrupt Disable Register CAN_IDR Write-only –

0x000C Interrupt Mask Register CAN_IMR Read-only 0x0

0x0010 Status Register CAN_SR Read-only 0x0

0x0014 Baudrate Register CAN_BR Read/Write 0x0

0x0018 Timer Register CAN_TIM Read-only 0x0

0x001C Timestamp Register CAN_TIMESTP Read-only 0x0

0x0020 Error Counter Register CAN_ECR Read-only 0x0

0x0024 Transfer Command Register CAN_TCR Write-only –

0x0028 Abort Command Register CAN_ACR Write-only –

0x002C–x00E0 Reserved – – –

0x00E4 Write Protection Mode Register CAN_WPMR Read/Write 0x0

0x00E8 Write Protection Status Register CAN_WPSR Read-only 0x0

0x00EC–0x01FC Reserved – – –

0x0200 + MB * 0x20 + 0x00 Mailbox Mode Register(2) CAN_MMR Read/Write 0x0

0x0200 + MB * 0x20 + 0x04 Mailbox Acceptance Mask Register CAN_MAM Read/Write 0x0

0x0200 + MB * 0x20 + 0x08 Mailbox ID Register CAN_MID Read/Write 0x0

0x0200 + MB * 0x20 + 0x0C Mailbox Family ID Register CAN_MFID Read-only 0x0

0x0200 + MB * 0x20 + 0x10 Mailbox Status Register CAN_MSR Read-only 0x0

0x0200 + MB * 0x20 + 0x14 Mailbox Data Low Register CAN_MDL Read/Write 0x0

0x0200 + MB * 0x20 + 0x18 Mailbox Data High Register CAN_MDH Read/Write 0x0

0x0200 + MB * 0x20 + 0x1C Mailbox Control Register CAN_MCR Write-only –

671SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.1 CAN Mode Register

Name: CAN_MR

Address: 0x40010000 (0), 0x40014000 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the CAN Write Protection Mode Register.

• CANEN: CAN Controller Enable

0: The CAN Controller is disabled.

1: The CAN Controller is enabled.

• LPM: Disable/Enable Low-power Mode

0: Disable Low-power mode.

1: Enable Low-power mode.

CAN controller enters Low-power mode once all pending messages have been transmitted.

• ABM: Disable/Enable Autobaud/Listen mode

0: Disable Autobaud/listen mode.

1: Enable Autobaud/listen mode.

• OVL: Disable/Enable Overload Frame

0: No overload frame is generated.

1: An overload frame is generated after each successful reception for mailboxes configured in Receive with/without over-

write Mode, Producer and Consumer.

• TEOF: Timestamp messages at each end of Frame

0: The value of CAN_TIM is captured in the CAN_TIMESTP register at each Start Of Frame.

1: The value of CAN_TIM is captured in the CAN_TIMESTP register at each End Of Frame.

• TTM: Disable/Enable Time Triggered Mode

0: Time Triggered Mode is disabled.

1: Time Triggered Mode is enabled.

• TIMFRZ: Enable Timer Freeze

0: The internal timer continues to be incremented after it reached 0xFFFF.

1: The internal timer stops incrementing after reaching 0xFFFF. It is restarted after a timer reset. See “Freezing the Internal

Timer Counter” on page 667.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

DRPT TIMFRZ TTM TEOF OVL ABM LPM CANEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

672

• DRPT: Disable Repeat

0: When a transmit mailbox loses the bus arbitration, the transfer request remains pending.

1: When a transmit mailbox loses the bus arbitration, the transfer request is automatically aborted. It automatically raises

the MABT and MRDT flags in the corresponding CAN_MSRx.

673SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.2 CAN Interrupt Enable Register

Name: CAN_IER

Address: 0x40010004 (0), 0x40014004 (1)

Access: Write-only

• MBx: Mailbox x Interrupt Enable

0: No effect.

1: Enable Mailbox x interrupt.

• ERRA: Error Active Mode Interrupt Enable

0: No effect.

1: Enable ERRA interrupt.

• WARN: Warning Limit Interrupt Enable

0: No effect.

1: Enable WARN interrupt.

• ERRP: Error Passive Mode Interrupt Enable

0: No effect.

1: Enable ERRP interrupt.

• BOFF: Bus Off Mode Interrupt Enable

0: No effect.

1: Enable BOFF interrupt.

• SLEEP: Sleep Interrupt Enable

0: No effect.

1: Enable SLEEP interrupt.

• WAKEUP: Wakeup Interrupt Enable

0: No effect.

1: Enable SLEEP interrupt.

• TOVF: Timer Overflow Interrupt Enable

0: No effect.

1: Enable TOVF interrupt.

31 30 29 28 27 26 25 24

– – – BERR FERR AERR SERR CERR

23 22 21 20 19 18 17 16

TSTP TOVF WAKEUP SLEEP BOFF ERRP WARN ERRA

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

674

• TSTP: TimeStamp Interrupt Enable

0: No effect.

1: Enable TSTP interrupt.

• CERR: CRC Error Interrupt Enable

0: No effect.

1: Enable CRC Error interrupt.

• SERR: Stuffing Error Interrupt Enable

0: No effect.

1: Enable Stuffing Error interrupt.

• AERR: Acknowledgment Error Interrupt Enable

0: No effect.

1: Enable Acknowledgment Error interrupt.

• FERR: Form Error Interrupt Enable

0: No effect.

1: Enable Form Error interrupt.

• BERR: Bit Error Interrupt Enable

0: No effect.

1: Enable Bit Error interrupt.

675SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.3 CAN Interrupt Disable Register

Name: CAN_IDR

Address: 0x40010008 (0), 0x40014008 (1)

Access: Write-only

• MBx: Mailbox x Interrupt Disable

0: No effect.

1: Disable Mailbox x interrupt.

• ERRA: Error Active Mode Interrupt Disable

0: No effect.

1: Disable ERRA interrupt.

• WARN: Warning Limit Interrupt Disable

0: No effect.

1: Disable WARN interrupt.

• ERRP: Error Passive Mode Interrupt Disable

0: No effect.

1: Disable ERRP interrupt.

• BOFF: Bus Off Mode Interrupt Disable

0: No effect.

1: Disable BOFF interrupt.

• SLEEP: Sleep Interrupt Disable

0: No effect.

1: Disable SLEEP interrupt.

• WAKEUP: Wakeup Interrupt Disable

0: No effect.

1: Disable WAKEUP interrupt.

• TOVF: Timer Overflow Interrupt

0: No effect.

1: Disable TOVF interrupt.

31 30 29 28 27 26 25 24

– – – BERR FERR AERR SERR CERR

23 22 21 20 19 18 17 16

TSTP TOVF WAKEUP SLEEP BOFF ERRP WARN ERRA

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

676

• TSTP: TimeStamp Interrupt Disable

0: No effect.

1: Disable TSTP interrupt.

• CERR: CRC Error Interrupt Disable

0: No effect.

1: Disable CRC Error interrupt.

• SERR: Stuffing Error Interrupt Disable

0: No effect.

1: Disable Stuffing Error interrupt.

• AERR: Acknowledgment Error Interrupt Disable

0: No effect.

1: Disable Acknowledgment Error interrupt.

• FERR: Form Error Interrupt Disable

0: No effect.

1: Disable Form Error interrupt.

• BERR: Bit Error Interrupt Disable

0: No effect.

1: Disable Bit Error interrupt.

677SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.4 CAN Interrupt Mask Register

Name: CAN_IMR

Address: 0x4001000C (0), 0x4001400C (1)

Access: Read-only

• MBx: Mailbox x Interrupt Mask

0: Mailbox x interrupt is disabled.

1: Mailbox x interrupt is enabled.

• ERRA: Error Active Mode Interrupt Mask

0: ERRA interrupt is disabled.

1: ERRA interrupt is enabled.

• WARN: Warning Limit Interrupt Mask

0: Warning Limit interrupt is disabled.

1: Warning Limit interrupt is enabled.

• ERRP: Error Passive Mode Interrupt Mask

0: ERRP interrupt is disabled.

1: ERRP interrupt is enabled.

• BOFF: Bus Off Mode Interrupt Mask

0: BOFF interrupt is disabled.

1: BOFF interrupt is enabled.

• SLEEP: Sleep Interrupt Mask

0: SLEEP interrupt is disabled.

1: SLEEP interrupt is enabled.

• WAKEUP: Wakeup Interrupt Mask

0: WAKEUP interrupt is disabled.

1: WAKEUP interrupt is enabled.

• TOVF: Timer Overflow Interrupt Mask

0: TOVF interrupt is disabled.

1: TOVF interrupt is enabled.

31 30 29 28 27 26 25 24

– – – BERR FERR AERR SERR CERR

23 22 21 20 19 18 17 16

TSTP TOVF WAKEUP SLEEP BOFF ERRP WARN ERRA

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

678

• TSTP: Timestamp Interrupt Mask

0: TSTP interrupt is disabled.

1: TSTP interrupt is enabled.

• CERR: CRC Error Interrupt Mask

0: CRC Error interrupt is disabled.

1: CRC Error interrupt is enabled.

• SERR: Stuffing Error Interrupt Mask

0: Bit Stuffing Error interrupt is disabled.

1: Bit Stuffing Error interrupt is enabled.

• AERR: Acknowledgment Error Interrupt Mask

0: Acknowledgment Error interrupt is disabled.

1: Acknowledgment Error interrupt is enabled.

• FERR: Form Error Interrupt Mask

0: Form Error interrupt is disabled.

1: Form Error interrupt is enabled.

• BERR: Bit Error Interrupt Mask

0: Bit Error interrupt is disabled.

1: Bit Error interrupt is enabled.

679SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.5 CAN Status Register

Name: CAN_SR

Address: 0x40010010 (0), 0x40014010 (1)

Access: Read-only

• MBx: Mailbox x Event

0: No event occurred on Mailbox x.

1: An event occurred on Mailbox x.

An event corresponds to MRDY, MABT bits in the CAN_MSRx.

• ERRA: Error Active Mode (automatically cleared by reading CAN_SR)

0: CAN controller has not reached Error Active Mode since the last read of CAN_SR.

1: CAN controller has reached Error Active Mode since the last read of CAN_SR.

This flag is set depending on TEC and REC counter values. It is set when a node is neither in Error Passive Mode nor in

Bus Off Mode.

• WARN: Warning Limit (automatically cleared by reading CAN_SR)

0: CAN controller Warning Limit has not been reached since the last read of CAN_SR.

1: CAN controller Warning Limit has been reached since the last read of CAN_SR.

This flag is set depending on TEC and REC counter values. It is set when at least one of the counter values has reached a

value greater or equal to 96.

• ERRP: Error Passive Mode (automatically cleared by reading CAN_SR)

0: CAN controller has not reached Error Passive Mode since the last read of CAN_SR.

1: CAN controller has reached Error Passive Mode since the last read of CAN_SR.

This flag is set depending on TEC and REC counters values.

A node is in error passive state when TEC counter is greater or equal to 128 (decimal) or when the REC counter is greater

or equal to 128 (decimal).

• BOFF: Bus Off Mode (automatically cleared by reading CAN_SR)

0: CAN controller has not reached Bus Off Mode.

1: CAN controller has reached Bus Off Mode since the last read of CAN_SR.

This flag is set depending on TEC counter value. A node is in bus off state when TEC counter is greater or equal to 256

(decimal).

31 30 29 28 27 26 25 24

OVLSY TBSY RBSY BERR FERR AERR SERR CERR

23 22 21 20 19 18 17 16

TSTP TOVF WAKEUP SLEEP BOFF ERRP WARN ERRA

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

680

• SLEEP: CAN Controller in Low-power Mode

0: CAN controller is not in Low-power mode.

1: CAN controller is in Low-power mode.

This flag is automatically reset when Low-power mode is disabled

• WAKEUP: CAN Controller is not in Low-power Mode

0: CAN controller is in Low-power mode.

1: CAN controller is not in Low-power mode.

When a WAKEUP event occurs, the CAN controller is synchronized with the bus activity. Messages can be transmitted or

received. The CAN controller clock must be available when a WAKEUP event occurs. This flag is automatically reset when

the CAN Controller enters Low-power mode.

• TOVF: Timer Overflow (automatically cleared by reading CAN_SR)

0: The timer has not rolled-over FFFFh to 0000h.

1: The timer rolls-over FFFFh to 0000h.

• TSTP: Timestamp (automatically cleared by reading CAN_SR)

0: No bus activity has been detected.

1: A start of frame or an end of frame has been detected (according to the TEOF field in the CAN_MR).

• CERR: Mailbox CRC Error (automatically cleared by reading CAN_SR)

0: No CRC error occurred during a previous transfer.

1: A CRC error occurred during a previous transfer.

A CRC error has been detected during last reception.

• SERR: Mailbox Stuffing Error (automatically cleared by reading CAN_SR)

0: No stuffing error occurred during a previous transfer.

1: A stuffing error occurred during a previous transfer.

A form error results from the detection of more than five consecutive bit with the same polarity.

• AERR: Acknowledgment Error (automatically cleared by reading CAN_SR)

0: No acknowledgment error occurred during a previous transfer.

1: An acknowledgment error occurred during a previous transfer.

An acknowledgment error is detected when no detection of the dominant bit in the acknowledge slot occurs.

• FERR: Form Error (automatically cleared by reading CAN_SR)

0: No form error occurred during a previous transfer

1: A form error occurred during a previous transfer

A form error results from violations on one or more of the fixed form of the following bit fields:

– CRC delimiter

– ACK delimiter

– End of frame

– Error delimiter

– Overload delimiter

681SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• BERR: Bit Error (automatically cleared by reading CAN_SR)

0: No bit error occurred during a previous transfer.

1: A bit error occurred during a previous transfer.

A bit error is set when the bit value monitored on the line is different from the bit value sent.

• RBSY: Receiver Busy

0: CAN receiver is not receiving a frame.

1: CAN receiver is receiving a frame.

Receiver busy. This status bit is set by hardware while CAN receiver is acquiring or monitoring a frame (remote, data, over-

load or error frame). It is automatically reset when CAN is not receiving.

• TBSY: Transmitter Busy

0: CAN transmitter is not transmitting a frame.

1: CAN transmitter is transmitting a frame.

Transmitter busy. This status bit is set by hardware while CAN transmitter is generating a frame (remote, data, overload or

error frame). It is automatically reset when CAN is not transmitting.

• OVLSY: Overload busy

0: CAN transmitter is not transmitting an overload frame.

1: CAN transmitter is transmitting a overload frame.

It is automatically reset when the bus is not transmitting an overload frame.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

682

31.9.6 CAN Baudrate Register

Name: CAN_BR

Address: 0x40010014 (0), 0x40014014 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the CAN Write Protection Mode Register.

Any modification on one of the fields of the CAN_BR must be done while CAN module is disabled.

To compute the different bit timings, please refer to the Section 31.7.4.1 “CAN Bit Timing Configuration” on page 649.

• PHASE2: Phase 2 Segment

This phase is used to compensate the edge phase error.

Warning: PHASE2 value must be different from 0.

• PHASE1: Phase 1 Segment

This phase is used to compensate for edge phase error.

• PROPAG: Programming Time Segment

This part of the bit time is used to compensate for the physical delay times within the network.

• SJW: Re-synchronization Jump Width

To compensate for phase shifts between clock oscillators of different controllers on bus. The controller must re-synchro-

nize on any relevant signal edge of the current transmission. The synchronization jump width defines the maximum of

clock cycles a bit period may be shortened or lengthened by re-synchronization.

• BRP: Baudrate Prescaler

This field allows user to program the period of the CAN system clock to determine the individual bit timing.

The BRP field must be within the range [1, 0x7F], i.e., BRP = 0 is not authorized.

• SMP: Sampling Mode

0 (ONCE): The incoming bit stream is sampled once at sample point.

1 (THREE): The incoming bit stream is sampled three times with a period of a peripheral clock, centered on sample point.

SMP Sampling Mode is automatically disabled if BRP = 0.

31 30 29 28 27 26 25 24

– – – – – – – SMP

23 22 21 20 19 18 17 16

– BRP

15 14 13 12 11 10 9 8

– – SJW – PROPAG

7 6 5 4 3 2 1 0

– PHASE1 – PHASE2

tPHS2 tCSC PHASE2 1+()×=

tPHS1 tCSC PHASE1 1+()×=

tPRS tCSC PROPAG 1+()×=

tSJW tCSC SJW 1+()×=

tCSC BRP 1+() tperipheral clock⁄=

683SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.7 CAN Timer Register

Name: CAN_TIM

Address: 0x40010018 (0), 0x40014018 (1)

Access: Read-only

• TIMER: Timer

This field represents the internal CAN controller 16-bit timer value.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TIMER

7 6 5 4 3 2 1 0

TIMER

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

684

31.9.8 CAN Timestamp Register

Name: CAN_TIMESTP

Address: 0x4001001C (0), 0x4001401C (1)

Access: Read-only

• MTIMESTAMP: Timestamp

This field carries the value of the internal CAN controller 16-bit timer value at the start or end of frame.

If the TEOF bit is cleared in the CAN_MR, the internal Timer Counter value is captured in the MTIMESTAMP field at each

start of frame else the value is captured at each end of frame. When the value is captured, the TSTP flag is set in the

CAN_SR. If the TSTP mask in the CAN_IMR is set, an interrupt is generated while TSTP flag is set in the CAN_SR. The

TSTP flag is cleared by reading the CAN_SR.

Note: The CAN_TIMESTP register is reset when the CAN is disabled then enabled via the CANEN bit in the CAN_MR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

MTIMESTAMP

7 6 5 4 3 2 1 0

MTIMESTAMP

685SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.9 CAN Error Counter Register

Name: CAN_ECR

Address: 0x40010020 (0), 0x40014020 (1)

Access: Read-only

• REC: Receive Error Counter

When a receiver detects an error, REC will be increased by one, except when the detected error is a BIT ERROR while

sending an ACTIVE ERROR FLAG or an OVERLOAD FLAG.

When a receiver detects a dominant bit as the first bit after sending an ERROR FLAG, REC is increased by 8.

When a receiver detects a BIT ERROR while sending an ACTIVE ERROR FLAG, REC is increased by 8.

Any node tolerates up to 7 consecutive dominant bits after sending an ACTIVE ERROR FLAG, PASSIVE ERROR FLAG or

OVERLOAD FLAG. After detecting the 14th consecutive dominant bit (in case of an ACTIVE ERROR FLAG or an OVER-

LOAD FLAG) or after detecting the 8th consecutive dominant bit following a PASSIVE ERROR FLAG, and after each

sequence of additional eight consecutive dominant bits, each receiver increases its REC by 8.

After successful reception of a message, REC is decreased by 1 if it was between 1 and 127. If REC was 0, it stays 0, and

if it was greater than 127, then it is set to a value between 119 and 127.

• TEC: Transmit Error Counter

When a transmitter sends an ERROR FLAG, TEC is increased by 8 except when

– the transmitter is error passive and detects an ACKNOWLEDGMENT ERROR because of not detecting a
dominant ACK and does not detect a dominant bit while sending its PASSIVE ERROR FLAG.

– the transmitter sends an ERROR FLAG because a STUFF ERROR occurred during arbitration and should
have been recessive and has been sent as recessive but monitored as dominant.

When a transmitter detects a BIT ERROR while sending an ACTIVE ERROR FLAG or an OVERLOAD FLAG, the TEC will

be increased by 8.

Any node tolerates up to 7 consecutive dominant bits after sending an ACTIVE ERROR FLAG, PASSIVE ERROR FLAG or

OVERLOAD FLAG. After detecting the 14th consecutive dominant bit (in case of an ACTIVE ERROR FLAG or an OVER-

LOAD FLAG) or after detecting the 8th consecutive dominant bit following a PASSIVE ERROR FLAG, and after each

sequence of additional eight consecutive dominant bits every transmitter increases its TEC by 8.

After a successful transmission the TEC is decreased by 1 unless it was already 0.

31 30 29 28 27 26 25 24

– – – – – – – TEC

23 22 21 20 19 18 17 16

TEC

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

REC

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

686

31.9.10 CAN Transfer Command Register

Name: CAN_TCR

Address: 0x40010024 (0), 0x40014024 (1)

Access: Write-only

This register initializes several transfer requests at the same time.

• MBx: Transfer Request for Mailbox x

This flag clears the MRDY and MABT flags in the corresponding CAN_MSRx.

When several mailboxes are requested to be transmitted simultaneously, they are transmitted in turn, starting with the

mailbox with the highest priority. If several mailboxes have the same priority, then the mailbox with the lowest number is

sent first (i.e., MB0 will be transferred before MB1).

• TIMRST: Timer Reset

Resets the internal timer counter. If the internal timer counter is frozen, this command automatically re-enables it. This

command is useful in Time Triggered mode.

31 30 29 28 27 26 25 24

TIMRST – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

Mailbox Object Type Description

Receive It receives the next message.

Receive with overwrite This triggers a new reception.

Transmit Sends data prepared in the mailbox as soon as possible.

Consumer Sends a remote frame.

Producer Sends data prepared in the mailbox after receiving a remote frame from a consumer.

687SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.11 CAN Abort Command Register

Name: CAN_ACR

Address: 0x40010028 (0), 0x40014028 (1)

Access: Write-only

This register initializes several abort requests at the same time.

• MBx: Abort Request for Mailbox x

It is possible to set the MACR field (in the CAN_MCRx) for each mailbox.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0

Mailbox Object Type Description

Receive No action

Receive with overwrite No action

Transmit Cancels transfer request if the message has not been transmitted to the CAN transceiver.

Consumer Cancels the current transfer before the remote frame has been sent.

Producer Cancels the current transfer. The next remote frame is not serviced.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

688

31.9.12 CAN Write Protection Mode Register

Name: CAN_WPMR

Address: 0x400100E4 (0), 0x400140E4 (1)

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x43414E (“CAN” written in ASCII)

1: Enables the write protection if WPKEY corresponds to 0x43414E (“CAN” written in ASCII)

See Section 31.8.5 “Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key Password

31 30 29 28 27 26 25 24
WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x43414E PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit.

Always reads as 0

689SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.13 CAN Write Protection Status Register

Name: CAN_WPSR

Address: 0x400100E8 (0), 0x400140E8 (1)

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of the CAN_WPSR.

1: A write protection violation has occurred since the last read of the CAN_WPSR. If this violation is an unauthorized

attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

690

31.9.14 CAN Message Mode Register

Name: CAN_MMRx [x=0..7]

Address: 0x40010200 (0)[0], 0x40010220 (0)[1], 0x40010240 (0)[2], 0x40010260 (0)[3], 0x40010280 (0)[4],

0x400102A0 (0)[5], 0x400102C0 (0)[6], 0x400102E0 (0)[7], 0x40014200 (1)[0], 0x40014220 (1)[1], 0x40014240 (1)[2],

0x40014260 (1)[3], 0x40014280 (1)[4], 0x400142A0 (1)[5], 0x400142C0 (1)[6], 0x400142E0 (1)[7]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the CAN Write Protection Mode Register.

• MTIMEMARK: Mailbox Timemark

This field is active in Time Triggered Mode. Transmit operations are allowed when the internal timer counter reaches the

Mailbox Timemark. See “Transmitting within a Time Window” on page 667.

In Timestamp Mode, MTIMEMARK is set to 0.

• PRIOR: Mailbox Priority

This field has no effect in receive and receive with overwrite modes. In these modes, the mailbox with the lowest number is

serviced first.

When several mailboxes try to transmit a message at the same time, the mailbox with the highest priority is serviced first. If

several mailboxes have the same priority, the mailbox with the lowest number is serviced first (i.e., MBx0 is serviced before

MBx 15 if they have the same priority).

• MOT: Mailbox Object Type

This field allows the user to define the type of the mailbox. All mailboxes are independently configurable. Five different

types are possible for each mailbox.

31 30 29 28 27 26 25 24

– – – – – MOT
23 22 21 20 19 18 17 16

– – – – PRIOR

15 14 13 12 11 10 9 8

MTIMEMARK

7 6 5 4 3 2 1 0

MTIMEMARK

Value Name Description

0 MB_DISABLED Mailbox is disabled. This prevents receiving or transmitting any messages with this mailbox.

1 MB_RX
Reception Mailbox. Mailbox is configured for reception. If a message is received while the mailbox

data register is full, it is discarded.

2
MB_RX_OVERWRIT

E

Reception mailbox with overwrite. Mailbox is configured for reception. If a message is received

while the mailbox is full, it overwrites the previous message.

3 MB_TX Transmit mailbox. Mailbox is configured for transmission.

4 MB_CONSUMER
Consumer Mailbox. Mailbox is configured in reception but behaves as a Transmit Mailbox, i.e., it

sends a remote frame and waits for an answer.

5 MB_PRODUCER
Producer Mailbox. Mailbox is configured in transmission but also behaves like a reception mailbox,

i.e., it waits to receive a Remote Frame before sending its contents.

6 – Reserved

691SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.15 CAN Message Acceptance Mask Register

Name: CAN_MAMx [x=0..7]

Address: 0x40010204 (0)[0], 0x40010224 (0)[1], 0x40010244 (0)[2], 0x40010264 (0)[3], 0x40010284 (0)[4],

0x400102A4 (0)[5], 0x400102C4 (0)[6], 0x400102E4 (0)[7], 0x40014204 (1)[0], 0x40014224 (1)[1], 0x40014244 (1)[2],

0x40014264 (1)[3], 0x40014284 (1)[4], 0x400142A4 (1)[5], 0x400142C4 (1)[6], 0x400142E4 (1)[7]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the CAN Write Protection Mode Register.

To prevent concurrent access with the internal CAN core, the application must disable the mailbox before writing to

CAN_MAMx registers.

• MIDvB: Complementary bits for identifier in extended frame mode

Acceptance mask for corresponding field of the message IDvB register of the mailbox.

0: The corresponding message ID bit is not masked

1: The corresponding message ID bit is masked

• MIDvA: Identifier for standard frame mode

Acceptance mask for corresponding field of the message IDvA register of the mailbox.

0: The corresponding message ID bit is not masked

1: The corresponding message ID bit is masked

• MIDE: Identifier Version

0: Compares IDvA from the received frame with the CAN_MIDx register masked with CAN_MAMx register.

1: Compares IDvA and IDvB from the received frame with the CAN_MIDx register masked with CAN_MAMx register.

31 30 29 28 27 26 25 24

– – MIDE MIDvA

23 22 21 20 19 18 17 16

MIDvA MIDvB

15 14 13 12 11 10 9 8

MIDvB

7 6 5 4 3 2 1 0

MIDvB

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

692

31.9.16 CAN Message ID Register

Name: CAN_MIDx [x=0..7]

Address: 0x40010208 (0)[0], 0x40010228 (0)[1], 0x40010248 (0)[2], 0x40010268 (0)[3], 0x40010288 (0)[4],

0x400102A8 (0)[5], 0x400102C8 (0)[6], 0x400102E8 (0)[7], 0x40014208 (1)[0], 0x40014228 (1)[1], 0x40014248 (1)[2],

0x40014268 (1)[3], 0x40014288 (1)[4], 0x400142A8 (1)[5], 0x400142C8 (1)[6], 0x400142E8 (1)[7]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the CAN Write Protection Mode Register.

To prevent concurrent access with the internal CAN core, the application must disable the mailbox before writing to

CAN_MIDx registers.

• MIDvB: Complementary bits for identifier in extended frame mode

If MIDE is cleared, MIDvB value is 0.

• MIDE: Identifier Version

This bit allows the user to define the version of messages processed by the mailbox. If set, mailbox is dealing with version

2.0 Part B messages; otherwise, mailbox is dealing with version 2.0 Part A messages.

• MIDvA: Identifier for standard frame mode

31 30 29 28 27 26 25 24

– – MIDE MIDvA

23 22 21 20 19 18 17 16

MIDvA MIDvB

15 14 13 12 11 10 9 8

MIDvB

7 6 5 4 3 2 1 0

MIDvB

693SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.17 CAN Message Family ID Register

Name: CAN_MFIDx [x=0..7]

Address: 0x4001020C (0)[0], 0x4001022C (0)[1], 0x4001024C (0)[2], 0x4001026C (0)[3], 0x4001028C (0)[4],

0x400102AC (0)[5], 0x400102CC (0)[6], 0x400102EC (0)[7], 0x4001420C (1)[0], 0x4001422C (1)[1], 0x4001424C (1)[2],

0x4001426C (1)[3], 0x4001428C (1)[4], 0x400142AC (1)[5], 0x400142CC (1)[6], 0x400142EC (1)[7]

Access: Read-only

• MFID: Family ID

This field contains the concatenation of CAN_MIDx register bits masked by the CAN_MAMx register. This field is useful to

speed up message ID decoding. The message acceptance procedure is described below.

As an example:

CAN_MIDx = 0x305A4321
CAN_MAMx = 0x3FF0F0FF
CAN_MFIDx = 0x000000A3

31 30 29 28 27 26 25 24

– – – MFID

23 22 21 20 19 18 17 16

MFID

15 14 13 12 11 10 9 8

MFID

7 6 5 4 3 2 1 0

MFID

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

694

31.9.18 CAN Message Status Register

Name: CAN_MSRx [x=0..7]

Address: 0x40010210 (0)[0], 0x40010230 (0)[1], 0x40010250 (0)[2], 0x40010270 (0)[3], 0x40010290 (0)[4],

0x400102B0 (0)[5], 0x400102D0 (0)[6], 0x400102F0 (0)[7], 0x40014210 (1)[0], 0x40014230 (1)[1], 0x40014250 (1)[2],

0x40014270 (1)[3], 0x40014290 (1)[4], 0x400142B0 (1)[5], 0x400142D0 (1)[6], 0x400142F0 (1)[7]

Access: Read-only

These register fields are updated each time a message transfer is received or aborted.

Warning: MRTR and MDLC state depends partly on the mailbox object type.

• MTIMESTAMP: Timer Value

This field is updated only when time-triggered operations are disabled (TTM cleared in CAN_MR). If the field

CAN_MR.TEOF is cleared, TIMESTAMP is the internal timer value at the start of frame of the last message received or

sent by the mailbox. If the field CAN_MR.TEOF is set, TIMESTAMP is the internal timer value at the end of frame of the

last message received or sent by the mailbox.

In Time Triggered Mode, MTIMESTAMP is set to 0.

• MDLC: Mailbox Data Length Code

• MRTR: Mailbox Remote Transmission Request

31 30 29 28 27 26 25 24

– – – – – – – MMI
23 22 21 20 19 18 17 16

MRDY MABT – MRTR MDLC

15 14 13 12 11 10 9 8

MTIMESTAMP

7 6 5 4 3 2 1 0

MTIMESTAMP

Mailbox Object Type Description

Receive Length of the first mailbox message received

Receive with overwrite Length of the last mailbox message received

Transmit No action

Consumer Length of the mailbox message received

Producer Length of the mailbox message to be sent after the remote frame reception

Mailbox Object Type Description

Receive The first frame received has the RTR bit set.

Receive with overwrite The last frame received has the RTR bit set.

Transmit Reserved

Consumer Reserved. After setting the MOT field in the CAN_MMR, MRTR is reset to 1.

Producer Reserved. After setting the MOT field in the CAN_MMR, MRTR is reset to 0.

695SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• MABT: Mailbox Message Abort (cleared by writing MTCR or MACR in the CAN_MCRx)

An interrupt is triggered when MABT is set.

0: Previous transfer is not aborted.

1: Previous transfer has been aborted.

• MRDY: Mailbox Ready (cleared by writing MTCR or MACR in the CAN_MCRx)

An interrupt is triggered when MRDY is set.

0: Mailbox data registers can not be read/written by the software application. CAN_MDx are locked by the CAN_MDx.

1: Mailbox data registers can be read/written by the software application.

• MMI: Mailbox Message Ignored (cleared by reading CAN_MSRx)

0: No message has been ignored during the previous transfer

1: At least one message has been ignored during the previous transfer

Mailbox Object Type Description

Receive Reserved

Receive with overwrite Reserved

Transmit Previous transfer has been aborted

Consumer The remote frame transfer request has been aborted.

Producer The response to the remote frame transfer has been aborted.

Mailbox Object Type Description

Receive

At least one message has been received since the last mailbox transfer order. Data from the first frame

received can be read in the CAN_MDxx registers.

After setting the MOT field in the CAN_MMR, MRDY is reset to 0.

Receive with overwrite

At least one frame has been received since the last mailbox transfer order. Data from the last frame

received can be read in the CAN_MDxx registers.

After setting the MOT field in the CAN_MMR, MRDY is reset to 0.

Transmit
Mailbox data have been transmitted.

After setting the MOT field in the CAN_MMR, MRDY is reset to 1.

Consumer

At least one message has been received since the last mailbox transfer order. Data from the first message

received can be read in the CAN_MDxx registers.

After setting the MOT field in the CAN_MMR, MRDY is reset to 0.

Producer
A remote frame has been received, mailbox data have been transmitted.

After setting the MOT field in the CAN_MMR, MRDY is reset to 1.

Mailbox Object Type Description

Receive

Set when at least two messages intended for the mailbox have been sent. The first one is available in the

mailbox data register. Others have been ignored. A mailbox with a lower priority may have accepted the

message.

Receive with overwrite
Set when at least two messages intended for the mailbox have been sent. The last one is available in the

mailbox data register. Previous ones have been lost.

Transmit Reserved

Consumer

A remote frame has been sent by the mailbox but several messages have been received. The first one is

available in the mailbox data register. Others have been ignored. Another mailbox with a lower priority may

have accepted the message.

Producer A remote frame has been received, but no data are available to be sent.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

696

31.9.19 CAN Message Data Low Register

Name: CAN_MDLx [x=0..7]

Address: 0x40010214 (0)[0], 0x40010234 (0)[1], 0x40010254 (0)[2], 0x40010274 (0)[3], 0x40010294 (0)[4],

0x400102B4 (0)[5], 0x400102D4 (0)[6], 0x400102F4 (0)[7], 0x40014214 (1)[0], 0x40014234 (1)[1], 0x40014254 (1)[2],

0x40014274 (1)[3], 0x40014294 (1)[4], 0x400142B4 (1)[5], 0x400142D4 (1)[6], 0x400142F4 (1)[7]

Access: Read/Write

• MDL: Message Data Low Value

When MRDY bit is set in the CAN_MSRx, the lower 32 bits of a received message can be read or written by the software

application. Otherwise, the MDL value is locked by the CAN controller to send/receive a new message.

In Receive with overwrite, the CAN controller may modify MDL value while the software application reads MDH and MDL

registers. To check that MDH and MDL do not belong to different messages, the application has to check the MMI bit in the

CAN_MSRx. In this mode, the software application must re-read CAN_MDH and CAN_MDL, while the MMI bit in the

CAN_MSRx is set.

Bytes are received/sent on the bus in the following order:

1. CAN_MDL[7:0]

2. CAN_MDL[15:8]

3. CAN_MDL[23:16]

4. CAN_MDL[31:24]

5. CAN_MDH[7:0]

6. CAN_MDH[15:8]

7. CAN_MDH[23:16]

8. CAN_MDH[31:24]

31 30 29 28 27 26 25 24

MDL

23 22 21 20 19 18 17 16

MDL

15 14 13 12 11 10 9 8

MDL

7 6 5 4 3 2 1 0

MDL

697SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31.9.20 CAN Message Data High Register

Name: CAN_MDHx [x=0..7]

Address: 0x40010218 (0)[0], 0x40010238 (0)[1], 0x40010258 (0)[2], 0x40010278 (0)[3], 0x40010298 (0)[4],

0x400102B8 (0)[5], 0x400102D8 (0)[6], 0x400102F8 (0)[7], 0x40014218 (1)[0], 0x40014238 (1)[1], 0x40014258 (1)[2],

0x40014278 (1)[3], 0x40014298 (1)[4], 0x400142B8 (1)[5], 0x400142D8 (1)[6], 0x400142F8 (1)[7]

Access: Read/Write

• MDH: Message Data High Value

When MRDY bit is set in the CAN_MSRx, the upper 32 bits of a received message are read or written by the software

application. Otherwise, the MDH value is locked by the CAN controller to send/receive a new message.

In Receive with overwrite, the CAN controller may modify MDH value while the software application reads MDH and MDL

registers. To check that MDH and MDL do not belong to different messages, the application has to check the MMI bit in the

CAN_MSRx. In this mode, the software application must re-read CAN_MDH and CAN_MDL, while the MMI bit in the

CAN_MSRx is set.

Bytes are received/sent on the bus in the following order:

1. CAN_MDL[7:0]

2. CAN_MDL[15:8]

3. CAN_MDL[23:16]

4. CAN_MDL[31:24]

5. CAN_MDH[7:0]

6. CAN_MDH[15:8]

7. CAN_MDH[23:16]

8. CAN_MDH[31:24]

31 30 29 28 27 26 25 24

MDH

23 22 21 20 19 18 17 16

MDH

15 14 13 12 11 10 9 8

MDH

7 6 5 4 3 2 1 0

MDH

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

698

31.9.21 CAN Message Control Register

Name: CAN_MCRx [x=0..7]

Address: 0x4001021C (0)[0], 0x4001023C (0)[1], 0x4001025C (0)[2], 0x4001027C (0)[3], 0x4001029C (0)[4],

0x400102BC (0)[5], 0x400102DC (0)[6], 0x400102FC (0)[7], 0x4001421C (1)[0], 0x4001423C (1)[1], 0x4001425C (1)[2],

0x4001427C (1)[3], 0x4001429C (1)[4], 0x400142BC (1)[5], 0x400142DC (1)[6], 0x400142FC (1)[7]

Access: Write-only

• MDLC: Mailbox Data Length Code

• MRTR: Mailbox Remote Transmission Request

Consumer situations can be handled automatically by setting the mailbox object type in Consumer. This requires only one

mailbox.

It can also be handled using two mailboxes, one in reception, the other in transmission. The MRTR and the MTCR bits

must be set in the same time.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

MTCR MACR – MRTR MDLC

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

Mailbox Object Type Description

Receive No action.

Receive with overwrite No action.

Transmit Length of the mailbox message.

Consumer No action.

Producer Length of the mailbox message to be sent after the remote frame reception.

Mailbox Object Type Description

Receive No action

Receive with overwrite No action

Transmit Set the RTR bit in the sent frame

Consumer No action, the RTR bit in the sent frame is set automatically

Producer No action

699SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• MACR: Abort Request for Mailbox x

This flag clears the MRDY and MABT flags in the CAN_MSRx.

It is possible to set the MACR field for several mailboxes in the same time, setting several bits to the CAN_ACR.

• MTCR: Mailbox Transfer Command

This flag clears the MRDY and MABT flags in the CAN_MSRx.

When several mailboxes are requested to be transmitted simultaneously, they are transmitted in turn. The mailbox with the

highest priority is serviced first. If several mailboxes have the same priority, the mailbox with the lowest number is serviced

first (i.e., MBx0 will be serviced before MBx 15 if they have the same priority).

It is possible to set MTCR for several mailboxes at the same time by writing to the CAN_TCR.

Mailbox Object Type Description

Receive No action

Receive with overwrite No action

Transmit Cancels transfer request if the message has not been transmitted to the CAN transceiver.

Consumer Cancels the current transfer before the remote frame has been sent.

Producer Cancels the current transfer. The next remote frame will not be serviced.

Mailbox Object Type Description

Receive Allows the reception of the next message.

Receive with overwrite Triggers a new reception.

Transmit Sends data prepared in the mailbox as soon as possible.

Consumer Sends a remote transmission frame.

Producer Sends data prepared in the mailbox after receiving a remote frame from a Consumer.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

700

32. Chip Identifier (CHIPID)

32.1 Description

Chip Identifier (CHIPID) registers are used to recognize the device and its revision. These registers provide the

sizes and types of the on-chip memories, as well as the set of embedded peripherals.

Two CHIPID registers are embedded: Chip ID Register (CHIPID_CIDR) and Chip ID Extension Register

(CHIPID_EXID). Both registers contain a hard-wired value that is read-only.

The CHIPID_CIDR register contains the following fields:

 VERSION: Identifies the revision of the silicon

 EPROC: Indicates the embedded ARM processor

 NVPTYP and NVPSIZ: Identify the type of embedded non-volatile memory and the size

 SRAMSIZ: Indicates the size of the embedded SRAM

 ARCH: Identifies the set of embedded peripherals

 EXT: Shows the use of the extension identifier register

The CHIPID_EXID register is device-dependent and reads 0 if CHIPID_CIDR.EXT = 0.

32.2 Embedded Characteristics

 Chip ID Registers

̶ Identification of the Device Revision, Sizes of the Embedded Memories, Set of Peripherals,

Embedded Processor

32.3 Chip Identifier (CHIPID) User Interface

Table 32-1. SAM4E Chip ID Registers

Chip Name CHIPID_CIDR CHIPID_EXID

SAM4E16E 0xA3CC_0CE0 0x0012_0200

SAM4E8E 0xA3CC_0CE0 0x0012_0208

SAM4E16C 0xA3CC_0CE0 0x0012_0201

SAM4E8C 0xA3CC_0CE0 0x0012_0209

Table 32-2. Register Mapping

Offset Register Name Access Reset

0x0 Chip ID Register CHIPID_CIDR Read-only –

0x4 Chip ID Extension Register CHIPID_EXID Read-only –

701SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

32.3.1 Chip ID Register

Name: CHIPID_CIDR

Address: 0x400E0740

Access: Read-only

• VERSION: Version of the Device

Current version of the device.

• EPROC: Embedded Processor

• NVPSIZ: Nonvolatile Program Memory Size

31 30 29 28 27 26 25 24

EXT NVPTYP ARCH

23 22 21 20 19 18 17 16

ARCH SRAMSIZ

15 14 13 12 11 10 9 8

NVPSIZ2 NVPSIZ

7 6 5 4 3 2 1 0

EPROC VERSION

Value Name Description

0 SAM x7 Cortex-M7

1 ARM946ES ARM946ES

2 ARM7TDMI ARM7TDMI

3 CM3 Cortex-M3

4 ARM920T ARM920T

5 ARM926EJS ARM926EJS

6 CA5 Cortex-A5

7 CM4 Cortex-M4

Value Name Description

0 NONE None

1 8K 8 Kbytes

2 16K 16 Kbytes

3 32K 32 Kbytes

4 – Reserved

5 64K 64 Kbytes

6 – Reserved

7 128K 128 Kbytes

8 160K 160 Kbytes

9 256K 256 Kbytes

10 512K 512 Kbytes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

702

• NVPSIZ2: Second Nonvolatile Program Memory Size

• SRAMSIZ: Internal SRAM Size

11 – Reserved

12 1024K 1024 Kbytes

13 – Reserved

14 2048K 2048 Kbytes

15 – Reserved

Value Name Description

0 NONE None

1 8K 8 Kbytes

2 16K 16 Kbytes

3 32K 32 Kbytes

4 – Reserved

5 64K 64 Kbytes

6 – Reserved

7 128K 128 Kbytes

8 – Reserved

9 256K 256 Kbytes

10 512K 512 Kbytes

11 – Reserved

12 1024K 1024 Kbytes

13 – Reserved

14 2048K 2048 Kbytes

15 – Reserved

Value Name Description

0 48K 48 Kbytes

1 192K 192 Kbytes

2 384K 384 Kbytes

3 6K 6 Kbytes

4 24K 24 Kbytes

5 4K 4 Kbytes

6 80K 80 Kbytes

7 160K 160 Kbytes

8 8K 8 Kbytes

9 16K 16 Kbytes

10 32K 32 Kbytes

11 64K 64 Kbytes

Value Name Description

703SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• ARCH: Architecture Identifier

• NVPTYP: Nonvolatile Program Memory Type

• EXT: Extension Flag

0: Chip ID has a single register definition without extension.

1: An extended Chip ID exists.

12 128K 128 Kbytes

13 256K 256 Kbytes

14 96K 96 Kbytes

15 512K 512 Kbytes

Value Name Description

0x3C SAM4E SAM4E Series

Value Name Description

0 ROM ROM

1 ROMLESS ROMless or on-chip Flash

2 FLASH Embedded Flash Memory

3 ROM_FLASH

ROM and Embedded Flash Memory

 NVPSIZ is ROM size

 NVPSIZ2 is Flash size

4 SRAM SRAM emulating ROM

Value Name Description

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

704

32.3.2 Chip ID Extension Register

Name: CHIPID_EXID

Address: 0x400E0744

Access: Read-only

• EXID: Chip ID Extension

This field is cleared if CHIPID_CIDR.EXT = 0.CHIPID_EXID[1:0]: Package Type

CHIPID_EXID[4:2]: Flash Size

CHIPID_EXID[31:5]: Product Number

31 30 29 28 27 26 25 24

EXID

23 22 21 20 19 18 17 16

EXID

15 14 13 12 11 10 9 8

EXID

7 6 5 4 3 2 1 0

EXID

Value Name Description

0 PACKAGE_TYPE Package 144

1 PACKAGE_TYPE Package 100

Value Name Description

0 FLASH_SIZE 1024 Kbytes

2 FLASH_SIZE 512 Kbytes

Value Name Description

0x0012_020 PRODUCT_NUMBER SAM4E Product Series

705SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33. Parallel Input/Output Controller (PIO)

33.1 Description

The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output lines. Each I/O line

may be dedicated as a general-purpose I/O or be assigned to a function of an embedded peripheral. This ensures

effective optimization of the pins of the product.

Each I/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide user interface.

Each I/O line of the PIO Controller features:

 An input change interrupt enabling level change detection on any I/O line.

 Additional Interrupt modes enabling rising edge, falling edge, low-level or high-level detection on any I/O

line.

 A glitch filter providing rejection of glitches lower than one-half of peripheral clock cycle.

 A debouncing filter providing rejection of unwanted pulses from key or push button operations.

 Multi-drive capability similar to an open drain I/O line.

 Control of the pull-up and pull-down of the I/O line.

 Input visibility and output control.

The PIO Controller also features a synchronous output providing up to 32 bits of data output in a single write

operation.

An 8-bit parallel capture mode is also available which can be used to interface a CMOS digital image sensor, an

ADC, a DSP synchronous port in synchronous mode, etc.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

706

33.2 Embedded Characteristics

 Up to 32 Programmable I/O Lines

 Fully Programmable through Set/Clear Registers

 Multiplexing of Four Peripheral Functions per I/O Line

 For each I/O Line (Whether Assigned to a Peripheral or Used as General Purpose I/O)

̶ Input Change Interrupt

̶ Programmable Glitch Filter

̶ Programmable Debouncing Filter

̶ Multi-drive Option Enables Driving in Open Drain

̶ Programmable Pull-Up on Each I/O Line

̶ Pin Data Status Register, Supplies Visibility of the Level on the Pin at Any Time

̶ Additional Interrupt Modes on a Programmable Event: Rising Edge, Falling Edge, Low-Level or High-

Level

̶ Lock of the Configuration by the Connected Peripheral

 Synchronous Output, Provides Set and Clear of Several I/O Lines in a Single Write

 Register Write Protection

 Programmable Schmitt Trigger Inputs

 Programmable I/O Delay

 Parallel Capture Mode

̶ Can Be Used to Interface a CMOS Digital Image Sensor, an ADC, etc.

̶ One Clock, 8-bit Parallel Data and Two Data Enable on I/O Lines

̶ Data Can be Sampled Every Other Time (For Chrominance Sampling Only)

̶ Supports Connection of One Peripheral DMA Controller (PDC) Channel Which

Offers Buffer Reception Without Processor Intervention

707SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.3 Block Diagram

Figure 33-1. Block Diagram

Embedded

Peripheral

Embedded

Peripheral

PIO Interrupt

PIO Controller

Parallel Capture

Mode

PMC

Up to x

peripheral IOs

Up to x

peripheral IOs

Peripheral Clock

APB

Data, Enable

PIN x-1

PIN 1

PIN 0

Data, Enable

PDC

Data

Status

PIODCCLK

PIODC[7:0]

PIODCEN1

PIODCEN2

Interrupt Controller

Events

x is an integer representing the maximum number

of IOs managed by one PIO controller.

Table 33-1. Signal Description

Signal Name Signal Description Signal Type

PIODCCLK Parallel Capture Mode Clock Input

PIODC[7:0] Parallel Capture Mode Data Input

PIODCEN1 Parallel Capture Mode Data Enable 1 Input

PIODCEN2 Parallel Capture Mode Data Enable 2 Input

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

708

33.4 Product Dependencies

33.4.1 Pin Multiplexing

Each pin is configurable, depending on the product, as either a general-purpose I/O line only, or as an I/O line

multiplexed with one or two peripheral I/Os. As the multiplexing is hardware defined and thus product-dependent,

the hardware designer and programmer must carefully determine the configuration of the PIO Controllers required

by their application. When an I/O line is general-purpose only, i.e., not multiplexed with any peripheral I/O,

programming of the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO

Controller can control how the pin is driven by the product.

33.4.2 Power Management

The Power Management Controller controls the peripheral clock in order to save power. Writing any of the

registers of the user interface does not require the peripheral clock to be enabled. This means that the

configuration of the I/O lines does not require the peripheral clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available, including glitch

filtering. Note that the input change interrupt, the interrupt modes on a programmable event and the read of the pin

level require the clock to be validated.

After a hardware reset, the peripheral clock is disabled by default.

The user must configure the Power Management Controller before any access to the input line information.

33.4.3 Interrupt Sources

For interrupt handling, the PIO Controllers are considered as user peripherals. This means that the PIO Controller

interrupt lines are connected among the interrupt sources. Refer to the PIO Controller peripheral identifier in the

Peripheral Identifiers table to identify the interrupt sources dedicated to the PIO Controllers. Using the PIO

Controller requires the Interrupt Controller to be programmed first.

The PIO Controller interrupt can be generated only if the peripheral clock is enabled.

Table 33-2. Peripheral IDs

Instance ID

PIOA 9

PIOB 10

PIOC 11

PIOD 12

PIOE 13

709SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.5 Functional Description

The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic associated to each I/O

is represented in Figure 33-2. In this description each signal shown represents one of up to 32 possible indexes.

Figure 33-2. I/O Line Control Logic

33.5.1 Pull-up and Pull-down Resistor Control

Each I/O line is designed with an embedded pull-up resistor and an embedded pull-down resistor. The pull-up

resistor can be enabled or disabled by writing to the Pull-up Enable Register (PIO_PUER) or Pull-up Disable

Register (PIO_PUDR), respectively. Writing to these registers results in setting or clearing the corresponding bit in

the Pull-up Status Register (PIO_PUSR). Reading a one in PIO_PUSR means the pull-up is disabled and reading

a zero means the pull-up is enabled. The pull-down resistor can be enabled or disabled by writing the Pull-down

Enable Register (PIO_PPDER) or the Pull-down Disable Register (PIO_PPDDR), respectively. Writing in these

1

0

1

0

1

0

1

0
D Q D Q

DFF

1

0

1

0

11

00

01

10

Programmable
Glitch

or
Debouncing

Filter

PIO_PDSR[0]
PIO_ISR[0]

PIO_IDR[0]

PIO_IMR[0]

PIO_IER[0]

PIO Interrupt

(Up to 32 possible inputs)

PIO_ISR[31]

PIO_IDR[31]

PIO_IMR[31]

PIO_IER[31]

Pad

PIO_PUDR[0]

PIO_PUSR[0]

PIO_PUER[0]

PIO_MDDR[0]

PIO_MDSR[0]

PIO_MDER[0]

PIO_CODR[0]

PIO_ODSR[0]

PIO_SODR[0]

PIO_PDR[0]

PIO_PSR[0]

PIO_PER[0]
PIO_ABCDSR1[0]

PIO_ODR[0]

PIO_OSR[0]

PIO_OER[0]

Peripheral Clock

Resynchronization

Stage

Peripheral A Input

Peripheral D Output Enable

Peripheral A Output Enable

EVENT

DETECTORDFF

PIO_IFDR[0]

PIO_IFSR[0]

PIO_IFER[0]

Peripheral Clock

Clock

Divider

PIO_IFSCSR[0]

PIO_IFSCER[0]

PIO_IFSCDR[0]

PIO_SCDR

Slow Clock

Peripheral B Output Enable

Peripheral C Output Enable

11

00

01

10

Peripheral D Output

Peripheral A Output

Peripheral B Output

Peripheral C Output

PIO_ABCDSR2[0]

Peripheral B Input

Peripheral C Input

Peripheral D Input

PIO_PPDDR[0]

PIO_PPDSR[0]

PIO_PPDER[0]

VDD

GND

Integrated

Pull-Down

Resistor

Integrated

Pull-Up

Resistor

div_slck

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

710

registers results in setting or clearing the corresponding bit in the Pull-down Status Register (PIO_PPDSR).

Reading a one in PIO_PPDSR means the pull-up is disabled and reading a zero means the pull-down is enabled.

Enabling the pull-down resistor while the pull-up resistor is still enabled is not possible. In this case, the write of

PIO_PPDER for the relevant I/O line is discarded. Likewise, enabling the pull-up resistor while the pull-down

resistor is still enabled is not possible. In this case, the write of PIO_PUER for the relevant I/O line is discarded.

Control of the pull-up resistor is possible regardless of the configuration of the I/O line.

After reset, depending on the I/O, pull-up or pull-down can be set.

33.5.2 I/O Line or Peripheral Function Selection

When a pin is multiplexed with one or two peripheral functions, the selection is controlled with the Enable Register

(PIO_PER) and the Disable Register (PIO_PDR). The Status Register (PIO_PSR) is the result of the set and clear

registers and indicates whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A

value of zero indicates that the pin is controlled by the corresponding on-chip peripheral selected in the ABCD

Select registers (PIO_ABCDSR1 and PIO_ABCDSR2). A value of one indicates the pin is controlled by the PIO

Controller.

If a pin is used as a general-purpose I/O line (not multiplexed with an on-chip peripheral), PIO_PER and PIO_PDR

have no effect and PIO_PSR returns a one for the corresponding bit.

After reset, the I/O lines are controlled by the PIO Controller, i.e., PIO_PSR resets at one. However, in some

events, it is important that PIO lines are controlled by the peripheral (as in the case of memory chip select lines that

must be driven inactive after reset, or for address lines that must be driven low for booting out of an external

memory). Thus, the reset value of PIO_PSR is defined at the product level and depends on the multiplexing of the

device.

33.5.3 Peripheral A or B or C or D Selection

The PIO Controller provides multiplexing of up to four peripheral functions on a single pin. The selection is

performed by writing PIO_ABCDSR1 and PIO_ABCDSR2.

For each pin:

 The corresponding bit at level zero in PIO_ABCDSR1 and the corresponding bit at level zero in

PIO_ABCDSR2 means peripheral A is selected.

 The corresponding bit at level one in PIO_ABCDSR1 and the corresponding bit at level zero in

PIO_ABCDSR2 means peripheral B is selected.

 The corresponding bit at level zero in PIO_ABCDSR1 and the corresponding bit at level one in

PIO_ABCDSR2 means peripheral C is selected.

 The corresponding bit at level one in PIO_ABCDSR1 and the corresponding bit at level one in

PIO_ABCDSR2 means peripheral D is selected.

Note that multiplexing of peripheral lines A, B, C and D only affects the output line. The peripheral input lines are

always connected to the pin input (see Figure 33-2).

Writing in PIO_ABCDSR1 and PIO_ABCDSR2 manages the multiplexing regardless of the configuration of the

pin. However, assignment of a pin to a peripheral function requires a write in PIO_ABCDSR1 and PIO_ABCDSR2

in addition to a write in PIO_PDR.

After reset, PIO_ABCDSR1 and PIO_ABCDSR2 are zero, thus indicating that all the PIO lines are configured on

peripheral A. However, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line mode.

If the software selects a peripheral A, B, C or D which does not exist for a pin, no alternate functions are enabled

for this pin and the selection is taken into account. The PIO Controller does not carry out checks to prevent

selection of a peripheral which does not exist.

711SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.5.4 Output Control

When the I/O line is assigned to a peripheral function, i.e., the corresponding bit in PIO_PSR is at zero, the drive of

the I/O line is controlled by the peripheral. Peripheral A or B or C or D depending on the value in PIO_ABCDSR1

and PIO_ABCDSR2 determines whether the pin is driven or not.

When the I/O line is controlled by the PIO Controller, the pin can be configured to be driven. This is done by writing

the Output Enable Register (PIO_OER) and Output Disable Register (PIO_ODR). The results of these write

operations are detected in the Output Status Register (PIO_OSR). When a bit in this register is at zero, the

corresponding I/O line is used as an input only. When the bit is at one, the corresponding I/O line is driven by the

PIO Controller.

The level driven on an I/O line can be determined by writing in the Set Output Data Register (PIO_SODR) and the

Clear Output Data Register (PIO_CODR). These write operations, respectively, set and clear the Output Data

Status Register (PIO_ODSR), which represents the data driven on the I/O lines. Writing in PIO_OER and

PIO_ODR manages PIO_OSR whether the pin is configured to be controlled by the PIO Controller or assigned to

a peripheral function. This enables configuration of the I/O line prior to setting it to be managed by the PIO

Controller.

Similarly, writing in PIO_SODR and PIO_CODR affects PIO_ODSR. This is important as it defines the first level

driven on the I/O line.

33.5.5 Synchronous Data Output

Clearing one or more PIO line(s) and setting another one or more PIO line(s) synchronously cannot be done by

using PIO_SODR and PIO_CODR. It requires two successive write operations into two different registers. To

overcome this, the PIO Controller offers a direct control of PIO outputs by single write access to PIO_ODSR. Only

bits unmasked by the Output Write Status Register (PIO_OWSR) are written. The mask bits in PIO_OWSR are set

by writing to the Output Write Enable Register (PIO_OWER) and cleared by writing to the Output Write Disable

Register (PIO_OWDR).

After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets at 0x0.

33.5.6 Multi-Drive Control (Open Drain)

Each I/O can be independently programmed in open drain by using the multi-drive feature. This feature permits

several drivers to be connected on the I/O line which is driven low only by each device. An external pull-up resistor

(or enabling of the internal one) is generally required to guarantee a high level on the line.

The multi-drive feature is controlled by the Multi-driver Enable Register (PIO_MDER) and the Multi-driver Disable

Register (PIO_MDDR). The multi-drive can be selected whether the I/O line is controlled by the PIO Controller or

assigned to a peripheral function. The Multi-driver Status Register (PIO_MDSR) indicates the pins that are

configured to support external drivers.

After reset, the multi-drive feature is disabled on all pins, i.e., PIO_MDSR resets at value 0x0.

33.5.7 Output Line Timings

Figure 33-3 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by directly writing

PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is set. Figure 33-3 also shows when

the feedback in the Pin Data Status Register (PIO_PDSR) is available.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

712

Figure 33-3. Output Line Timings

33.5.8 Inputs

The level on each I/O line can be read through PIO_PDSR. This register indicates the level of the I/O lines

regardless of their configuration, whether uniquely as an input, or driven by the PIO Controller, or driven by a

peripheral.

Reading the I/O line levels requires the clock of the PIO Controller to be enabled, otherwise PIO_PDSR reads the

levels present on the I/O line at the time the clock was disabled.

33.5.9 Input Glitch and Debouncing Filters

Optional input glitch and debouncing filters are independently programmable on each I/O line.

The glitch filter can filter a glitch with a duration of less than 1/2 peripheral clock and the debouncing filter can filter

a pulse of less than 1/2 period of a programmable divided slow clock.

The selection between glitch filtering or debounce filtering is done by writing in the PIO Input Filter Slow Clock

Disable Register (PIO_IFSCDR) and the PIO Input Filter Slow Clock Enable Register (PIO_IFSCER). Writing

PIO_IFSCDR and PIO_IFSCER, respectively, sets and clears bits in the Input Filter Slow Clock Status Register

(PIO_IFSCSR).

The current selection status can be checked by reading the PIO_IFSCSR.

 If PIO_IFSCSR[i] = 0: The glitch filter can filter a glitch with a duration of less than 1/2 master clock period.

 If PIO_IFSCSR[i] = 1: The debouncing filter can filter a pulse with a duration of less than 1/2 programmable

divided slow clock period.

For the debouncing filter, the period of the divided slow clock is defined by writing in the DIV field of the Slow Clock

Divider Debouncing Register (PIO_SCDR):

tdiv_slck = ((DIV + 1) × 2) × tslck

When the glitch or debouncing filter is enabled, a glitch or pulse with a duration of less than 1/2 selected clock

cycle (selected clock represents peripheral clock or divided slow clock depending on PIO_IFSCDR and

PIO_IFSCER programming) is automatically rejected, while a pulse with a duration of one selected clock

(peripheral clock or divided slow clock) cycle or more is accepted. For pulse durations between 1/2 selected clock

cycle and one selected clock cycle, the pulse may or may not be taken into account, depending on the precise

timing of its occurrence. Thus for a pulse to be visible, it must exceed one selected clock cycle, whereas for a glitch

to be reliably filtered out, its duration must not exceed 1/2 selected clock cycle.

The filters also introduce some latencies, illustrated in Figure 33-4 and Figure 33-5.

2 cycles

APB Access

2 cycles

APB Access

Peripheral clock

Write PIO_SODR

Write PIO_ODSR at 1

PIO_ODSR

PIO_PDSR

Write PIO_CODR

Write PIO_ODSR at 0

713SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The glitch filters are controlled by the Input Filter Enable Register (PIO_IFER), the Input Filter Disable Register

(PIO_IFDR) and the Input Filter Status Register (PIO_IFSR). Writing PIO_IFER and PIO_IFDR respectively sets

and clears bits in PIO_IFSR. This last register enables the glitch filter on the I/O lines.

When the glitch and/or debouncing filter is enabled, it does not modify the behavior of the inputs on the

peripherals. It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The glitch and

debouncing filters require that the peripheral clock is enabled.

Figure 33-4. Input Glitch Filter Timing

Figure 33-5. Input Debouncing Filter Timing

33.5.10 Input Edge/Level Interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an edge or a level on an I/O line.

The Input Edge/Level interrupt is controlled by writing the Interrupt Enable Register (PIO_IER) and the Interrupt

Disable Register (PIO_IDR), which enable and disable the input change interrupt respectively by setting and

clearing the corresponding bit in the Interrupt Mask Register (PIO_IMR). As input change detection is possible only

by comparing two successive samplings of the input of the I/O line, the peripheral clock must be enabled. The

Input Change interrupt is available regardless of the configuration of the I/O line, i.e., configured as an input only,

controlled by the PIO Controller or assigned to a peripheral function.

By default, the interrupt can be generated at any time an edge is detected on the input.

Some additional interrupt modes can be enabled/disabled by writing in the Additional Interrupt Modes Enable

Register (PIO_AIMER) and Additional Interrupt Modes Disable Register (PIO_AIMDR). The current state of this

selection can be read through the Additional Interrupt Modes Mask Register (PIO_AIMMR).

These additional modes are:

Peripheral clcok

Pin Level

PIO_PDSR

if PIO_IFSR = 0

PIO_PDSR

if PIO_IFSR = 1

1 cycle 1 cycle 1 cycle

up to 1.5 cycles

2 cycles

up to 2.5 cycles

up to 2 cycles

1 cycle

1 cycle

PIO_IFCSR = 0

Divided Slow Clock

(div_slck)

Pin Level

PIO_PDSR

if PIO_IFSR = 0

PIO_PDSR

if PIO_IFSR = 1

1 cycle t
div_slck

up to 1.5 cycles t
div_slck

1 cycle t
div_slck

up to 2 cycles t
peripheral clock

up to 2 cycles t
peripheral clock

up to 2 cycles t
peripheral clockup to 2 cycles t

peripheral clock

up to 1.5 cycles t
div_slck

PIO_IFCSR = 1

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

714

 Rising edge detection

 Falling edge detection

 Low-level detection

 High-level detection

In order to select an additional interrupt mode:

 The type of event detection (edge or level) must be selected by writing in the Edge Select Register

(PIO_ESR) and Level Select Register (PIO_LSR) which select, respectively, the edge and level detection.

The current status of this selection is accessible through the Edge/Level Status Register (PIO_ELSR).

 The polarity of the event detection (rising/falling edge or high/low-level) must be selected by writing in the

Falling Edge/Low-Level Select Register (PIO_FELLSR) and Rising Edge/High-Level Select Register

(PIO_REHLSR) which allow to select falling or rising edge (if edge is selected in PIO_ELSR) edge or high-

or low-level detection (if level is selected in PIO_ELSR). The current status of this selection is accessible

through the Fall/Rise - Low/High Status Register (PIO_FRLHSR).

When an input edge or level is detected on an I/O line, the corresponding bit in the Interrupt Status Register

(PIO_ISR) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt line is asserted.The

interrupt signals of the 32 channels are ORed-wired together to generate a single interrupt signal to the interrupt

controller.

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that all the interrupts

that are pending when PIO_ISR is read must be handled. When an Interrupt is enabled on a “level”, the interrupt is

generated as long as the interrupt source is not cleared, even if some read accesses in PIO_ISR are performed.

715SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 33-6. Event Detector on Input Lines (Figure Represents Line 0)

Example of interrupt generation on following lines:

 Rising edge on PIO line 0

 Falling edge on PIO line 1

 Rising edge on PIO line 2

 Low-level on PIO line 3

 High-level on PIO line 4

 High-level on PIO line 5

 Falling edge on PIO line 6

 Rising edge on PIO line 7

 Any edge on the other lines

Table 33-3 provides the required configuration for this example.

Event Detector

0

1

0

1

1

0

0

1

Edge

Detector

Falling Edge

Detector

Rising Edge

Detector

PIO_FELLSR[0]

PIO_FRLHSR[0]

PIO_REHLSR[0]

Low Level

Detector

High Level

Detector

PIO_ESR[0]

PIO_ELSR[0]

PIO_LSR[0]

PIO_AIMDR[0]

PIO_AIMMR[0]

PIO_AIMER[0]

Event detection on line 0

Resynchronized input on line 0

Table 33-3. Configuration for Example Interrupt Generation

Configuration Description

Interrupt Mode

All the interrupt sources are enabled by writing 32’hFFFF_FFFF in PIO_IER.

Then the additional interrupt mode is enabled for lines 0 to 7 by writing 32’h0000_00FF in

PIO_AIMER.

Edge or Level Detection

Lines 3, 4 and 5 are configured in level detection by writing 32’h0000_0038 in PIO_LSR.

The other lines are configured in edge detection by default, if they have not been previously

configured. Otherwise, lines 0, 1, 2, 6 and 7 must be configured in edge detection by writing

32’h0000_00C7 in PIO_ESR.

Falling/Rising Edge or Low/High-Level

Detection

Lines 0, 2, 4, 5 and 7 are configured in rising edge or high-level detection by writing

32’h0000_00B5 in PIO_REHLSR.

The other lines are configured in falling edge or low-level detection by default if they have

not been previously configured. Otherwise, lines 1, 3 and 6 must be configured in falling

edge/low-level detection by writing 32’h0000_004A in PIO_FELLSR.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

716

Figure 33-7. Input Change Interrupt Timings When No Additional Interrupt Modes

33.5.11 I/O Lines Lock

When an I/O line is controlled by a peripheral (particularly the Pulse Width Modulation Controller PWM), it can

become locked by the action of this peripheral via an input of the PIO Controller. When an I/O line is locked, the

write of the corresponding bit in PIO_PER, PIO_PDR, PIO_MDER, PIO_MDDR, PIO_PUDR, PIO_PUER,

PIO_ABCDSR1 and PIO_ABCDSR2 is discarded in order to lock its configuration. The user can know at anytime

which I/O line is locked by reading the PIO Lock Status Register (PIO_LOCKSR). Once an I/O line is locked, the

only way to unlock it is to apply a hardware reset to the PIO Controller.

33.5.12 Programmable I/O Delays

The PIO interface consists of a series of signals driven by peripherals or directly by software. The simultaneous

switching outputs on these busses may lead to a peak of current in the internal and external power supply lines.

In order to reduce the current peak in such cases, additional propagation delays can be adjusted independently for

pad buffers by means of configuration registers, PIO_DELAYR.

For each I/O supporting the additional programmable delay, the delay ranges from 0 to - ns (worst case process,

voltage, temperature). The delay can differ between I/Os supporting this feature. Delay can be modified per

programming for each I/O. The minimal additional delay that can be programmed on a PAD supporting this feature

is 1/16 of the maximum programmable delay.

Only pads PA26-PA27-PA30-PA31 can be configured.

When programming 0x0 in fields, no delay is added (reset value) and the propagation delay of the pad buffers is

the inherent delay of the pad buffer. When programming 0xF in fields, the propagation delay of the corresponding

pad is maximal.

Peripheral clock

Pin Level

Read PIO_ISR APB Access

PIO_ISR

APB Access

717SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 33-8. Programmable I/O Delays

33.5.13 Programmable Schmitt Trigger

It is possible to configure each input for the Schmitt trigger. By default the Schmitt trigger is active. Disabling the

Schmitt trigger is requested when using the QTouch® Library.

33.5.14 Parallel Capture Mode

33.5.14.1 Overview

The PIO Controller integrates an interface able to read data from a CMOS digital image sensor, a high-speed

parallel ADC, a DSP synchronous port in synchronous mode, etc. For better understanding and to ease reading,

the following description uses an example with a CMOS digital image sensor.

33.5.14.2 Functional Description

The CMOS digital image sensor provides a sensor clock, an 8-bit data synchronous with the sensor clock and two

data enables which are also synchronous with the sensor clock.

As soon as the parallel capture mode is enabled by writing a one to the PCEN bit in PIO_PCMR, the I/O lines

connected to the sensor clock (PIODCCLK), the sensor data (PIODC[7:0]) and the sensor data enable signals

(PIODCEN1 and PIODCEN2) are configured automatically as inputs. To know which I/O lines are associated with

Programmable Delay Line

PIO

PAout[0]

PAin[0]

Programmable Delay Line

Programmable Delay Line

PAout[1]

PAin[1]

PAout[2]

PAin[2]

DELAY2

DELAY1

DELAYx

Figure 33-9. PIO Controller Connection with CMOS Digital Image Sensor

PIO Controller

Parallel Capture

Mode CMOS Digital

Image Sensor

PDC

Data

Status

PIODCCLK

PIODC[7:0]

PIODCEN1

PIODCEN2

PCLK

DATA[7:0]

VSYNC

HSYNC

Events

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

718

the sensor clock, the sensor data and the sensor data enable signals, refer to the I/O multiplexing table(s) in the

section “Package and Pinout”.

Once enabled, the parallel capture mode samples the data at rising edge of the sensor clock and resynchronizes it

with the peripheral clock domain.

The size of the data which can be read in PIO_PCRHR can be programmed using the DSIZE field in PIO_PCMR.

If this data size is larger than 8 bits, then the parallel capture mode samples several sensor data to form a

concatenated data of size defined by DSIZE. Then this data is stored in PIO_PCRHR and the flag DRDY is set to

one in PIO_PCISR.

The parallel capture mode can take into account the sensor data enable signals or not. If the bit ALWYS is set to

zero in PIO_PCMR, the parallel capture mode samples the sensor data at the rising edge of the sensor clock only

if both data enable signals are active (at one). If the bit ALWYS is set to one, the parallel capture mode samples

the sensor data at the rising edge of the sensor clock whichever the data enable signals are.

The parallel capture mode can sample the sensor data only one time out of two. This is particularly useful when

the user wants only to sample the luminance Y of a CMOS digital image sensor which outputs a YUV422 data

stream. If the HALFS bit is set to zero in PIO_PCMR, the parallel capture mode samples the sensor data in the

conditions described above. If the HALFS bit is set to one in PIO_PCMR, the parallel capture mode samples the

sensor data in the conditions described above, but only one time out of two. Depending on the FRSTS bit in

PIO_PCMR, the sensor can either sample the even or odd sensor data. If sensor data are numbered in the order

that they are received with an index from zero to n, if FRSTS equals zero then only data with an even index are

sampled. If FRSTS equals one, then only data with an odd index are sampled. If data is ready in PIO_PCRHR and

it is not read before a new data is stored in PIO_PCRHR, then an overrun error occurs. The previous data is lost

and the OVRE flag in PIO_PCISR is set to one. This flag is automatically reset when PIO_PCISR is read (reset

after read).

Figure 33-10. Parallel Capture Mode Waveforms (DSIZE = 2, ALWYS = 0, HALFS = 0)

The parallel capture mode can be associated with a reception channel of the Peripheral DMA

Controller (PDC). This performs reception transfer from parallel capture mode to a memory

buffer without any intervention from the CPU. Transfer status signals from PDC are available

in PIO_PCISR through the flags ENDRX and RXBUFF.

The flags DRDY, OVRE, ENDRX and RXBUFF can be a source of the PIO interrupt.

0x23 0x34 0x450x12 0x56 0x67 0x78 0x89

0x5645_3423

0x01

PIODCLK

PIODC[7:0]

PIODCEN1

PIODCEN2

DRDY (PIO_PCISR)

RDATA (PIO_PCRHR)

Read of PIO_PCISR

MCK

719SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 33-11. Parallel Capture Mode Waveforms (DSIZE = 2, ALWYS = 1, HALFS = 0)

Figure 33-12. Parallel Capture Mode Waveforms (DSIZE = 2, ALWYS = 0, HALFS = 1, FRSTS = 0)

0x23 0x34 0x450x12 0x56 0x67 0x78 0x89

0x3423_1201

0x01

0x7867_5645

PIODCLK

PIODC[7:0]

PIODCEN1

PIODCEN2

DRDY (PIO_PCISR)

RDATA (PIO_PCRHR)

Read of PIO_PCISR

MCK

0x23 0x34 0x450x12 0x56 0x67 0x78 0x89

0x6745_2301

PIODCLK

PIODC[7:0]

PIODCEN1

PIODCEN2

DRDY (PIO_PCISR)

RDATA (PIO_PCRHR)

0x01

Read of PIO_PCISR

MCK

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

720

Figure 33-13. Parallel Capture Mode Waveforms (DSIZE = 2, ALWYS = 0, HALFS = 1, FRSTS = 1)

33.5.14.3 Restrictions

 Configuration fields DSIZE, ALWYS, HALFS and FRSTS in PIO_PCMR can be changed ONLY if the parallel

capture mode is disabled at this time (PCEN = 0 in PIO_PCMR).

 The frequency of peripheral clock must be strictly superior to two times the frequency of the clock of the

device which generates the parallel data.

33.5.14.4 Programming Sequence

0x23 0x34 0x450x12 0x56 0x67 0x78 0x89

0x7856_3412

0x01

PIODCLK

PIODC[7:0]

PIODCEN1

PIODCEN2

DRDY (PIO_PCISR)

RDATA (PIO_PCRHR)

Read of PIO_PCISR

MCK

Without PDC

1. Write PIO_PCIDR and PIO_PCIER in order to configure the parallel capture mode
interrupt mask.

2. Write PIO_PCMR to set the fields DSIZE, ALWYS, HALFS and FRSTS in order to

configure the parallel capture mode WITHOUT enabling the parallel capture mode.

3. Write PIO_PCMR to set the PCEN bit to one in order to enable the parallel capture

mode WITHOUT changing the previous configuration.

4. Wait for a data ready by polling the DRDY flag in PIO_PCISR or by waiting for the

corresponding interrupt.

5. Check OVRE flag in PIO_PCISR.

6. Read the data in PIO_PCRHR.

7. If new data are expected, go to step 4.

8. Write PIO_PCMR to set the PCEN bit to zero in order to disable the parallel capture

mode WITHOUT changing the previous configuration.

With PDC

721SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.5.15 I/O Lines Programming Example

The programming example shown in Table 33-4 is used to obtain the following configuration:

 4-bit output port on I/O lines 0 to 3 (should be written in a single write operation), open-drain, with pull-up

resistor

 Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no pull-up resistor,

no pull-down resistor

 Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up resistors, glitch

filters and input change interrupts

 Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no input change

interrupt), no pull-up resistor, no glitch filter

 I/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor

 I/O lines 20 to 23 assigned to peripheral B functions with pull-down resistor

 I/O lines 24 to 27 assigned to peripheral C with input change interrupt, no pull-up resistor and no pull-down

resistor

 I/O lines 28 to 31 assigned to peripheral D, no pull-up resistor and no pull-down resistor

1. Write PIO_PCIDR and PIO_PCIER in order to configure the parallel capture mode
interrupt mask.

2. Configure PDC transfer in PDC registers.

3. Write PIO_PCMR to set the fields DSIZE, ALWYS, HALFS and FRSTS in order to

configure the parallel capture mode WITHOUT enabling the parallel capture mode.

4. Write PIO_PCMR to set PCEN bit to one in order to enable the parallel capture mode

WITHOUT changing the previous configuration.

5. Wait for end of transfer by waiting for the interrupt corresponding to the flag ENDRX in

PIO_PCISR.

6. Check OVRE flag in PIO_PCISR.

7. If a new buffer transfer is expected, go to step 5.

8. Write PIO_PCMR to set the PCEN bit to zero in order to disable the parallel capture

mode WITHOUT changing the previous configuration.

Table 33-4. Programming Example

Register Value to be Written

PIO_PER 0x0000_FFFF

PIO_PDR 0xFFFF_0000

PIO_OER 0x0000_00FF

PIO_ODR 0xFFFF_FF00

PIO_IFER 0x0000_0F00

PIO_IFDR 0xFFFF_F0FF

PIO_SODR 0x0000_0000

PIO_CODR 0x0FFF_FFFF

PIO_IER 0x0F00_0F00

PIO_IDR 0xF0FF_F0FF

PIO_MDER 0x0000_000F

PIO_MDDR 0xFFFF_FFF0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

722

PIO_PUDR 0xFFF0_00F0

PIO_PUER 0x000F_FF0F

PIO_PPDDR 0xFF0F_FFFF

PIO_PPDER 0x00F0_0000

PIO_ABCDSR1 0xF0F0_0000

PIO_ABCDSR2 0xFF00_0000

PIO_OWER 0x0000_000F

PIO_OWDR 0x0FFF_ FFF0

Table 33-4. Programming Example (Continued)

723SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.5.16 Register Write Protection

To prevent any single software error from corrupting PIO behavior, certain registers in the address space can be

write-protected by setting the WPEN bit in the PIO Write Protection Mode Register (PIO_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the PIO Write Protection Status

Register (PIO_WPSR) is set and the field WPVSRC indicates the register in which the write access has been

attempted.

The WPVS bit is automatically cleared after reading the PIO_WPSR.

The following registers can be write-protected:

 PIO Enable Register

 PIO Disable Register

 PIO Output Enable Register

 PIO Output Disable Register

 PIO Input Filter Enable Register

 PIO Input Filter Disable Register

 PIO Multi-driver Enable Register

 PIO Multi-driver Disable Register

 PIO Pull-Up Disable Register

 PIO Pull-Up Enable Register

 PIO Peripheral ABCD Select Register 1

 PIO Peripheral ABCD Select Register 2

 PIO Output Write Enable Register

 PIO Output Write Disable Register

 PIO Pad Pull-Down Disable Register

 PIO Pad Pull-Down Enable Register

 PIO Parallel Capture Mode Register

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

724

33.6 Parallel Input/Output Controller (PIO) User Interface

Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Controller User Interface

registers. Each register is 32-bit wide. If a parallel I/O line is not defined, writing to the corresponding bits has no

effect. Undefined bits read zero. If the I/O line is not multiplexed with any peripheral, the I/O line is controlled by the

PIO Controller and PIO_PSR returns one systematically.

Table 33-5. Register Mapping

Offset Register Name Access Reset

0x0000 PIO Enable Register PIO_PER Write-only –

0x0004 PIO Disable Register PIO_PDR Write-only –

0x0008 PIO Status Register PIO_PSR Read-only (1)

0x000C Reserved – – –

0x0010 Output Enable Register PIO_OER Write-only –

0x0014 Output Disable Register PIO_ODR Write-only –

0x0018 Output Status Register PIO_OSR Read-only 0x00000000

0x001C Reserved – – –

0x0020 Glitch Input Filter Enable Register PIO_IFER Write-only –

0x0024 Glitch Input Filter Disable Register PIO_IFDR Write-only –

0x0028 Glitch Input Filter Status Register PIO_IFSR Read-only 0x00000000

0x002C Reserved – – –

0x0030 Set Output Data Register PIO_SODR Write-only –

0x0034 Clear Output Data Register PIO_CODR Write-only

0x0038 Output Data Status Register PIO_ODSR

Read-only

or(2)

Read/Write

–

0x003C Pin Data Status Register PIO_PDSR Read-only (3)

0x0040 Interrupt Enable Register PIO_IER Write-only –

0x0044 Interrupt Disable Register PIO_IDR Write-only –

0x0048 Interrupt Mask Register PIO_IMR Read-only 0x00000000

0x004C Interrupt Status Register(4) PIO_ISR Read-only 0x00000000

0x0050 Multi-driver Enable Register PIO_MDER Write-only –

0x0054 Multi-driver Disable Register PIO_MDDR Write-only –

0x0058 Multi-driver Status Register PIO_MDSR Read-only 0x00000000

0x005C Reserved – – –

0x0060 Pull-up Disable Register PIO_PUDR Write-only –

0x0064 Pull-up Enable Register PIO_PUER Write-only –

0x0068 Pad Pull-up Status Register PIO_PUSR Read-only (1)

0x006C Reserved – – –

725SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

0x0070 Peripheral Select Register 1 PIO_ABCDSR1 Read/Write 0x00000000

0x0074 Peripheral Select Register 2 PIO_ABCDSR2 Read/Write 0x00000000

0x0078–0x007C Reserved – – –

0x0080 Input Filter Slow Clock Disable Register PIO_IFSCDR Write-only –

0x0084 Input Filter Slow Clock Enable Register PIO_IFSCER Write-only –

0x0088 Input Filter Slow Clock Status Register PIO_IFSCSR Read-only 0x00000000

0x008C Slow Clock Divider Debouncing Register PIO_SCDR Read/Write 0x00000000

0x0090 Pad Pull-down Disable Register PIO_PPDDR Write-only –

0x0094 Pad Pull-down Enable Register PIO_PPDER Write-only –

0x0098 Pad Pull-down Status Register PIO_PPDSR Read-only (1)

0x009C Reserved – – –

0x00A0 Output Write Enable PIO_OWER Write-only –

0x00A4 Output Write Disable PIO_OWDR Write-only –

0x00A8 Output Write Status Register PIO_OWSR Read-only 0x00000000

0x00AC Reserved – – –

0x00B0 Additional Interrupt Modes Enable Register PIO_AIMER Write-only –

0x00B4 Additional Interrupt Modes Disable Register PIO_AIMDR Write-only –

0x00B8 Additional Interrupt Modes Mask Register PIO_AIMMR Read-only 0x00000000

0x00BC Reserved – – –

0x00C0 Edge Select Register PIO_ESR Write-only –

0x00C4 Level Select Register PIO_LSR Write-only –

0x00C8 Edge/Level Status Register PIO_ELSR Read-only 0x00000000

0x00CC Reserved – – –

0x00D0 Falling Edge/Low-Level Select Register PIO_FELLSR Write-only –

0x00D4 Rising Edge/High-Level Select Register PIO_REHLSR Write-only –

0x00D8 Fall/Rise - Low/High Status Register PIO_FRLHSR Read-only 0x00000000

0x00DC Reserved – – –

0x00E0 Lock Status PIO_LOCKSR Read-only 0x00000000

0x00E4 Write Protection Mode Register PIO_WPMR Read/Write 0x00000000

0x00E8 Write Protection Status Register PIO_WPSR Read-only 0x00000000

0x00EC–0x00FC Reserved – – –

0x0100 Schmitt Trigger Register PIO_SCHMITT Read/Write 0x00000000

0x0104–0x010C Reserved – – –

0x0110 I/O Delay Register PIO_DELAYR Read/Write 0x00000000

0x0114–0x011C Reserved – – –

0x0120–0x014C Reserved – – –

0x0150 Parallel Capture Mode Register PIO_PCMR Read/Write 0x00000000

Table 33-5. Register Mapping (Continued)

Offset Register Name Access Reset

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

726

Notes: 1. Reset value depends on the product implementation.

2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR I/O lines.

3. Reset value of PIO_PDSR depends on the level of the I/O lines. Reading the I/O line levels requires the clock of the PIO

Controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have

occurred.

5. If an offset is not listed in the table it must be considered as reserved.

0x0154 Parallel Capture Interrupt Enable Register PIO_PCIER Write-only –

0x0158 Parallel Capture Interrupt Disable Register PIO_PCIDR Write-only –

0x015C Parallel Capture Interrupt Mask Register PIO_PCIMR Read-only 0x00000000

0x0160 Parallel Capture Interrupt Status Register PIO_PCISR Read-only 0x00000000

0x0164 Parallel Capture Reception Holding Register PIO_PCRHR Read-only 0x00000000

0x0168–0x018C Reserved for PDC Registers – – –

Table 33-5. Register Mapping (Continued)

Offset Register Name Access Reset

727SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.1 PIO Enable Register

Name: PIO_PER

Address: 0x400E0E00 (PIOA), 0x400E1000 (PIOB), 0x400E1200 (PIOC), 0x400E1400 (PIOD), 0x400E1600 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: PIO Enable

0: No effect.

1: Enables the PIO to control the corresponding pin (disables peripheral control of the pin).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

728

33.6.2 PIO Disable Register

Name: PIO_PDR

Address: 0x400E0E04 (PIOA), 0x400E1004 (PIOB), 0x400E1204 (PIOC), 0x400E1404 (PIOD), 0x400E1604 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: PIO Disable

0: No effect.

1: Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

729SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.3 PIO Status Register

Name: PIO_PSR

Address: 0x400E0E08 (PIOA), 0x400E1008 (PIOB), 0x400E1208 (PIOC), 0x400E1408 (PIOD), 0x400E1608 (PIOE)

Access: Read-only

• P0–P31: PIO Status

0: PIO is inactive on the corresponding I/O line (peripheral is active).

1: PIO is active on the corresponding I/O line (peripheral is inactive).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

730

33.6.4 PIO Output Enable Register

Name: PIO_OER

Address: 0x400E0E10 (PIOA), 0x400E1010 (PIOB), 0x400E1210 (PIOC), 0x400E1410 (PIOD), 0x400E1610 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Output Enable

0: No effect.

1: Enables the output on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

731SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.5 PIO Output Disable Register

Name: PIO_ODR

Address: 0x400E0E14 (PIOA), 0x400E1014 (PIOB), 0x400E1214 (PIOC), 0x400E1414 (PIOD), 0x400E1614 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Output Disable

0: No effect.

1: Disables the output on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

732

33.6.6 PIO Output Status Register

Name: PIO_OSR

Address: 0x400E0E18 (PIOA), 0x400E1018 (PIOB), 0x400E1218 (PIOC), 0x400E1418 (PIOD), 0x400E1618 (PIOE)

Access: Read-only

• P0–P31: Output Status

0: The I/O line is a pure input.

1: The I/O line is enabled in output.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

733SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.7 PIO Input Filter Enable Register

Name: PIO_IFER

Address: 0x400E0E20 (PIOA), 0x400E1020 (PIOB), 0x400E1220 (PIOC), 0x400E1420 (PIOD), 0x400E1620 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Input Filter Enable

0: No effect.

1: Enables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

734

33.6.8 PIO Input Filter Disable Register

Name: PIO_IFDR

Address: 0x400E0E24 (PIOA), 0x400E1024 (PIOB), 0x400E1224 (PIOC), 0x400E1424 (PIOD), 0x400E1624 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Input Filter Disable

0: No effect.

1: Disables the input glitch filter on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

735SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.9 PIO Input Filter Status Register

Name: PIO_IFSR

Address: 0x400E0E28 (PIOA), 0x400E1028 (PIOB), 0x400E1228 (PIOC), 0x400E1428 (PIOD), 0x400E1628 (PIOE)

Access: Read-only

• P0–P31: Input Filter Status

0: The input glitch filter is disabled on the I/O line.

1: The input glitch filter is enabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

736

33.6.10 PIO Set Output Data Register

Name: PIO_SODR

Address: 0x400E0E30 (PIOA), 0x400E1030 (PIOB), 0x400E1230 (PIOC), 0x400E1430 (PIOD), 0x400E1630 (PIOE)

Access: Write-only

• P0–P31: Set Output Data

0: No effect.

1: Sets the data to be driven on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

737SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.11 PIO Clear Output Data Register

Name: PIO_CODR

Address: 0x400E0E34 (PIOA), 0x400E1034 (PIOB), 0x400E1234 (PIOC), 0x400E1434 (PIOD), 0x400E1634 (PIOE)

Access: Write-only

• P0–P31: Clear Output Data

0: No effect.

1: Clears the data to be driven on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

738

33.6.12 PIO Output Data Status Register

Name: PIO_ODSR

Address: 0x400E0E38 (PIOA), 0x400E1038 (PIOB), 0x400E1238 (PIOC), 0x400E1438 (PIOD), 0x400E1638 (PIOE)

Access: Read-only or Read/Write

• P0–P31: Output Data Status

0: The data to be driven on the I/O line is 0.

1: The data to be driven on the I/O line is 1.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

739SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.13 PIO Pin Data Status Register

Name: PIO_PDSR

Address: 0x400E0E3C (PIOA), 0x400E103C (PIOB), 0x400E123C (PIOC), 0x400E143C (PIOD), 0x400E163C

(PIOE)

Access: Read-only

• P0–P31: Output Data Status

0: The I/O line is at level 0.

1: The I/O line is at level 1.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

740

33.6.14 PIO Interrupt Enable Register

Name: PIO_IER

Address: 0x400E0E40 (PIOA), 0x400E1040 (PIOB), 0x400E1240 (PIOC), 0x400E1440 (PIOD), 0x400E1640 (PIOE)

Access: Write-only

• P0–P31: Input Change Interrupt Enable

0: No effect.

1: Enables the input change interrupt on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

741SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.15 PIO Interrupt Disable Register

Name: PIO_IDR

Address: 0x400E0E44 (PIOA), 0x400E1044 (PIOB), 0x400E1244 (PIOC), 0x400E1444 (PIOD), 0x400E1644 (PIOE)

Access: Write-only

• P0–P31: Input Change Interrupt Disable

0: No effect.

1: Disables the input change interrupt on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

742

33.6.16 PIO Interrupt Mask Register

Name: PIO_IMR

Address: 0x400E0E48 (PIOA), 0x400E1048 (PIOB), 0x400E1248 (PIOC), 0x400E1448 (PIOD), 0x400E1648 (PIOE)

Access: Read-only

• P0–P31: Input Change Interrupt Mask

0: Input change interrupt is disabled on the I/O line.

1: Input change interrupt is enabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

743SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.17 PIO Interrupt Status Register

Name: PIO_ISR

Address: 0x400E0E4C (PIOA), 0x400E104C (PIOB), 0x400E124C (PIOC), 0x400E144C (PIOD), 0x400E164C

(PIOE)

Access: Read-only

• P0–P31: Input Change Interrupt Status

0: No input change has been detected on the I/O line since PIO_ISR was last read or since reset.

1: At least one input change has been detected on the I/O line since PIO_ISR was last read or since reset.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

744

33.6.18 PIO Multi-driver Enable Register

Name: PIO_MDER

Address: 0x400E0E50 (PIOA), 0x400E1050 (PIOB), 0x400E1250 (PIOC), 0x400E1450 (PIOD), 0x400E1650 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0-P31: Multi-drive Enable

0: No effect.

1: Enables multi-drive on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

745SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.19 PIO Multi-driver Disable Register

Name: PIO_MDDR

Address: 0x400E0E54 (PIOA), 0x400E1054 (PIOB), 0x400E1254 (PIOC), 0x400E1454 (PIOD), 0x400E1654 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Multi-drive Disable

0: No effect.

1: Disables multi-drive on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

746

33.6.20 PIO Multi-driver Status Register

Name: PIO_MDSR

Address: 0x400E0E58 (PIOA), 0x400E1058 (PIOB), 0x400E1258 (PIOC), 0x400E1458 (PIOD), 0x400E1658 (PIOE)

Access: Read-only

• P0–P31: Multi-drive Status

0: The multi-drive is disabled on the I/O line. The pin is driven at high- and low-level.

1: The multi-drive is enabled on the I/O line. The pin is driven at low-level only.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

747SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.21 PIO Pull-Up Disable Register

Name: PIO_PUDR

Address: 0x400E0E60 (PIOA), 0x400E1060 (PIOB), 0x400E1260 (PIOC), 0x400E1460 (PIOD), 0x400E1660 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Pull-Up Disable

0: No effect.

1: Disables the pull-up resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

748

33.6.22 PIO Pull-Up Enable Register

Name: PIO_PUER

Address: 0x400E0E64 (PIOA), 0x400E1064 (PIOB), 0x400E1264 (PIOC), 0x400E1464 (PIOD), 0x400E1664 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Pull-Up Enable

0: No effect.

1: Enables the pull-up resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

749SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.23 PIO Pull-Up Status Register

Name: PIO_PUSR

Address: 0x400E0E68 (PIOA), 0x400E1068 (PIOB), 0x400E1268 (PIOC), 0x400E1468 (PIOD), 0x400E1668 (PIOE)

Access: Read-only

• P0–P31: Pull-Up Status

0: Pull-up resistor is enabled on the I/O line.

1: Pull-up resistor is disabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

750

33.6.24 PIO Peripheral ABCD Select Register 1

Name: PIO_ABCDSR1

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Peripheral Select

If the same bit is set to 0 in PIO_ABCDSR2:

0: Assigns the I/O line to the Peripheral A function.

1: Assigns the I/O line to the Peripheral B function.

If the same bit is set to 1 in PIO_ABCDSR2:

0: Assigns the I/O line to the Peripheral C function.

1: Assigns the I/O line to the Peripheral D function.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

751SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.25 PIO Peripheral ABCD Select Register 2

Name: PIO_ABCDSR2

Address: 0x400E0E70 (PIOA), 0x400E1070 (PIOB), 0x400E1270 (PIOC), 0x400E1470 (PIOD), 0x400E1670 (PIOE)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Peripheral Select

If the same bit is set to 0 in PIO_ABCDSR1:

0: Assigns the I/O line to the Peripheral A function.

1: Assigns the I/O line to the Peripheral C function.

If the same bit is set to 1 in PIO_ABCDSR1:

0: Assigns the I/O line to the Peripheral B function.

1: Assigns the I/O line to the Peripheral D function.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

752

33.6.26 PIO Input Filter Slow Clock Disable Register

Name: PIO_IFSCDR

Address: 0x400E0E80 (PIOA), 0x400E1080 (PIOB), 0x400E1280 (PIOC), 0x400E1480 (PIOD), 0x400E1680 (PIOE)

Access: Write-only

• P0–P31: Peripheral Clock Glitch Filtering Select

0: No effect.

1: The glitch filter is able to filter glitches with a duration < tperipheral clock/2.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

753SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.27 PIO Input Filter Slow Clock Enable Register

Name: PIO_IFSCER

Address: 0x400E0E84 (PIOA), 0x400E1084 (PIOB), 0x400E1284 (PIOC), 0x400E1484 (PIOD), 0x400E1684 (PIOE)

Access: Write-only

• P0–P31: Slow Clock Debouncing Filtering Select

0: No effect.

1: The debouncing filter is able to filter pulses with a duration < tdiv_slck/2.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

754

33.6.28 PIO Input Filter Slow Clock Status Register

Name: PIO_IFSCSR

Address: 0x400E0E88 (PIOA), 0x400E1088 (PIOB), 0x400E1288 (PIOC), 0x400E1488 (PIOD), 0x400E1688 (PIOE)

Access: Read-only

• P0–P31: Glitch or Debouncing Filter Selection Status

0: The glitch filter is able to filter glitches with a duration < tperipheral clock/2.

1: The debouncing filter is able to filter pulses with a duration < tdiv_slck/2.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

755SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.29 PIO Slow Clock Divider Debouncing Register

Name: PIO_SCDR

Address: 0x400E0E8C (PIOA), 0x400E108C (PIOB), 0x400E128C (PIOC), 0x400E148C (PIOD), 0x400E168C

(PIOE)

Access: Read/Write

• DIV: Slow Clock Divider Selection for Debouncing

tdiv_slck = ((DIV + 1) × 2) × tslck

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

– – DIV

7 6 5 4 3 2 1 0
DIV

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

756

33.6.30 PIO Pad Pull-Down Disable Register

Name: PIO_PPDDR

Address: 0x400E0E90 (PIOA), 0x400E1090 (PIOB), 0x400E1290 (PIOC), 0x400E1490 (PIOD), 0x400E1690 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Pull-Down Disable

0: No effect.

1: Disables the pull-down resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

757SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.31 PIO Pad Pull-Down Enable Register

Name: PIO_PPDER

Address: 0x400E0E94 (PIOA), 0x400E1094 (PIOB), 0x400E1294 (PIOC), 0x400E1494 (PIOD), 0x400E1694 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Pull-Down Enable

0: No effect.

1: Enables the pull-down resistor on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

758

33.6.32 PIO Pad Pull-Down Status Register

Name: PIO_PPDSR

Address: 0x400E0E98 (PIOA), 0x400E1098 (PIOB), 0x400E1298 (PIOC), 0x400E1498 (PIOD), 0x400E1698 (PIOE)

Access: Read-only

• P0–P31: Pull-Down Status

0: Pull-down resistor is enabled on the I/O line.

1: Pull-down resistor is disabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

759SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.33 PIO Output Write Enable Register

Name: PIO_OWER

Address: 0x400E0EA0 (PIOA), 0x400E10A0 (PIOB), 0x400E12A0 (PIOC), 0x400E14A0 (PIOD), 0x400E16A0 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Output Write Enable

0: No effect.

1: Enables writing PIO_ODSR for the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

760

33.6.34 PIO Output Write Disable Register

Name: PIO_OWDR

Address: 0x400E0EA4 (PIOA), 0x400E10A4 (PIOB), 0x400E12A4 (PIOC), 0x400E14A4 (PIOD), 0x400E16A4 (PIOE)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Output Write Disable

0: No effect.

1: Disables writing PIO_ODSR for the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

761SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.35 PIO Output Write Status Register

Name: PIO_OWSR

Address: 0x400E0EA8 (PIOA), 0x400E10A8 (PIOB), 0x400E12A8 (PIOC), 0x400E14A8 (PIOD), 0x400E16A8 (PIOE)

Access: Read-only

• P0–P31: Output Write Status

0: Writing PIO_ODSR does not affect the I/O line.

1: Writing PIO_ODSR affects the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

762

33.6.36 PIO Additional Interrupt Modes Enable Register

Name: PIO_AIMER

Address: 0x400E0EB0 (PIOA), 0x400E10B0 (PIOB), 0x400E12B0 (PIOC), 0x400E14B0 (PIOD), 0x400E16B0 (PIOE)

Access: Write-only

• P0–P31: Additional Interrupt Modes Enable

0: No effect.

1: The interrupt source is the event described in PIO_ELSR and PIO_FRLHSR.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

763SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.37 PIO Additional Interrupt Modes Disable Register

Name: PIO_AIMDR

Address: 0x400E0EB4 (PIOA), 0x400E10B4 (PIOB), 0x400E12B4 (PIOC), 0x400E14B4 (PIOD), 0x400E16B4 (PIOE)

Access: Write-only

• P0–P31: Additional Interrupt Modes Disable

0: No effect.

1: The interrupt mode is set to the default interrupt mode (both-edge detection).

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

764

33.6.38 PIO Additional Interrupt Modes Mask Register

Name: PIO_AIMMR

Address: 0x400E0EB8 (PIOA), 0x400E10B8 (PIOB), 0x400E12B8 (PIOC), 0x400E14B8 (PIOD), 0x400E16B8 (PIOE)

Access: Read-only

• P0–P31: IO Line Index

Selects the IO event type triggering an interrupt.

0: The interrupt source is a both-edge detection event.

1: The interrupt source is described by the registers PIO_ELSR and PIO_FRLHSR.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

765SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.39 PIO Edge Select Register

Name: PIO_ESR

Address: 0x400E0EC0 (PIOA), 0x400E10C0 (PIOB), 0x400E12C0 (PIOC), 0x400E14C0 (PIOD), 0x400E16C0

(PIOE)

Access: Write-only

• P0–P31: Edge Interrupt Selection

0: No effect.

1: The interrupt source is an edge-detection event.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

766

33.6.40 PIO Level Select Register

Name: PIO_LSR

Address: 0x400E0EC4 (PIOA), 0x400E10C4 (PIOB), 0x400E12C4 (PIOC), 0x400E14C4 (PIOD), 0x400E16C4

(PIOE)

Access: Write-only

• P0–P31: Level Interrupt Selection

0: No effect.

1: The interrupt source is a level-detection event.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

767SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.41 PIO Edge/Level Status Register

Name: PIO_ELSR

Address: 0x400E0EC8 (PIOA), 0x400E10C8 (PIOB), 0x400E12C8 (PIOC), 0x400E14C8 (PIOD), 0x400E16C8

(PIOE)

Access: Read-only

• P0–P31: Edge/Level Interrupt Source Selection

0: The interrupt source is an edge-detection event.

1: The interrupt source is a level-detection event.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

768

33.6.42 PIO Falling Edge/Low-Level Select Register

Name: PIO_FELLSR

Address: 0x400E0ED0 (PIOA), 0x400E10D0 (PIOB), 0x400E12D0 (PIOC), 0x400E14D0 (PIOD), 0x400E16D0

(PIOE)

Access: Write-only

• P0–P31: Falling Edge/Low-Level Interrupt Selection

0: No effect.

1: The interrupt source is set to a falling edge detection or low-level detection event, depending on PIO_ELSR.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

769SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.43 PIO Rising Edge/High-Level Select Register

Name: PIO_REHLSR

Address: 0x400E0ED4 (PIOA), 0x400E10D4 (PIOB), 0x400E12D4 (PIOC), 0x400E14D4 (PIOD), 0x400E16D4

(PIOE)

Access: Write-only

• P0–P31: Rising Edge/High-Level Interrupt Selection

0: No effect.

1: The interrupt source is set to a rising edge detection or high-level detection event, depending on PIO_ELSR.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

770

33.6.44 PIO Fall/Rise - Low/High Status Register

Name: PIO_FRLHSR

Address: 0x400E0ED8 (PIOA), 0x400E10D8 (PIOB), 0x400E12D8 (PIOC), 0x400E14D8 (PIOD), 0x400E16D8

(PIOE)

Access: Read-only

• P0–P31: Edge/Level Interrupt Source Selection

0: The interrupt source is a falling edge detection (if PIO_ELSR = 0) or low-level detection event (if PIO_ELSR = 1).

1: The interrupt source is a rising edge detection (if PIO_ELSR = 0) or high-level detection event (if PIO_ELSR = 1).

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

771SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.45 PIO Lock Status Register

Name: PIO_LOCKSR

Address: 0x400E0EE0 (PIOA), 0x400E10E0 (PIOB), 0x400E12E0 (PIOC), 0x400E14E0 (PIOD), 0x400E16E0 (PIOE)

Access: Read-only

• P0–P31: Lock Status

0: The I/O line is not locked.

1: The I/O line is locked.

31 30 29 28 27 26 25 24
P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16
P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8
P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0
P7 P6 P5 P4 P3 P2 P1 P0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

772

33.6.46 PIO Write Protection Mode Register

Name: PIO_WPMR

Address: 0x400E0EE4 (PIOA), 0x400E10E4 (PIOB), 0x400E12E4 (PIOC), 0x400E14E4 (PIOD), 0x400E16E4 (PIOE)

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x50494F (“PIO” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x50494F (“PIO” in ASCII).

See Section 33.5.16 “Register Write Protection” for the list of registers that can be protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x50494F PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as

0.

773SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.47 PIO Write Protection Status Register

Name: PIO_WPSR

Address: 0x400E0EE8 (PIOA), 0x400E10E8 (PIOB), 0x400E12E8 (PIOC), 0x400E14E8 (PIOD), 0x400E16E8 (PIOE)

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of the PIO_WPSR.

1: A write protection violation has occurred since the last read of the PIO_WPSR. If this violation is an unauthorized

attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

774

33.6.48 PIO Schmitt Trigger Register

Name: PIO_SCHMITT

Address: 0x400E0F00 (PIOA), 0x400E1100 (PIOB), 0x400E1300 (PIOC), 0x400E1500 (PIOD), 0x400E1700 (PIOE)

Access: Read/Write

• SCHMITTx [x=0..31]: Schmitt Trigger Control

0: Schmitt trigger is enabled.

1: Schmitt trigger is disabled.

31 30 29 28 27 26 25 24

SCHMITT31 SCHMITT30 SCHMITT29 SCHMITT28 SCHMITT27 SCHMITT26 SCHMITT25 SCHMITT24

23 22 21 20 19 18 17 16

SCHMITT23 SCHMITT22 SCHMITT21 SCHMITT20 SCHMITT19 SCHMITT18 SCHMITT17 SCHMITT16

15 14 13 12 11 10 9 8

SCHMITT15 SCHMITT14 SCHMITT13 SCHMITT12 SCHMITT11 SCHMITT10 SCHMITT9 SCHMITT8

7 6 5 4 3 2 1 0

SCHMITT7 SCHMITT6 SCHMITT5 SCHMITT4 SCHMITT3 SCHMITT2 SCHMITT1 SCHMITT0

775SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.49 PIO I/O Delay Register

Name: PIO_DELAYR

Address: 0x400E0F10 (PIOA), 0x400E1110 (PIOB), 0x400E1310 (PIOC), 0x400E1510 (PIOD), 0x400E1710 (PIOE)

Access: Read/Write

• Delayx [x=0..7]: Delay Control for Simultaneous Switch Reduction

Gives the number of elements in the delay line associated to pad x.

31 30 29 28 27 26 25 24

Delay7 Delay6

23 22 21 20 19 18 17 16

Delay5 Delay4

15 14 13 12 11 10 9 8

Delay3 Delay2

7 6 5 4 3 2 1 0

Delay1 Delay0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

776

33.6.50 PIO Parallel Capture Mode Register

Name: PIO_PCMR

Address: 0x400E0F50 (PIOA), 0x400E1150 (PIOB), 0x400E1350 (PIOC), 0x400E1550 (PIOD), 0x400E1750 (PIOE)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• PCEN: Parallel Capture Mode Enable

0: The parallel capture mode is disabled.

1: The parallel capture mode is enabled.

• DSIZE: Parallel Capture Mode Data Size

• ALWYS: Parallel Capture Mode Always Sampling

0: The parallel capture mode samples the data when both data enables are active.

1: The parallel capture mode samples the data whatever the data enables are.

• HALFS: Parallel Capture Mode Half Sampling

Independently from the ALWYS bit:

0: The parallel capture mode samples all the data.

1: The parallel capture mode samples the data only every other time.

• FRSTS: Parallel Capture Mode First Sample

This bit is useful only if the HALFS bit is set to 1. If data are numbered in the order that they are received with an index from

0 to n:

0: Only data with an even index are sampled.

1: Only data with an odd index are sampled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – FRSTS HALFS ALWYS –

7 6 5 4 3 2 1 0
– – DSIZE – – – PCEN

Value Name Description

0 BYTE The reception data in the PIO_PCRHR is a byte (8-bit)

1 HALF-WORD The reception data in the PIO_PCRHR is a half-word (16-bit)

2 WORD The reception data in the PIO_PCRHR is a word (32-bit)

3 – Reserved

777SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.51 PIO Parallel Capture Interrupt Enable Register

Name: PIO_PCIER

Address: 0x400E0F54 (PIOA), 0x400E1154 (PIOB), 0x400E1354 (PIOC), 0x400E1554 (PIOD), 0x400E1754 (PIOE)

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Enables the corresponding interrupt

• DRDY: Parallel Capture Mode Data Ready Interrupt Enable

• OVRE: Parallel Capture Mode Overrun Error Interrupt Enable

• ENDRX: End of Reception Transfer Interrupt Enable

• RXBUFF: Reception Buffer Full Interrupt Enable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – RXBUFF ENDRX OVRE DRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

778

33.6.52 PIO Parallel Capture Interrupt Disable Register

Name: PIO_PCIDR

Address: 0x400E0F58 (PIOA), 0x400E1158 (PIOB), 0x400E1358 (PIOC), 0x400E1558 (PIOD), 0x400E1758 (PIOE)

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Disables the corresponding interrupt

• DRDY: Parallel Capture Mode Data Ready Interrupt Disable

• OVRE: Parallel Capture Mode Overrun Error Interrupt Disable

• ENDRX: End of Reception Transfer Interrupt Disable

• RXBUFF: Reception Buffer Full Interrupt Disable

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – RXBUFF ENDRX OVRE DRDY

779SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.53 PIO Parallel Capture Interrupt Mask Register

Name: PIO_PCIMR

Address: 0x400E0F5C (PIOA), 0x400E115C (PIOB), 0x400E135C (PIOC), 0x400E155C (PIOD), 0x400E175C

(PIOE)

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: Corresponding interrupt is not enabled.

1: Corresponding interrupt is enabled.

• DRDY: Parallel Capture Mode Data Ready Interrupt Mask

• OVRE: Parallel Capture Mode Overrun Error Interrupt Mask

• ENDRX: End of Reception Transfer Interrupt Mask

• RXBUFF: Reception Buffer Full Interrupt Mask

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – RXBUFF ENDRX OVRE DRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

780

33.6.54 PIO Parallel Capture Interrupt Status Register

Name: PIO_PCISR

Address: 0x400E0F60 (PIOA), 0x400E1160 (PIOB), 0x400E1360 (PIOC), 0x400E1560 (PIOD), 0x400E1760 (PIOE)

Access: Read-only

• DRDY: Parallel Capture Mode Data Ready

0: No new data is ready to be read since the last read of PIO_PCRHR.

1: A new data is ready to be read since the last read of PIO_PCRHR.

The DRDY flag is automatically reset when PIO_PCRHR is read or when the parallel capture mode is disabled.

• OVRE: Parallel Capture Mode Overrun Error

0: No overrun error occurred since the last read of this register.

1: At least one overrun error occurred since the last read of this register.

The OVRE flag is automatically reset when this register is read or when the parallel capture mode is disabled.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – –

7 6 5 4 3 2 1 0
– – – – RXBUFF ENDRX OVRE DRDY

• ENDRX: End of Reception Transfer

0: The End of Transfer signal from the reception PDC channel is inactive.

1: The End of Transfer signal from the reception PDC channel is active.

• RXBUFF: Reception Buffer Full

0: The signal Buffer Full from the reception PDC channel is inactive.

1: The signal Buffer Full from the reception PDC channel is active.

781SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

33.6.55 PIO Parallel Capture Reception Holding Register

Name: PIO_PCRHR

Address: 0x400E0F64 (PIOA), 0x400E1164 (PIOB), 0x400E1364 (PIOC), 0x400E1564 (PIOD), 0x400E1764 (PIOE)

Access: Read-only

• RDATA: Parallel Capture Mode Reception Data

If DSIZE = 0 in PIO_PCMR, only the 8 LSBs of RDATA are useful.

If DSIZE = 1 in PIO_PCMR, only the 16 LSBs of RDATA are useful.

31 30 29 28 27 26 25 24
RDATA

23 22 21 20 19 18 17 16
RDATA

15 14 13 12 11 10 9 8
RDATA

7 6 5 4 3 2 1 0
RDATA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

782

34. Serial Peripheral Interface (SPI)

34.1 Description

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides communication with

external devices in Master or Slave mode. It also enables communication between processors if an external

processor is connected to the system.

The Serial Peripheral Interface is essentially a Shift register that serially transmits data bits to other SPIs. During a

data transfer, one SPI system acts as the “master”' which controls the data flow, while the other devices act as

“slaves'' which have data shifted into and out by the master. Different CPUs can take turn being masters (multiple

master protocol, contrary to single master protocol where one CPU is always the master while all of the others are

always slaves). One master can simultaneously shift data into multiple slaves. However, only one slave can drive

its output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices exist, the master

generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

 Master Out Slave In (MOSI)—This data line supplies the output data from the master shifted into the input(s)

of the slave(s).

 Master In Slave Out (MISO)—This data line supplies the output data from a slave to the input of the master.

There may be no more than one slave transmitting data during any particular transfer.

 Serial Clock (SPCK)—This control line is driven by the master and regulates the flow of the data bits. The

master can transmit data at a variety of baud rates; there is one SPCK pulse for each bit that is transmitted.

 Slave Select (NSS)—This control line allows slaves to be turned on and off by hardware.

34.2 Embedded Characteristics

 Master or Slave Serial Peripheral Bus Interface

̶ 8-bit to 16-bit programmable data length per chip select

̶ Programmable phase and polarity per chip select

̶ Programmable transfer delay between consecutive transfers and delay before SPI clock per chip

select

̶ Programmable delay between chip selects

̶ Selectable mode fault detection

 Master Mode can drive SPCK up to Peripheral Clock

 Master Mode Bit Rate can be Independent of the Processor/Peripheral Clock

 Slave mode operates on SPCK, asynchronously with core and bus clock

 Four chip selects with external decoder support allow communication with up to 15 peripherals

 Communication with Serial External Devices Supported

̶ Serial memories, such as DataFlash and 3-wire EEPROMs

̶ Serial peripherals, such as ADCs, DACs, LCD controllers, CAN controllers and sensors

̶ External coprocessors

 Connection to PDC Channel Capabilities, Optimizing Data Transfers

̶ One channel for the receiver

̶ One channel for the transmitter

 Connection to DMA Channel Capabilities, Optimizing Data Transfers

̶ One channel for the receiver

̶ One channel for the transmitter

783SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 Register Write Protection

34.3 Block Diagram

34.4 Application Block Diagram

Figure 34-2. Application Block Diagram: Single Master/Multiple Slave Implementation

Figure 34-1. Block Diagram

PDC

SPI

Peripheral bridge

PMC

Peripheral

clock

Bus clock

AHB Matrix

Trigger

events

DMA

SPI Master

SPCK

MISO

MOSI

NPCS0

NPCS1

NPCS2

SPCK

MISO

MOSI

NSS

Slave 0

SPCK

MISO

MOSI

NSS

Slave 1

SPCK

MISO

MOSI

NSS

Slave 2

NC

NPCS3

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

784

34.5 Signal Description

34.6 Product Dependencies

34.6.1 I/O Lines

The pins used for interfacing the compliant external devices can be multiplexed with PIO lines. The programmer

must first program the PIO controllers to assign the SPI pins to their peripheral functions.

34.6.2 Power Management

The SPI can be clocked through the Power Management Controller (PMC), thus the programmer must first

configure the PMC to enable the SPI clock.

Table 34-1. Signal Description

Pin Name Pin Description

Type

Master Slave

MISO Master In Slave Out Input Output

MOSI Master Out Slave In Output Input

SPCK Serial Clock Output Input

NPCS1–NPCS3 Peripheral Chip Selects Output Unused

NPCS0/NSS Peripheral Chip Select/Slave Select Output Input

Table 34-2. I/O Lines

Instance Signal I/O Line Peripheral

SPI MISO PA12 A

SPI MOSI PA13 A

SPI NPCS0 PA11 A

SPI NPCS1 PA9 B

SPI NPCS1 PA31 A

SPI NPCS1 PB14 A

SPI NPCS1 PC4 B

SPI NPCS2 PA10 B

SPI NPCS2 PA30 B

SPI NPCS2 PB2 B

SPI NPCS3 PA3 B

SPI NPCS3 PA5 B

SPI NPCS3 PA22 B

SPI SPCK PA14 A

785SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

34.6.3 Interrupt

The SPI interface has an interrupt line connected to the interrupt controller. Handling the SPI interrupt requires

programming the interrupt controller before configuring the SPI.

34.6.4 Peripheral DMA Controller (PDC) or Direct Memory Access Controller (DMAC)

The SPI interface can be used in conjunction with the PDC or DMAC in order to reduce processor overhead. For a

full description of the PDC or DMAC, refer to the relevant section.

34.7 Functional Description

34.7.1 Modes of Operation

The SPI operates in Master mode or in Slave mode.

 The SPI operates in Master mode by setting the MSTR bit in the SPI Mode Register (SPI_MR):

̶ Pins NPCS0 to NPCS3 are all configured as outputs

̶ The SPCK pin is driven

̶ The MISO line is wired on the receiver input

̶ The MOSI line is driven as an output by the transmitter.

 The SPI operates in Slave mode if the MSTR bit in the SPI_MR is written to 0:

̶ The MISO line is driven by the transmitter output

̶ The MOSI line is wired on the receiver input

̶ The SPCK pin is driven by the transmitter to synchronize the receiver.

̶ The NPCS0 pin becomes an input, and is used as a slave select signal (NSS)

̶ NPCS1 to NPCS3 are not driven and can be used for other purposes.

The data transfers are identically programmable for both modes of operation. The baud rate generator is activated

only in Master mode.

34.7.2 Data Transfer

Four combinations of polarity and phase are available for data transfers. The clock polarity is programmed with the

CPOL bit in the SPI chip select registers (SPI_CSRx). The clock phase is programmed with the NCPHA bit. These

two parameters determine the edges of the clock signal on which data is driven and sampled. Each of the two

parameters has two possible states, resulting in four possible combinations that are incompatible with one another.

Consequently, a master/slave pair must use the same parameter pair values to communicate. If multiple slaves

are connected and require different configurations, the master must reconfigure itself each time it needs to

communicate with a different slave.

Table 34-4 shows the four modes and corresponding parameter settings.

Table 34-3. Peripheral IDs

Instance ID

SPI 19

Table 34-4. SPI Bus Protocol Modes

SPI Mode CPOL NCPHA Shift SPCK Edge Capture SPCK Edge SPCK Inactive Level

0 0 1 Falling Rising Low

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

786

Figure 34-3 and Figure 34-4 show examples of data transfers.

Figure 34-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

1 0 0 Rising Falling Low

2 1 1 Rising Falling High

3 1 0 Falling Rising High

Table 34-4. SPI Bus Protocol Modes

SPI Mode CPOL NCPHA Shift SPCK Edge Capture SPCK Edge SPCK Inactive Level

6

*

SPCK

(CPOL = 0)

SPCK

(CPOL = 1)

MOSI

(from master)

MISO

(from slave)

NSS

(to slave)

SPCK cycle (for reference)

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

* Not defined.

1 2 3 4 5 7 86

787SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 34-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

34.7.3 Master Mode Operations

When configured in Master mode, the SPI operates on the clock generated by the internal programmable baud

rate generator. It fully controls the data transfers to and from the slave(s) connected to the SPI bus. The SPI drives

the chip select line to the slave and the serial clock signal (SPCK).

The SPI features two holding registers, the Transmit Data Register (SPI_TDR) and the Receive Data Register

(SPI_RDR), and a single shift register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer starts when the processor writes to the SPI_TDR. The written data is

immediately transferred in the Shift register and the transfer on the SPI bus starts. While the data in the Shift

register is shifted on the MOSI line, the MISO line is sampled and shifted in the Shift register. Data cannot be

loaded in the SPI_RDR without transmitting data. If there is no data to transmit, dummy data can be used

(SPI_TDR filled with ones). If the SPI_MR.WDRBT bit is set, transmission can occur only if the SPI_RDR has been

read. If Receiving mode is not required, for example when communicating with a slave receiver only (such as an

LCD), the receive status flags in the SPI Status register (SPI_SR) can be discarded.

Before writing the SPI_TDR, the PCS field in the SPI_MR must be set in order to select a slave.

If new data is written in the SPI_TDR during the transfer, it is kept in the SPI_TDR until the current transfer is

completed. Then, the received data is transferred from the Shift register to the SPI_RDR, the data in the SPI_TDR

is loaded in the Shift register and a new transfer starts.

As soon as the SPI_TDR is written, the Transmit Data Register Empty (TDRE) flag in the SPI_SR is cleared. When

the data written in the SPI_TDR is loaded into the Shift register, the TDRE flag in the SPI_SR is set. The TDRE bit

is used to trigger the Transmit PDC or DMA channel.

See Figure 34-5.

The end of transfer is indicated by the TXEMPTY flag in the SPI_SR. If a transfer delay (DLYBCT) is greater than

0 for the last transfer, TXEMPTY is set after the completion of this delay. The peripheral clock can be switched off

at this time.

Note: When the SPI is enabled, the TDRE and TXEMPTY flags are set.

SPCK

(CPOL = 0)

SPCK

(CPOL = 1)

1 2 3 4 5 7

MOSI

(from master)

MISO

(from slave)

NSS

(to slave)

SPCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

1

1

* Not defined.

2

2

6

*

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

788

Figure 34-5. TDRE and TXEMPTY flag behavior

The transfer of received data from the Shift register to the SPI_RDR is indicated by the Receive Data Register Full

(RDRF) bit in the SPI_SR. When the received data is read, the RDRF bit is cleared.

If the SPI_RDR has not been read before new data is received, the Overrun Error (OVRES) bit in the SPI_SR is

set. As long as this flag is set, data is loaded in the SPI_RDR. The user has to read the SPI_SR to clear the

OVRES bit.

Figure 34-6 shows a block diagram of the SPI when operating in Master mode. Figure 34-7 shows a flow chart

describing how transfers are handled.

TDRE

TXEMPTY

Transfer

Write SPI_CR.SPIEN =1 Write SPI_TDR

Transfer Transfer

Write SPI_TDR Write SPI_TDR

automatic set

TDR loaded

in shifter

automatic set

TDR loaded

in shifter
automatic set

TDR loaded

in shifter

DLYBCT DLYBCTDLYBCT

789SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

34.7.3.1 Master Mode Block Diagram

Figure 34-6. Master Mode Block Diagram

Shift Register

SPCK

MOSI
LSB MSB

MISO

SPI_RDR

RD

SPI

Clock

TDRE

SPI_TDR

TD

RDRF

OVRES

SPI_CSRx

CPOL

NCPHA

BITS

Peripheral clock Baud Rate Generator

SPI_CSRx

SCBR

NPCSx

NPCS0

NPCS0

0

1

PS

SPI_MR

PCS

SPI_TDR

PCS

MODF

Current

Peripheral

SPI_RDR

PCS

SPI_CSRx

CSAAT

PCSDEC

MODFDIS

MSTR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

790

34.7.3.2 Master Mode Flow Diagram

Figure 34-7. Master Mode Flow Diagram

SPI Enable

TDRE/TXEMPTY are set

CSAAT ?

(HW check)

PS ?

(HW check)

1

0

0

1

1

NPCS <= SPI_TDR(PCS) NPCS <= SPI_MR(PCS)

Delay DLYBS

Shifter <= SPI_TDR(TD)

TDRE is set

Data Transfer

(SPI bus driven)

SPI_RDR(RD) <= Shifter

RDRF is set

TDRE ?

(HW check)

NPCS deasserted

Delay DLYBCS

Fixed

 peripheral

Variable

peripheral

Delay DLYBCT

0 (i.e., a new write to SPI_TDR occurred during data transfer or delay DLYBCT)

1 CSAAT ?

(HW check)

0

PS ?

(HW check)

0

1

SPI_TDR(PCS)

= NPCS ?

(HW check)

no

yes SPI_MR(PCS)

= NPCS ?

(HW check)

no

NPCS deasserted

Delay DLYBCS

NPCS <= SPI_TDR(PCS)

NPCS deasserted

Delay DLYBCS

NPCS <= SPI_MR(PCS),
 SPI_TDR(PCS)

Fixed

 peripheral

Variable

peripheral

- NPCS defines the current chip select

- CSAAT, DLYBS, DLYBCT refer to the fields of the Chip Select Register

corresponding to the current chip select

- ‘x <= y’ must be interpreted as ‘x is loaded with y’ where x,y represent

either register fields or SPI pins

- HW = hardware, SW = software

TDRE/TXEMPTY are cleared

Write SPI_TDR ?
no

yes

TXEMPTY is set

TDRE ?

(SW check)

0

1

Read SPI_RDR(RD)

if read is required

From this step,

SPI_TDR can be

rewritten for the

next transfer

791SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 34-8 shows the behavior of Transmit Data Register Empty (TDRE), Receive Data Register (RDRF) and

Transmission Register Empty (TXEMPTY) status flags within the SPI_SR during an 8-bit data transfer in Fixed

mode without the PDC or DMA involved.

Figure 34-8. Status Register Flags Behavior

Figure 34-9 shows the behavior of Transmission Register Empty (TXEMPTY), End of RX buffer (ENDRX), End of

TX buffer (ENDTX), RX Buffer Full (RXBUFF) and TX Buffer Empty (TXBUFE) status flags within the SPI_SR

during an 8-bit data transfer in Fixed mode with the PDC involved. The PDC is programmed to transfer and receive

three units of data. The next pointer and counter are not used. The RDRF and TDRE are not shown because these

flags are managed by the PDC when using the PDC.

6

SPCK

MOSI
(from master)

MISO
(from slave)

NPCS0

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

1 2 3 4 5 7 86

RDRF

TDRE

TXEMPTY

Write in
SPI_TDR

RDR read

shift register empty

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

792

Figure 34-9. PDC Status Register Flags Behavior

34.7.3.3 Clock Generation

The SPI Baud rate clock is generated by dividing the peripheral clock by a value between 1 and 255.

If the SCBR field in the SPI_CSR is programmed to 1, the operating baud rate is peripheral clock (see the

electrical characteristics section for the SPCK maximum frequency). Triggering a transfer while SCBR is at 0 can

lead to unpredictable results.

At reset, SCBR is 0 and the user has to program it to a valid value before performing the first transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the SCBR field. This

allows the SPI to automatically adapt the baud rate for each interfaced peripheral without reprogramming.

34.7.3.4 Transfer Delays

Figure 34-10 shows a chip select transfer change and consecutive transfers on the same chip select. Three delays

can be programmed to modify the transfer waveforms:

 Delay between the chip selects—programmable only once for all chip selects by writing the DLYBCS field in

the SPI_MR. The SPI slave device deactivation delay is managed through DLYBCS. If there is only one SPI

slave device connected to the master, the DLYBCS field does not need to be configured. If several slave

devices are connected to a master, DLYBCS must be configured depending on the highest deactivation

delay. Refer to the SPI slave device electrical characteristics.

 Delay before SPCK—independently programmable for each chip select by writing the DLYBS field. The SPI

slave device activation delay is managed through DLYBS. Refer to the SPI slave device electrical

characteristics to define DLYBS.

 Delay between consecutive transfers—independently programmable for each chip select by writing the

DLYBCT field. The time required by the SPI slave device to process received data is managed through

DLYBCT. This time depends on the SPI slave system activity.

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus release time.

6 5 4 3 2 1

SPCK

MOSI
(from master)

NPCS0

MSB LSB6 5 4 3 2 1

1 2 3

ENDTX

TXEMPTY

MSB LSB6 5 4 3 2 1

6 5 4 3 2 1MISO
(from slave)

6 5 4 3 2 1 6 5 4 3 2 1

ENDRX

TXBUFE

RXBUFF

TDRE
(not required

if PDC is used)
PDC loads first byte

PDC loads 2nd byte
(double buffer effect)

PDC loads last byte

MSB

MSBMSB MSBLSBLSB

LSB

LSB

793SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 34-10. Programmable Delays

34.7.3.5 Peripheral Selection

The serial peripherals are selected through the assertion of the NPCS0 to NPCS3 signals. By default, all NPCS

signals are high before and after each transfer.

 Fixed Peripheral Select Mode: SPI exchanges data with only one peripheral.

Fixed Peripheral Select mode is enabled by clearing the PS bit in the SPI_MR. In this case, the current

peripheral is defined by the PCS field in the SPI_MR and the PCS field in the SPI_TDR has no effect.

 Variable Peripheral Select Mode: Data can be exchanged with more than one peripheral without having to

reprogram the NPCS field in the SPI_MR.

Variable Peripheral Select mode is enabled by setting the PS bit in the SPI_MR. The PCS field in the

SPI_TDR is used to select the current peripheral. This means that the peripheral selection can be defined for

each new data. The value to write in the SPI_TDR has the following format:

[xxxxxxx(7-bit) + LASTXFER(1-bit)(1)+ xxxx(4-bit) + PCS (4-bit) + DATA (8 to 16-bit)] with PCS equals the

chip select to assert, as defined in Section 34.8.4 “SPI Transmit Data Register” and LASTXFER bit at 0 or 1

depending on the CSAAT bit.

Note: 1. Optional

CSAAT, LASTXFER and CSNAAT bits are discussed in Section 34.7.3.10 “Peripheral Deselection with

DMA or PDC”.

If LASTXFER is used, the command must be issued after writing the last character. Instead of LASTXFER,

the user can use the SPIDIS command. After the end of the DMA or PDC transfer, it is necessary to wait for

the TXEMPTY flag and then write SPIDIS into the SPI Control Register (SPI_CR). This does not change the

configuration register values). The NPCS is disabled after the last character transfer. Then, another DMA or

PDC transfer can be started if the SPIEN has previously been written in the SPI_CR.

34.7.3.6 SPI Peripheral DMA Controller (PDC)

In both Fixed and Variable Peripheral Select modes, the Peripheral DMA Controller (PDC) can be used to reduce

processor overhead.

The fixed peripheral selection allows buffer transfers with a single peripheral. Using the PDC is an optimal means,

as the size of the data transfer between the memory and the SPI is either 8 bits or 16 bits. However, if the

peripheral selection is modified, the SPI_MR must be reprogrammed.

The variable peripheral selection allows buffer transfers with multiple peripherals without reprogramming the

SPI_MR. Data written in the SPI_TDR is 32 bits wide and defines the real data to be transmitted and the

destination peripheral. Using the PDC in this mode requires 32-bit wide buffers, with the data in the LSBs and the

PCS and LASTXFER fields in the MSBs. However, the SPI still controls the number of bits (8 to16) to be

transferred through MISO and MOSI lines with the chip select configuration registers (SPI_CSRx). This is not the

DLYBCS DLYBS DLYBCT DLYBCT

Chip Select 1

Chip Select 2

SPCK

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

794

optimal means in terms of memory size for the buffers, but it provides a very effective means to exchange data

with several peripherals without any intervention of the processor.

Transfer Size

Depending on the data size to transmit, from 8 to 16 bits, the PDC manages automatically the type of pointer size

it has to point to. The PDC performs the following transfer, depending on the mode and number of bits per data.

 Fixed mode:

̶ 8-bit data:

1-byte transfer,

PDC pointer address = address + 1 byte,

PDC counter = counter - 1

̶ 9-bit to 16-bit data:

2-byte transfer. n-bit data transfer with don’t care data (MSB) filled with 0’s,

PDC pointer address = address + 2 bytes,

PDC counter = counter - 1

 Variable mode:

̶ In Variable mode, PDC pointer address = address + 4 bytes and PDC counter = counter - 1 for 8 to 16-

bit transfer size.

̶ When using the PDC, the TDRE and RDRF flags are handled by the PDC. The user’s application

does not have to check these bits. Only End of RX Buffer (ENDRX), End of TX Buffer (ENDTX), Buffer

Full (RXBUFF), TX Buffer Empty (TXBUFE) are significant. For further details about the Peripheral

DMA Controller and user interface, refer to the PDC section.

34.7.3.7 SPI Direct Access Memory Controller (DMAC)

In both Fixed and Variable modes, the Direct Memory Access Controller (DMAC) can be used to reduce processor

overhead.

The fixed peripheral selection allows buffer transfers with a single peripheral. Using the DMAC is an optimal

means, as the size of the data transfer between the memory and the SPI is either 8 bits or 16 bits. However, if the

peripheral selection is modified, the SPI_MR must be reprogrammed.

The variable peripheral selection allows buffer transfers with multiple peripherals without reprogramming the

SPI_MR. Data written in the SPI_TDR is 32 bits wide and defines the real data to be transmitted and the

destination peripheral. Using the DMAC in this mode requires 32-bit wide buffers, with the data in the LSBs and the

PCS and LASTXFER fields in the MSBs. However, the SPI still controls the number of bits (8 to 16) to be

transferred through MISO and MOSI lines with the chip select configuration registers. This is not the optimal

means in terms of memory size for the buffers, but it provides a very effective means to exchange data with

several peripherals without any intervention of the processor.

34.7.3.8 Peripheral Chip Select Decoding

The user can program the SPI to operate with up to 15 slave peripherals by decoding the four chip select lines,

NPCS0 to NPCS3 with an external decoder/demultiplexer (refer to Figure 34-11). This can be enabled by setting

the PCSDEC bit in the SPI_MR.

When operating without decoding, the SPI makes sure that in any case only one chip select line is activated, i.e.,

one NPCS line driven low at a time. If two bits are defined low in a PCS field, only the lowest numbered chip select

is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field on the NPCS lines of

either SPI_MR or SPI_TDR (depending on PS).

As the SPI sets a default value of 0xF on the chip select lines (i.e., all chip select lines at 1) when not processing

any transfer, only 15 peripherals can be decoded.

795SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The SPI has four chip select registers (SPI_CSR0...SPI_CSR3). As a result, when external decoding is activated,

each NPCS chip select defines the characteristics of up to four peripherals. As an example, SPI_CRS0 defines the

characteristics of the externally decoded peripherals 0 to 3, corresponding to the PCS values 0x0 to 0x3.

Consequently, the user has to make sure to connect compatible peripherals on the decoded chip select lines 0 to

3, 4 to 7, 8 to 11 and 12 to 14. Figure 34-11 shows this type of implementation.

If the CSAAT bit is used, with or without the PDC, the Mode Fault detection for NPCS0 line must be disabled. This

is not required for all other chip select lines since mode fault detection is only on NPCS0.

If the CSAAT bit is used, with or without the DMAC, the Mode Fault detection for NPCS0 line must be disabled.

This is not needed for all other chip select lines since Mode Fault detection is only on NPCS0.

Figure 34-11. Chip Select Decoding Application Block Diagram: Single Master/Multiple Slave Implementation

34.7.3.9 Peripheral Deselection without DMA nor PDC

During a transfer of more than one unit of data on a chip select without the DMA nor PDC, the SPI_TDR is loaded

by the processor, the TDRE flag rises as soon as the content of the SPI_TDR is transferred into the internal Shift

register. When this flag is detected high, the SPI_TDR can be reloaded. If this reload by the processor occurs

before the end of the current transfer and if the next transfer is performed on the same chip select as the current

transfer, the chip select is not de-asserted between the two transfers. But depending on the application software

handling the SPI status register flags (by interrupt or polling method) or servicing other interrupts or other tasks,

the processor may not reload the SPI_TDR in time to keep the chip select active (low). A null DLYBCT value

(delay between consecutive transfers) in the SPI_CSR, gives even less time for the processor to reload the

SPI_TDR. With some SPI slave peripherals, if the chip select line must remain active (low) during a full set of

transfers, communication errors can occur.

To facilitate interfacing with such devices, the chip select registers [SPI_CSR0...SPI_CSR3] can be programmed

with the Chip Select Active After Transfer (CSAAT) bit at 1. This allows the chip select lines to remain in their

current state (low = active) until a transfer to another chip select is required. Even if the SPI_TDR is not reloaded,

the chip select remains active. To de-assert the chip select line at the end of the transfer, the Last Transfer

(LASTXFER) bit in SPI_CR must be set after writing the last data to transmit into SPI_TDR.

SPI Master

SPCK

MISO

MOSI

NPCS0

NPCS1

NPCS2

SPCK MISO MOSI

NSS

Slave 0

SPCK MISO MOSI

NSS

Slave 1

SPCK MISO MOSI

NSS

Slave 14

NPCS3

Decoded chip select lines

External 1-of-n Decoder/Demultiplexer

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

796

34.7.3.10 Peripheral Deselection with DMA or PDC

DMA or PDC provides faster reloads of the SPI_TDR compared to software. However, depending on the system

activity, it is not guaranteed that the SPI_TDR is written with the next data before the end of the current transfer.

Consequently, data can be lost by the de-assertion of the NPCS line for SPI slave peripherals requiring the chip

select line to remain active between two transfers. The only way to guarantee a safe transfer in this case is the use

of the CSAAT and LASTXFER bits.

When the CSAAT bit is configured to 0, the NPCS does not rise in all cases between two transfers on the same

peripheral. During a transfer on a chip select, the TDRE flag rises as soon as the content of the SPI_TDR is

transferred into the internal shift register. When this flag is detected, the SPI_TDR can be reloaded. If this reload

occurs before the end of the current transfer and if the next transfer is performed on the same chip select as the

current transfer, the chip select is not de-asserted between the two transfers. This can lead to difficulties to

interface with some serial peripherals requiring the chip select to be de-asserted after each transfer. To facilitate

interfacing with such devices, the SPI_CSR can be programmed with the Chip Select Not Active After Transfer

(CSNAAT) bit at 1. This allows the chip select lines to be de-asserted systematically during a time “DLYBCS” (the

value of the CSNAAT bit is processed only if the CSAAT bit is configured to 0 for the same chip select).

Figure 34-12 shows different peripheral deselection cases and the effect of the CSAAT and CSNAAT bits.

797SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 34-12. Peripheral Deselection

34.7.3.11 Mode Fault Detection

The SPI has the capability to operate in multi-master environment. Consequently, the NPCS0/NSS line must be

monitored. If one of the masters on the SPI bus is currently transmitting, the NPCS0/NSS line is low and the SPI

must not transmit any data. A mode fault is detected when the SPI is programmed in Master mode and a low level

is driven by an external master on the NPCS0/NSS signal. In multi-master environment, NPCS0, MOSI, MISO and

SPCK pins must be configured in open drain (through the PIO controller). When a mode fault is detected, the

SPI_SR.MODF bit is set until SPI_SR is read and the SPI is automatically disabled until it is re-enabled by setting

the SPI_CR.SPIEN bit.

By default, the mode fault detection is enabled. The user can disable it by setting the SPI_MR.MODFDIS bit.

A

NPCS[0..n]

Write SPI_TDR

TDRE

NPCS[0..n]

Write SPI_TDR

TDRE

NPCS[0..n]

Write SPI_TDR

TDRE

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

PCS = A

DLYBCS

DLYBCT

A

PCS = B

B

DLYBCS

DLYBCT

PCS=A

A

DLYBCS

DLYBCT

A

PCS = A

AA

DLYBCT

A A

CSAAT = 0 and CSNAAT = 0

DLYBCT

A A

 CSAAT = 1 and CSNAAT= 0 / 1

A

DLYBCS

PCS = A

DLYBCT

A A

CSAAT = 0 and CSNAAT = 1

NPCS[0..n]

Write SPI_TDR

TDRE

PCS = A

DLYBCT

A A

CSAAT = 0 and CSNAAT = 0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

798

34.7.4 SPI Slave Mode

When operating in Slave mode, the SPI processes data bits on the clock provided on the SPI clock pin (SPCK).

The SPI waits until NSS goes active before receiving the serial clock from an external master. When NSS falls, the

clock is validated and the data is loaded in the SPI_RDR depending on the BITS field configured in SPI_CSR0.

These bits are processed following a phase and a polarity defined respectively by the NCPHA and CPOL bits in

SPI_CSR0. Note tha t the f i leds BITS, CPOL and NCPHA o f the o ther ch ip se lec t reg is te rs

(SPI_CSR1...SPI_CSR3) have no effect when the SPI is programmed in Slave mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

Note: For more information on the BITS field, see also the note below the SPI_CSRx register bitmap (Section 34.8.9 “SPI

Chip Select Register”).

When all bits are processed, the received data is transferred in the SPI_RDR and the RDRF bit rises. If the

SPI_RDR has not been read before new data is received, the Overrun Error Status (OVRES) bit in the SPI_SR is

set. As long as this flag is set, data is loaded in the SPI_RDR. The user must read SPI_SR to clear the OVRES bit.

When a transfer starts, the data shifted out is the data present in the Shift register. If no data has been written in

the SPI_TDR, the last data received is transferred. If no data has been received since the last reset, all bits are

transmitted low, as the Shift register resets to 0.

When a first data is written in the SPI_TDR, it is transferred immediately in the Shift register and the TDRE flag

rises. If new data is written, it remains in the SPI_TDR until a transfer occurs, i.e., NSS falls and there is a valid

clock on the SPCK pin. When the transfer occurs, the last data written in the SPI_TDR is transferred in the Shift

register and the TDRE flag rises. This enables frequent updates of critical variables with single transfers.

Then, new data is loaded in the Shift register from the SPI_TDR. If no character is ready to be transmitted, i.e., no

character has been written in the SPI_TDR since the last load from the SPI_TDR to the Shift register, the

SPI_TDR is retransmitted. In this case the Underrun Error Status Flag (UNDES) is set in the SPI_SR.

Figure 34-13 shows a block diagram of the SPI when operating in Slave mode.

Figure 34-13. Slave Mode Functional Block Diagram

34.7.5 Register Write Protection

To prevent any single software error from corrupting SPI behavior, certain registers in the address space can be

write-protected by setting the WPEN bit in the SPI Write Protection Mode Register (SPI_WPMR).

Shift Register

SPCK

SPIENS

LSB MSB

NSS

MOSI

SPI_RDR

RD

SPI

Clock

TDRE

SPI_TDR

TD

RDRF

OVRES

SPI_CSR0

CPOL

NCPHA

BITS

SPIEN

SPIDIS

MISO

799SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

If a write access to a write-protected register is detected, the WPVS flag in the SPI Write Protection Status

Register (SPI_WPSR) is set and the WPVSRC field indicates the register in which the write access has been

attempted.

The WPVS bit is automatically cleared after reading SPI_WPSR.

The following registers can be write-protected:

 SPI Mode Register

 SPI Chip Select Register

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

800

34.8 Serial Peripheral Interface (SPI) User Interface

In the “Offset” column of Table 34-5, ‘CS_number’ denotes the chip select number.

Table 34-5. Register Mapping

Offset Register Name Access Reset

0x00 Control Register SPI_CR Write-only –

0x04 Mode Register SPI_MR Read/Write 0x0

0x08 Receive Data Register SPI_RDR Read-only 0x0

0x0C Transmit Data Register SPI_TDR Write-only –

0x10 Status Register SPI_SR Read-only 0x000000F0

0x14 Interrupt Enable Register SPI_IER Write-only –

0x18 Interrupt Disable Register SPI_IDR Write-only –

0x1C Interrupt Mask Register SPI_IMR Read-only 0x0

0x20–0x2C Reserved – – –

0x30 + (CS_number * 0x04) Chip Select Register SPI_CSR Read/Write 0x0

0x40–0x48 Reserved – – –

0x4C–0xE0 Reserved – – –

0xE4 Write Protection Mode Register SPI_WPMR Read/Write 0x0

0xE8 Write Protection Status Register SPI_WPSR Read-only 0x0

0xEC–0xF8 Reserved – – –

0xFC Reserved – – –

0x100–0x124 Reserved for PDC Registers – – –

801SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

34.8.1 SPI Control Register

Name: SPI_CR

Address: 0x40088000

Access: Write-only

• SPIEN: SPI Enable

0: No effect.

1: Enables the SPI to transfer and receive data.

• SPIDIS: SPI Disable

0: No effect.f

1: Disables the SPI.

All pins are set in Input mode after completion of the transmission in progress, if any.

If a transfer is in progress when SPIDIS is set, the SPI completes the transmission of the shifter register and does not start

any new transfer, even if the SPI_THR is loaded.

Note: If both SPIEN and SPIDIS are equal to one when the SPI_CR is written, the SPI is disabled.

• SWRST: SPI Software Reset

0: No effect.

1: Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.

The SPI is in Slave mode after software reset.

PDC channels are not affected by software reset.

• REQCLR: Request to Clear the Comparison Trigger

0: No effect.

1: Restarts the comparison trigger to enable SPI_RDR loading.

• LASTXFER: Last Transfer

0: No effect.

1: The current NPCS is de-asserted after the character written in TD has been transferred. When SPI_CSRx.CSAAT is set,

the communication with the current serial peripheral can be closed by raising the corresponding NPCS line as soon as TD

transfer is completed.

Refer to Section 34.7.3.5 “Peripheral Selection” for more details.

31 30 29 28 27 26 25 24

– – – – – – – LASTXFER

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – REQCLR – – – –

7 6 5 4 3 2 1 0

SWRST – – – – – SPIDIS SPIEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

802

34.8.2 SPI Mode Register

Name: SPI_MR

Address: 0x40088004

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the SPI Write Protection Mode Register.

• MSTR: Master/Slave Mode

0: SPI is in Slave mode

1: SPI is in Master mode

• PS: Peripheral Select

0: Fixed Peripheral Select

1: Variable Peripheral Select

• PCSDEC: Chip Select Decode

0: The chip select lines are directly connected to a peripheral device.

1: The four NPCS chip select lines are connected to a 4-bit to 16-bit decoder.

When PCSDEC = 1, up to 15 chip select signals can be generated with the four NPCS lines using an external 4-bit to 16-

bit decoder. The chip select registers define the characteristics of the 15 chip selects, with the following rules:

SPI_CSR0 defines peripheral chip select signals 0 to 3.

SPI_CSR1 defines peripheral chip select signals 4 to 7.

SPI_CSR2 defines peripheral chip select signals 8 to 11.

SPI_CSR3 defines peripheral chip select signals 12 to 14.

• MODFDIS: Mode Fault Detection

0: Mode fault detection enabled

1: Mode fault detection disabled

• WDRBT: Wait Data Read Before Transfer

0: No Effect. In Master mode, a transfer can be initiated regardless of the SPI_RDR state.

1: In Master mode, a transfer can start only if the SPI_RDR is empty, i.e., does not contain any unread data. This mode

prevents overrun error in reception.

31 30 29 28 27 26 25 24

DLYBCS

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

– – – - – – – –

7 6 5 4 3 2 1 0

LLB – WDRBT MODFDIS – PCSDEC PS MSTR

803SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• LLB: Local Loopback Enable

0: Local loopback path disabled.

1: Local loopback path enabled.

LLB controls the local loopback on the data shift register for testing in Master mode only (MISO is internally connected on

MOSI).

• PCS: Peripheral Chip Select

This field is only used if fixed peripheral select is active (PS = 0).

If SPI_MR.PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If SPI_MR.PCSDEC = 1:

NPCS[3:0] output signals = PCS.

• DLYBCS: Delay Between Chip Selects

This field defines the delay between the inactivation and the activation of NPCS. The DLYBCS time guarantees non-over-

lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is lower than 6, six peripheral clock periods are inserted by default.

Otherwise, the following equation determines the delay:

:

 Delay Between Chip Selects
DLYBCS

fperipheral clock

---------------------------------=

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

804

34.8.3 SPI Receive Data Register

Name: SPI_RDR

Address: 0x40088008

Access: Read-only

• RD: Receive Data

Data received by the SPI Interface is stored in this register in a right-justified format. Unused bits are read as zero.

• PCS: Peripheral Chip Select

In Master mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits are read

as zero.

Note: When using Variable Peripheral Select mode (PS = 1 in SPI_MR), it is mandatory to set the SPI_MR.WDRBT bit if the PCS field

must be processed in SPI_RDR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

RD

7 6 5 4 3 2 1 0

RD

805SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

34.8.4 SPI Transmit Data Register

Name: SPI_TDR

Address: 0x4008800C

Access: Write-only

• TD: Transmit Data

Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the

transmit data register in a right-justified format.

• PCS: Peripheral Chip Select

This field is only used if variable peripheral select is active (PS = 1).

If SPI_MR.PCSDEC = 0:

PCS = xxx0 NPCS[3:0] = 1110

PCS = xx01 NPCS[3:0] = 1101

PCS = x011 NPCS[3:0] = 1011

PCS = 0111 NPCS[3:0] = 0111

PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)

If SPI_MR.PCSDEC = 1:

NPCS[3:0] output signals = PCS.

• LASTXFER: Last Transfer

0: No effect

1: The current NPCS is de-asserted after the transfer of the character written in TD. When SPI_CSRx.CSAAT is set, the

communication with the current serial peripheral can be closed by raising the corresponding NPCS line as soon as TD

transfer is completed.

This field is only used if variable peripheral select is active (SPI_MR.PS = 1).

31 30 29 28 27 26 25 24

– – – – – – – LASTXFER

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

TD

7 6 5 4 3 2 1 0

TD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

806

34.8.5 SPI Status Register

Name: SPI_SR

Address: 0x40088010

Access: Read-only

• RDRF: Receive Data Register Full (cleared by reading SPI_RDR)

0: No data has been received since the last read of SPI_RDR.

1: Data has been received and the received data has been transferred from the shift register to SPI_RDR since the last

read of SPI_RDR.

• TDRE: Transmit Data Register Empty (cleared by writing SPI_TDR)

0: Data has been written to SPI_TDR and not yet transferred to the shift register.

1: The last data written in the SPI_TDR has been transferred to the shift register.

TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to 1.

• MODF: Mode Fault Error (cleared on read)

0: No mode fault has been detected since the last read of SPI_SR.

1: A mode fault occurred since the last read of SPI_SR.

• OVRES: Overrun Error Status (cleared on read)

0: No overrun has been detected since the last read of SPI_SR.

1: An overrun has occurred since the last read of SPI_SR.

An overrun occurs when SPI_RDR is loaded at least twice from the shift register since the last read of the SPI_RDR.

• ENDRX: End of RX Buffer (cleared by writing SPI_RCR or SPI_RNCR)

0: The Receive Counter register has not reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).

1: The Receive Counter register has reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).

• ENDTX: End of TX Buffer (cleared by writing SPI_TCR or SPI_TNCR)

0: The Transmit Counter register has not reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).

1: The Transmit Counter register has reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).

• RXBUFF: RX Buffer Full (cleared by writing SPI_RCR or SPI_RNCR)

0: SPI_RCR(1) or SPI_RNCR(1) has a value other than 0.

1: Both SPI_RCR(1) and SPI_RNCR(1) have a value of 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – SPIENS

15 14 13 12 11 10 9 8

– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

807SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• TXBUFE: TX Buffer Empty (cleared by writing SPI_TCR or SPI_TNCR)

0: SPI_TCR(1) or SPI_TNCR(1) has a value other than 0.

1: Both SPI_TCR(1) and SPI_TNCR(1) have a value of 0.

• NSSR: NSS Rising (cleared on read)

0: No rising edge detected on NSS pin since the last read of SPI_SR.

1: A rising edge occurred on NSS pin since the last read of SPI_SR.

• TXEMPTY: Transmission Registers Empty (cleared by writing SPI_TDR)

0: As soon as data is written in SPI_TDR.

1: SPI_TDR and internal shift register are empty. If a transfer delay has been defined, TXEMPTY is set after the end of this

delay.

• UNDES: Underrun Error Status (Slave mode only) (cleared on read)

0: No underrun has been detected since the last read of SPI_SR.

1: A transfer starts whereas no data has been loaded in SPI_TDR.

• SPIENS: SPI Enable Status

0: SPI is disabled.

1: SPI is enabled.

Note: 1. SPI_RCR, SPI_RNCR, SPI_TCR, SPI_TNCR are PDC registers.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

808

34.8.6 SPI Interrupt Enable Register

Name: SPI_IER

Address: 0x40088014

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• RDRF: Receive Data Register Full Interrupt Enable

• TDRE: SPI Transmit Data Register Empty Interrupt Enable

• MODF: Mode Fault Error Interrupt Enable

• OVRES: Overrun Error Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

• NSSR: NSS Rising Interrupt Enable

• TXEMPTY: Transmission Registers Empty Enable

• UNDES: Underrun Error Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

809SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

34.8.7 SPI Interrupt Disable Register

Name: SPI_IDR

Address: 0x40088018

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• RDRF: Receive Data Register Full Interrupt Disable

• TDRE: SPI Transmit Data Register Empty Interrupt Disable

• MODF: Mode Fault Error Interrupt Disable

• OVRES: Overrun Error Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

• NSSR: NSS Rising Interrupt Disable

• TXEMPTY: Transmission Registers Empty Disable

• UNDES: Underrun Error Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

810

34.8.8 SPI Interrupt Mask Register

Name: SPI_IMR

Address: 0x4008801C

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• RDRF: Receive Data Register Full Interrupt Mask

• TDRE: SPI Transmit Data Register Empty Interrupt Mask

• MODF: Mode Fault Error Interrupt Mask

• OVRES: Overrun Error Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

• NSSR: NSS Rising Interrupt Mask

• TXEMPTY: Transmission Registers Empty Mask

• UNDES: Underrun Error Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – UNDES TXEMPTY NSSR

7 6 5 4 3 2 1 0

TXBUFE RXBUFF ENDTX ENDRX OVRES MODF TDRE RDRF

811SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

34.8.9 SPI Chip Select Register

Name: SPI_CSRx [x=0..3]

Address: 0x40088030

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the SPI Write Protection Mode Register.

Note: SPI_CSRx registers must be written even if the user wants to use the default reset values. The BITS field is not updated with the

translated value unless the register is written.

• CPOL: Clock Polarity

0: The inactive state value of SPCK is logic level zero.

1: The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the

required clock/data relationship between master and slave devices.

• NCPHA: Clock Phase

0: Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1: Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is

used with CPOL to produce the required clock/data relationship between master and slave devices.

• CSNAAT: Chip Select Not Active After Transfer (Ignored if CSAAT = 1)

0: The Peripheral Chip Select Line does not rise between two transfers if the SPI_TDR is reloaded before the end of the

first transfer and if the two transfers occur on the same chip select.

1: The Peripheral Chip Select Line rises systematically after each transfer performed on the same slave. It remains inactive

after the end of transfer for a minimal duration of:

• CSAAT: Chip Select Active After Transfer

0: The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1: The Peripheral Chip Select Line does not rise after the last transfer is achieved. It remains active until a new transfer is

requested on a different chip select.

• BITS: Bits Per Transfer

(See the note below the register bitmap.)

31 30 29 28 27 26 25 24

DLYBCT

23 22 21 20 19 18 17 16

DLYBS

15 14 13 12 11 10 9 8

SCBR

7 6 5 4 3 2 1 0

BITS CSAAT CSNAAT NCPHA CPOL

(If field DLYBCS is lower than 6, a minimum of six periods is introduced.)
DLYBCS

fperipheral clock

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

812

The BITS field determines the number of data bits transferred. Reserved values should not be used.

• SCBR: Serial Clock Bit Rate

In Master mode, the SPI Interface uses a modulus counter to derive the SPCK bit rate from the peripheral clock. The bit

rate is selected by writing a value from1 to 255 in the SCBR field. The following equation determines the SPCK bit rate:

SCBR = fperipheral clock / SPCK Bit Rate

Programming the SCBR field to 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.

If BRSRCCLK = 1 in SPI_MR, SCBR must be programmed with a value greater than 1.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.

Note: If one of the SCBR fields in SPI_CSRx is set to 1, the other SCBR fields in SPI_CSRx must be set to 1 as well, if they are used to

process transfers. If they are not used to transfer data, they can be set at any value.

• DLYBS: Delay Before SPCK

This field defines the delay from NPCS falling edge (activation) to the first valid SPCK transition.

When DLYBS = 0, the delay is half the SPCK clock period.

Otherwise, the following equation determines the delay:

DLYBS = Delay Before SPCK × fperipheral clock

• DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.

The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT = 0, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the charac-

ter transfers.

Otherwise, the following equation determines the delay:

DLYBCT = Delay Between Consecutive Transfers × fperipheral clock / 32

Value Name Description

0 8_BIT 8 bits for transfer

1 9_BIT 9 bits for transfer

2 10_BIT 10 bits for transfer

3 11_BIT 11 bits for transfer

4 12_BIT 12 bits for transfer

5 13_BIT 13 bits for transfer

6 14_BIT 14 bits for transfer

7 15_BIT 15 bits for transfer

8 16_BIT 16 bits for transfer

9 – Reserved

10 – Reserved

11 – Reserved

12 – Reserved

13 – Reserved

14 – Reserved

15 – Reserved

813SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

34.8.10 SPI Write Protection Mode Register

Name: SPI_WPMR

Address: 0x400880E4

Access: Read/Write.

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x535049 (“SPI” in ASCII)

1: Enables the write protection if WPKEY corresponds to 0x535049 (“SPI” in ASCII)

See Section 34.7.5 “Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x535049 PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit.

Always reads as 0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

814

34.8.11 SPI Write Protection Status Register

Name: SPI_WPSR

Address: 0x400880E8

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of SPI_WPSR.

1: A write protection violation has occurred since the last read of SPI_WPSR. If this violation is an unauthorized attempt to

write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

815SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35. Two-wire Interface (TWI)

35.1 Description

The Atmel Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made up of one clock

line and one data line with speeds of up to 400 Kbits per second, based on a byte-oriented transfer format. It can

be used with any Atmel Two-wire Interface bus Serial EEPROM and I²C compatible device such as a Real Time

Clock (RTC), Dot Matrix/Graphic LCD Controllers and temperature sensor. The TWI is programmable as a master

or a slave with sequential or single-byte access. Multiple master capability is supported.

A configurable baud rate generator permits the output data rate to be adapted to a wide range of core clock

frequencies.

Table 35-1 lists the compatibility level of the Atmel Two-wire Interface in Master mode and a full I2C compatible

device.

Note: 1. START + b000000001 + Ack + Sr

35.2 Embedded Characteristics

 Compatible with Atmel Two-wire Interface Serial Memory and I2C Compatible Devices(1)

 One, Two or Three Bytes for Slave Address

 Sequential Read/Write Operations

 Master, Multi-master and Slave Mode Operation

 Bit Rate: Up to 400 Kbit/s

 General Call Supported in Slave Mode

 SMBus Quick Command Supported in Master Mode

 Connection to Peripheral DMA Controller (PDC) Channel Capabilities Optimizes Data Transfers

̶ One Channel for the Receiver, One Channel for the Transmitter

 Register Write Protection

Note: 1. See Table 35-1 for details on compatibility with I²C Standard.

Table 35-1. Atmel TWI Compatibility with I2C Standard

I2C Standard Atmel TWI

Standard Mode Speed (100 kHz) Supported

Fast Mode Speed (400 kHz) Supported

7- or 10-bit Slave Addressing Supported

START byte(1) Not Supported

Repeated Start (Sr) Condition Supported

ACK and NACK Management Supported

Slope Control and Input Filtering (Fast mode) Not Supported

Clock Stretching/Synchronization Supported

Multi Master Capability Supported

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

816

35.3 List of Abbreviations

35.4 Block Diagram

Figure 35-1. Block Diagram

35.5 I/O Lines Description

Table 35-2. Abbreviations

Abbreviation Description

TWI Two-wire Interface

A Acknowledge

NA Non Acknowledge

P Stop

S Start

Sr Repeated Start

SADR Slave Address

ADR Any address except SADR

R Read

W Write

Peripheral Bridge

PMC

Peripheral

clock

Two-wire Interface

PIO

Interrupt

Controller

TWI

Interrupt

TWCK

TWD

Bus clock

Table 35-3. I/O Lines Description

Name Description Type

TWD Two-wire Serial Data (drives external serial data line – SDA) Input/Output

TWCK Two-wire Serial Clock (drives external serial clock line – SCL) Input/Output

817SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.6 Product Dependencies

35.6.1 I/O Lines

Both TWD and TWCK are bidirectional lines, connected to a positive supply voltage via a current source or pull-up

resistor. When the bus is free, both lines are high. The output stages of devices connected to the bus must have

an open-drain or open-collector to perform the wired-AND function.

TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the user must program the PIO

Controller to dedicate TWD and TWCK as peripheral lines.

The user must not program TWD and TWCK as open-drain. This is already done by the hardware.

35.6.2 Power Management

The TWI may be clocked through the Power Management Controller (PMC), thus the user must first configure the

PMC to enable the TWI clock.

35.6.3 Interrupt Sources

The TWI has an interrupt line connected to the Interrupt Controller. In order to handle interrupts, the Interrupt

Controller must be programmed before configuring the TWI.

35.7 Functional Description

35.7.1 Transfer Format

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must be followed by an

acknowledgement. The number of bytes per transfer is unlimited (see Figure 35-3).

Each transfer begins with a START condition and terminates with a STOP condition (see Figure 35-2).

 A high-to-low transition on the TWD line while TWCK is high defines the START condition.

 A low-to-high transition on the TWD line while TWCK is high defines the STOP condition.

Table 35-4. I/O Lines

Instance Signal I/O Line Peripheral

TWI0 TWCK0 PA4 A

TWI0 TWD0 PA3 A

TWI1 TWCK1 PB5 A

TWI1 TWD1 PB4 A

Table 35-5. Peripheral IDs

Instance ID

TWI0 17

TWI1 18

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

818

Figure 35-2. START and STOP Conditions

Figure 35-3. Transfer Format

35.7.2 Modes of Operation

The TWI has different modes of operations:

 Master transmitter mode

 Master receiver mode

 Multi-master transmitter mode

 Multi-master receiver mode

 Slave transmitter mode

 Slave receiver mode

These modes are described in the following sections.

TWD

TWCK

Start Stop

TWD

TWCK

Start Address R/W Ack Data Ack Data Ack Stop

819SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.7.3 Master Mode

35.7.3.1 Definition

The master is the device that starts a transfer, generates a clock and stops it.

35.7.3.2 Programming Master Mode

The following fields must be programmed before entering Master mode:

1. TWI_MMR.DADR (+ IADRSZ + IADR if a 10-bit device is addressed): The device address is used to
access slave devices in Read or Write mode.

2. TWI_CWGR.CKDIV + CHDIV + CLDIV: Clock waveform.

3. TWI_CR.SVDIS: Disables the Slave mode

4. TWI_CR.MSEN: Enables the Master mode

Note: If the TWI is already in Master mode, the device address (DADR) can be configured without disabling the Master

mode.

35.7.3.3 Master Transmitter Mode

After the master initiates a START condition when writing into the Transmit Holding register (TWI_THR), it sends a

7-bit slave address, configured in the Master Mode register (DADR in TWI_MMR), to notify the slave device. The

bit following the slave address indicates the transfer direction—0 in this case (MREAD = 0 in TWI_MMR).

The TWI transfers require the slave to acknowledge each received byte. During the acknowledge clock pulse (9th

pulse), the master releases the data line (HIGH), enabling the slave to pull it down in order to generate the

acknowledge. If the slave does not acknowledge the byte, then the Not Acknowledge flag (NACK) is set in the TWI

Status Register (TWI_SR) of the master and a STOP condition is sent. The NACK flag must be cleared by reading

the TWI Status Register (TWI_SR) before the next write into the TWI Transmit Holding Register (TWI_THR). As

with the other status bits, an interrupt can be generated if enabled in the Interrupt Enable register (TWI_IER). If the

slave acknowledges the byte, the data written in the TWI_THR is then shifted in the internal shifter and transferred.

When an acknowledge is detected, the TXRDY bit is set until a new write in the TWI_THR.

TXRDY is used as Transmit Ready for the PDC transmit channel.

While no new data is written in the TWI_THR, the serial clock line (SCL) is tied low. When new data is written in the

TWI_THR, the TWCK/SCL is released and the data is sent. Setting the STOP bit in TWI_CR generates a STOP

condition.

After a master write transfer, the SCL is stretched (tied low) as long as no new data is written in the TWI_THR or

until a STOP command is performed. See Figure 35-4, Figure 35-5, and Figure 35-6.

To clear the TXRDY flag, first set the bit TWI_CR.MSDIS, then set the bit TWI_CR.MSEN.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

820

Figure 35-4. Master Write with One Data Byte

Figure 35-5. Master Write with Multiple Data Bytes

TXCOMP

TXRDY

Write THR (DATA)

STOP Command sent (write in TWI_CR)

TWD A DATA AS DADR W P

A DATA n AS DADR W DATA n+1 A PDATA n+2 A

TXCOMP

TXRDY

Write THR (Data n)

Write THR (Data n+1) Write THR (Data n+2)

Last data sent

STOP command performed

(by writing in the TWI_CR)

TWD

TWCK

821SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 35-6. Master Write with One Byte Internal Address and Multiple Data Bytes

35.7.3.4 Master Receiver Mode

The read sequence begins by setting the START bit. After the START condition has been sent, the master sends

a 7-bit slave address to notify the slave device. The bit following the slave address indicates the transfer

direction—1 in this case (MREAD = 1 in TWI_MMR). During the acknowledge clock pulse (9th pulse), the master

releases the data line (HIGH), enabling the slave to pull it down in order to generate the acknowledge. The master

polls the data line during this clock pulse and sets the NACK bit in the TWI_SR if the slave does not acknowledge

the byte.

If an acknowledge is received, the master is then ready to receive data from the slave. After data has been

received, the master sends an acknowledge condition to notify the slave that the data has been received except

for the last data. See Figure 35-7. When the RXRDY bit is set in the TWI_SR, a character has been received in the

Receive Holding Register (TWI_RHR). The RXRDY bit is reset when reading the TWI_RHR.

RXRDY is used as Receive Ready for the PDC receive channel.

When a single data byte read is performed, with or without internal address (IADR), the START and STOP bits

must be set at the same time. See Figure 35-7. When a multiple data byte read is performed, with or without

internal address (IADR), the STOP bit must be set after the next-to-last data received. See Figure 35-8. For

internal address usage, see Section 35.7.3.5.

If the Receive Holding Register (TWI_RHR) is full (RXRDY high) and the master is receiving data, the serial clock

line is tied low before receiving the last bit of the data and until the TWI_RHR is read. Once the TWI_RHR is read,

the master stops stretching the serial clock line and ends the data reception. See Figure 35-9.

Warning: When receiving multiple bytes in Master read mode, if the next-to-last access is not read (the RXRDY

flag remains high), the last access is not completed until TWI_RHR is read. The last access stops on the next-to-

last bit. When the TWI_RHR is read, the STOP bit command must be sent within a period of half a bit only,

otherwise another read access might occur (spurious access).

A possible workaround is to set the STOP bit before reading the TWI_RHR on the next-to-last access (within the

interrupt handler).

A DATA n AS DADR W DATA n+1 A PDATA n+2 A

TXCOMP

TXRDY

Write THR (Data n)

Write THR (Data n+1) Write THR (Data n+2)

Last data sent

STOP command performed

(by writing in the TWI_CR)

TWD IADR A

TWCK

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

822

Figure 35-7. Master Read with One Data Byte

Figure 35-8. Master Read with Multiple Data Bytes

Figure 35-9. Master Read Wait State with Multiple Data Bytes

35.7.3.5 Internal Address

The TWI can perform transfers with 7-bit slave address devices and 10-bit slave address devices.

7-bit Slave Addressing

When addressing 7-bit slave devices, the internal address bytes are used to perform random address (read or

write) accesses to reach one or more data bytes, e.g. within a memory page location in a serial memory. When

performing read operations with an internal address, the TWI performs a write operation to set the internal address

into the slave device, and then switch to Master receiver mode. Note that the second START condition (after

AS DADR R DATA NA P

TXCOMP

Write START &

STOP Bit
RXRDY

Read RHR

TWD

NAAS DADR R DATA n A ADATA (n+1) A DATA (n+m)DATA (n+m)-1 PTWD

TXCOMP

Write START Bit

RXRDY

Write STOP Bit

after next-to-last data read

Read RHR

DATA n

Read RHR

DATA (n+1)

Read RHR

DATA (n+m)-1

Read RHR

DATA (n+m)

A DATA n AS DADR W DATA n+1 A PDATA n+2 A

TXCOMP

RXRDY

Read RHR (Data n)

STOP command performed

(by writing in the TWI_CR)

TWD

TWCK

Read RHR (Data n+1) Read RHR (Data n+2)

Clock Wait State

823SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

sending the IADR) is sometimes called “repeated start” (Sr) in I2C fully-compatible devices. See Figure 35-11. See

Figure 35-10 and Figure 35-12 for master write operation with internal address.

The three internal address bytes are configurable through the Master Mode register (TWI_MMR).

If the slave device supports only a 7-bit address, i.e., no internal address, IADRSZ must be set to 0.

Table 35-6 shows the abbreviations used in Figure 35-10 and Figure 35-11.

Figure 35-10. Master Write with One, Two or Three Bytes Internal Address and One Data Byte

Figure 35-11. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

10-bit Slave Addressing

For a slave address higher than seven bits, the user must configure the address size (IADRSZ) and set the other

slave address bits in the Internal Address register (TWI_IADR). The two remaining internal address bytes,

IADR[15:8] and IADR[23:16] can be used the same way as in 7-bit slave addressing.

Example: Address a 10-bit device (10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)

Table 35-6. Abbreviations

Abbreviation Definition

S Start

Sr Repeated Start

P Stop

W Write

R Read

A Acknowledge

NA Not Acknowledge

DADR Device Address

IADR Internal Address

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A DATA A P

S DADR W A IADR(15:8) A IADR(7:0) A PDATA A

A IADR(7:0) A PDATA AS DADR W

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

TWD

TWD

S DADR W A IADR(23:16) A IADR(15:8) A IADR(7:0) A

S DADR W A IADR(15:8) A IADR(7:0) A

A IADR(7:0) AS DADR W

DATA NA P

Sr DADR R A

Sr DADR R A DATA NA P

Sr DADR R A DATA NA P

TWD

TWD

TWD

Three bytes internal address

Two bytes internal address

One byte internal address

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

824

1. Program IADRSZ = 1,

2. Program DADR with 1 1 1 1 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.)

3. Program TWI_IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit address)

Figure 35-12 below shows a byte write to a memory device. This demonstrates the use of internal addresses to

access the device.

Figure 35-12. Internal Address Usage

35.7.3.6 Using the Peripheral DMA Controller (PDC)

The use of the PDC significantly reduces the CPU load.

To ensure correct implementation, proceed as follows.

Data Transmit with the PDC

1. Initialize the transmit PDC (memory pointers, transfer size - 1).

2. Configure the master (DADR, CKDIV, MREAD = 0, etc.)

3. Start the transfer by setting the PDC TXTEN bit.

4. Wait for the PDC ENDTX Flag either by using the polling method or ENDTX interrupt.

5. Disable the PDC by setting the PDC TXTDIS bit.

6. Wait for the TXRDY flag in TWI_SR.

7. Set the STOP bit in TWI_CR.

8. Write the last character in TWI_THR.

9. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

Data Receive with the PDC

The PDC transfer size must be defined with the buffer size minus 2. The two remaining characters must be

managed without PDC to ensure that the exact number of bytes are received regardless of system bus latency

conditions encountered during the end of buffer transfer period.

In Slave mode, the number of characters to receive must be known in order to configure the PDC.

1. Initialize the receive PDC (memory pointers, transfer size - 2).

2. Configure the master (DADR, CKDIV, MREAD = 1, etc.)

3. Set the PDC RXTEN bit.

4. (Master Only) Write the START bit in the TWI_CR to start the transfer.

5. Wait for the PDC ENDRX Flag either by using polling method or ENDRX interrupt.

6. Disable the PDC by setting the PDC RXTDIS bit.

7. Wait for the RXRDY flag in TWI_SR.

8. Set the STOP bit in TWI_CR.

9. Read the penultimate character in TWI_RHR.

10. Wait for the RXRDY flag in TWI_SR.

11. Read the last character in TWI_RHR.

12. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

S
T
A
R
T

M
S
B

Device

Address

0

L
S
B

R
/

W

A
C
K

M
S
B

W
R
I
T
E

A
C
K

A
C
K

L
S
B

A
C
K

FIRST

WORD ADDRESS

SECOND

WORD ADDRESS DATA

S
T
O
P

825SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.7.3.7 SMBus Quick Command (Master Mode Only)

The TWI can perform a quick command:

1. Configure the Master mode (DADR, CKDIV, etc.).

2. Write the MREAD bit in the TWI_MMR at the value of the one-bit command to be sent.

3. Start the transfer by setting the QUICK bit in the TWI_CR.

Figure 35-13. SMBus Quick Command

35.7.3.8 Read/Write Flowcharts

The flowcharts in the following figures provide examples of read and write operations. A polling or interrupt method

can be used to check the status bits. The interrupt method requires that the Interrupt Enable Register (TWI_IER)

be configured first.

TXCOMP

TXRDY

Write QUICK command in TWI_CR

TWD AS DADR R/W P

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

826

Figure 35-14. TWI Write Operation with Single Data Byte without Internal Address

Set TWI clock

(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:

- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:

- Device slave address (DADR)

- Transfer direction bit

Write ==> bit MREAD = 0

Load Transmit register

TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Yes

Yes

BEGIN

No

No

Write STOP Command

TWI_CR = STOP

827SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 35-15. TWI Write Operation with Single Data Byte and Internal Address

BEGIN

Set TWI clock

(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:

- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:

- Device slave address (DADR)

- Internal address size (IADRSZ)

- Transfer direction bit

Write ==> bit MREAD = 0

Load transmit register

TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Set the internal address

TWI_IADR = address

Yes

Yes

No

No

Write STOP command

TWI_CR = STOP

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

828

Figure 35-16. TWI Write Operation with Multiple Data Bytes with or without Internal Address

Set the Control register:

- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:

- Device slave address

- Internal address size (if IADR used)

- Transfer direction bit

Write ==> bit MREAD = 0

Internal address size = 0?

Load Transmit register

TWI_THR = Data to send

Read Status register

TXRDY = 1?

Data to send?

Read Status register

TXCOMP = 1?

END

BEGIN

Set the internal address

TWI_IADR = address
Yes

TWI_THR = data to send

Yes

Yes

Yes

No

No

No

Write STOP Command

TWI_CR = STOP

No

Set TWI clock

(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

829SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 35-17. TWI Read Operation with Single Data Byte without Internal Address

Set the Control register:

- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:

- Device slave address

- Transfer direction bit

Read ==> bit MREAD = 1

Start the transfer

TWI_CR = START | STOP

Read status register

RXRDY = 1?

Read Status register

TXCOMP = 1?

END

BEGIN

Yes

Yes

Set TWI clock

(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Read Receive Holding Register

No

No

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

830

Figure 35-18. TWI Read Operation with Single Data Byte and Internal Address

Set the Control register:

- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:

- Device slave address

- Internal address size (IADRSZ)

- Transfer direction bit

Read ==> bit MREAD = 1

Read Status register

TXCOMP = 1?

END

BEGIN

Yes

Set TWI clock

(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Yes

Set the internal address

TWI_IADR = address

Start the transfer

TWI_CR = START | STOP

Read Status register

RXRDY = 1?

Read Receive Holding register

No

No

831SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 35-19. TWI Read Operation with Multiple Data Bytes with or without Internal Address

Internal address size = 0?

Start the transfer

TWI_CR = START

Stop the transfer

TWI_CR = STOP

Read Status register

RXRDY = 1?

Last data to read

but one?

Read status register

TXCOMP = 1?

END

Set the internal address

TWI_IADR = address
Yes

Yes

Yes

No

Yes

Read Receive Holding register (TWI_RHR)

No

Set the Control register:

- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:

- Device slave address

- Internal address size (if IADR used)

- Transfer direction bit

Read ==> bit MREAD = 1

BEGIN

Set TWI clock

(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

No

No

Read Status register

RXRDY = 1?

Yes

Read Receive Holding register (TWI_RHR)

No

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

832

35.7.4 Multi-master Mode

35.7.4.1 Definition

In Multi-master mode, more than one master may handle the bus at the same time without data corruption by using

arbitration.

Arbitration starts as soon as two or more masters place information on the bus at the same time, and stops

(arbitration is lost) for the master that intends to send a logical one while the other master sends a logical zero.

As soon as a master lose arbitration, it stops sending data and listens to the bus in order to detect a stop. When

the stop is detected, the master may put its data on the bus by performing arbitration.

Arbitration is illustrated in Figure 35-21.

35.7.4.2 Two Multi-master Modes

Two Multi-master modes may be distinguished:

1. TWI is considered as a master only and will never be addressed.

2. TWI may be either a master or a slave and may be addressed.

Note: Arbitration is supported in both Multi-master modes.

TWI as Master Only

In this mode, TWI is considered as a Master only (MSEN is always one) and must be driven like a Master with the

ARBLST (Arbitration Lost) flag in addition.

If arbitration is lost (ARBLST = 1), the user must reinitiate the data transfer.

If the user starts a transfer (ex.: DADR + START + W + Write in THR) and if the bus is busy, the TWI automatically

waits for a STOP condition on the bus to initiate the transfer (see Figure 35-20).

Note: The state of the bus (busy or free) is not shown in the user interface.

TWI as Master or Slave

The automatic reversal from Master to Slave is not supported in case of a lost arbitration.

Then, in the case where TWI may be either a Master or a Slave, the user must manage the pseudo Multi-master

mode described in the steps below.

1. Program TWI in Slave mode (SADR + MSDIS + SVEN) and perform a slave access (if TWI is addressed).

2. If the TWI has to be set in Master mode, wait until the TXCOMP flag is at 1.

3. Program the Master mode (DADR + SVDIS + MSEN) and start the transfer (ex: START + Write in THR).

4. As soon as the Master mode is enabled, the TWI scans the bus in order to detect if it is busy or free. When

the bus is considered free, TWI initiates the transfer.

5. As soon as the transfer is initiated and until a STOP condition is sent, the arbitration becomes relevant and

the user must monitor the ARBLST flag.

6. If the arbitration is lost (ARBLST is set to 1), the user must program the TWI in Slave mode in case the

Master that won the arbitration is required to access the TWI.

7. If the TWI has to be set in Slave mode, wait until TXCOMP flag is at 1 and then program the Slave mode.

Note: If the arbitration is lost and the TWI is addressed, the TWI will not acknowledge even if it is programmed in Slave mode

as soon as ARBLST is set to 1. Then the Master must repeat SADR.

833SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 35-20. Programmer Sends Data While the Bus is Busy

Figure 35-21. Arbitration Cases

The flowchart shown in Figure 35-22 gives an example of read and write operations in Multi-master mode.

TWCK

TWD DATA sent by a master

STOP sent by the master START sent by the TWI

DATA sent by the TWI

Bus is busy

Bus is free

A transfer is programmed
(DADR + W + START + Write THR) Transfer is initiated

TWI DATA transfer Transfer is kept

Bus is considered as free

TWCK

Bus is busy Bus is free

A transfer is programmed

(DADR + W + START + Write THR)
Transfer is initiated

TWI DATA transfer Transfer is kept

Bus is considered as free

Data from a Master

Data from TWI S 0

S 0 0

1

1

1

ARBLST

S 0

S 0 0

1

1

1

TWD S 0 01

1 1

1 1

Arbitration is lost

TWI stops sending data

P

S 01P 0

1 1

1 1Data from the master Data from the TWI

Arbitration is lost

The master stops sending data

Transfer is stopped

Transfer is programmed again
(DADR + W + START + Write THR)

TWCK

TWD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

834

Figure 35-22. Multi-master Flowchart

Program the SLAVE mode:
SADR + MSDIS + SVEN

SVACC = 1 ?

TXCOMP = 1 ?

GACC = 1 ?

Decoding of the
programming sequence

Prog seq

OK ?

Change SADR

SVREAD = 1 ?

Read Status Register

RXRDY= 1 ?

Read TWI_RHR

TXRDY= 1 ?EOSACC = 1 ?

Write in TWI_THR

Need to perform
a master access ?

Program the Master mode

DADR + SVDIS + MSEN + CLK + R / W

Read Status Register

ARBLST = 1 ?

MREAD = 1 ?

TXRDY= 0 ?

Write in TWI_THRData to send ?

RXRDY= 0 ?

Read TWI_RHR Data to read?

Read Status Register

TXCOMP = 0 ?

GENERAL CALL TREATMENT

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Stop Transfer

TWI_CR = STOP

No

No No

No

No

No

No

No

No

No

No

No

No

No No

No

START

835SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.7.5 Slave Mode

35.7.5.1 Definition

Slave mode is defined as a mode where the device receives the clock and the address from another device called

the master.

In this mode, the device never initiates and never completes the transmission (START, REPEATED START and

STOP conditions are always provided by the master).

35.7.5.2 Programming Slave Mode

The following fields must be programmed before entering Slave mode:

1. TWI_SMR.SADR: The slave device address is used in order to be accessed by master devices in Read or
Write mode.

2. TWI_CR.MSDIS: Disables the Master mode.

3. TWI_CR.SVEN: Enables the Slave mode.

As the device receives the clock, values written in TWI_CWGR are ignored.

35.7.5.3 Receiving Data

After a START or REPEATED START condition is detected and if the address sent by the Master matches with the

Slave address programmed in the SADR (Slave Address) field, SVACC (Slave Access) flag is set and SVREAD

(Slave Read) indicates the direction of the transfer.

SVACC remains high until a STOP condition or a repeated START is detected. When such a condition is detected,

the EOSACC (End Of Slave Access) flag is set.

Read Sequence

In the case of a read sequence (SVREAD is high), TWI transfers data written in TWI_THR (TWI Transmit Holding

Register) until a STOP condition or a REPEATED_START and an address different from SADR is detected. Note

that at the end of the read sequence TXCOMP (Transmission Complete) flag is set and SVACC reset.

As soon as data is written in TWI_THR, the TXRDY (Transmit Holding Register Ready) flag is reset, and it is set

when the internal shifter is empty and the sent data acknowledged or not. If the data is not acknowledged, the

NACK flag is set.

Note that a STOP or a REPEATED START always follows a NACK.

To clear the TXRDY flag, first set the bit TWI_CR.SVDIS, then set the bit TWI_CR.SVEN.

See Figure 35-23.

Write Sequence

In the case of a write sequence (SVREAD is low), the RXRDY (Receive Holding Register Ready) flag is set as

soon as a character has been received in the TWI_RHR (TWI Receive Holding Register). RXRDY is reset when

reading the TWI_RHR.

TWI continues receiving data until a STOP condition or a REPEATED_START + an address different from SADR

is detected. Note that at the end of the write sequence TXCOMP flag is set and SVACC reset.

See Figure 35-24.

Clock Synchronization Sequence

If TWI_RHR is not read in time, the TWI performs a clock synchronization.

Clock synchronization information is given by the bit SCLWS (Clock Wait State).

See Figure 35-27.

Clock Stretching Sequence

If TWI_THR is not written in time, the TWI performs a clock stretching.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

836

Clock stretching information is given by the bit SCLWS (Clock Wait State).

See Figure 35-26.

General Call

In the case where a GENERAL CALL is performed, the GACC (General Call Access) flag is set.

After GACC is set, the user must interpret the meaning of the GENERAL CALL and decode the new address

programming sequence.

See Figure 35-25.

35.7.5.4 Data Transfer

Read Operation

The Read mode is defined as a data requirement from the master.

After a START or a REPEATED START condition is detected, the decoding of the address starts. If the slave

address (SADR) is decoded, SVACC is set and SVREAD indicates the direction of the transfer.

Until a STOP or REPEATED START condition is detected, TWI continues sending data loaded in the TWI_THR.

If a STOP condition or a REPEATED START + an address different from SADR is detected, SVACC is reset.

Figure 35-23 describes the write operation.

Figure 35-23. Read Access Ordered by a Master

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.

2. TXRDY is reset when data has been transmitted from TWI_THR to the internal shifter and set when this data has been

acknowledged or non acknowledged.

Write Operation

The Write mode is defined as a data transmission from the master.

After a START or a REPEATED START, the decoding of the address starts. If the slave address is decoded,

SVACC is set and SVREAD indicates the direction of the transfer (SVREAD is low in this case).

Until a STOP or REPEATED START condition is detected, TWI stores the received data in the TWI_RHR.

If a STOP condition or a REPEATED START + an address different from SADR is detected, SVACC is reset.

Figure 35-24 describes the write operation.

Write THR Read RHR

SVREAD has to be taken into account only while SVACC is active

TWD

TXRDY

NACK

SVACC

SVREAD

EOSACC

SADRS ADR R NA R A DATA A A DATA NA S/SrDATA NA P/S/Sr

SADR matches,

TWI answers with an ACK
SADR does not match,

TWI answers with a NACK
ACK/NACK from the Master

837SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 35-24. Write Access Ordered by a Master

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.

2. RXRDY is set when data has been transmitted from the internal shifter to the TWI_RHR and reset when this data is read.

General Call

The general call is performed in order to change the address of the slave.

If a GENERAL CALL is detected, GACC is set.

After the detection of GENERAL CALL, it is up to the programmer to decode the commands which come

afterwards.

In case of a WRITE command, the programmer has to decode the programming sequence and program a new

SADR if the programming sequence matches.

Figure 35-25 describes the GENERAL CALL access.

Figure 35-25. Master Performs a General Call

Note: This method allows the user to create a personal programming sequence by choosing the programming bytes and the

number of them. The programming sequence has to be provided to the master.

RXRDY

Read RHR

SVREAD has to be taken into account only while SVACC is active

TWD

SVACC

SVREAD

EOSACC

SADR does not match,

TWI answers with a NACK

SADRS ADR W NA W A DATA A A DATA NA S/SrDATA NA P/S/Sr

SADR matches,

TWI answers with an ACK

0000000 + W

GENERAL CALL PS AGENERAL CALL Reset or write DADD A New SADRDATA1 A DATA2 AA

New SADR
Programming sequence

TXD

GACC

SVACC

RESET command = 00000110X
WRITE command = 00000100X

Reset after read

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

838

Clock Synchronization/Stretching

In both Read and Write modes, it may occur that TWI_THR/TWI_RHR buffer is not filled /emptied before

transmission/reception of a new character. In this case, to avoid sending/receiving undesired data, a clock

stretching/synchronization mechanism is implemented.

Clock Stretching in Read Mode

The clock is tied low during the acknowledge phase if the internal shifter is empty and if a STOP or

REPEATED START condition was not detected. It is tied low until the internal shifter is loaded.

Figure 35-26 describes clock stretching in Read mode.

Figure 35-26. Clock Stretching in Read Mode

Notes: 1. TXRDY is reset when data has been written in the TWI_THR to the internal shifter and set when this data has been

acknowledged or non acknowledged.

2. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from

SADR.

3. SCLWS is automatically set when the clock stretching mechanism is started.

DATA1

The clock is stretched after the ACK, the state of TWD is undefined during clock stretching

SCLWS

SVACC

SVREAD

TXRDY

TWCK

TWI_THR

TXCOMP

The data is memorized in TWI_THR until a new value is written

TWI_THR is transmitted to the shift register Ack or Nack from the master

DATA0DATA0 DATA2

1

2

1

CLOCK is tied low by the TWI

as long as THR is empty

S SADRS R DATA0A A DATA1 A DATA2 NA SXXXXXXX

2

Write THR

As soon as a START is detected

839SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Clock Synchronization in Write Mode

The clock is tied low outside of the acknowledge phase if the internal shifter and the TWI_RHR is full. If a

STOP or REPEATED_START condition was not detected, it is tied low until TWI_RHR is read.

Figure 35-27 describes the clock synchronization in Write mode.

Figure 35-27. Clock Synchronization in Write Mode

Notes: 1. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from

SADR.

2. SCLWS is automatically set when the clock synchronization mechanism is started and automatically reset when the

mechanism is finished.

Rd DATA0 Rd DATA1 Rd DATA2

SVACC

SVREAD

RXRDY

SCLWS

TXCOMP

DATA1 DATA2

TWCK is stretched on the last bit of DATA1

As soon as a START is detected

TWCK

TWD

TWI_RHR

CLOCK is tied low by the TWI as long as RHR is full

DATA0 is not read in the RHR

ADRS SADR W ADATA0A A DATA2DATA1 SNA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

840

Reversal After a Repeated Start

Reversal of Read to Write

The master initiates the communication by a read command and finishes it by a write command.

Figure 35-28 describes the repeated start + reversal from Read to Write mode.

Figure 35-28. Repeated Start + Reversal from Read to Write Mode

Note: 1. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.

Reversal of Write to Read

The master initiates the communication by a write command and finishes it by a read command.

Figure 35-29 describes the repeated start + reversal from Write to Read mode.

Figure 35-29. Repeated Start + Reversal from Write to Read Mode

Notes: 1. In this case, if TWI_THR has not been written at the end of the read command, the clock is automatically stretched before

the ACK.

2. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.

35.7.5.5 Using the Peripheral DMA Controller (PDC) in Slave Mode

The use of the PDC significantly reduces the CPU load.

Data Transmit with the PDC in Slave Mode

The following procedure shows an example of data transmission with PDC.

S SADR R ADATA0A DATA1 SADRSrNA W A DATA2 A DATA3 A P

Cleared after read

DATA0 DATA1

DATA2 DATA3

SVACC

SVREAD

TWD

TWI_THR

TWI_RHR

EOSACC

TXRDY

RXRDY

TXCOMP As soon as a START is detected

S SADR W ADATA0A DATA1 SADRSrA R A DATA2 A DATA3 NA P

Cleared after read

DATA0

DATA2 DATA3

DATA1

TXCOMP

TXRDY

RXRDY

As soon as a START is detected

Read TWI_RHR

SVACC

SVREAD

TWD

TWI_RHR

TWI_THR

EOSACC

841SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1. Initialize the transmit PDC (memory pointers, transfer size).

2. Start the transfer by setting the PDC TXTEN bit.

3. Wait for the PDC ENDTX flag by using either the polling method or the ENDTX interrupt.

4. Disable the PDC by setting the PDC TXTDIS bit.

5. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

Data Receive with the PDC in Slave Mode

The following procedure shows an example of data transmission with PDC where the number of characters to be

received is known.

1. Initialize the receive PDC (memory pointers, transfer size).

2. Set the PDC RXTEN bit.

3. Wait for the PDC ENDRX flag by using either the polling method or the ENDRX interrupt.

4. Disable the PDC by setting the PDC RXTDIS bit.

5. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

35.7.5.6 Read Write Flowcharts

The flowchart shown in Figure 35-30 gives an example of read and write operations in Slave mode. A polling or

interrupt method can be used to check the status bits. The interrupt method requires that the Interrupt Enable

Register (TWI_IER) be configured first.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

842

Figure 35-30. Read Write Flowchart in Slave Mode

35.7.6 Register Write Protection

To prevent any single software error from corrupting TWI behavior, certain registers in the address space can be

write-protected by setting the WPEN bit in the TWI Write Protection Mode Register (TWI_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the TWI Write Protection Status

Register (TWI_WPSR) is set and the WPVSRC field shows the register in which the write access has been

attempted.

The WPVS bit is automatically cleared after reading the TWI_WPSR.

The following registers can be write-protected:

 TWI Slave Mode Register

 TWI Clock Waveform Generator Register

Set the SLAVE mode:

SADR + MSDIS + SVEN

SVACC = 1 ?

TXCOMP = 1 ?

GACC = 1 ?

Decoding of the
programming sequence

Prog seq
OK ?

Change SADR

SVREAD = 1 ?

Read Status Register

RXRDY= 1 ?

Read TWI_RHR

TXRDY= 1 ?EOSACC = 1 ?

Write in TWI_THR

END

GENERAL CALL TREATMENT

No

No

No
No

No

No

No

No

843SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.8 Two-wire Interface (TWI) User Interface

Note: All unlisted offset values are considered as “reserved”.

Table 35-7. Register Mapping

Offset Register Name Access Reset

0x00 Control Register TWI_CR Write-only –

0x04 Master Mode Register TWI_MMR Read/Write 0x00000000

0x08 Slave Mode Register TWI_SMR Read/Write 0x00000000

0x0C Internal Address Register TWI_IADR Read/Write 0x00000000

0x10 Clock Waveform Generator Register TWI_CWGR Read/Write 0x00000000

0x14–0x1C Reserved – – –

0x20 Status Register TWI_SR Read-only 0x0000F009

0x24 Interrupt Enable Register TWI_IER Write-only –

0x28 Interrupt Disable Register TWI_IDR Write-only –

0x2C Interrupt Mask Register TWI_IMR Read-only 0x00000000

0x30 Receive Holding Register TWI_RHR Read-only 0x00000000

0x34 Transmit Holding Register TWI_THR Write-only –

0x38–0xE0 Reserved – – –

0xE4 Write Protection Mode Register TWI_WPMR Read/Write 0x00000000

0xE8 Write Protection Status Register TWI_WPSR Read-only 0x00000000

0xEC–0xFC Reserved – – –

0x100–0x128 Reserved for PDC registers – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

844

35.8.1 TWI Control Register

Name: TWI_CR

Address: 0x400A8000 (0), 0x400AC000 (1)

Access: Write-only

• START: Send a START Condition

0: No effect.

1: A frame beginning with a START bit is transmitted according to the features defined in the TWI Master Mode Register

(TWI_MMR).

This action is necessary for the TWI to read data from a slave. When configured in Master mode with a write operation, a

frame is sent as soon as the user writes a character in the Transmit Holding Register (TWI_THR).

• STOP: Send a STOP Condition

0: No effect.

1: STOP condition is sent just after completing the current byte transmission in Master read mode.

– In single data byte master read, the START and STOP must both be set.

– In multiple data bytes master read, the STOP must be set after the last data received but one.

– In Master read mode, if a NACK bit is received, the STOP is automatically performed.

– In master data write operation, a STOP condition is sent when transmission of the current data has ended.

• MSEN: TWI Master Mode Enabled

0: No effect.

1: Enables the Master mode (MSDIS must be written to 0).

Note: Switching from Slave to Master mode is only permitted when TXCOMP = 1.

• MSDIS: TWI Master Mode Disabled

0: No effect.

1: The Master mode is disabled, all pending data is transmitted. The shifter and holding characters (if it contains data) are

transmitted in case of write operation. In read operation, the character being transferred must be completely received

before disabling.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST QUICK SVDIS SVEN MSDIS MSEN STOP START

845SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• SVEN: TWI Slave Mode Enabled

0: No effect.

1: Enables the Slave mode (SVDIS must be written to 0)

Note: Switching from master to Slave mode is only permitted when TXCOMP = 1.

• SVDIS: TWI Slave Mode Disabled

0: No effect.

1: The Slave mode is disabled. The shifter and holding characters (if it contains data) are transmitted in case of read oper-

ation. In write operation, the character being transferred must be completely received before disabling.

• QUICK: SMBus Quick Command

0: No effect.

1: If Master mode is enabled, a SMBus Quick Command is sent.

• SWRST: Software Reset

0: No effect.

1: Equivalent to a system reset.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

846

35.8.2 TWI Master Mode Register

Name: TWI_MMR

Address: 0x400A8004 (0), 0x400AC004 (1)

Access: Read/Write

• IADRSZ: Internal Device Address Size

• MREAD: Master Read Direction

0: Master write direction.

1: Master read direction.

• DADR: Device Address

The device address is used to access slave devices in Read or Write mode. These bits are only used in Master mode.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– DADR

15 14 13 12 11 10 9 8

– – – MREAD – – IADRSZ

7 6 5 4 3 2 1 0

– – – – – – – –

Value Name Description

0 NONE No internal device address

1 1_BYTE One-byte internal device address

2 2_BYTE Two-byte internal device address

3 3_BYTE Three-byte internal device address

847SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.8.3 TWI Slave Mode Register

Name: TWI_SMR

Address: 0x400A8008 (0), 0x400AC008 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the TWI Write Protection Mode Register.

• SADR: Slave Address

The slave device address is used in Slave mode in order to be accessed by master devices in Read or Write mode.

SADR must be programmed before enabling the Slave mode or after a general call. Writes at other times have no effect.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– SADR

15 14 13 12 11 10 9 8

– – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

848

35.8.4 TWI Internal Address Register

Name: TWI_IADR

Address: 0x400A800C (0), 0x400AC00C (1)

Access: Read/Write

• IADR: Internal Address

0, 1, 2 or 3 bytes depending on IADRSZ.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

IADR

15 14 13 12 11 10 9 8

IADR

7 6 5 4 3 2 1 0

IADR

849SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.8.5 TWI Clock Waveform Generator Register

Name: TWI_CWGR

Address: 0x400A8010 (0), 0x400AC010 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the TWI Write Protection Mode Register.

TWI_CWGR is only used in Master mode.

• CLDIV: Clock Low Divider

The TWCK low period is defined as follows: tlow = ((CLDIV × 2CKDIV) + 4 × tperipheral clock

• CHDIV: Clock High Divider

The TWCK high period is defined as follows: thigh = ((CHDIV × 2CKDIV) + 4 × tperipheral clock

• CKDIV: Clock Divider

The CKDIV field is used to increase both TWCK high and low periods.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – CKDIV

15 14 13 12 11 10 9 8

CHDIV

7 6 5 4 3 2 1 0

CLDIV

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

850

35.8.6 TWI Status Register

Name: TWI_SR

Address: 0x400A8020 (0), 0x400AC020 (1)

Access: Read-only

• TXCOMP: Transmission Completed (cleared by writing TWI_THR)

TXCOMP used in Master mode:

0: During the length of the current frame.

1: When both holding register and internal shifter are empty and STOP condition has been sent.

TXCOMP behavior in Master mode can be seen in Figure 35-6 and in Figure 35-8.

TXCOMP used in Slave mode:

0: As soon as a START is detected.

1: After a STOP or a REPEATED START + an address different from SADR is detected.

TXCOMP behavior in Slave mode can be seen in Figure 35-26, Figure 35-27, Figure 35-28 and Figure 35-29.

• RXRDY: Receive Holding Register Ready (cleared by reading TWI_RHR)

0: No character has been received since the last TWI_RHR read operation.

1: A byte has been received in the TWI_RHR since the last read.

RXRDY behavior in Master mode can be seen in Figure 35-8.

RXRDY behavior in Slave mode can be seen in Figure 35-24, Figure 35-27, Figure 35-28 and Figure 35-29.

• TXRDY: Transmit Holding Register Ready (cleared by writing TWI_THR)

TXRDY used in Master mode:

0: The transmit holding register has not been transferred into internal shifter. Set to 0 when writing into TWI_THR.

1: As soon as a data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at

the same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

TXRDY behavior in Master mode can be seen in Figure 35.7.3.3.

TXRDY used in Slave mode:

0: As soon as data is written in the TWI_THR, until this data has been transmitted and acknowledged (ACK or NACK).

1: It indicates that the TWI_THR is empty and that data has been transmitted and acknowledged.

If TXRDY is high and if a NACK has been detected, the transmission will be stopped. Thus when TRDY = NACK = 1, the

programmer must not fill TWI_THR to avoid losing it.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXBUFE RXBUFF ENDTX ENDRX EOSACC SCLWS ARBLST NACK

7 6 5 4 3 2 1 0

– OVRE GACC SVACC SVREAD TXRDY RXRDY TXCOMP

851SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

TXRDY behavior in Slave mode can be seen in Figure 35-23, Figure 35-26, Figure 35-28 and Figure 35-29.

• SVREAD: Slave Read

This bit is only used in Slave mode. When SVACC is low (no Slave access has been detected) SVREAD is irrelevant.

0: Indicates that a write access is performed by a Master.

1: Indicates that a read access is performed by a Master.

SVREAD behavior can be seen in Figure 35-23, Figure 35-24, Figure 35-28 and Figure 35-29.

• SVACC: Slave Access

This bit is only used in Slave mode.

0: TWI is not addressed. SVACC is automatically cleared after a NACK or a STOP condition is detected.

1: Indicates that the address decoding sequence has matched (A Master has sent SADR). SVACC remains high until a

NACK or a STOP condition is detected.

SVACC behavior can be seen in Figure 35-23, Figure 35-24, Figure 35-28 and Figure 35-29.

• GACC: General Call Access (cleared on read)

This bit is only used in Slave mode.

0: No General Call has been detected.

1: A General Call has been detected. After the detection of General Call, if need be, the programmer may acknowledge

this access and decode the following bytes and respond according to the value of the bytes.

GACC behavior can be seen in Figure 35-25.

• OVRE: Overrun Error (cleared on read)

This bit is only used in Master mode.

0: TWI_RHR has not been loaded while RXRDY was set

1: TWI_RHR has been loaded while RXRDY was set. Reset by read in TWI_SR when TXCOMP is set.

• NACK: Not Acknowledged (cleared on read)

NACK used in Master mode:

0: Each data byte has been correctly received by the far-end side TWI slave component.

1: A data byte or an address byte has not been acknowledged by the slave component. Set at the same time as TXCOMP.

NACK used in Slave Read mode:

0: Each data byte has been correctly received by the Master.

1: In Read mode, a data byte has not been acknowledged by the Master. When NACK is set, the programmer must not fill

TWI_THR even if TXRDY is set, because that means that the Master will stop the data transfer or reinitiate it.

Note that in Slave write mode all data are acknowledged by the TWI.

• ARBLST: Arbitration Lost (cleared on read)

This bit is only used in Master mode.

0: Arbitration won.

1: Arbitration lost. Another master of the TWI bus has won the multi-master arbitration. TXCOMP is set at the same time.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

852

• SCLWS: Clock Wait State

This bit is only used in Slave mode.

0: The clock is not stretched.

1: The clock is stretched. TWI_THR / TWI_RHR buffer is not filled / emptied before transmission / reception of a new

character.

SCLWS behavior can be seen in Figure 35-26 and Figure 35-27.

• EOSACC: End Of Slave Access (cleared on read)

This bit is only used in Slave mode.

0: A slave access is being performed.

1: The Slave access is finished. End Of Slave Access is automatically set as soon as SVACC is reset.

EOSACC behavior can be seen in Figure 35-28 and Figure 35-29.

• ENDRX: End of RX buffer (cleared by writing TWI_RCR or TWI_RNCR)

0: The Receive Counter Register has not reached 0 since the last write in TWI_RCR or TWI_RNCR.

1: The Receive Counter Register has reached 0 since the last write in TWI_RCR or TWI_RNCR.

• ENDTX: End of TX buffer (cleared by writing TWI_TCR or TWI_TNCR)

0: The Transmit Counter Register has not reached 0 since the last write in TWI_TCR or TWI_TNCR.

1: The Transmit Counter Register has reached 0 since the last write in TWI_TCR or TWI_TNCR.

• RXBUFF: RX Buffer Full (cleared by writing TWI_RCR or TWI_RNCR)

0: TWI_RCR or TWI_RNCR have a value other than 0.

1: Both TWI_RCR and TWI_RNCR have a value of 0.

• TXBUFE: TX Buffer Empty (cleared by writing TWI_TCR or TWI_TNCR)

0: TWI_TCR or TWI_TNCR have a value other than 0.

1: Both TWI_TCR and TWI_TNCR have a value of 0.

853SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.8.7 TWI Interrupt Enable Register

Name: TWI_IER

Address: 0x400A8024 (0), 0x400AC024 (1)

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• TXCOMP: Transmission Completed Interrupt Enable

• RXRDY: Receive Holding Register Ready Interrupt Enable

• TXRDY: Transmit Holding Register Ready Interrupt Enable

• SVACC: Slave Access Interrupt Enable

• GACC: General Call Access Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• NACK: Not Acknowledge Interrupt Enable

• ARBLST: Arbitration Lost Interrupt Enable

• SCL_WS: Clock Wait State Interrupt Enable

• EOSACC: End Of Slave Access Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0

– OVRE GACC SVACC – TXRDY RXRDY TXCOMP

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

854

35.8.8 TWI Interrupt Disable Register

Name: TWI_IDR

Address: 0x400A8028 (0), 0x400AC028 (1)

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• TXCOMP: Transmission Completed Interrupt Disable

• RXRDY: Receive Holding Register Ready Interrupt Disable

• TXRDY: Transmit Holding Register Ready Interrupt Disable

• SVACC: Slave Access Interrupt Disable

• GACC: General Call Access Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• NACK: Not Acknowledge Interrupt Disable

• ARBLST: Arbitration Lost Interrupt Disable

• SCL_WS: Clock Wait State Interrupt Disable

• EOSACC: End Of Slave Access Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0

– OVRE GACC SVACC – TXRDY RXRDY TXCOMP

855SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.8.9 TWI Interrupt Mask Register

Name: TWI_IMR

Address: 0x400A802C (0), 0x400AC02C (1)

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

• TXCOMP: Transmission Completed Interrupt Mask

• RXRDY: Receive Holding Register Ready Interrupt Mask

• TXRDY: Transmit Holding Register Ready Interrupt Mask

• SVACC: Slave Access Interrupt Mask

• GACC: General Call Access Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• NACK: Not Acknowledge Interrupt Mask

• ARBLST: Arbitration Lost Interrupt Mask

• SCL_WS: Clock Wait State Interrupt Mask

• EOSACC: End Of Slave Access Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXBUFE RXBUFF ENDTX ENDRX EOSACC SCL_WS ARBLST NACK

7 6 5 4 3 2 1 0

– OVRE GACC SVACC – TXRDY RXRDY TXCOMP

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

856

35.8.10 TWI Receive Holding Register

Name: TWI_RHR

Address: 0x400A8030 (0), 0x400AC030 (1)

Access: Read-only

• RXDATA: Master or Slave Receive Holding Data

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

RXDATA

857SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.8.11 TWI Transmit Holding Register

Name: TWI_THR

Address: 0x400A8034 (0), 0x400AC034 (1)

Access: Write-only

• TXDATA: Master or Slave Transmit Holding Data

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXDATA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

858

35.8.12 TWI Write Protection Mode Register

Name: TWI_WPMR

Address: 0x400A80E4 (0), 0x400AC0E4 (1)

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x545749 (“TWI” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x545749 (“TWI” in ASCII).

See Section 35.7.6 “Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x545749 PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit.

Always reads as 0

859SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

35.8.13 TWI Write Protection Status Register

Name: TWI_WPSR

Address: 0x400A80E8 (0), 0x400AC0E8 (1)

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of the TWI_WPSR.

1: A write protection violation has occurred since the last read of the TWI_WPSR. If this violation is an unauthorized

attempt to write a protected register, the violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

When WPVS = 1, WPVSRC shows the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

WPVSRC

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

860

36. Universal Asynchronous Receiver Transmitter (UART)

36.1 Description

The Universal Asynchronous Receiver Transmitter (UART) features a two-pin UART that can be used for

communication and trace purposes and offers an ideal medium for in-situ programming solutions.

Moreover, the association with a peripheral DMA controller (PDC) permits packet handling for these tasks with

processor time reduced to a minimum.

36.2 Embedded Characteristics

 Two-pin UART

̶ Independent Receiver and Transmitter with a Common Programmable Baud Rate Generator

̶ Even, Odd, Mark or Space Parity Generation

̶ Parity, Framing and Overrun Error Detection

̶ Automatic Echo, Local Loopback and Remote Loopback Channel Modes

̶ Interrupt Generation

̶ Support for Two PDC Channels with Connection to Receiver and Transmitter

36.3 Block Diagram

Figure 36-1. UART Block Diagram

Table 36-1. UART Pin Description

Pin Name Description Type

URXD UART Receive Data Input

UTXD UART Transmit Data Output

Peripheral DMA Controller
Baud Rate

Generator

Transmit

Receive

Interrupt

Control

Parallel

Input/

Output

UTXD

URXD

uart_irq

APB

bus clock Bridge

peripheral clockPMC

UART

861SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

36.4 Product Dependencies

36.4.1 I/O Lines

The UART pins are multiplexed with PIO lines. The user must first configure the corresponding PIO Controller to

enable I/O line operations of the UART.

36.4.2 Power Management

The UART clock can be controlled through the Power Management Controller (PMC). In this case, the user must

first configure the PMC to enable the UART clock. Usually, the peripheral identifier used for this purpose is 1.

36.4.3 Interrupt Sources

The UART interrupt line is connected to one of the interrupt sources of the Interrupt Controller. Interrupt handling

requires programming of the Interrupt Controller before configuring the UART.

36.5 Functional Description

The UART operates in Asynchronous mode only and supports only 8-bit character handling (with parity). It has no

clock pin.

The UART is made up of a receiver and a transmitter that operate independently, and a common baud rate

generator. Receiver timeout and transmitter time guard are not implemented. However, all the implemented

features are compatible with those of a standard USART.

36.5.1 Baud Rate Generator

The baud rate generator provides the bit period clock named baud rate clock to both the receiver and the

transmitter.

The baud rate clock is the peripheral clock divided by 16 times the clock divisor (CD) value written in the Baud

Rate Generator register (UART_BRGR). If UART_BRGR is set to 0, the baud rate clock is disabled and the UART

remains inactive. The maximum allowable baud rate is peripheral clock divided by 16. The minimum allowable

baud rate is peripheral clock divided by (16 x 65536).

Table 36-2. I/O Lines

Instance Signal I/O Line Peripheral

UART0 URXD0 PA9 A

UART0 UTXD0 PA10 A

UART1 URXD1 PA5 C

UART1 UTXD1 PA6 C

Table 36-3. Peripheral IDs

Instance ID

UART0 7

UART1 45

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

862

Figure 36-2. Baud Rate Generator

36.5.2 Receiver

36.5.2.1 Receiver Reset, Enable and Disable

After device reset, the UART receiver is disabled and must be enabled before being used. The receiver can be

enabled by writing the Control Register (UART_CR) with the bit RXEN at 1. At this command, the receiver starts

looking for a start bit.

The programmer can disable the receiver by writing UART_CR with the bit RXDIS at 1. If the receiver is waiting for

a start bit, it is immediately stopped. However, if the receiver has already detected a start bit and is receiving the

data, it waits for the stop bit before actually stopping its operation.

The receiver can be put in reset state by writing UART_CR with the bit RSTRX at 1. In this case, the receiver

immediately stops its current operations and is disabled, whatever its current state. If RSTRX is applied when data

is being processed, this data is lost.

36.5.2.2 Start Detection and Data Sampling

The UART only supports asynchronous operations, and this affects only its receiver. The UART receiver detects

the start of a received character by sampling the URXD signal until it detects a valid start bit. A low level (space) on

URXD is interpreted as a valid start bit if it is detected for more than seven cycles of the sampling clock, which is

16 times the baud rate. Hence, a space that is longer than 7/16 of the bit period is detected as a valid start bit. A

space which is 7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit.

When a valid start bit has been detected, the receiver samples the URXD at the theoretical midpoint of each bit. It

is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period) so the bit sampling point is eight cycles

(0.5-bit period) after the start of the bit. The first sampling point is therefore 24 cycles (1.5-bit periods) after

detecting the falling edge of the start bit.

Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.

Figure 36-3. Start Bit Detection

peripheral clock 16-bit Counter

0

Baud Rate

Clock

CD

CD

OUT

Divide

by 16

0

1

>1

Receiver

Sampling Clock

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PURXD

RSTSTA

RXRDY

OVRE

stop stop

863SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 36-4. Character Reception

36.5.2.3 Receiver Ready

When a complete character is received, it is transferred to the Receive Holding Register (UART_RHR) and the

RXRDY status bit in the Status Register (UART_SR) is set. The bit RXRDY is automatically cleared when

UART_RHR is read.

Figure 36-5. Receiver Ready

36.5.2.4 Receiver Overrun

The OVRE status bit in UART_SR is set if UART_RHR has not been read by the software (or the PDC) since the

last transfer, the RXRDY bit is still set and a new character is received. OVRE is cleared when the software writes

a 1 to the bit RSTSTA (Reset Status) in UART_CR.

Figure 36-6. Receiver Overrun

36.5.2.5 Parity Error

Each time a character is received, the receiver calculates the parity of the received data bits, in accordance with

the field PAR in the Mode Register (UART_MR). It then compares the result with the received parity bit. If different,

the parity error bit PARE in UART_SR is set at the same time RXRDY is set. The parity bit is cleared when

UART_CR is written with the bit RSTSTA (Reset Status) at 1. If a new character is received before the reset status

command is written, the PARE bit remains at 1.

D0 D1 D2 D3 D4 D5 D6 D7

URXD

True Start Detection

Sampling

Parity Bit

Stop Bit

Example: 8-bit, parity enabled 1 stop

1 bit

period

0.5 bit

period

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PURXD

Read UART_RHR

RXRDY

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PURXD

RSTSTA

RXRDY

OVRE

stop stop

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

864

Figure 36-7. Parity Error

36.5.2.6 Receiver Framing Error

When a start bit is detected, it generates a character reception when all the data bits have been sampled. The stop

bit is also sampled and when it is detected at 0, the FRAME (Framing Error) bit in UART_SR is set at the same

time the RXRDY bit is set. The FRAME bit remains high until the Control Register (UART_CR) is written with the

bit RSTSTA at 1.

Figure 36-8. Receiver Framing Error

36.5.3 Transmitter

36.5.3.1 Transmitter Reset, Enable and Disable

After device reset, the UART transmitter is disabled and must be enabled before being used. The transmitter is

enabled by writing UART_CR with the bit TXEN at 1. From this command, the transmitter waits for a character to

be written in the Transmit Holding Register (UART_THR) before actually starting the transmission.

The programmer can disable the transmitter by writing UART_CR with the bit TXDIS at 1. If the transmitter is not

operating, it is immediately stopped. However, if a character is being processed into the internal shift register

and/or a character has been written in the UART_THR, the characters are completed before the transmitter is

actually stopped.

The programmer can also put the transmitter in its reset state by writing the UART_CR with the bit RSTTX at 1.

This immediately stops the transmitter, whether or not it is processing characters.

36.5.3.2 Transmit Format

The UART transmitter drives the pin UTXD at the baud rate clock speed. The line is driven depending on the

format defined in UART_MR and the data stored in the internal shift register. One start bit at level 0, then the 8

data bits, from the lowest to the highest bit, one optional parity bit and one stop bit at 1 are consecutively shifted

out as shown in the following figure. The field PARE in UART_MR defines whether or not a parity bit is shifted out.

When a parity bit is enabled, it can be selected between an odd parity, an even parity, or a fixed space or mark bit.

stopD0 D1 D2 D3 D4 D5 D6 D7 PSURXD

RSTSTA

RXRDY

PARE

Wrong Parity Bit

D0 D1 D2 D3 D4 D5 D6 D7 PSURXD

RSTSTA

RXRDY

FRAME

Stop Bit

Detected at 0

stop

865SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 36-9. Character Transmission

36.5.3.3 Transmitter Control

When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in UART_SR. The transmission starts

when the programmer writes in the UART_THR, and after the written character is transferred from UART_THR to

the internal shift register. The TXRDY bit remains high until a second character is written in UART_THR. As soon

as the first character is completed, the last character written in UART_THR is transferred into the internal shift

register and TXRDY rises again, showing that the holding register is empty.

When both the internal shift register and UART_THR are empty, i.e., all the characters written in UART_THR have

been processed, the TXEMPTY bit rises after the last stop bit has been completed.

Figure 36-10. Transmitter Control

36.5.4 Peripheral DMA Controller (PDC)

Both the receiver and the transmitter of the UART are connected to a PDC.

The PDC channels are programmed via registers that are mapped within the UART user interface from the offset

0x100. The status bits are reported in UART_SR and generate an interrupt.

The RXRDY bit triggers the PDC channel data transfer of the receiver. This results in a read of the data in

UART_RHR. The TXRDY bit triggers the PDC channel data transfer of the transmitter. This results in a write of

data in UART_THR.

36.5.5 Test Modes

The UART supports three test modes. These modes of operation are programmed by using the CHMODE field in

UART_MR.

The Automatic Echo mode allows a bit-by-bit retransmission. When a bit is received on the URXD line, it is sent to

the UTXD line. The transmitter operates normally, but has no effect on the UTXD line.

D0 D1 D2 D3 D4 D5 D6 D7

UTXD

Start

Bit

Parity

Bit

Stop

Bit

Example: Parity enabled

Baud Rate

 Clock

UART_THR

Shift Register

UTXD

TXRDY

TXEMPTY

Data 0 Data 1

Data 0

Data 0

Data 1

Data 1S S PP

Write Data 0

in UART_THR

Write Data 1

in UART_THR

stopstop

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

866

The Local Loopback mode allows the transmitted characters to be received. UTXD and URXD pins are not used

and the output of the transmitter is internally connected to the input of the receiver. The URXD pin level has no

effect and the UTXD line is held high, as in idle state.

The Remote Loopback mode directly connects the URXD pin to the UTXD line. The transmitter and the receiver

are disabled and have no effect. This mode allows a bit-by-bit retransmission.

Figure 36-11. Test Modes

Receiver

Transmitter
Disabled

RXD

TXD

Receiver

Transmitter
Disabled

RXD

TXD

VDD

Disabled

Receiver

Transmitter
Disabled

RXD

TXD

Disabled

Automatic Echo

Local Loopback

Remote Loopback VDD

867SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

36.6 Universal Asynchronous Receiver Transmitter (UART) User Interface

Table 36-4. Register Mapping

Offset Register Name Access Reset

0x0000 Control Register UART_CR Write-only –

0x0004 Mode Register UART_MR Read/Write 0x0

0x0008 Interrupt Enable Register UART_IER Write-only –

0x000C Interrupt Disable Register UART_IDR Write-only –

0x0010 Interrupt Mask Register UART_IMR Read-only 0x0

0x0014 Status Register UART_SR Read-only –

0x0018 Receive Holding Register UART_RHR Read-only 0x0

0x001C Transmit Holding Register UART_THR Write-only –

0x0020 Baud Rate Generator Register UART_BRGR Read/Write 0x0

0x0024 Reserved – – –

0x0028–0x003C Reserved – – –

0x0040–0x00E8 Reserved – – –

0x00EC–0x00FC Reserved – – –

0x0100–0x0128 Reserved for PDC registers – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

868

36.6.1 UART Control Register

Name: UART_CR

Address: 0x400E0600 (0), 0x40060600 (1)

Access: Write-only

• RSTRX: Reset Receiver

0: No effect.

1: The receiver logic is reset and disabled. If a character is being received, the reception is aborted.

• RSTTX: Reset Transmitter

0: No effect.

1: The transmitter logic is reset and disabled. If a character is being transmitted, the transmission is aborted.

• RXEN: Receiver Enable

0: No effect.

1: The receiver is enabled if RXDIS is 0.

• RXDIS: Receiver Disable

0: No effect.

1: The receiver is disabled. If a character is being processed and RSTRX is not set, the character is completed before the

receiver is stopped.

• TXEN: Transmitter Enable

0: No effect.

1: The transmitter is enabled if TXDIS is 0.

• TXDIS: Transmitter Disable

0: No effect.

1: The transmitter is disabled. If a character is being processed and a character has been written in the UART_THR and

RSTTX is not set, both characters are completed before the transmitter is stopped.

• RSTSTA: Reset Status

0: No effect.

1: Resets the status bits PARE, FRAME and OVRE in the UART_SR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

869SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

36.6.2 UART Mode Register

Name: UART_MR

Address: 0x400E0604 (0), 0x40060604 (1)

Access: Read/Write

• PAR: Parity Type

• CHMODE: Channel Mode

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CHMODE – – PAR –

7 6 5 4 3 2 1 0

– – – – – – – –

Value Name Description

0 EVEN Even Parity

1 ODD Odd Parity

2 SPACE Space: parity forced to 0

3 MARK Mark: parity forced to 1

4 NO No parity

Value Name Description

0 NORMAL Normal mode

1 AUTOMATIC Automatic echo

2 LOCAL_LOOPBACK Local loopback

3 REMOTE_LOOPBACK Remote loopback

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

870

36.6.3 UART Interrupt Enable Register

Name: UART_IER

Address: 0x400E0608 (0), 0x40060608 (1)

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• RXRDY: Enable RXRDY Interrupt

• TXRDY: Enable TXRDY Interrupt

• ENDRX: Enable End of Receive Transfer Interrupt

• ENDTX: Enable End of Transmit Interrupt

• OVRE: Enable Overrun Error Interrupt

• FRAME: Enable Framing Error Interrupt

• PARE: Enable Parity Error Interrupt

• TXEMPTY: Enable TXEMPTY Interrupt

• TXBUFE: Enable Buffer Empty Interrupt

• RXBUFF: Enable Buffer Full Interrupt

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

871SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

36.6.4 UART Interrupt Disable Register

Name: UART_IDR

Address: 0x400E060C (0), 0x4006060C (1)

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• RXRDY: Disable RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Disable End of Receive Transfer Interrupt

• ENDTX: Disable End of Transmit Interrupt

• OVRE: Disable Overrun Error Interrupt

• FRAME: Disable Framing Error Interrupt

• PARE: Disable Parity Error Interrupt

• TXEMPTY: Disable TXEMPTY Interrupt

• TXBUFE: Disable Buffer Empty Interrupt

• RXBUFF: Disable Buffer Full Interrupt

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

872

36.6.5 UART Interrupt Mask Register

Name: UART_IMR

Address: 0x400E0610 (0), 0x40060610 (1)

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

• RXRDY: Mask RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Mask End of Receive Transfer Interrupt

• ENDTX: Mask End of Transmit Interrupt

• OVRE: Mask Overrun Error Interrupt

• FRAME: Mask Framing Error Interrupt

• PARE: Mask Parity Error Interrupt

• TXEMPTY: Mask TXEMPTY Interrupt

• TXBUFE: Mask TXBUFE Interrupt

• RXBUFF: Mask RXBUFF Interrupt

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

873SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

36.6.6 UART Status Register

Name: UART_SR

Address: 0x400E0614 (0), 0x40060614 (1)

Access: Read-only

• RXRDY: Receiver Ready

0: No character has been received since the last read of the UART_RHR, or the receiver is disabled.

1: At least one complete character has been received, transferred to UART_RHR and not yet read.

• TXRDY: Transmitter Ready

0: A character has been written to UART_THR and not yet transferred to the internal shift register, or the transmitter is

disabled.

1: There is no character written to UART_THR not yet transferred to the internal shift register.

• ENDRX: End of Receiver Transfer

0: The end of transfer signal from the receiver PDC channel is inactive.

1: The end of transfer signal from the receiver PDC channel is active.

• ENDTX: End of Transmitter Transfer

0: The end of transfer signal from the transmitter PDC channel is inactive.

1: The end of transfer signal from the transmitter PDC channel is active.

• OVRE: Overrun Error

0: No overrun error has occurred since the last RSTSTA.

1: At least one overrun error has occurred since the last RSTSTA.

• FRAME: Framing Error

0: No framing error has occurred since the last RSTSTA.

1: At least one framing error has occurred since the last RSTSTA.

• PARE: Parity Error

0: No parity error has occurred since the last RSTSTA.

1: At least one parity error has occurred since the last RSTSTA.

• TXEMPTY: Transmitter Empty

0: There are characters in UART_THR, or characters being processed by the transmitter, or the transmitter is disabled.

1: There are no characters in UART_THR and there are no characters being processed by the transmitter.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

874

• TXBUFE: Transmission Buffer Empty

0: The buffer empty signal from the transmitter PDC channel is inactive.

1: The buffer empty signal from the transmitter PDC channel is active.

• RXBUFF: Receive Buffer Full

0: The buffer full signal from the receiver PDC channel is inactive.

1: The buffer full signal from the receiver PDC channel is active.

875SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

36.6.7 UART Receiver Holding Register

Name: UART_RHR

Address: 0x400E0618 (0), 0x40060618 (1)

Access: Read-only

• RXCHR: Received Character

Last received character if RXRDY is set.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

RXCHR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

876

36.6.8 UART Transmit Holding Register

Name: UART_THR

Address: 0x400E061C (0), 0x4006061C (1)

Access: Write-only

• TXCHR: Character to be Transmitted

Next character to be transmitted after the current character if TXRDY is not set.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TXCHR

877SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

36.6.9 UART Baud Rate Generator Register

Name: UART_BRGR

Address: 0x400E0620 (0), 0x40060620 (1)

Access: Read/Write

• CD: Clock Divisor

0: Baud rate clock is disabled

1 to 65,535:

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CD

7 6 5 4 3 2 1 0

CD

CD
fperipheral clock

16 Baud Rate×
---------------------------------- =

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

878

37. Universal Synchronous Asynchronous Receiver Transmitter (USART)

37.1 Description

The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full duplex universal

synchronous asynchronous serial link. Data frame format is widely programmable (data length, parity, number of

stop bits) to support a maximum of standards. The receiver implements parity error, framing error and overrun

error detection. The receiver time-out enables handling variable-length frames and the transmitter timeguard

facilitates communications with slow remote devices. Multidrop communications are also supported through

address bit handling in reception and transmission.

The USART features three test modes: Remote Loopback, Local Loopback and Automatic Echo.

The USART supports specific operating modes providing interfaces on RS485, and SPI buses, with ISO7816 T =

0 or T = 1 smart card slots, infrared transceivers and connection to modem ports. The hardware handshaking

feature enables an out-of-band flow control by automatic management of the pins RTS and CTS.

The USART supports the connection to the DMA Controller and the Peripheral DMA Controller, which enables

data transfers to the transmitter and from the receiver. The PDC and DMAC provide chained buffer management

without any intervention of the processor.

37.2 Embedded Characteristics

 Programmable Baud Rate Generator

 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications

̶ 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode

̶ Parity Generation and Error Detection

̶ Framing Error Detection, Overrun Error Detection

̶ Digital Filter on Receive Line

̶ MSB- or LSB-first

̶ Optional Break Generation and Detection

̶ By 8 or by 16 Oversampling Receiver Frequency

̶ Optional Hardware Handshaking RTS-CTS

̶ Optional Modem Signal Management DTR-DSR-DCD-RI

̶ Receiver Time-out and Transmitter Timeguard

̶ Optional Multidrop Mode with Address Generation and Detection

 RS485 with Driver Control Signal

 ISO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards

̶ NACK Handling, Error Counter with Repetition and Iteration Limit

 IrDA Modulation and Demodulation

̶ Communication at up to 115.2 kbit/s

 SPI Mode

̶ Master or Slave

̶ Serial Clock Programmable Phase and Polarity

̶ SPI Serial Clock (SCK) Frequency up to fperipheral clock/6

 Test Modes

̶ Remote Loopback, Local Loopback, Automatic Echo

 Supports Connection of:

̶ Two DMA Controller Channels (DMAC) and Two Peripheral DMA Controller Channels (PDC)

879SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 Offers Buffer Transfer without Processor Intervention

 Register Write Protection

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

880

37.3 Block Diagram

37.4 I/O Lines Description

Figure 37-1. USART Block Diagram

(Peripheral)

DMA Controller

Channel

Channel

Interrupt

Controller

Receiver

USART Interrupt

RXD

TXD

SCK

USART PIO

Controller

CTS

RTS

DTR

DSR

DCD

RI

Transmitter

Modem

Signals

Control

Baud Rate

Generator

PMC

Peripheral clock

APB

Peripheral clock/DIV

Bus clock
Bridge

User

Interface

Table 37-1. I/O Line Description

Name Description Type Active Level

SCK Serial Clock I/O —

TXD

Transmit Serial Data

or Master Out Slave In (MOSI) in SPI Master mode

or Master In Slave Out (MISO) in SPI Slave mode

I/O —

RXD

Receive Serial Data

or Master In Slave Out (MISO) in SPI Master mode

or Master Out Slave In (MOSI) in SPI Slave mode

Input —

RI Ring Indicator Input Low

DSR Data Set Ready Input Low

DCD Data Carrier Detect Input Low

DTR Data Terminal Ready Output Low

CTS
Clear to Send

or Slave Select (NSS) in SPI Slave mode
Input Low

RTS
Request to Send

or Slave Select (NSS) in SPI Master mode
Output Low

881SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.5 Product Dependencies

37.5.1 I/O Lines

The pins used for interfacing the USART may be multiplexed with the PIO lines. The programmer must first

program the PIO controller to assign the desired USART pins to their peripheral function. If I/O lines of the USART

are not used by the application, they can be used for other purposes by the PIO Controller.

All the pins of the modems may or may not be implemented on the USART. Only USART1 is fully equipped with all

the modem signals. On USARTs not equipped with the corresponding pin, the associated control bits and statuses

have no effect on the behavior of the USART.

37.5.2 Power Management

The USART is not continuously clocked. The programmer must first enable the USART clock in the Power

Management Controller (PMC) before using the USART. However, if the application does not require USART

operations, the USART clock can be stopped when not needed and be restarted later. In this case, the USART will

resume its operations where it left off.

37.5.3 Interrupt Sources

The USART interrupt line is connected on one of the internal sources of the Interrupt Controller. Using the USART

interrupt requires the Interrupt Controller to be programmed first.

Table 37-2. I/O Lines

Instance Signal I/O Line Peripheral

USART0 CTS0 PB2 C

USART0 RTS0 PB3 C

USART0 RXD0 PB0 C

USART0 SCK0 PB13 C

USART0 TXD0 PB1 C

USART1 CTS1 PA25 A

USART1 DCD1 PA26 A

USART1 DSR1 PA28 A

USART1 DTR1 PA27 A

USART1 RI1 PA29 A

USART1 RTS1 PA24 A

USART1 RXD1 PA21 A

USART1 SCK1 PA23 A

USART1 TXD1 PA22 A

Table 37-3. Peripheral IDs

Instance ID

USART0 14

USART1 15

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

882

37.6 Functional Description

37.6.1 Baud Rate Generator

The baud rate generator provides the bit period clock, also named the baud rate clock, to both the receiver and the

transmitter.

The baud rate generator clock source is selected by configuring the USCLKS field in the USART Mode Register

(US_MR) to one of the following:

 The peripheral clock

 A division of the peripheral clock, where the divider is product-dependent, but generally set to 8

 The external clock, available on the SCK pin

The baud rate generator is based upon a 16-bit divider, which is programmed with the CD field of the Baud Rate

Generator register (US_BRGR). If a 0 is written to CD, the baud rate generator does not generate any clock. If a 1

is written to CD, the divider is bypassed and becomes inactive.

If the external SCK clock is selected, the duration of the low and high levels of the signal provided on the SCK pin

must be longer than a peripheral clock period. The frequency of the signal provided on SCK must be at least 3

times lower than the frequency provided on the peripheral clock in USART mode (field USART_MODE differs from

0xE or 0xF), or 6 times lower in SPI mode (field USART_MODE equals 0xE or 0xF).

Figure 37-2. Baud Rate Generator

37.6.1.1 Baud Rate in Asynchronous Mode

If the USART is programmed to operate in Asynchronous mode, the selected clock is first divided by CD, which is

field programmed in the US_BRGR. The resulting clock is provided to the receiver as a sampling clock and then

divided by 16 or 8, depending on how the OVER bit in the US_MR is programmed.

If OVER is set, the receiver sampling is eight times higher than the baud rate clock. If OVER is cleared, the

sampling is performed at 16 times the baud rate clock.

The baud rate is calculated as per the following formula:

This gives a maximum baud rate of peripheral clock divided by 8, assuming that the peripheral clock is the highest

possible clock and that the OVER bit is set.

Peripheral clock/DIV

16-bit Counter

0

Baud Rate

Clock

CD

CD

Sampling

Divider

0

1

>1

Sampling

Clock

Reserved

Peripheral clock

USCLKS

OVER
SYNC

SYNC

USCLKS = 3

1

0

2

3

0

1

0

1

FIDI

SCK

(CLKO = 1)

SCK

(CLKO = 0) Selected Clock

Selected

Clock

Baud Rate
Selected Clock

8 2 OVER–()CD()
---=

883SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Baud Rate Calculation Example

Table 37-4 shows calculations of CD to obtain a baud rate at 38,400 bit/s for different source clock frequencies.

This table also shows the actual resulting baud rate and the error.

In this example, the baud rate is calculated with the following formula:

The baud rate error is calculated with the following formula. It is not recommended to work with an error higher

than 5%.

37.6.1.2 Fractional Baud Rate in Asynchronous Mode

The baud rate generator is subject to the following limitation: the output frequency changes only by integer

multiples of the reference frequency. An approach to this problem is to integrate a fractional N clock generator that

has a high resolution. The generator architecture is modified to obtain baud rate changes by a fraction of the

reference source clock. This fractional part is programmed with the FP field in the US_BRGR. If FP is not 0, the

Table 37-4. Baud Rate Example (OVER = 0)

Source Clock

(MHz)

Expected Baud Rate

(bit/s) Calculation Result CD

Actual Baud Rate

(bit/s) Error

3,686,400 38,400 6.00 6 38,400.00 0.00%

4,915,200 38,400 8.00 8 38,400.00 0.00%

5,000,000 38,400 8.14 8 39,062.50 1.70%

7,372,800 38,400 12.00 12 38,400.00 0.00%

8,000,000 38,400 13.02 13 38,461.54 0.16%

12,000,000 38,400 19.53 20 37,500.00 2.40%

12,288,000 38,400 20.00 20 38,400.00 0.00%

14,318,180 38,400 23.30 23 38,908.10 1.31%

14,745,600 38,400 24.00 24 38,400.00 0.00%

18,432,000 38,400 30.00 30 38,400.00 0.00%

24,000,000 38,400 39.06 39 38,461.54 0.16%

24,576,000 38,400 40.00 40 38,400.00 0.00%

25,000,000 38,400 40.69 40 38,109.76 0.76%

32,000,000 38,400 52.08 52 38,461.54 0.16%

32,768,000 38,400 53.33 53 38,641.51 0.63%

33,000,000 38,400 53.71 54 38,194.44 0.54%

40,000,000 38,400 65.10 65 38,461.54 0.16%

50,000,000 38,400 81.38 81 38,580.25 0.47%

Baud Rate Selected Clock CD 16×⁄=

Error 1
Expected Baud Rate

Actual Baud Rate

 –=

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

884

fractional part is activated. The resolution is one eighth of the clock divider. This feature is only available when

using USART normal mode. The fractional baud rate is calculated using the following formula:

The modified architecture is presented in the following Figure 37-3.

Figure 37-3. Fractional Baud Rate Generator

Warning: When the value of field FP is greater than 0, the SCK (oversampling clock) generates non-constant duty

cycles. The SCK high duration is increased by “selected clock” period from time to time. The duty cycle depends

on the value of the CD field.

37.6.1.3 Baud Rate in Synchronous Mode or SPI Mode

If the USART is programmed to operate in Synchronous mode, the selected clock is simply divided by the field CD

in the US_BRGR.

In Synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided directly by the signal on

the USART SCK pin. No division is active. The value written in US_BRGR has no effect. The external clock

frequency must be at least 3 times lower than the system clock. In Master mode, Synchronous mode (USCLKS =

0 or 1, CLKO set to 1), the receive part limits the SCK maximum frequency to Selected Clock/3 in USART mode, or

Selected Clock/6 in SPI mode.

When either the external clock SCK or the internal clock divided (peripheral clock/DIV) is selected, the value

programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on the SCK pin. When the

peripheral clock is selected, the baud rate generator ensures a 50:50 duty cycle on the SCK pin, even if the value

programmed in CD is odd.

Baud Rate
Selected Clock

8 2 OVER–() CD
FP

8
-------+

---=

MCK/DIV

16-bit Counter

0

Baud Rate

Clock

CD

CD

Sampling

Divider

0

1

>1

Sampling

Clock

Reserved

MCK

USCLKS

OVER
SYNC

SYNC

USCLKS = 3

1

0

2

3

0

1

0

1

FIDIGlitch-free

 Logic

Modulus

Control

FP

FP
SCK

(CLKO = 1)

SCK

(CLKO = 0)
Selected Clock

Selected

Clock

Baud Rate
Selected Clock

CD
------------------------------------=

885SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.6.1.4 Baud Rate in ISO 7816 Mode

The ISO7816 specification defines the bit rate with the following formula:

where:

 B is the bit rate

 Di is the bit-rate adjustment factor

 Fi is the clock frequency division factor

 f is the ISO7816 clock frequency (Hz)

Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 37-5.

Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 37-6.

Table 37-7 shows the resulting Fi/Di ratio, which is the ratio between the ISO7816 clock and the baud rate clock.

If the USART is configured in ISO7816 mode, the clock selected by the USCLKS field in US_MR is first divided by

the value programmed in the field CD in the US_BRGR. The resulting clock can be provided to the SCK pin to feed

the smart card clock inputs. This means that the CLKO bit can be set in US_MR.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio register

(US_FIDI). This is performed by the Sampling Divider, which performs a division by up to 2047 in ISO7816 mode.

The non-integer values of the Fi/Di Ratio are not supported and the user must program the FI_DI_RATIO field to a

value as close as possible to the expected value.

The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common divider between the

ISO7816 clock and the bit rate (Fi = 372, Di = 1).

B
Di

Fi
------ f×=

Table 37-5. Binary and Decimal Values for Di

DI field 0001 0010 0011 0100 0101 0110 1000 1001

Di (decimal) 1 2 4 8 16 32 12 20

Table 37-6. Binary and Decimal Values for Fi

FI field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101

Fi (decimal) 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048

Table 37-7. Possible Values for the Fi/Di Ratio

Fi/Di 372 558 744 1116 1488 1806 512 768 1024 1536 2048

1 372 558 744 1116 1488 1860 512 768 1024 1536 2048

2 186 279 372 558 744 930 256 384 512 768 1024

4 93 139.5 186 279 372 465 128 192 256 384 512

8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256

16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128

32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64

12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6

20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

886

Figure 37-4 shows the relation between the Elementary Time Unit, corresponding to a bit time, and the ISO 7816

clock.

Figure 37-4. Elementary Time Unit (ETU)

37.6.2 Receiver and Transmitter Control

After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit in the Control

register (US_CR). However, the receiver registers can be programmed before the receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the US_CR. However,

the transmitter registers can be programmed before being enabled.

The receiver and the transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART by setting the

corresponding bit, RSTRX and RSTTX respectively, in the US_CR. The software resets clear the status flag and

reset internal state machines but the user interface configuration registers hold the value configured prior to

software reset. Regardless of what the receiver or the transmitter is performing, the communication is immediately

stopped.

The user can also independently disable the receiver or the transmitter by setting RXDIS and TXDIS respectively

in the US_CR. If the receiver is disabled during a character reception, the USART waits until the end of reception

of the current character, then the reception is stopped. If the transmitter is disabled while it is operating, the

USART waits the end of transmission of both the current character and character being stored in the Transmit

Holding register (US_THR). If a timeguard is programmed, it is handled normally.

37.6.3 Synchronous and Asynchronous Modes

37.6.3.1 Transmitter Operations

The transmitter performs the same in both Synchronous and Asynchronous operating modes (SYNC = 0 or SYNC

= 1). One start bit, up to 9 data bits, one optional parity bit and up to two stop bits are successively shifted out on

the TXD pin at each falling edge of the programmed serial clock.

The number of data bits is selected by the CHRL field and the MODE 9 bit in US_MR. Nine bits are selected by

setting the MODE 9 bit regardless of the CHRL field. The parity bit is set according to the PAR field in US_MR. The

even, odd, space, marked or none parity bit can be configured. The MSBF field in the US_MR configures which

data bit is sent first. If written to 1, the most significant bit is sent first. If written to 0, the less significant bit is sent

first. The number of stop bits is selected by the NBSTOP field in the US_MR. The 1.5 stop bit is supported in

Asynchronous mode only.

1 ETU

ISO7816 Clock

on SCK

ISO7816 I/O Line

on TXD

FI_DI_RATIO

ISO7816 Clock Cycles

887SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 37-5. Character Transmit

The characters are sent by writing in the Transmit Holding register (US_THR). The transmitter reports two status

bits in the Channel Status register (US_CSR): TXRDY (Transmitter Ready), which indicates that US_THR is empty

and TXEMPTY, which indicates that all the characters written in US_THR have been processed. When the current

character processing is completed, the last character written in US_THR is transferred into the Shift register of the

transmitter and US_THR becomes empty, thus TXRDY rises.

Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in US_THR while

TXRDY is low has no effect and the written character is lost.

Figure 37-6. Transmitter Status

37.6.3.2 Manchester Encoder

When the Manchester encoder is in use, characters transmitted through the USART are encoded based on

biphase Manchester II format. To enable this mode, set the MAN bit in the US_MR to 1. Depending on polarity

configuration, a logic level (zero or one), is transmitted as a coded signal one-to-zero or zero-to-one. Thus, a

transition always occurs at the midpoint of each bit time. It consumes more bandwidth than the original NRZ signal

(2x) but the receiver has more error control since the expected input must show a change at the center of a bit cell.

An example of Manchester encoded sequence is: the byte 0xB1 or 10110001 encodes to 10 01 10 10 01 01 01 10,

assuming the default polarity of the encoder. Figure 37-7 illustrates this coding scheme.

Figure 37-7. NRZ to Manchester Encoding

The Manchester encoded character can also be encapsulated by adding both a configurable preamble and a start

frame delimiter pattern. Depending on the configuration, the preamble is a training sequence, composed of a

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start

Bit

Parity

Bit

Stop

Bit

Example: 8-bit, Parity Enabled One Stop

Baud Rate

 Clock

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start

Bit

Parity

Bit

Stop

Bit

Baud Rate

 Clock

Start

Bit

Write

US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit

Stop

Bit

TXRDY

TXEMPTY

NRZ

encoded

data

Manchester

encoded

data

1 0 1 1 0 0 0 1

Txd

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

888

predefined pattern with a programmable length from 1 to 15 bit times. If the preamble length is set to 0, the

preamble waveform is not generated prior to any character. The preamble pattern is chosen among the following

sequences: ALL_ONE, ALL_ZERO, ONE_ZERO or ZERO_ONE, writing the field TX_PP in the US_MAN register,

the field TX_PL is used to configure the preamble length. Figure 37-8 illustrates and defines the valid patterns. To

improve flexibility, the encoding scheme can be configured using the TX_MPOL field in the US_MAN register. If

the TX_MPOL field is set to zero (default), a logic zero is encoded with a zero-to-one transition and a logic one is

encoded with a one-to-zero transition. If the TX_MPOL field is set to 1, a logic one is encoded with a one-to-zero

transition and a logic zero is encoded with a zero-to-one transition.

Figure 37-8. Preamble Patterns, Default Polarity Assumed

A start frame delimiter is to be configured using the ONEBIT bit in the US_MR. It consists of a user-defined pattern

that indicates the beginning of a valid data. Figure 37-9 illustrates these patterns. If the start frame delimiter, also

known as the start bit, is one bit, (ONEBIT = 1), a logic zero is Manchester encoded and indicates that a new

character is being sent serially on the line. If the start frame delimiter is a synchronization pattern also referred to

as sync (ONEBIT to 0), a sequence of three bit times is sent serially on the line to indicate the start of a new

character. The sync waveform is in itself an invalid Manchester waveform as the transition occurs at the middle of

the second bit time. Two distinct sync patterns are used: the command sync and the data sync. The command

sync has a logic one level for one and a half bit times, then a transition to logic zero for the second one and a half

bit times. If the MODSYNC bit in the US_MR is set to 1, the next character is a command. If it is set to 0, the next

character is a data. When direct memory access is used, the MODSYNC field can be immediately updated with a

modified character located in memory. To enable this mode, VAR_SYNC bit in US_MR must be set to 1. In this

case, the MODSYNC bit in the US_MR is bypassed and the sync configuration is held in the TXSYNH in the

US_THR. The USART character format is modified and includes sync information.

Manchester

encoded

data
Txd

SFD DATA

8-bit width "ALL_ONE" Preamble

Manchester

encoded

data
Txd

SFD DATA

8-bit width "ALL_ZERO" Preamble

Manchester

encoded

data
Txd

SFD DATA

8-bit width "ZERO_ONE" Preamble

Manchester

encoded

data
Txd

SFD DATA

8-bit width "ONE_ZERO" Preamble

889SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 37-9. Start Frame Delimiter

Drift Compensation

Drift compensation is available only in 16X Oversampling mode. An hardware recovery system allows a larger

clock drift. To enable the hardware system, the bit in the USART_MAN register must be set. If the RXD edge is

one 16X clock cycle from the expected edge, this is considered as normal jitter and no corrective actions is taken.

If the RXD event is between 4 and 2 clock cycles before the expected edge, then the current period is shortened

by one clock cycle. If the RXD event is between 2 and 3 clock cycles after the expected edge, then the current

period is lengthened by one clock cycle. These intervals are considered to be drift and so corrective actions are

automatically taken.

Figure 37-10. Bit Resynchronization

37.6.3.3 Asynchronous Receiver

If the USART is programmed in Asynchronous operating mode (SYNC = 0), the receiver oversamples the RXD

input line. The oversampling is either 16 or 8 times the baud rate clock, depending on the OVER bit in the US_MR.

The receiver samples the RXD line. If the line is sampled during one half of a bit time to 0, a start bit is detected

and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16 (OVER = 0), a start is detected at the eighth sample to 0. Data bits, parity bit and stop bit

are assumed to have a duration corresponding to 16 oversampling clock cycles. If the oversampling is 8 (OVER =

1), a start bit is detected at the fourth sample to 0. Data bits, parity bit and stop bit are assumed to have a duration

corresponding to 8 oversampling clock cycles.

Manchester

encoded

data
Txd

SFD

DATA

One bit start frame delimiter

Preamble Length

is set to 0

Manchester

encoded

data
Txd

SFD

DATA

Command Sync

start frame delimiter

Manchester

encoded

data
Txd

SFD

DATA

Data Sync

start frame delimiter

RXD

Oversampling

 16x Clock

Sampling

point

Expected edge

ToleranceSynchro.

Jump

Sync

JumpSynchro.

Error

Synchro.

Error

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

890

The number of data bits, first bit sent and Parity mode are selected by the same fields and bits as the transmitter,

i.e., respectively CHRL, MODE9, MSBF and PAR. For the synchronization mechanism only, the number of stop

bits has no effect on the receiver as it considers only one stop bit, regardless of the field NBSTOP, so that

resynchronization between the receiver and the transmitter can occur. Moreover, as soon as the stop bit is

sampled, the receiver starts looking for a new start bit so that resynchronization can also be accomplished when

the transmitter is operating with one stop bit.

Figure 37-11 and Figure 37-12 illustrate start detection and character reception when USART operates in

Asynchronous mode.

Figure 37-11. Asynchronous Start Detection

Figure 37-12. Asynchronous Character Reception

37.6.3.4 Manchester Decoder

When the MAN bit in the US_MR is set to 1, the Manchester decoder is enabled. The decoder performs both

preamble and start frame delimiter detection. One input line is dedicated to Manchester encoded input data.

An optional preamble sequence can be defined, its length is user-defined and totally independent of the emitter

side. Use RX_PL in US_MAN register to configure the length of the preamble sequence. If the length is set to 0, no

preamble is detected and the function is disabled. In addition, the polarity of the input stream is programmable with

RX_MPOL bit in US_MAN register. Depending on the desired application the preamble pattern matching is to be

defined via the RX_PP field in US_MAN. See Figure 37-8 for available preamble patterns.

Unlike preamble, the start frame delimiter is shared between Manchester Encoder and Decoder. So, if ONEBIT

field is set to 1, only a zero encoded Manchester can be detected as a valid start frame delimiter. If ONEBIT is set

Sampling

Clock (x16)

RXD

Start

Detection

Sampling

Baud Rate

Clock

RXD

Start

Rejection

Sampling

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 0 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
D0

Sampling

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity

Bit

Stop

Bit

Example: 8-bit, Parity Enabled

Baud Rate

Clock

Start

Detection

16

samples

16

samples

16

samples

16

samples

16

samples

16

samples

16

samples

16

samples

16

samples

16

samples

891SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

to 0, only a sync pattern is detected as a valid start frame delimiter. Decoder operates by detecting transition on

incoming stream. If RXD is sampled during one quarter of a bit time to zero, a start bit is detected. See Figure 37-

13. The sample pulse rejection mechanism applies.

Figure 37-13. Asynchronous Start Bit Detection

The receiver is activated and starts preamble and frame delimiter detection, sampling the data at one quarter and

then three quarters. If a valid preamble pattern or start frame delimiter is detected, the receiver continues decoding

with the same synchronization. If the stream does not match a valid pattern or a valid start frame delimiter, the

receiver resynchronizes on the next valid edge.The minimum time threshold to estimate the bit value is three

quarters of a bit time.

If a valid preamble (if used) followed with a valid start frame delimiter is detected, the incoming stream is decoded

into NRZ data and passed to USART for processing. Figure 37-14 illustrates Manchester pattern mismatch. When

incoming data stream is passed to the USART, the receiver is also able to detect Manchester code violation. A

code violation is a lack of transition in the middle of a bit cell. In this case, the MANERR flag in the US_CSR is

raised. It is cleared by writing a 1 to the RSTSTA in the US_CR. See Figure 37-15 for an example of Manchester

error detection during data phase.

Figure 37-14. Preamble Pattern Mismatch

Figure 37-15. Manchester Error Flag

Manchester

encoded

data
Txd

1 2 3 4

Sampling

Clock

(16 x)

Start

Detection

Manchester

encoded

data
Txd

SFD DATA

Preamble Length is set to 8

Preamble Mismatch

invalid pattern

Preamble Mismatch

Manchester coding error

Manchester

encoded

data
Txd

SFD

Preamble Length

is set to 4

Elementary character bit time

Manchester

Coding Error

detected

sampling points

Preamble subpacket

and Start Frame Delimiter

were successfully

decoded

Entering USART character area

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

892

When the start frame delimiter is a sync pattern (ONEBIT field to 0), both command and data delimiter are

supported. If a valid sync is detected, the received character is written as RXCHR field in the US_RHR and the

RXSYNH is updated. RXCHR is set to 1 when the received character is a command, and it is set to 0 if the

received character is a data. This mechanism alleviates and simplifies the direct memory access as the character

contains its own sync field in the same register.

As the decoder is setup to be used in Unipolar mode, the first bit of the frame has to be a zero-to-one transition.

37.6.3.5 Radio Interface: Manchester Encoded USART Application

This section describes low data rate RF transmission systems and their integration with a Manchester encoded

USART. These systems are based on transmitter and receiver ICs that support ASK and FSK modulation

schemes.

The goal is to perform full duplex radio transmission of characters using two different frequency carriers. See the

configuration in Figure 37-16.

Figure 37-16. Manchester Encoded Characters RF Transmission

The USART peripheral is configured as a Manchester encoder/decoder. Looking at the downstream

communication channel, Manchester encoded characters are serially sent to the RF emitter. This may also include

a user defined preamble and a start frame delimiter. Mostly, preamble is used in the RF receiver to distinguish

between a valid data from a transmitter and signals due to noise. The Manchester stream is then modulated. See

Figure 37-17 for an example of ASK modulation scheme. When a logic one is sent to the ASK modulator, the

power amplifier, referred to as PA, is enabled and transmits an RF signal at downstream frequency. When a logic

zero is transmitted, the RF signal is turned off. If the FSK modulator is activated, two different frequencies are used

to transmit data. When a logic 1 is sent, the modulator outputs an RF signal at frequency F0 and switches to F1 if

the data sent is a 0. See Figure 37-18.

From the receiver side, another carrier frequency is used. The RF receiver performs a bit check operation

examining demodulated data stream. If a valid pattern is detected, the receiver switches to Receiving mode. The

demodulated stream is sent to the Manchester decoder. Because of bit checking inside RF IC, the data transferred

to the microcontroller is reduced by a user-defined number of bits. The Manchester preamble length is to be

defined in accordance with the RF IC configuration.

LNA

VCO

RF filter

Demod

control

bi-dir

line

PA

RF filter

Mod

VCO

control

Manchester

decoder

Manchester

encoder

USART

Receiver

USART

Emitter

ASK/FSK

Upstream Receiver

ASK/FSK

downstream transmitter

Upstream

Emitter

Downstream

Receiver

Serial

Configuration

Interface

Fup frequency Carrier

Fdown frequency Carrier

893SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 37-17. ASK Modulator Output

Figure 37-18. FSK Modulator Output

37.6.3.6 Synchronous Receiver

In Synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of the baud rate

clock. If a low level is detected, it is considered as a start. All data bits, the parity bit and the stop bits are sampled

and the receiver waits for the next start bit. Synchronous mode operations provide a high-speed transfer capability.

Configuration fields and bits are the same as in Asynchronous mode.

Figure 37-19 illustrates a character reception in Synchronous mode.

Figure 37-19. Synchronous Mode Character Reception

37.6.3.7 Receiver Operations

When a character reception is completed, it is transferred to the Receive Holding register (US_RHR) and the

RXRDY bit in US_CSR rises. If a character is completed while the RXRDY is set, the OVRE (Overrun Error) bit is

set. The last character is transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by

writing a 1 to the RSTSTA (Reset Status) bit in the US_CR.

Manchester

encoded

data

default polarity

unipolar output

Txd

ASK Modulator

Output

Uptstream Frequency F0

NRZ stream

1 0 0 1

Manchester

encoded

data

default polarity

unipolar output

Txd

FSK Modulator

Output

Uptstream Frequencies

[F0, F0+offset]

NRZ stream

1 0 0 1

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Sampling

Parity Bit

Stop Bit

Example: 8-bit, Parity Enabled 1 Stop

Baud Rate

Clock

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

894

Figure 37-20. Receiver Status

37.6.3.8 Parity

The USART supports five Parity modes that are selected by writing to the PAR field in the US_MR. The PAR field

also enables the Multidrop mode, see Section 37.6.3.9 ”Multidrop Mode”. Even and odd parity bit generation and

error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit to 0 if a number of 1s in the

character data bit is even, and to 1 if the number of 1s is odd. Accordingly, the receiver parity checker counts the

number of received 1s and reports a parity error if the sampled parity bit does not correspond. If odd parity is

selected, the parity generator of the transmitter drives the parity bit to 1 if a number of 1s in the character data bit

is even, and to 0 if the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received

1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is used, the parity

generator of the transmitter drives the parity bit to 1 for all characters. The receiver parity checker reports an error

if the parity bit is sampled to 0. If the space parity is used, the parity generator of the transmitter drives the parity bit

to 0 for all characters. The receiver parity checker reports an error if the parity bit is sampled to 1. If parity is

disabled, the transmitter does not generate any parity bit and the receiver does not report any parity error.

Table 37-8 shows an example of the parity bit for the character 0x41 (character ASCII “A”) depending on the

configuration of the USART. Because there are two bits set to 1 in the character value, the parity bit is set to 1

when the parity is odd, or configured to 0 when the parity is even.

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the US_CSR. The PARE bit can be

cleared by writing a 1 to the RSTSTA bit the US_CR. Figure 37-21 illustrates the parity bit status setting and

clearing.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start

Bit

Parity

Bit

Stop

Bit

Baud Rate

 Clock

Write

US_CR

RXRDY

OVRE

D0 D1 D2 D3 D4 D5 D6 D7
Start

Bit

Parity

Bit

Stop

Bit
RSTSTA = 1

Read

US_RHR

Table 37-8. Parity Bit Examples

Character Hexadecimal Binary Parity Bit Parity Mode

A 0x41 0100 0001 1 Odd

A 0x41 0100 0001 0 Even

A 0x41 0100 0001 1 Mark

A 0x41 0100 0001 0 Space

A 0x41 0100 0001 None None

895SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 37-21. Parity Error

37.6.3.9 Multidrop Mode

If the value 0x6 or 0x07 is written to the PAR field in the US_MR, the USART runs in Multidrop mode. This mode

differentiates the data characters and the address characters. Data is transmitted with the parity bit at 0 and

addresses are transmitted with the parity bit at 1.

If the USART is configured in Multidrop mode, the receiver sets the PARE parity error bit when the parity bit is high

and the transmitter is able to send a character with the parity bit high when a 1 is written to the SENTA bit in the

US_CR.

To handle parity error, the PARE bit is cleared when a 1 is written to the RSTSTA bit in the US_CR.

The transmitter sends an address byte (parity bit set) when SENDA is written to in the US_CR. In this case, the

next byte written to the US_THR is transmitted as an address. Any character written in the US_THR without having

written the command SENDA is transmitted normally with the parity at 0.

37.6.3.10 Transmitter Timeguard

The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between two characters. This

idle state actually acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard register (US_TTGR).

When this field is written to zero no timeguard is generated. Otherwise, the transmitter holds a high level on TXD

after each transmitted byte during the number of bit periods programmed in TG in addition to the number of stop

bits.

As illustrated in Figure 37-22, the behavior of TXRDY and TXEMPTY status bits is modified by the programming of

a timeguard. TXRDY rises only when the start bit of the next character is sent, and thus remains to 0 during the

timeguard transmission if a character has been written in US_THR. TXEMPTY remains low until the timeguard

transmission is completed as the timeguard is part of the current character being transmitted.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start
Bit

Bad
Parity

Bit

Stop
Bit

Baud Rate
 Clock

Write
US_CR

PARE

RXRDY

RSTSTA = 1

Parity Error
Detect
Time Flags

Report
Time

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

896

Figure 37-22. Timeguard Operations

Table 37-9 indicates the maximum length of a timeguard period that the transmitter can handle depending on the

baud rate.

37.6.3.11 Receiver Time-out

The Receiver Time-out provides support in handling variable-length frames. This feature detects an idle condition

on the RXD line. When a time-out is detected, the bit TIMEOUT in the US_CSR rises and can generate an

interrupt, thus indicating to the driver an end of frame.

The time-out delay period (during which the receiver waits for a new character) is programmed in the TO field of

the Receiver Time-out register (US_RTOR). If the TO field is written to 0, the Receiver Time-out is disabled and no

time-out is detected. The TIMEOUT bit in the US_CSR remains at 0. Otherwise, the receiver loads a 16-bit counter

with the value programmed in TO. This counter is decremented at each bit period and reloaded each time a new

character is received. If the counter reaches 0, the TIMEOUT bit in US_CSR rises. Then, the user can either:

 Stop the counter clock until a new character is received. This is performed by writing a 1 to the STTTO (Start

Time-out) bit in the US_CR. In this case, the idle state on RXD before a new character is received will not

provide a time-out. This prevents having to handle an interrupt before a character is received and allows

waiting for the next idle state on RXD after a frame is received.

 Obtain an interrupt while no character is received. This is performed by writing a 1 to the RETTO (Reload

and Start Time-out) bit in the US_CR. If RETTO is performed, the counter starts counting down immediately

from the value TO. This enables generation of a periodic interrupt so that a user time-out can be handled, for

example when no key is pressed on a keyboard.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start

Bit

Parity

Bit

Stop

Bit

Baud Rate

 Clock

Start

Bit

TG = 4

Write

US_THR

D0 D1 D2 D3 D4 D5 D6 D7
Parity

Bit

Stop

Bit

TXRDY

TXEMPTY

TG = 4

Table 37-9. Maximum Timeguard Length Depending on Baud Rate

Baud Rate (bit/s) Bit Time (µs) Timeguard (ms)

1,200 833 212.50

9,600 104 26.56

14,400 69.4 17.71

19,200 52.1 13.28

28,800 34.7 8.85

38,400 26 6.63

56,000 17.9 4.55

57,600 17.4 4.43

115,200 8.7 2.21

897SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

If STTTO is performed, the counter clock is stopped until a first character is received. The idle state on RXD before

the start of the frame does not provide a time-out. This prevents having to obtain a periodic interrupt and enables a

wait of the end of frame when the idle state on RXD is detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This enables generation

of a periodic interrupt so that a user time-out can be handled, for example when no key is pressed on a keyboard.

Figure 37-23 shows the block diagram of the Receiver Time-out feature.

Figure 37-23. Receiver Time-out Block Diagram

Table 37-10 gives the maximum time-out period for some standard baud rates.

37.6.3.12 Framing Error

The receiver is capable of detecting framing errors. A framing error happens when the stop bit of a received

character is detected at level 0. This can occur if the receiver and the transmitter are fully desynchronized.

A framing error is reported on the FRAME bit of US_CSR. The FRAME bit is asserted in the middle of the stop bit

as soon as the framing error is detected. It is cleared by writing a 1 to the RSTSTA bit in the US_CR.

Table 37-10. Maximum Time-out Period

Baud Rate (bit/s) Bit Time (µs) Time-out (ms)

600 1,667 109,225

1,200 833 54,613

2,400 417 27,306

4,800 208 13,653

9,600 104 6,827

14,400 69 4,551

19,200 52 3,413

28,800 35 2,276

38,400 26 1,704

56,000 18 1,170

57,600 17 1,138

200,000 5 328

16-bit Time-out

Counter

0

TO

TIMEOUT

Baud Rate

Clock

=

Character

Received

RETTO

Load

Clock

16-bit

Value

STTTO

D Q1

Clear

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

898

Figure 37-24. Framing Error Status

37.6.3.13 Transmit Break

The user can request the transmitter to generate a break condition on the TXD line. A break condition drives the

TXD line low during at least one complete character. It appears the same as a 0x00 character sent with the parity

and the stop bits at 0. However, the transmitter holds the TXD line at least during one character until the user

requests the break condition to be removed.

A break is transmitted by writing a 1 to the STTBRK bit in the US_CR. This can be performed at any time, either

while the transmitter is empty (no character in either the Shift register or in US_THR) or when a character is being

transmitted. If a break is requested while a character is being shifted out, the character is first completed before the

TXD line is held low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of the break is

completed.

The break condition is removed by writing a 1 to the STPBRK bit in the US_CR. If the STPBRK is requested before

the end of the minimum break duration (one character, including start, data, parity and stop bits), the transmitter

ensures that the break condition completes.

The transmitter considers the break as though it is a character, i.e., the STTBRK and STPBRK commands are

processed only if the TXRDY bit in US_CSR is to 1 and the start of the break condition clears the TXRDY and

TXEMPTY bits as if a character is processed.

Writing US_CR with both STTBRK and STPBRK bits to 1 can lead to an unpredictable result. All STPBRK

commands requested without a previous STTBRK command are ignored. A byte written into the Transmit Holding

register while a break is pending, but not started, is ignored.

After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times. Thus, the

transmitter ensures that the remote receiver detects correctly the end of break and the start of the next character.

If the timeguard is programmed with a value higher than 12, the TXD line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 37-25 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK) commands on the

TXD line.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Start

Bit

Parity

Bit

Stop

Bit

Baud Rate

 Clock

Write

US_CR

FRAME

RXRDY

RSTSTA = 1

899SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 37-25. Break Transmission

37.6.3.14 Receive Break

The receiver detects a break condition when all data, parity and stop bits are low. This corresponds to detecting a

framing error with data to 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in US_CSR. This bit may be cleared by

writing a 1 to the RSTSTA bit in the US_CR.

An end of receive break is detected by a high level for at least 2/16 of a bit period in Asynchronous operating mode

or one sample at high level in Synchronous operating mode. The end of break detection also asserts the RXBRK

bit.

37.6.3.15 Hardware Handshaking

The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins are used to

connect with the remote device, as shown in Figure 37-26.

Figure 37-26. Connection with a Remote Device for Hardware Handshaking

Setting the USART to operate with hardware handshaking is performed by writing the USART_MODE field in

US_MR to the value 0x2.

When hardware handshaking is enabled, the USART displays similar behavior as in standard Synchronous or

Asynchronous modes, with the difference that the receiver drives the RTS pin and the level on the CTS pin

modifies the behavior of the transmitter, as shown in the figures below. Using this mode requires using the PDC

channel for reception. The transmitter can handle hardware handshaking in any case.

Figure 37-27 shows how the receiver operates if hardware handshaking is enabled. The RTS pin is driven high if

the receiver is disabled or if the status RXBUFF (Receive Buffer Full) coming from the PDC channel is high.

Normally, the remote device does not start transmitting while its CTS pin (driven by RTS) is high. As soon as the

receiver is enabled, the RTS falls, indicating to the remote device that it can start transmitting. Defining a new

buffer in the PDC clears the status bit RXBUFF and, as a result, asserts the pin RTS low.

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start

Bit

Parity

Bit

Stop

Bit

Baud Rate

 Clock

Write

US_CR

TXRDY

TXEMPTY

STPBRK = 1STTBRK = 1

Break Transmission End of Break

USART

TXD

CTS

Remote

Device

RXD

TXDRXD

RTS

RTS

CTS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

900

Figure 37-27. Receiver Behavior when Operating with Hardware Handshaking

Figure 37-28 shows how the transmitter operates if hardware handshaking is enabled. The CTS pin disables the

transmitter. If a character is being processed, the transmitter is disabled only after the completion of the current

character and transmission of the next character happens as soon as the pin CTS falls.

Figure 37-28. Transmitter Behavior when Operating with Hardware Handshaking

37.6.4 ISO7816 Mode

The USART features an ISO7816-compatible operating mode. This mode permits interfacing with smart cards and

Security Access Modules (SAM) communicating through an ISO7816 link. Both T = 0 and T = 1 protocols defined

by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in US_MR to the value 0x4

for protocol T = 0 and to the value 0x5 for protocol T = 1.

37.6.4.1 ISO7816 Mode Overview

The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is determined by a

division of the clock provided to the remote device (see Section 37-2 ”Baud Rate Generator”).

The USART connects to a smart card as shown in Figure 37-29. The TXD line becomes bidirectional and the baud

rate generator feeds the ISO7816 clock on the SCK pin. As the TXD pin becomes bidirectional, its output remains

driven by the output of the transmitter but only when the transmitter is active while its input is directed to the input

of the receiver. The USART is considered as the master of the communication as it generates the clock.

Figure 37-29. Connection of a Smart Card to the USART

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The configuration is 8

data bits, even parity and 1 or 2 stop bits, regardless of the values programmed in the CHRL, MODE9, PAR and

CHMODE fields. MSBF can be used to transmit LSB or MSB first. Parity Bit (PAR) can be used to transmit in

Normal or Inverse mode. Refer to Section 37.7.3 ”USART Mode Register” and “PAR: Parity Type” .

RTS

RXBUFF

Write

US_CR

RXEN = 1

RXD

RXDIS = 1

CTS

TXD

Smart

Card

SCK
CLK

TXD
I/O

USART

901SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The USART cannot operate concurrently in both Receiver and Transmitter modes as the communication is

unidirectional at a time. It has to be configured according to the required mode by enabling or disabling either the

receiver or the transmitter as desired. Enabling both the receiver and the transmitter at the same time in ISO7816

mode may lead to unpredictable results.

The ISO7816 specification defines an inverse transmission format. Data bits of the character must be transmitted

on the I/O line at their negative value.

37.6.4.2 Protocol T = 0

In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one guard time, which

lasts two bit times. The transmitter shifts out the bits and does not drive the I/O line during the guard time.

If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter can continue with

the transmission of the next character, as shown in Figure 37-30.

If a parity error is detected by the receiver, it drives the I/O line to 0 during the guard time, as shown in Figure 37-

31. This error bit is also named NACK, for Non Acknowledge. In this case, the character lasts 1 bit time more, as

the guard time length is the same and is added to the error bit time which lasts 1 bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous character in the Receive

Holding register (US_RHR). It appropriately sets the PARE bit in the Status register (US_SR) so that the software

can handle the error.

Figure 37-30. T = 0 Protocol without Parity Error

Figure 37-31. T = 0 Protocol with Parity Error

Receive Error Counter

The USART receiver also records the total number of errors. This can be read in the Number of Error (US_NER)

register. The NB_ERRORS field can record up to 255 errors. Reading US_NER automatically clears the

NB_ERRORS field.

Receive NACK Inhibit

The USART can also be configured to inhibit an error. This can be achieved by setting the INACK bit in US_MR. If

INACK is to 1, no error signal is driven on the I/O line even if a parity bit is detected.

Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding register, as if no error

occurred and the RXRDY bit does rise.

D0 D1 D2 D3 D4 D5 D6 D7

RXD

Parity

Bit

Baud Rate

Clock

Start

Bit

Guard

Time 1

Next

Start

Bit

Guard

Time 2

D0 D1 D2 D3 D4 D5 D6 D7

I/O

Parity

Bit

Baud Rate

Clock

Start

Bit

Guard

Time 1

Start

Bit

Guard

Time 2

D0 D1

Error

Repetition

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

902

Transmit Character Repetition

When the USART is transmitting a character and gets a NACK, it can automatically repeat the character before

moving on to the next one. Repetition is enabled by writing the MAX_ITERATION field in the US_MR at a value

higher than 0. Each character can be transmitted up to eight times; the first transmission plus seven repetitions.

If MAX_ITERATION does not equal zero, the USART repeats the character as many times as the value loaded in

MAX_ITERATION.

When the USART repetition number reaches MAX_ITERATION and the last repeated character is not

acknowledged, the ITER bit is set in US_CSR. If the repetition of the character is acknowledged by the receiver,

the repetitions are stopped and the iteration counter is cleared.

The ITER bit in US_CSR can be cleared by writing a 1 to the RSTIT bit in the US_CR.

Disable Successive Receive NACK

The receiver can limit the number of successive NACKs sent back to the remote transmitter. This is programmed

by setting the bit DSNACK in the US_MR. The maximum number of NACKs transmitted is programmed in the

MAX_ITERATION field. As soon as MAX_ITERATION is reached, no error signal is driven on the I/O line and the

ITER bit in the US_CSR is set.

37.6.4.3 Protocol T = 1

When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous format with only one

stop bit. The parity is generated when transmitting and checked when receiving. Parity error detection sets the

PARE bit in the US_CSR.

37.6.5 IrDA Mode

The USART features an IrDA mode supplying half-duplex point-to-point wireless communication. It embeds the

modulator and demodulator which allows a glueless connection to the infrared transceivers, as shown in Figure

37-32. The modulator and demodulator are compliant with the IrDA specification version 1.1 and support data

transfer speeds ranging from 2.4 kbit/s to 115.2 kbit/s.

The IrDA mode is enabled by setting the USART_MODE field in US_MR to the value 0x8. The IrDA Filter register

(US_IF) is used to configure the demodulator filter. The USART transmitter and receiver operate in a normal

Asynchronous mode and all parameters are accessible. Note that the modulator and the demodulator are

activated.

Figure 37-32. Connection to IrDA Transceivers

The receiver and the transmitter must be enabled or disabled depending on the direction of the transmission to be

managed.

To receive IrDA signals, the following needs to be done:

 Disable TX and Enable RX

 Configure the TXD pin as PIO and set it as an output to 0 (to avoid LED emission). Disable the internal pull-

up (better for power consumption).

IrDA

Transceivers

RXD RX

TXD

TX

USART

Demodulator

Modulator

Receiver

Transmitter

903SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 Receive data

37.6.5.1 IrDA Modulation

For baud rates up to and including 115.2 kbit/s, the RZI modulation scheme is used. “0” is represented by a light

pulse of 3/16th of a bit time. Some examples of signal pulse duration are shown in Table 37-11.

Figure 37-33 shows an example of character transmission.

Figure 37-33. IrDA Modulation

37.6.5.2 IrDA Baud Rate

Table 37-12 gives some examples of CD values, baud rate error and pulse duration. Note that the requirement on

the maximum acceptable error of ±1.87% must be met.

Table 37-11. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)

2.4 kbit/s 78.13 µs

9.6 kbit/s 19.53 µs

19.2 kbit/s 9.77 µs

38.4 kbit/s 4.88 µs

57.6 kbit/s 3.26 µs

115.2 kbit/s 1.63 µs

Bit Period 3/16 Bit Period

Start

Bit
Data Bits Stop

Bit

0 00 0 01 11 11
Transmitter

Output

TXD

Table 37-12. IrDA Baud Rate Error

Peripheral Clock Baud Rate (bit/s) CD Baud Rate Error Pulse Time (µs)

3,686,400 115,200 2 0.00% 1.63

20,000,000 115,200 11 1.38% 1.63

32,768,000 115,200 18 1.25% 1.63

40,000,000 115,200 22 1.38% 1.63

3,686,400 57,600 4 0.00% 3.26

20,000,000 57,600 22 1.38% 3.26

32,768,000 57,600 36 1.25% 3.26

40,000,000 57,600 43 0.93% 3.26

3,686,400 38,400 6 0.00% 4.88

20,000,000 38,400 33 1.38% 4.88

32,768,000 38,400 53 0.63% 4.88

40,000,000 38,400 65 0.16% 4.88

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

904

37.6.5.3 IrDA Demodulator

The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is loaded with the

value programmed in US_IF. When a falling edge is detected on the RXD pin, the Filter Counter starts counting

down at the peripheral clock speed. If a rising edge is detected on the RXD pin, the counter stops and is reloaded

with US_IF. If no rising edge is detected when the counter reaches 0, the input of the receiver is driven low during

one bit time.

Figure 37-34 illustrates the operations of the IrDA demodulator.

Figure 37-34. IrDA Demodulator Operations

The programmed value in the US_IF register must always meet the following criteria:

tperipheral clock × (IRDA_FILTER + 3) < 1.41 µs

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in US_FIDI must be set to

a value higher than 0 in order to make sure IrDA communications operate correctly.

37.6.6 RS485 Mode

The USART features the RS485 mode to enable line driver control. While operating in RS485 mode, the USART

behaves as though in Asynchronous or Synchronous mode and configuration of all the parameters is possible.

The difference is that the RTS pin is driven high when the transmitter is operating. The behavior of the RTS pin is

controlled by the TXEMPTY bit. A typical connection of the USART to an RS485 bus is shown in Figure 37-35.

3,686,400 19,200 12 0.00% 9.77

20,000,000 19,200 65 0.16% 9.77

32,768,000 19,200 107 0.31% 9.77

40,000,000 19,200 130 0.16% 9.77

3,686,400 9,600 24 0.00% 19.53

20,000,000 9,600 130 0.16% 19.53

32,768,000 9,600 213 0.16% 19.53

40,000,000 9,600 260 0.16% 19.53

3,686,400 2,400 96 0.00% 78.13

20,000,000 2,400 521 0.03% 78.13

32,768,000 2,400 853 0.04% 78.13

Table 37-12. IrDA Baud Rate Error (Continued)

Peripheral Clock Baud Rate (bit/s) CD Baud Rate Error Pulse Time (µs)

MCK

RXD

Receiver

Input

Pulse

Rejected

6 5 4 3 2 6 16 5 4 3 2 0

Pulse

Accepted

Counter

Value

905SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 37-35. Typical Connection to a RS485 Bus

The USART is set in RS485 mode by writing the value 0x1 to the USART_MODE field in US_MR.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high when a timeguard is

programmed so that the line can remain driven after the last character completion. Figure 37-36 gives an example

of the RTS waveform during a character transmission when the timeguard is enabled.

Figure 37-36. Example of RTS Drive with Timeguard

37.6.7 Modem Mode

The USART features Modem mode, which enables control of the signals: DTR (Data Terminal Ready), DSR (Data

Set Ready), RTS (Request to Send), CTS (Clear to Send), DCD (Data Carrier Detect) and RI (Ring Indicator).

While operating in Modem mode, the USART behaves as a DTE (Data Terminal Equipment) as it drives DTR and

RTS and can detect level change on DSR, DCD, CTS and RI.

Setting the USART in Modem mode is performed by writing the USART_MODE field in US_MR to the value 0x3.

While operating in Modem mode, the USART behaves as though in Asynchronous mode and all the parameter

configurations are available.

Table 37-13 gives the correspondence of the USART signals with modem connection standards.

USART

RTS

TXD

RXD

Differential

Bus

D0 D1 D2 D3 D4 D5 D6 D7

TXD

Start
Bit

Parity
Bit

Stop
Bit

Baud Rate
 Clock

TG = 4

Write
US_THR

TXRDY

TXEMPTY

RTS

1

Table 37-13. Circuit References

USART Pin V24 CCITT Direction

TXD 2 103 From terminal to modem

RTS 4 105 From terminal to modem

DTR 20 108.2 From terminal to modem

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

906

The control of the DTR output pin is performed by writing a 1 to the DTRDIS and DTREN bits respectively in

US_CR. The disable command forces the corresponding pin to its inactive level, i.e., high. The enable command

forces the corresponding pin to its active level, i.e., low. The RTS output pin is automatically controlled in this

mode.

The level changes are detected on the RI, DSR, DCD and CTS pins. If an input change is detected, the RIIC,

DSRIC, DCDIC and CTSIC bits in US_CSR are set respectively and can trigger an interrupt. The status is

automatically cleared when US_CSR is read. Furthermore, the CTS automatically disables the transmitter when it

is detected at its inactive state. If a character is being transmitted when the CTS rises, the character transmission

is completed before the transmitter is actually disabled.

37.6.8 SPI Mode

The Serial Peripheral Interface (SPI) mode is a synchronous serial data link that provides communication with

external devices in Master or Slave mode. It also enables communication between processors if an external

processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to other SPIs. During a

data transfer, one SPI system acts as the “master” which controls the data flow, while the other devices act as

“slaves'' which have data shifted into and out by the master. Different CPUs can take turns being masters and one

master may simultaneously shift data into multiple slaves. (Multiple master protocol is the opposite of single

master protocol, where one CPU is always the master while all of the others are always slaves.) However, only

one slave may drive its output to write data back to the master at any given time.

A slave device is selected when its NSS signal is asserted by the master. The USART in SPI Master mode can

address only one SPI slave because it can generate only one NSS signal.

The SPI system consists of two data lines and two control lines:

 Master Out Slave In (MOSI): This data line supplies the output data from the master shifted into the input of

the slave.

 Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of the master.

 Serial Clock (SCK): This control line is driven by the master and regulates the flow of the data bits. The

master may transmit data at a variety of baud rates. The SCK line cycles once for each bit that is

transmitted.

 Slave Select (NSS): This control line allows the master to select or deselect the slave.

37.6.8.1 Modes of Operation

The USART can operate in SPI Master mode or in SPI Slave mode.

Operation in SPI Master mode is programmed by writing 0xE to the USART_MODE field in US_MR. In this case

the SPI lines must be connected as described below:

 The MOSI line is driven by the output pin TXD

 The MISO line drives the input pin RXD

 The SCK line is driven by the output pin SCK

RXD 3 104 From modem to terminal

CTS 5 106 From terminal to modem

DSR 6 107 From terminal to modem

DCD 8 109 From terminal to modem

RI 22 125 From terminal to modem

Table 37-13. Circuit References

USART Pin V24 CCITT Direction

907SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 The NSS line is driven by the output pin RTS

Operation in SPI Slave mode is programmed by writing to 0xF the USART_MODE field in US_MR. In this case the

SPI lines must be connected as described below:

 The MOSI line drives the input pin RXD

 The MISO line is driven by the output pin TXD

 The SCK line drives the input pin SCK

 The NSS line drives the input pin CTS

In order to avoid unpredictable behavior, any change of the SPI mode must be followed by a software reset of the

transmitter and of the receiver (except the initial configuration after a hardware reset). (See Section 37.6.8.4).

37.6.8.2 Baud Rate

In SPI mode, the baud rate generator operates in the same way as in USART Synchronous mode. See Section

37.6.1.3 ”Baud Rate in Synchronous Mode or SPI Mode”. However, there are some restrictions:

In SPI Master mode:

 The external clock SCK must not be selected (USCLKS ≠ 0x3), and the bit CLKO must be set to 1 in the

US_MR, in order to generate correctly the serial clock on the SCK pin.

 To obtain correct behavior of the receiver and the transmitter, the value programmed in CD must be superior

or equal to 6.

 If the divided peripheral clock is selected, the value programmed in CD must be even to ensure a 50:50

mark/space ratio on the SCK pin, this value can be odd if the peripheral clock is selected.

In SPI Slave mode:

 The external clock (SCK) selection is forced regardless of the value of the USCLKS field in the US_MR.

Likewise, the value written in US_BRGR has no effect, because the clock is provided directly by the signal

on the USART SCK pin.

 To obtain correct behavior of the receiver and the transmitter, the external clock (SCK) frequency must be at

least 6 times lower than the system clock.

37.6.8.3 Data Transfer

Up to nine data bits are successively shifted out on the TXD pin at each rising or falling edge (depending of CPOL

and CPHA) of the programmed serial clock. There is no Start bit, no Parity bit and no Stop bit.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the US_MR. The nine bits are

selected by setting the MODE 9 bit regardless of the CHRL field. The MSB data bit is always sent first in SPI mode

(Master or Slave).

Four combinations of polarity and phase are available for data transfers. The clock polarity is programmed with the

CPOL bit in the US_MR. The clock phase is programmed with the CPHA bit. These two parameters determine the

edges of the clock signal upon which data is driven and sampled. Each of the two parameters has two possible

states, resulting in four possible combinations that are incompatible with one another. Thus, a master/slave pair

must use the same parameter pair values to communicate. If multiple slaves are used and fixed in different

configurations, the master must reconfigure itself each time it needs to communicate with a different slave.

Table 37-14. SPI Bus Protocol Mode

SPI Bus Protocol Mode CPOL CPHA

0 0 1

1 0 0

2 1 1

3 1 0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

908

Figure 37-37. SPI Transfer Format (CPHA = 1, 8 bits per transfer)

Figure 37-38. SPI Transfer Format (CPHA = 0, 8 bits per transfer)

37.6.8.4 Receiver and Transmitter Control

See Section 37.6.2 ”Receiver and Transmitter Control”

37.6.8.5 Character Transmission

The characters are sent by writing in the Transmit Holding register (US_THR). An additional condition for

transmitting a character can be added when the USART is configured in SPI Master mode. In the USART Mode

Register (SPI_MODE) (USART_MR), the value configured on the bit WRDBT can prevent any character

6

SCK

(CPOL = 0)

SCK

(CPOL = 1)

MOSI

SPI Master ->TXD

SPI Slave -> RXD

NSS

SPI Master -> RTS

SPI Slave -> CTS

SCK cycle (for reference)

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

2

2

1

1

1 2 3 4 5 7 86

MISO

SPI Master -> RXD

SPI Slave -> TXD

SCK

(CPOL = 0)

SCK

(CPOL = 1)

1 2 3 4 5 7

MOSI

SPI Master -> TXD

SPI Slave -> RXD

MISO

SPI Master -> RXD

SPI Slave -> TXD

NSS

SPI Master -> RTS

SPI Slave -> CTS

SCK cycle (for reference) 8

MSB

MSB

LSB

LSB

6

6

5

5

4

4

3

3

1

1

2

2

6

909SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

transmission (even if US_THR has been written) while the receiver side is not ready (character not read). When

WRDBT equals 0, the character is transmitted whatever the receiver status. If WRDBT is set to 1, the transmitter

waits for the Receive Holding register (US_RHR) to be read before transmitting the character (RXRDY flag

cleared), thus preventing any overflow (character loss) on the receiver side.

The chip select line is de-asserted for a period equivalent to three bits between the transmission of two data.

The transmitter reports two status bits in US_CSR: TXRDY (Transmitter Ready), which indicates that US_THR is

empty and TXEMPTY, which indicates that all the characters written in US_THR have been processed. When the

current character processing is completed, the last character written in US_THR is transferred into the Shift

register of the transmitter and US_THR becomes empty, thus TXRDY rises.

Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in US_THR while

TXRDY is low has no effect and the written character is lost.

If the USART is in SPI Slave mode and if a character must be sent while the US_THR is empty, the UNRE

(Underrun Error) bit is set. The TXD transmission line stays at high level during all this time. The UNRE bit is

cleared by writing a 1 to the RSTSTA (Reset Status) bit in US_CR.

In SPI Master mode, the slave select line (NSS) is asserted at low level one tbit (tbit being the nominal time required

to transmit a bit) before the transmission of the MSB bit and released at high level one tbit after the transmission of

the LSB bit. So, the slave select line (NSS) is always released between each character transmission and a

minimum delay of three tbit always inserted. However, in order to address slave devices supporting the CSAAT

mode (Chip Select Active After Transfer), the slave select line (NSS) can be forced at low level by writing a 1 to the

RCS bit in the US_CR. The slave select line (NSS) can be released at high level only by writing a 1 to the FCS bit

in the US_CR (for example, when all data have been transferred to the slave device).

In SPI Slave mode, the transmitter does not require a falling edge of the slave select line (NSS) to initiate a

character transmission but only a low level. However, this low level must be present on the slave select line (NSS)

at least one tbit before the first serial clock cycle corresponding to the MSB bit.

37.6.8.6 Character Reception

When a character reception is completed, it is transferred to the Receive Holding register (US_RHR) and the

RXRDY bit in the Status register (US_CSR) rises. If a character is completed while RXRDY is set, the OVRE

(Overrun Error) bit is set. The last character is transferred into US_RHR and overwrites the previous one. The

OVRE bit is cleared by writing a 1 to the RSTSTA (Reset Status) bit in the US_CR.

To ensure correct behavior of the receiver in SPI Slave mode, the master device sending the frame must ensure a

minimum delay of one tbit between each character transmission. The receiver does not require a falling edge of the

slave select line (NSS) to initiate a character reception but only a low level. However, this low level must be

present on the slave select line (NSS) at least one tbit before the first serial clock cycle corresponding to the MSB

bit.

37.6.8.7 Receiver Timeout

Because the receiver baud rate clock is active only during data transfers in SPI mode, a receiver timeout is

impossible in this mode, whatever the time-out value is (field TO) in the US_RTOR.

37.6.9 Test Modes

The USART can be programmed to operate in three different test modes. The internal loopback capability allows

on-board diagnostics. In Loopback mode, the USART interface pins are disconnected or not and reconfigured for

loopback internally or externally.

37.6.9.1 Normal Mode

Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD pin.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

910

Figure 37-39. Normal Mode Configuration

37.6.9.2 Automatic Echo Mode

Automatic Echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it is sent to the TXD

pin, as shown in Figure 37-40. Programming the transmitter has no effect on the TXD pin. The RXD pin is still

connected to the receiver input, thus the receiver remains active.

Figure 37-40. Automatic Echo Mode Configuration

37.6.9.3 Local Loopback Mode

Local Loopback mode connects the output of the transmitter directly to the input of the receiver, as shown in Figure

37-41. The TXD and RXD pins are not used. The RXD pin has no effect on the receiver and the TXD pin is

continuously driven high, as in idle state.

Figure 37-41. Local Loopback Mode Configuration

37.6.9.4 Remote Loopback Mode

Remote Loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 37-42. The transmitter

and the receiver are disabled and have no effect. This mode allows bit-by-bit retransmission.

Figure 37-42. Remote Loopback Mode Configuration

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD

Receiver

Transmitter

RXD

TXD
1

Receiver

Transmitter

RXD

TXD

1

911SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.6.10 Register Write Protection

To prevent any single software error from corrupting USART behavior, certain registers in the address space can

be write-protected by setting the WPEN bit in the USART Write Protection Mode Register (US_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the USART Write Protection Status

Register (US_WPSR) is set and the field WPVSRC indicates the register in which the write access has been

attempted.

The WPVS bit is automatically cleared after reading the US_WPSR.

The following registers can be write-protected:

 USART Mode Register

 USART Baud Rate Generator Register

 USART Receiver Time-out Register

 USART Transmitter Timeguard Register

 USART FI DI RATIO Register

 USART IrDA Filter Register

 USART Manchester Configuration Register

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

912

37.7 Universal Synchronous Asynchronous Receiver Transmitter (USART) User Interface

Table 37-15. Register Mapping

Offset Register Name Access Reset

0x0000 Control Register US_CR Write-only –

0x0004 Mode Register US_MR Read/Write 0x0

0x0008 Interrupt Enable Register US_IER Write-only –

0x000C Interrupt Disable Register US_IDR Write-only –

0x0010 Interrupt Mask Register US_IMR Read-only 0x0

0x0014 Channel Status Register US_CSR Read-only 0x0

0x0018 Receive Holding Register US_RHR Read-only 0x0

0x001C Transmit Holding Register US_THR Write-only –

0x0020 Baud Rate Generator Register US_BRGR Read/Write 0x0

0x0024 Receiver Time-out Register US_RTOR Read/Write 0x0

0x0028 Transmitter Timeguard Register US_TTGR Read/Write 0x0

0x002C–0x003C Reserved – – –

0x0040 FI DI Ratio Register US_FIDI Read/Write 0x174

0x0044 Number of Errors Register US_NER Read-only 0x0

0x0048 Reserved – – –

0x004C IrDA Filter Register US_IF Read/Write 0x0

0x0050 Manchester Configuration Register US_MAN Read/Write 0x30011004

0x0054–0x005C Reserved – – –

0x0060–0x00E0 Reserved – – –

0x00E4 Write Protection Mode Register US_WPMR Read/Write 0x0

0x00E8 Write Protection Status Register US_WPSR Read-only 0x0

0x00EC–0x00FC Reserved – – –

0x0100–0x0128 Reserved for PDC Registers – – –

913SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.1 USART Control Register

Name: US_CR

Address: 0x400A0000 (0), 0x400A4000 (1)

Access: Write-only

For SPI control, see Section 37.7.2 ”USART Control Register (SPI_MODE)”.

• RSTRX: Reset Receiver

0: No effect.

1: Resets the receiver.

• RSTTX: Reset Transmitter

0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable

0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable

0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable

0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable

0: No effect.

1: Disables the transmitter.

• RSTSTA: Reset Status Bits

0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, MANERR and RXBRK in US_CSR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RTSDIS RTSEN DTRDIS DTREN

15 14 13 12 11 10 9 8

RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

914

• STTBRK: Start Break

0: No effect.

1: Starts transmission of a break after the characters present in US_THR and the Transmit Shift Register have been trans-

mitted. No effect if a break is already being transmitted.

• STPBRK: Stop Break

0: No effect.

1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods.

No effect if no break is being transmitted.

• STTTO: Clear TIMEOUT Flag and Start Time-out After Next Character Received

0: No effect.

1: Starts waiting for a character before enabling the time-out counter. Immediately disables a time-out period in progress.

Resets the status bit TIMEOUT in US_CSR.

• SENDA: Send Address

0: No effect.

1: In Multidrop mode only, the next character written to the US_THR is sent with the address bit set.

• RSTIT: Reset Iterations

0: No effect.

1: Resets ITER in US_CSR. No effect if the ISO7816 is not enabled.

• RSTNACK: Reset Non Acknowledge

0: No effect

1: Resets NACK in US_CSR.

• RETTO: Start Time-out Immediately

0: No effect

1: Immediately restarts time-out period.

• DTREN: Data Terminal Ready Enable

0: No effect.

1: Drives the pin DTR to 0.

• DTRDIS: Data Terminal Ready Disable

0: No effect.

1: Drives the pin DTR to 1.

• RTSEN: Request to Send Pin Control

0: No effect.

1: Drives RTS pin to 0 if US_MR.USART_MODE field = 0.

• RTSDIS: Request to Send Pin Control

0: No effect.

1: Drives RTS pin to 1 if US_MR.USART_MODE field = 0.

915SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.2 USART Control Register (SPI_MODE)

Name: US_CR (SPI_MODE)

Address: 0x400A0000 (0), 0x400A4000 (1)

Access: Write-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

• RSTRX: Reset Receiver

0: No effect.

1: Resets the receiver.

• RSTTX: Reset Transmitter

0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable

0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable

0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable

0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable

0: No effect.

1: Disables the transmitter.

• RSTSTA: Reset Status Bits

0: No effect.

1: Resets the status bits OVRE, UNRE in US_CSR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RCS FCS – –

15 14 13 12 11 10 9 8

– – – – – – – RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

916

• FCS: Force SPI Chip Select

Applicable if USART operates in SPI Master mode (USART_MODE = 0xE):

0: No effect.

1: Forces the Slave Select Line NSS (RTS pin) to 0, even if USART is not transmitting, in order to address SPI slave

devices supporting the CSAAT mode (Chip Select Active After Transfer).

• RCS: Release SPI Chip Select

Applicable if USART operates in SPI Master mode (USART_MODE = 0xE):

0: No effect.

1: Releases the Slave Select Line NSS (RTS pin).

917SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.3 USART Mode Register

Name: US_MR

Address: 0x400A0004 (0), 0x400A4004 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

For SPI configuration, see Section 37.7.4 ”USART Mode Register (SPI_MODE)”.

• USART_MODE: USART Mode of Operation

The PDC transfers are supported in all USART modes of operation.

• USCLKS: Clock Selection

31 30 29 28 27 26 25 24

ONEBIT MODSYNC MAN FILTER – MAX_ITERATION

23 22 21 20 19 18 17 16

INVDATA VAR_SYNC DSNACK INACK OVER CLKO MODE9 MSBF

15 14 13 12 11 10 9 8

CHMODE NBSTOP PAR SYNC

7 6 5 4 3 2 1 0

CHRL USCLKS USART_MODE

Value Name Description

0x0 NORMAL Normal mode

0x1 RS485 RS485

0x2 HW_HANDSHAKING Hardware Handshaking

0x3 MODEM Modem

0x4 IS07816_T_0 IS07816 Protocol: T = 0

0x6 IS07816_T_1 IS07816 Protocol: T = 1

0x8 IRDA IrDA

0xE SPI_MASTER SPI master mode (CLKO must be written to 1 and USCLKS = 0, 1 or 2)

0xF SPI_SLAVE SPI Slave mode

Value Name Description

0 MCK Peripheral clock is selected

1 DIV Peripheral clock divided (DIV=8) is selected

2 — Reserved

3 SCK Serial clock (SCK) is selected

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

918

• CHRL: Character Length

• SYNC: Synchronous Mode Select

0: USART operates in Asynchronous mode.

1: USART operates in Synchronous mode.

• PAR: Parity Type

• NBSTOP: Number of Stop Bits

• CHMODE: Channel Mode

• MSBF: Bit Order

0: Least significant bit is sent/received first.

1: Most significant bit is sent/received first.

• MODE9: 9-bit Character Length

0: CHRL defines character length

1: 9-bit character length

Value Name Description

0 5_BIT Character length is 5 bits

1 6_BIT Character length is 6 bits

2 7_BIT Character length is 7 bits

3 8_BIT Character length is 8 bits

Value Name Description

0 EVEN Even parity

1 ODD Odd parity

2 SPACE Parity forced to 0 (Space)

3 MARK Parity forced to 1 (Mark)

4 NO No parity

6 MULTIDROP Multidrop mode

Value Name Description

0 1_BIT 1 stop bit

1 1_5_BIT 1.5 stop bit (SYNC = 0) or reserved (SYNC = 1)

2 2_BIT 2 stop bits

Value Name Description

0 NORMAL Normal mode

1 AUTOMATIC Automatic Echo. Receiver input is connected to the TXD pin.

2 LOCAL_LOOPBACK Local Loopback. Transmitter output is connected to the Receiver Input.

3 REMOTE_LOOPBACK Remote Loopback. RXD pin is internally connected to the TXD pin.

919SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• CLKO: Clock Output Select

0: The USART does not drive the SCK pin.

1: The USART drives the SCK pin if USCLKS does not select the external clock SCK.

• OVER: Oversampling Mode

0: 16 × Oversampling

1: 8 × Oversampling

• INACK: Inhibit Non Acknowledge

0: The NACK is generated.

1: The NACK is not generated.

• DSNACK: Disable Successive NACK

0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener-

ate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag ITER is

asserted.

Note: MAX_ITERATION field must be set to 0 if DSNACK is cleared.

• INVDATA: Inverted Data

0: The data field transmitted on TXD line is the same as the one written in US_THR or the content read in US_RHR is the

same as RXD line. Normal mode of operation.

1: The data field transmitted on TXD line is inverted (voltage polarity only) compared to the value written on US_THR or the

content read in US_RHR is inverted compared to what is received on RXD line (or ISO7816 IO line). Inverted mode of

operation, useful for contactless card application. To be used with configuration bit MSBF.

• VAR_SYNC: Variable Synchronization of Command/Data Sync Start Frame Delimiter

0: User defined configuration of command or data sync field depending on MODSYNC value.

1: The sync field is updated when a character is written into US_THR.

• MAX_ITERATION: Maximum Number of Automatic Iteration

0–7: Defines the maximum number of iterations in mode ISO7816, protocol T = 0.

• FILTER: Receive Line Filter

0: The USART does not filter the receive line.

1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).

• MAN: Manchester Encoder/Decoder Enable

0: Manchester encoder/decoder are disabled.

1: Manchester encoder/decoder are enabled.

• MODSYNC: Manchester Synchronization Mode

0:The Manchester start bit is a 0 to 1 transition

1: The Manchester start bit is a 1 to 0 transition.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

920

• ONEBIT: Start Frame Delimiter Selector

0: Start frame delimiter is COMMAND or DATA SYNC.

1: Start frame delimiter is one bit.

921SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.4 USART Mode Register (SPI_MODE)

Name: US_MR (SPI_MODE)

Address: 0x400A0004 (0), 0x400A4004 (1)

Access: Read/Write

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

• USART_MODE: USART Mode of Operation

• USCLKS: Clock Selection

• CHRL: Character Length

• CPHA: SPI Clock Phase

– Applicable if USART operates in SPI mode (USART_MODE = 0xE or 0xF):

0: Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1: Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

CPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. CPHA is used

with CPOL to produce the required clock/data relationship between master and slave devices.

• CPOL: SPI Clock Polarity

Applicable if USART operates in SPI mode (Slave or Master, USART_MODE = 0xE or 0xF):

0: The inactive state value of SPCK is logic level zero.

1: The inactive state value of SPCK is logic level one.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – WRDBT – CLKO – CPOL

15 14 13 12 11 10 9 8

– – – – – – – CPHA

7 6 5 4 3 2 1 0

CHRL USCLKS USART_MODE

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

Value Name Description

0xE SPI_MASTER SPI master

0xF SPI_SLAVE SPI Slave

Value Name Description

0 MCK Peripheral clock is selected

1 DIV Peripheral clock divided (DIV=8) is selected

3 SCK Serial Clock SLK is selected

Value Name Description

3 8_BIT Character length is 8 bits

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

922

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with CPHA to produce the required

clock/data relationship between master and slave devices.

• CLKO: Clock Output Select

0: The USART does not drive the SCK pin.

1: The USART drives the SCK pin if USCLKS does not select the external clock SCK.

• WRDBT: Wait Read Data Before Transfer

0: The character transmission starts as soon as a character is written into US_THR (assuming TXRDY was set).

1: The character transmission starts when a character is written and only if RXRDY flag is cleared (Receive Holding Regis-

ter has been read).

923SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.5 USART Interrupt Enable Register

Name: US_IER

Address: 0x400A0008 (0), 0x400A4008 (1)

Access: Write-only

For SPI specific configuration, see Section 37.7.6 ”USART Interrupt Enable Register (SPI_MODE)”.

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Enables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Enable

• TXRDY: TXRDY Interrupt Enable

• RXBRK: Receiver Break Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable (available in all USART modes of operation)

• ENDTX: End of Transmit Buffer Interrupt Enable (available in all USART modes of operation)

• OVRE: Overrun Error Interrupt Enable

• FRAME: Framing Error Interrupt Enable

• PARE: Parity Error Interrupt Enable

• TIMEOUT: Time-out Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Enable

• ITER: Max number of Repetitions Reached Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable (available in all USART modes of operation)

• RXBUFF: Receive Buffer Full Interrupt Enable (available in all USART modes of operation)

• NACK: Non Acknowledge Interrupt Enable

• RIIC: Ring Indicator Input Change Enable

31 30 29 28 27 26 25 24

– – – – – – – MANE

23 22 21 20 19 18 17 16

– – – – CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITER TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

924

• DSRIC: Data Set Ready Input Change Enable

• DCDIC: Data Carrier Detect Input Change Interrupt Enable

• CTSIC: Clear to Send Input Change Interrupt Enable

• MANE: Manchester Error Interrupt Enable

925SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.6 USART Interrupt Enable Register (SPI_MODE)

Name: US_IER (SPI_MODE)

Address: 0x400A0008 (0), 0x400A4008 (1)

Access: Write-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Enables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Enable

• TXRDY: TXRDY Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• OVRE: Overrun Error Interrupt Enable

• TXEMPTY: TXEMPTY Interrupt Enable

• UNRE: SPI Underrun Error Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• NSSE: NSS Line (Driving CTS Pin) Rising or Falling Edge Event Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – NSSE – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE UNRE TXEMPTY –

7 6 5 4 3 2 1 0

– – OVRE ENDTX ENDRX – TXRDY RXRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

926

37.7.7 USART Interrupt Disable Register

Name: US_IDR

Address: 0x400A000C (0), 0x400A400C (1)

Access: Write-only

For SPI specific configuration, see Section 37.7.8 ”USART Interrupt Disable Register (SPI_MODE)”.

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Disables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• RXBRK: Receiver Break Interrupt Disable

• ENDRX: End of Receive Buffer Transfer Interrupt Disable (available in all USART modes of operation)

• ENDTX: End of Transmit Buffer Interrupt Disable (available in all USART modes of operation)

• OVRE: Overrun Error Interrupt Enable

• FRAME: Framing Error Interrupt Disable

• PARE: Parity Error Interrupt Disable

• TIMEOUT: Time-out Interrupt Disable

• TXEMPTY: TXEMPTY Interrupt Disable

• ITER: Max Number of Repetitions Reached Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable (available in all USART modes of operation)

• RXBUFF: Receive Buffer Full Interrupt Disable (available in all USART modes of operation)

• NACK: Non Acknowledge Interrupt Disable

• RIIC: Ring Indicator Input Change Disable

31 30 29 28 27 26 25 24

– – – – – – – MANE

23 22 21 20 19 18 17 16

– – – – CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITER TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

927SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• DSRIC: Data Set Ready Input Change Disable

• DCDIC: Data Carrier Detect Input Change Interrupt Disable

• CTSIC: Clear to Send Input Change Interrupt Disable

• MANE: Manchester Error Interrupt Disable

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

928

37.7.8 USART Interrupt Disable Register (SPI_MODE)

Name: US_IDR (SPI_MODE)

Address: 0x400A000C (0), 0x400A400C (1)

Access: Write-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Disables the corresponding interrupt.

• RXRDY: RXRDY Interrupt Disable

• TXRDY: TXRDY Interrupt Disable

• ENDRX: End of Receive Buffer Transfer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• OVRE: Overrun Error Interrupt Disable

• TXEMPTY: TXEMPTY Interrupt Disable

• UNRE: SPI Underrun Error Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• NSSE: NSS Line (Driving CTS Pin) Rising or Falling Edge Event Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – NSSE – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE UNRE TXEMPTY –

7 6 5 4 3 2 1 0

– – OVRE ENDTX ENDRX – TXRDY RXRDY

929SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.9 USART Interrupt Mask Register

Name: US_IMR

Address: 0x400A0010 (0), 0x400A4010 (1)

Access: Read-only

For SPI specific configuration, see Section 37.7.10 ”USART Interrupt Mask Register (SPI_MODE)”.

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• RXRDY: RXRDY Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• RXBRK: Receiver Break Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask (available in all USART modes of operation)

• ENDTX: End of Transmit Buffer Interrupt Mask (available in all USART modes of operation)

• OVRE: Overrun Error Interrupt Mask

• FRAME: Framing Error Interrupt Mask

• PARE: Parity Error Interrupt Mask

• TIMEOUT: Time-out Interrupt Mask

• TXEMPTY: TXEMPTY Interrupt Mask

• ITER: Max Number of Repetitions Reached Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask (available in all USART modes of operation)

• RXBUFF: Receive Buffer Full Interrupt Mask (available in all USART modes of operation)

• NACK: Non Acknowledge Interrupt Mask

• RIIC: Ring Indicator Input Change Mask

31 30 29 28 27 26 25 24

– – – – – – – MANE

23 22 21 20 19 18 17 16

– – – – CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITER TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

930

• DSRIC: Data Set Ready Input Change Mask

• DCDIC: Data Carrier Detect Input Change Interrupt Mask

• CTSIC: Clear to Send Input Change Interrupt Mask

• MANE: Manchester Error Interrupt Mask

931SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.10 USART Interrupt Mask Register (SPI_MODE)

Name: US_IMR (SPI_MODE)

Address: 0x400A0010 (0), 0x400A4010 (1)

Access: Read-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• RXRDY: RXRDY Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• OVRE: Overrun Error Interrupt Mask

• TXEMPTY: TXEMPTY Interrupt Mask

• UNRE: SPI Underrun Error Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• NSSE: NSS Line (Driving CTS Pin) Rising or Falling Edge Event Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – NSSE – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE UNRE TXEMPTY –

7 6 5 4 3 2 1 0

– – OVRE ENDTX ENDRX – TXRDY RXRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

932

37.7.11 USART Channel Status Register

Name: US_CSR

Address: 0x400A0014 (0), 0x400A4014 (1)

Access: Read-only

For SPI specific configuration, see Section 37.7.12 ”USART Channel Status Register (SPI_MODE)”.

• RXRDY: Receiver Ready (cleared by reading US_RHR)

0: No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were

being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1: At least one complete character has been received and US_RHR has not yet been read.

• TXRDY: Transmitter Ready (cleared by writing US_THR)

0: A character is in the US_THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has

been requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1: There is no character in the US_THR.

• RXBRK: Break Received/End of Break (cleared by writing a one to bit US_CR.RSTSTA)

0: No break received or end of break detected since the last RSTSTA.

1: Break received or end of break detected since the last RSTSTA.

• ENDRX: End of RX Buffer (cleared by writing US_RCR or US_RNCR)

0: The Receive Counter Register has not reached 0 since the last write in US_RCR or US_RNCR(1).

1: The Receive Counter Register has reached 0 since the last write in US_RCR or US_RNCR(1).

• ENDTX: End of TX Buffer (cleared by writing US_TCR or US_TNCR)

0: The Transmit Counter Register has not reached 0 since the last write in US_TCR or US_TNCR(1).

1: The Transmit Counter Register has reached 0 since the last write in US_TCR or US_TNCR(1).

• OVRE: Overrun Error (cleared by writing a one to bit US_CR.RSTSTA)

0: No overrun error has occurred since the last RSTSTA.

1: At least one overrun error has occurred since the last RSTSTA.

31 30 29 28 27 26 25 24

– – – – – – – MANERR

23 22 21 20 19 18 17 16

CTS DCD DSR RI CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITER TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY

933SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• FRAME: Framing Error (cleared by writing a one to bit US_CR.RSTSTA)

0: No stop bit has been detected low since the last RSTSTA.

1: At least one stop bit has been detected low since the last RSTSTA.

• PARE: Parity Error (cleared by writing a one to bit US_CR.RSTSTA)

0: No parity error has been detected since the last RSTSTA.

1: At least one parity error has been detected since the last RSTSTA.

• TIMEOUT: Receiver Time-out (cleared by writing a one to bit US_CR.STTTO)

0: There has not been a time-out since the last Start Time-out command (STTTO in US_CR) or the Time-out Register is 0.

1: There has been a time-out since the last Start Time-out command (STTTO in US_CR).

• TXEMPTY: Transmitter Empty (cleared by writing US_THR)

0: There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.

1: There are no characters in US_THR, nor in the Transmit Shift Register.

• ITER: Max Number of Repetitions Reached (cleared by writing a one to bit US_CR.RSTIT)

0: Maximum number of repetitions has not been reached since the last RSTIT.

1: Maximum number of repetitions has been reached since the last RSTIT.

• TXBUFE: TX Buffer Empty (cleared by writing US_TCR or US_TNCR)

0: US_TCR or US_TNCR have a value other than 0(1).

1: Both US_TCR and US_TNCR have a value of 0(1).

• RXBUFF: RX Buffer Full (cleared by writing US_RCR or US_RNCR)

0: US_RCR or US_RNCR have a value other than 0(1).

1: Both US_RCR and US_RNCR have a value of 0(1).

Note: 1. US_RCR, US_RNCR, US_TCR and US_TNCR are PDC registers.

• NACK: Non Acknowledge Interrupt (cleared by writing a one to bit US_CR.RSTNACK)

0: Non acknowledge has not been detected since the last RSTNACK.

1: At least one non acknowledge has been detected since the last RSTNACK.

• RIIC: Ring Indicator Input Change Flag (cleared on read)

0: No input change has been detected on the RI pin since the last read of US_CSR.

1: At least one input change has been detected on the RI pin since the last read of US_CSR.

• DSRIC: Data Set Ready Input Change Flag (cleared on read)

0: No input change has been detected on the DSR pin since the last read of US_CSR.

1: At least one input change has been detected on the DSR pin since the last read of US_CSR.

• DCDIC: Data Carrier Detect Input Change Flag (cleared on read)

0: No input change has been detected on the DCD pin since the last read of US_CSR.

1: At least one input change has been detected on the DCD pin since the last read of US_CSR.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

934

• CTSIC: Clear to Send Input Change Flag (cleared on read)

0: No input change has been detected on the CTS pin since the last read of US_CSR.

1: At least one input change has been detected on the CTS pin since the last read of US_CSR.

• RI: Image of RI Input

0: RI input is driven low.

1: RI input is driven high.

• DSR: Image of DSR Input

0: DSR input is driven low.

1: DSR input is driven high.

• DCD: Image of DCD Input

0: DCD input is driven low.

1: DCD input is driven high.

• CTS: Image of CTS Input

0: CTS input is driven low.

1: CTS input is driven high.

• MANERR: Manchester Error (cleared by writing a one to the bit US_CR.RSTSTA)

0: No Manchester error has been detected since the last RSTSTA.

1: At least one Manchester error has been detected since the last RSTSTA.

935SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.12 USART Channel Status Register (SPI_MODE)

Name: US_CSR (SPI_MODE)

Address: 0x400A0014 (0), 0x400A4014 (1)

Access: Read-only

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

• RXRDY: Receiver Ready (cleared by reading US_RHR)

0: No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were

being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

1: At least one complete character has been received and US_RHR has not yet been read.

• TXRDY: Transmitter Ready (cleared by writing US_THR)

0: A character is in the US_THR waiting to be transferred to the Transmit Shift Register or the transmitter is disabled. As

soon as the transmitter is enabled, TXRDY becomes 1.

1: There is no character in the US_THR.

• ENDRX: End of RX Buffer (cleared by writing US_RCR or US_RNCR)

0: The Receive Counter Register has not reached 0 since the last write in US_RCR or US_RNCR(1).

1: The Receive Counter Register has reached 0 since the last write in US_RCR or US_RNCR(1).

• ENDTX: End of TX Buffer (cleared by writing US_TCR or US_TNCR)

0: The Transmit Counter Register has not reached 0 since the last write in US_TCR or US_TNCR(1).

1: The Transmit Counter Register has reached 0 since the last write in US_TCR or US_TNCR(1).

• OVRE: Overrun Error (cleared by writing a one to bit US_CR.RSTSTA)

0: No overrun error has occurred since the last RSTSTA.

1: At least one overrun error has occurred since the last RSTSTA.

• TXEMPTY: Transmitter Empty (cleared by writing US_THR)

0: There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.

1: There are no characters in US_THR, nor in the Transmit Shift Register.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

NSS – – – NSSE – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE UNRE TXEMPTY –

7 6 5 4 3 2 1 0

– – OVRE ENDTX ENDRX – TXRDY RXRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

936

• UNRE: Underrun Error (cleared by writing a one to bit US_CR.RSTSTA)

0: No SPI underrun error has occurred since the last RSTSTA.

1: At least one SPI underrun error has occurred since the last RSTSTA.

• TXBUFE: TX Buffer Empty (cleared by writing US_TCR or US_TNCR)

0: US_TCR or US_TNCR have a value other than 0(1).

1: Both US_TCR and US_TNCR have a value of 0(1).

• RXBUFF: RX Buffer Full (cleared by writing US_RCR or US_RNCR)

0: US_RCR or US_RNCR have a value other than 0(1).

1: Both US_RCR and US_RNCR have a value of 0(1).

Note: 1. US_RCR, US_RNCR, US_TCR and US_TNCR are PDC registers.

• NSSE: NSS Line (Driving CTS Pin) Rising or Falling Edge Event (cleared on read)

0: No NSS line event has been detected since the last read of US_CSR.

1: A rising or falling edge event has been detected on NSS line since the last read of US_CSR .

• NSS: Image of NSS Line

0: NSS line is driven low (if NSSE = 1, falling edge occurred on NSS line).

1: NSS line is driven high (if NSSE = 1, rising edge occurred on NSS line).

937SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.13 USART Receive Holding Register

Name: US_RHR

Address: 0x400A0018 (0), 0x400A4018 (1)

Access: Read-only

• RXCHR: Received Character

Last character received if RXRDY is set.

• RXSYNH: Received Sync

0: Last character received is a data.

1: Last character received is a command.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RXSYNH – – – – – – RXCHR

7 6 5 4 3 2 1 0

RXCHR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

938

37.7.14 USART Transmit Holding Register

Name: US_THR

Address: 0x400A001C (0), 0x400A401C (1)

Access: Write-only

• TXCHR: Character to be Transmitted

Next character to be transmitted after the current character if TXRDY is not set.

• TXSYNH: Sync Field to be Transmitted

0: The next character sent is encoded as a data. Start frame delimiter is DATA SYNC.

1: The next character sent is encoded as a command. Start frame delimiter is COMMAND SYNC.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TXSYNH – – – – – – TXCHR

7 6 5 4 3 2 1 0

TXCHR

939SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.15 USART Baud Rate Generator Register

Name: US_BRGR

Address: 0x400A0020 (0), 0x400A4020 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

• CD: Clock Divider

• FP: Fractional Part

0: Fractional divider is disabled.

1–7: Baud rate resolution, defined by FP × 1/8.

Warning: When the value of field FP is greater than 0, the SCK (oversampling clock) generates non-constant duty cycles.

The SCK high duration is increased by “selected clock” period from time to time. The duty cycle depends on the value of

the CD field.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – FP

15 14 13 12 11 10 9 8

CD

7 6 5 4 3 2 1 0

CD

CD

USART_MODE ≠ ISO7816

USART_MODE = ISO7816

SYNC = 0 SYNC = 1

or

USART_MODE = SPI

(Master or Slave)OVER = 0 OVER = 1

0 Baud Rate Clock Disabled

1 to 65535
CD = Selected Clock /

(16 × Baud Rate)

CD = Selected Clock /

(8 × Baud Rate)

CD = Selected Clock /

Baud Rate

CD = Selected Clock /

(FI_DI_RATIO × Baud

Rate)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

940

37.7.16 USART Receiver Time-out Register

Name: US_RTOR

Address: 0x400A0024 (0), 0x400A4024 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

• TO: Time-out Value

0: The receiver time-out is disabled.

1–65535: The receiver time-out is enabled and TO is Time-out Delay / Bit Period.

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TO

7 6 5 4 3 2 1 0

TO

941SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.17 USART Transmitter Timeguard Register

Name: US_TTGR

Address: 0x400A0028 (0), 0x400A4028 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

• TG: Timeguard Value

0: The transmitter timeguard is disabled.

1–255: The transmitter timeguard is enabled and TG is Timeguard Delay / Bit Period.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

TG

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

942

37.7.18 USART FI DI RATIO Register

Name: US_FIDI

Address: 0x400A0040 (0), 0x400A4040 (1)

Access: Read/Write

• FI_DI_RATIO: FI Over DI Ratio Value

0: If ISO7816 mode is selected, the baud rate generator generates no signal.

1–2: Do not use.

3–2047: If ISO7816 mode is selected, the baud rate is the clock provided on SCK divided by FI_DI_RATIO.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – FI_DI_RATIO

7 6 5 4 3 2 1 0

FI_DI_RATIO

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

943SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.19 USART Number of Errors Register

Name: US_NER

Address: 0x400A0044 (0), 0x400A4044 (1)

Access: Read-only

This register is relevant only if USART_MODE = 0x4 or 0x6 in the USART Mode Register.

• NB_ERRORS: Number of Errors

Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

NB_ERRORS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

944

37.7.20 USART IrDA Filter Register

Name: US_IF

Address: 0x400A004C (0), 0x400A404C (1)

Access: Read/Write

This register is relevant only if USART_MODE = 0x8 in the USART Mode Register.

• IRDA_FILTER: IrDA Filter

The IRDA_FILTER value must be defined to meet the following criteria:

tperipheral clock × (IRDA_FILTER + 3) < 1.41 µs

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

IRDA_FILTER

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

945SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.21 USART Manchester Configuration Register

Name: US_MAN

Address: 0x400A0050 (0), 0x400A4050 (1)

Access: Read/Write

• TX_PL: Transmitter Preamble Length

0: The transmitter preamble pattern generation is disabled

1–15: The preamble length is TX_PL × Bit Period

• TX_PP: Transmitter Preamble Pattern

The following values assume that TX_MPOL field is not set:

• TX_MPOL: Transmitter Manchester Polarity

0: Logic zero is coded as a zero-to-one transition, Logic one is coded as a one-to-zero transition.

1: Logic zero is coded as a one-to-zero transition, Logic one is coded as a zero-to-one transition.

• RX_PL: Receiver Preamble Length

0: The receiver preamble pattern detection is disabled

1–15: The detected preamble length is RX_PL × Bit Period

31 30 29 28 27 26 25 24

– DRIFT ONE RX_MPOL – – RX_PP

23 22 21 20 19 18 17 16

– – – – RX_PL

15 14 13 12 11 10 9 8

– – – TX_MPOL – – TX_PP

7 6 5 4 3 2 1 0

– – – – TX_PL

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

Value Name Description

0 ALL_ONE The preamble is composed of ‘1’s

1 ALL_ZERO The preamble is composed of ‘0’s

2 ZERO_ONE The preamble is composed of ‘01’s

3 ONE_ZERO The preamble is composed of ‘10’s

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

946

• RX_PP: Receiver Preamble Pattern detected

The following values assume that RX_MPOL field is not set:

• RX_MPOL: Receiver Manchester Polarity

0: Logic zero is coded as a zero-to-one transition, Logic one is coded as a one-to-zero transition.

1: Logic zero is coded as a one-to-zero transition, Logic one is coded as a zero-to-one transition.

• ONE: Must Be Set to 1

Bit 29 must always be set to 1 when programming the US_MAN register.

• DRIFT: Drift Compensation

0: The USART cannot recover from an important clock drift

1: The USART can recover from clock drift. The 16X clock mode must be enabled.

Value Name Description

00 ALL_ONE The preamble is composed of ‘1’s

01 ALL_ZERO The preamble is composed of ‘0’s

10 ZERO_ONE The preamble is composed of ‘01’s

11 ONE_ZERO The preamble is composed of ‘10’s

947SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

37.7.22 USART Write Protection Mode Register

Name: US_WPMR

Address: 0x400A00E4 (0), 0x400A40E4 (1)

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x555341 (“USA” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x555341 (“USA” in ASCII).

See Section 37.6.10 ”Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x555341 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

948

37.7.23 USART Write Protection Status Register

Name: US_WPSR

Address: 0x400A00E8 (0), 0x400A40E8 (1)

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of the US_WPSR.

1: A write protection violation has occurred since the last read of the US_WPSR. If this violation is an unauthorized attempt

to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

949SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38. Timer Counter (TC)

38.1 Description

A Timer Counter (TC) module includes three identical TC channels. The number of implemented TC modules is

device-specific.

Each TC channel can be independently programmed to perform a wide range of functions including frequency

measurement, event counting, interval measurement, pulse generation, delay timing and pulse width modulation.

Each channel has three external clock inputs, five internal clock inputs and two multi-purpose input/output signals

which can be configured by the user. Each channel drives an internal interrupt signal which can be programmed to

generate processor interrupts.

The TC embeds a quadrature decoder (QDEC) connected in front of the timers and driven by TIOA0, TIOB0 and

TIOB1 inputs. When enabled, the QDEC performs the input lines filtering, decoding of quadrature signals and

connects to the timers/counters in order to read the position and speed of the motor through the user interface.

The TC block has two global registers which act upon all TC channels:

 Block Control Register (TC_BCR)—allows channels to be started simultaneously with the same instruction

 Block Mode Register (TC_BMR)—defines the external clock inputs for each channel, allowing them to be

chained

38.2 Embedded Characteristics

 Total number of TC channels implemented on this device: nine

 TC channel size: 32-bit

 Wide range of functions including:

̶ Frequency measurement

̶ Event counting

̶ Interval measurement

̶ Pulse generation

̶ Delay timing

̶ Pulse Width Modulation

̶ Up/down capabilities

̶ Quadrature decoder

̶ 2-bit Gray up/down count for stepper motor

 Each channel is user-configurable and contains:

̶ Three external clock inputs

̶ Five Internal clock inputs

̶ Two multi-purpose input/output signals acting as trigger event

̶ Trigger/capture events can be directly synchronized by PWM signals

 Internal interrupt signal

 Read of the Capture registers by the PDC

 Compare event fault generation for PWM

 Register Write Protection

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

950

38.3 Block Diagram

Note: 1. When SLCK is selected for Peripheral Clock (CSS = 0 in PMC Master Clock Register), SLCK input is equivalent

to Peripheral Clock.

Figure 38-1. Timer Counter Block Diagram

Note: The QDEC connections are detailed in Figure 38-17.

Table 38-1. Timer Counter Clock Assignment

Name Definition

TIMER_CLOCK1 MCK/2

TIMER_CLOCK2 MCK/8

TIMER_CLOCK3 MCK/32

TIMER_CLOCK4 MCK/128

TIMER_CLOCK5(1) SLCK

Table 38-2. Channel Signal Description

Signal Name Description

XC0, XC1, XC2 External Clock Inputs

TIOAx
Capture Mode: Timer Counter Input

Waveform Mode: Timer Counter Output

Timer/Counter

Channel 0

Timer/Counter

Channel 1

Timer/Counter

Channel 2

SYNC

Parallel I/O

Controller

TC1XC1S

TC0XC0S

TC2XC2S

INT0

INT1

INT2

TIOA0

TIOA1

TIOA2

TIOB0

TIOB1

TIOB2

XC0

XC1

XC2

XC0

XC1

XC2

XC0

XC1

XC2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TCLK0

TCLK1

TCLK2

TIOA1

TIOA2

TIOA0

TIOA2

TIOA0

TIOA1

Interrupt

Controller

TCLK0

TCLK1

TCLK2

TIOA0

TIOB0

TIOA1

TIOB1

TIOA2

TIOB2

Timer Counter

TIOA

TIOB

TIOA

TIOB

TIOA

TIOB

SYNC

SYNC

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

TIMER_CLOCK1

FAULT

PWM

951SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.4 Pin List

38.5 Product Dependencies

38.5.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines. The programmer

must first program the PIO controllers to assign the TC pins to their peripheral functions.

TIOBx
Capture Mode: Timer Counter Input

Waveform Mode: Timer Counter Input/Output

INT Interrupt Signal Output (internal signal)

SYNC Synchronization Input Signal (from configuration register)

Table 38-2. Channel Signal Description (Continued)

Table 38-3. Pin List

Pin Name Description Type

TCLK0–TCLK2 External Clock Input Input

TIOA0–TIOA2 I/O Line A I/O

TIOB0–TIOB2 I/O Line B I/O

Table 38-4. I/O Lines

Instance Signal I/O Line Peripheral

TC0 TCLK0 PA4 B

TC0 TCLK1 PA28 B

TC0 TCLK2 PA29 B

TC0 TIOA0 PA0 B

TC0 TIOA1 PA15 B

TC0 TIOA2 PA26 B

TC0 TIOB0 PA1 B

TC0 TIOB1 PA16 B

TC0 TIOB2 PA27 B

TC1 TCLK3 PC25 B

TC1 TCLK4 PC28 B

TC1 TCLK5 PC31 B

TC1 TIOA3 PC23 B

TC1 TIOA4 PC26 B

TC1 TIOA5 PC29 B

TC1 TIOB3 PC24 B

TC1 TIOB4 PC27 B

TC1 TIOB5 PC30 B

TC2 TCLK6 PC7 B

TC2 TCLK7 PC10 B

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

952

38.5.2 Power Management

The TC is clocked through the Power Management Controller (PMC), thus the programmer must first configure the

PMC to enable the Timer Counter clock of each channel.

38.5.3 Interrupt Sources

The TC has an interrupt line per channel connected to the interrupt controller. Handling the TC interrupt requires

programming the interrupt controller before configuring the TC.

38.5.4 Synchronization Inputs from PWM

The TC has trigger/capture inputs internally connected to the PWM. Refer to Section 38.6.14 “Synchronization with

PWM” and to the implementation of the Pulse Width Modulation (PWM) in this product.

38.5.5 Fault Output

The TC has the FAULT output internally connected to the fault input of PWM. Refer to Section 38.6.18 “Fault

Mode” and to the implementation of the Pulse Width Modulation (PWM) in this product.

38.6 Functional Description

38.6.1 Description

All channels of the Timer Counter are independent and identical in operation except when the QDEC is enabled.

The registers for channel programming are listed in Table 38-6 “Register Mapping”.

38.6.2 32-bit Counter

Each 32-bit channel is organized around a 32-bit counter. The value of the counter is incremented at each positive

edge of the selected clock. When the counter has reached the value 232-1 and passes to zero, an overflow occurs

and the COVFS bit in the TC Status Register (TC_SR) is set.

The current value of the counter is accessible in real time by reading the TC Counter Value Register (TC_CV). The

counter can be reset by a trigger. In this case, the counter value passes to zero on the next valid edge of the

selected clock.

TC2 TCLK8 PC14 B

TC2 TIOA6 PC5 B

TC2 TIOA7 PC8 B

TC2 TIOA8 PC11 B

TC2 TIOB6 PC6 B

TC2 TIOB7 PC9 B

TC2 TIOB8 PC12 B

Table 38-4. I/O Lines

Table 38-5. Peripheral IDs

Instance ID

TC0 21

TC1 22

TC2 23

953SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.6.3 Clock Selection

At block level, input clock signals of each channel can be connected either to the external inputs TCLKx, or to the

internal I/O signals TIOAx for chaining(1) by programming the TC Block Mode Register (TC_BMR). See Figure 38-

2.

Each channel can independently select an internal or external clock source for its counter(2):

 External clock signals: XC0, XC1 or XC2

 Internal clock signals: MCK/2, MCK/8, MCK/32, MCK/128, SLCK

This selection is made by the TCCLKS bits in the TC Channel Mode Register (TC_CMR).

The selected clock can be inverted with the CLKI bit in the TC_CMR. This allows counting on the opposite edges

of the clock.

The burst function allows the clock to be validated when an external signal is high. The BURST parameter in the

TC_CMR defines this signal (none, XC0, XC1, XC2). See Figure 38-3.

Notes: 1. In Waveform mode, to chain two timers, it is mandatory to initialize some parameters:

- Configure TIOx outputs to 1 or 0 by writing the required value to TC_CMR.ASWTRG.

- Bit TC_BCR.SYNC must be written to 1 to start the channels at the same time.

2. In all cases, if an external clock is used, the duration of each of its levels must be longer than the peripheral clock

period, so the clock frequency will be at least 2.5 times lower than the peripheral clock.

Figure 38-2. Clock Chaining Selection

Timer/Counter

Channel 0

SYNC

TC0XC0S

TIOA0

TIOB0

XC0

XC1 = TCLK1

XC2 = TCLK2

TCLK0

TIOA1

TIOA2

Timer/Counter

Channel 1

SYNC

TC1XC1S

TIOA1

TIOB1

XC0 = TCLK0

XC1

XC2 = TCLK2

TCLK1

TIOA0

TIOA2

Timer/Counter

Channel 2

SYNC

TC2XC2S

TIOA2

TIOB2

XC0 = TCLK0

XC1 = TCLK1

XC2

TCLK2

TIOA0

TIOA1

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

954

Figure 38-3. Clock Selection

38.6.4 Clock Control

The clock of each counter can be controlled in two different ways: it can be enabled/disabled and started/stopped.

See Figure 38-4.

 The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS commands in the TC

Channel Control Register (TC_CCR). In Capture mode it can be disabled by an RB load event if LDBDIS is

set to 1 in the TC_CMR. In Waveform mode, it can be disabled by an RC Compare event if CPCDIS is set to

1 in TC_CMR. When disabled, the start or the stop actions have no effect: only a CLKEN command in the

TC_CCR can re-enable the clock. When the clock is enabled, the CLKSTA bit is set in the TC_SR.

 The clock can also be started or stopped: a trigger (software, synchro, external or compare) always starts

the clock. The clock can be stopped by an RB load event in Capture mode (LDBSTOP = 1 in TC_CMR) or

an RC compare event in Waveform mode (CPCSTOP = 1 in TC_CMR). The start and the stop commands

are effective only if the clock is enabled.

TIMER_CLOCK1

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

XC0

XC1

XC2

TCCLKS

CLKI
Synchronous

Edge Detection

BURST

Peripheral Clock

1

Selected
Clock

955SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 38-4. Clock Control

38.6.5 Operating Modes

Each channel can operate independently in two different modes:

 Capture mode provides measurement on signals.

 Waveform mode provides wave generation.

The TC operating mode is programmed with the WAVE bit in the TC_CMR.

In Capture mode, TIOAx and TIOBx are configured as inputs.

In Waveform mode, TIOAx is always configured to be an output and TIOBx is an output if it is not selected to be

the external trigger.

38.6.6 Trigger

A trigger resets the counter and starts the counter clock. Three types of triggers are common to both modes, and a

fourth external trigger is available to each mode.

Regardless of the trigger used, it will be taken into account at the following active edge of the selected clock. This

means that the counter value can be read differently from zero just after a trigger, especially when a low frequency

signal is selected as the clock.

The following triggers are common to both modes:

 Software Trigger: Each channel has a software trigger, available by setting SWTRG in TC_CCR.

 SYNC: Each channel has a synchronization signal SYNC. When asserted, this signal has the same effect as

a software trigger. The SYNC signals of all channels are asserted simultaneously by writing TC_BCR (Block

Control) with SYNC set.

 Compare RC Trigger: RC is implemented in each channel and can provide a trigger when the counter value

matches the RC value if CPCTRG is set in the TC_CMR.

The channel can also be configured to have an external trigger. In Capture mode, the external trigger signal can be

selected between TIOAx and TIOBx. In Waveform mode, an external event can be programmed on one of the

following signals: TIOBx, XC0, XC1 or XC2. This external event can then be programmed to perform a trigger by

setting bit ENETRG in the TC_CMR.

If an external trigger is used, the duration of the pulses must be longer than the peripheral clock period in order to

be detected.

Q S

R

S

R

Q

CLKSTA CLKEN CLKDIS

Stop

Event

Disable

EventCounter

Clock

Selected

Clock Trigger

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

956

38.6.7 Capture Mode

Capture mode is entered by clearing the WAVE bit in the TC_CMR.

Capture mode allows the TC channel to perform measurements such as pulse timing, frequency, period, duty

cycle and phase on TIOAx and TIOBx signals which are considered as inputs.

Figure 38-6 shows the configuration of the TC channel when programmed in Capture mode.

38.6.8 Capture Registers A and B

Registers A and B (RA and RB) are used as capture registers. They can be loaded with the counter value when a

programmable event occurs on the signal TIOAx.

The LDRA field in the TC_CMR defines the TIOAx selected edge for the loading of register A, and the LDRB field

defines the TIOAx selected edge for the loading of Register B.

The subsampling ratio defined by the SBSMPLR field in TC_CMR is applied to these selected edges, so that the

loading of Register A and Register B occurs once every 1, 2, 4, 8 or 16 selected edges.

RA is loaded only if it has not been loaded since the last trigger or if RB has been loaded since the last loading of

RA.

RB is loaded only if RA has been loaded since the last trigger or the last loading of RB.

Loading RA or RB before the read of the last value loaded sets the Overrun Error Flag (LOVRS bit) in the TC_SR.

In this case, the old value is overwritten.

When DMA is used, the RAB register address must be configured as source address of the transfer. The RAB

register provides the next unread value from Register A and Register B. It may be read by the DMA after a request

has been triggered upon loading Register A or Register B.

38.6.9 Transfer with PDC in Capture Mode

The PDC can perform access from the TC to system memory in Capture mode only.

Figure 38-5 illustrates how TC_RA and TC_RB can be loaded in the system memory without CPU intervention.

957SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 38-5. Example of Transfer with PDC in Capture Mode

38.6.10 Trigger Conditions

In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trigger can be defined.

The ABETRG bit in the TC_CMR selects TIOAx or TIOBx input signal as an external trigger or the trigger signal

from the output comparator of the PWM module. The External Trigger Edge Selection parameter (ETRGEDG field

in TC_CMR) defines the edge (rising, falling, or both) detected to generate an external trigger. If ETRGEDG = 0

(none), the external trigger is disabled.

TIOB

TIOA

RA

RB

Transfer to System Memory

Internal Peripheral Trigger

RA RB RA RB

T1,T2,T3,T4 = System Bus load dependent (t
min

 = 8 Peripheral Clocks)

T1 T2 T3 T4

ETRGEDG = 1, LDRA = 1, LDRB = 2, ABETRG = 0

ETRGEDG = 3, LDRA = 3, LDRB = 0, ABETRG = 0

TIOB

TIOA

RA

Transfer to System Memory RA RA

T1,T2,T3,T4 = System Bus load dependent (t
min

 = 8 Peripheral Clocks)

T1 T2 T3 T4

RA RA

(when RA or RB loaded)

Internal Peripheral Trigger
(when RA loaded)

S
A

M
4

E
 S

e
rie

s
 [D

A
T

A
S

H
E

E
T

]
A

tm
e

l-1
1

1
5

7
H

-A
T

A
R

M
-S

A
M

4
E

1
6

-S
A

M
4
E

8
-D

a
ta

s
h
e

e
t_

3
1
-M

a
r-1

6

9
5

8

F
ig

u
re

 3
8
-6

.
C

a
p

tu
re

 M
o

d
e

TIMER_CLOCK1

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

XC0

XC1

XC2

TCCLKS

CLKI

Q S

R

S

R

Q

CLKSTA CLKEN CLKDIS

BURST

TIOB

Register C

Capture

Register A

Capture

Register B Compare RC =

Counter

ABETRG

SWTRG

ETRGEDG CPCTRG

T
C

1
_

IM
R

Trig

L
D

R
B

S

L
D

R
A

S

E
T

R
G

S

T
C

1
_

S
R

L
O

V
R

S

C
O

V
F

S

SYNC

1

MTIOB

TIOA

MTIOA

LDRA

LDBSTOP

If RA is not loaded

or RB is loaded If RA is loaded

LDBDIS

C
P

C
S

INT

Edge

Detector

Edge

Detector

LDRB

Edge

Detector

CLK
OVF

RESET

Timer/Counter Channel

Peripheral Clock

Synchronous

Edge Detection

Edge Subsampler

SBSMPLR

959SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.6.11 Waveform Mode

Waveform mode is entered by setting the TC_CMRx.WAVE bit.

In Waveform mode, the TC channel generates one or two PWM signals with the same frequency and

independently programmable duty cycles, or generates different types of one-shot or repetitive pulses.

In this mode, TIOAx is configured as an output and TIOBx is defined as an output if it is not used as an external

event (EEVT parameter in TC_CMR).

Figure 38-7 shows the configuration of the TC channel when programmed in Waveform operating mode.

38.6.12 Waveform Selection

Depending on the WAVSEL parameter in TC_CMR, the behavior of TC_CV varies.

With any selection, TC_RA, TC_RB and TC_RC can all be used as compare registers.

RA Compare is used to control the TIOAx output, RB Compare is used to control the TIOBx output (if correctly

configured) and RC Compare is used to control TIOAx and/or TIOBx outputs.

S
A

M
4

E
 S

e
rie

s
 [D

A
T

A
S

H
E

E
T

]
A

tm
e

l-1
1

1
5

7
H

-A
T

A
R

M
-S

A
M

4
E

1
6

-S
A

M
4
E

8
-D

a
ta

s
h
e

e
t_

3
1
-M

a
r-1

6

9
6

0

F
ig

u
re

 3
8
-7

.
W

a
v

e
fo

rm
 M

o
d

e

TCCLKS

CLKI

Q S

R

S

R

Q

CLKSTA CLKEN CLKDIS

CPCDIS

BURST

TIOB

Register A Register B Register C

Compare RA = Compare RB = Compare RC =

CPCSTOP

Counter

EEVT

EEVTEDG

SYNC

SWTRG

ENETRG

WAVSEL

T
C

1
_

IM
R

Trig

ACPC

ACPA

AEEVT

ASWTRG

BCPC

BCPB

BEEVT

BSWTRG

TIOA

MTIOA

TIOB

MTIOB

C
P

A
S

C
O

V
F

S

E
T

R
G

S

T
C

1
_

S
R

C
P

C
S

C
P

B
S

CLK

OVF
RESET

O
u

tp
u

t C
o

n
tro

lle
r

O
u

tp
u

t C
o

n
tro

lle
r

INT

1

Edge

Detector

Timer/Counter Channel

TIMER_CLOCK1

TIMER_CLOCK2

TIMER_CLOCK3

TIMER_CLOCK4

TIMER_CLOCK5

XC0

XC1

XC2

WAVSEL

Peripheral Clock

Synchronous

Edge Detection

961SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.6.12.1 WAVSEL = 00

When WAVSEL = 00, the value of TC_CV is incremented from 0 to 232-1. Once 232-1 has been reached, the value

of TC_CV is reset. Incrementation of TC_CV starts again and the cycle continues. See Figure 38-8.

An external event trigger or a software trigger can reset the value of TC_CV. It is important to note that the trigger

may occur at any time. See Figure 38-9.

RC Compare cannot be programmed to generate a trigger in this configuration. At the same time, RC Compare

can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the counter clock (CPCDIS = 1 in

TC_CMR).

Figure 38-8. WAVSEL = 00 without Trigger

Figure 38-9. WAVSEL = 00 with Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter cleared by trigger

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

962

38.6.12.2 WAVSEL = 10

When WAVSEL = 10, the value of TC_CV is incremented from 0 to the value of RC, then automatically reset on a

RC Compare. Once the value of TC_CV has been reset, it is then incremented and so on. See Figure 38-10.

It is important to note that TC_CV can be reset at any time by an external event or a software trigger if both are

programmed correctly. See Figure 38-11.

In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the counter clock

(CPCDIS = 1 in TC_CMR).

Figure 38-10. WAVSEL = 10 without Trigger

Figure 38-11. WAVSEL = 10 with Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC

Waveform Examples

2n-1
(n = counter size)

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter cleared by compare match with RC

Waveform Examples

Counter cleared by trigger

2n-1
(n = counter size)

963SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.6.12.3 WAVSEL = 01

When WAVSEL = 01, the value of TC_CV is incremented from 0 to 232-1 . Once 232-1 is reached, the value of

TC_CV is decremented to 0, then re-incremented to 232-1 and so on. See Figure 38-12.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trigger occurs while

TC_CV is incrementing, TC_CV then decrements. If a trigger is received while TC_CV is decrementing, TC_CV

then increments. See Figure 38-13.

RC Compare cannot be programmed to generate a trigger in this configuration.

At the same time, RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock

(CPCDIS = 1).

Figure 38-12. WAVSEL = 01 without Trigger

Figure 38-13. WAVSEL = 01 with Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with 0xFFFF

0xFFFF

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

964

38.6.12.4 WAVSEL = 11

When WAVSEL = 11, the value of TC_CV is incremented from 0 to RC. Once RC is reached, the value of TC_CV

is decremented to 0, then re-incremented to RC and so on. See Figure 38-14.

A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trigger occurs while

TC_CV is incrementing, TC_CV then decrements. If a trigger is received while TC_CV is decrementing, TC_CV

then increments. See Figure 38-15.

RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock (CPCDIS = 1).

Figure 38-14. WAVSEL = 11 without Trigger

Figure 38-15. WAVSEL = 11 with Trigger

Time

Counter Value

RC

RB

RA

TIOB

TIOA

Counter decremented by compare match with RC

Waveform Examples

2n-1
(n = counter size)

Time

Counter Value

TIOB

TIOA

Counter decremented by compare match with RC

Waveform Examples

Counter decremented
by trigger

Counter incremented
by trigger

RC

RB

RA

2n-1
(n = counter size)

965SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.6.13 External Event/Trigger Conditions

An external event can be programmed to be detected on one of the clock sources (XC0, XC1, XC2) or TIOBx. The

external event selected can then be used as a trigger.

The EEVT parameter in TC_CMR selects the external trigger. The EEVTEDG parameter defines the trigger edge

for each of the possible external triggers (rising, falling or both). If EEVTEDG is cleared (none), no external event

is defined.

If TIOBx is defined as an external event signal (EEVT = 0), TIOBx is no longer used as an output and the compare

register B is not used to generate waveforms and subsequently no IRQs. In this case the TC channel can only

generate a waveform on TIOAx.

When an external event is defined, it can be used as a trigger by setting bit ENETRG in the TC_CMR.

As in Capture mode, the SYNC signal and the software trigger are also available as triggers. RC Compare can

also be used as a trigger depending on the parameter WAVSEL.

38.6.14 Synchronization with PWM

The inputs TIOAx/TIOBx can be bypassed, and thus channel trigger/capture events can be directly driven by the

independent PWM module.

PWM comparator outputs (internal signals without dead-time insertion - OCx), respectively source of the

PWMH/L[2:0] outputs, are routed to the internal TC inputs. These specific TC inputs are multiplexed with TIOA/B

input signal to drive the internal trigger/capture events.

The selection can be programmed in the Extended Mode Register (TC_EMR) fields TRIGSRCA and TRIGSRCB

(see Section 38.7.14 “TC Extended Mode Register”).

Each channel of the TC module can be synchronized by a different PWM channel as described in Figure 38-16.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

966

Figure 38-16. Synchronization with PWM

Timer/Counter

Channel 0

TC_EMR0.TRIGSRCA

TIOA0

TIOA0

TC_EMR0.TRIGSRCB

TIOB0

TIOB0

Timer/Counter

Channel 1

TC_EMR1.TRIGSRCA

TIOA1

TIOA1

TC_EMR1.TRIGSRCB

TIOB1

TIOB1

Timer/Counter

Channel 2

TC_EMR2.TRIGSRCA

TIOA2

TIOA2

TC_EMR2.TRIGSRCB

TIOB2

TIOB2

PWM comparator outputs (internal signals)

respectively source of PWMH/L[2:0]

Timer/Counter

1

1

1

1

1

1

967SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.6.15 Output Controller

The output controller defines the output level changes on TIOAx and TIOBx following an event. TIOBx Control is

used only if TIOBx is defined as output (not as an external event).

The following events control TIOAx and TIOBx:

 Software Trigger

 External Event

 RC Compare

RA Compare controls TIOAx, and RB Compare controls TIOBx. Each of these events can be programmed to set,

clear or toggle the output as defined in the corresponding parameter in TC_CMR.

38.6.16 Quadrature Decoder

38.6.16.1 Description

The quadrature decoder (QDEC) is driven by TIOA0, TIOB0, TIOB1 input pins and drives the timer/counter of

channel 0 and 1. Channel 2 can be used as a time base in case of speed measurement requirements (refer to

Figure 38-17).

When writing a 0 to bit QDEN of the TC_BMR, the QDEC is bypassed and the IO pins are directly routed to the

timer counter function.

TIOA0 and TIOB0 are to be driven by the two dedicated quadrature signals from a rotary sensor mounted on the

shaft of the off-chip motor.

A third signal from the rotary sensor can be processed through pin TIOB1 and is typically dedicated to be driven by

an index signal if it is provided by the sensor. This signal is not required to decode the quadrature signals PHA,

PHB.

Field TCCLKS of TC_CMRx must be configured to select XC0 input (i.e., 0x101). Field TC0XC0S has no effect as

soon as the QDEC is enabled.

Either speed or position/revolution can be measured. Position channel 0 accumulates the edges of PHA, PHB

input signals giving a high accuracy on motor position whereas channel 1 accumulates the index pulses of the

sensor, therefore the number of rotations. Concatenation of both values provides a high level of precision on

motion system position.

In Speed mode, position cannot be measured but revolution can be measured.

Inputs from the rotary sensor can be filtered prior to down-stream processing. Accommodation of input polarity,

phase definition and other factors are configurable.

Interruptions can be generated on different events.

A compare function (using TC_RC) is available on channel 0 (speed/position) or channel 1 (rotation) and can

generate an interrupt by means of the CPCS flag in the TC_SRx.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

968

Figure 38-17. Predefined Connection of the Quadrature Decoder with Timer Counters

38.6.16.2 Input Pre-processing

Input pre-processing consists of capabilities to take into account rotary sensor factors such as polarities and phase

definition followed by configurable digital filtering.

Each input can be negated and swapping PHA, PHB is also configurable.

The MAXFILT field in the TC_BMR is used to configure a minimum duration for which the pulse is stated as valid.

When the filter is active, pulses with a duration lower than MAXFILT +1 × tperipheral clock ns are not passed to down-

stream logic.

Timer/Counter

Channel 0

1

XC0

TIOA

TIOB

Timer/Counter

Channel 1

1

XC0

TIOB

QDEN

Timer/Counter

Channel 2

1

TIOB0
XC0

1

1

SPEEDEN

1

XC0

Quadrature

Decoder

(Filter + Edge

Detect + QD)

PHA

PHB

IDX

TIOA0

TIOB0

TIOB1

TIOB1

TIOA0

Index

Speed/Position

Rotation

Speed Time Base

Reset pulse

Direction

PHEdges QDEN

969SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 38-18. Input Stage

Input filtering can efficiently remove spurious pulses that might be generated by the presence of particulate

contamination on the optical or magnetic disk of the rotary sensor.

Spurious pulses can also occur in environments with high levels of electro-magnetic interference. Or, simply if

vibration occurs even when rotation is fully stopped and the shaft of the motor is in such a position that the

beginning of one of the reflective or magnetic bars on the rotary sensor disk is aligned with the light or magnetic

(Hall) receiver cell of the rotary sensor. Any vibration can make the PHA, PHB signals toggle for a short duration.

1

1

1

MAXFILT

PHA

PHB

IDX

TIOA0

TIOB0

TIOB1

INVA

1

INVB

1

INVIDX

SWAP

1

IDXPHB

Filter

Filter

Filter
1

Direction

and

Edge

Detection

IDX

PHedge

DIR

Input Pre-Processing

MAXFILT > 0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

970

Figure 38-19. Filtering Examples

PHA,B

Filter Out

Peripheral Clock
MAXFILT = 2

particulate contamination

PHA

PHB
motor shaft stopped in such a position that

rotary sensor cell is aligned with an edge of the disk

rotation

PHA

PHB

PHB Edge area due to system vibration

Resulting PHA, PHB electrical waveforms

PHA

Optical/Magnetic disk strips

stop

PHB

mechanical shock on system

vibration

stop

PHA, PHB electrical waveforms after filtering

PHA

PHB

971SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.6.16.3 Direction Status and Change Detection

After filtering, the quadrature signals are analyzed to extract the rotation direction and edges of the two quadrature

signals detected in order to be counted by timer/counter logic downstream.

The direction status can be directly read at anytime in the TC_QISR. The polarity of the direction flag status

depends on the configuration written in TC_BMR. INVA, INVB, INVIDX, SWAP modify the polarity of DIR flag.

Any change in rotation direction is reported in the TC_QISR and can generate an interrupt.

The direction change condition is reported as soon as two consecutive edges on a phase signal have sampled the

same value on the other phase signal and there is an edge on the other signal. The two consecutive edges of one

phase signal sampling the same value on other phase signal is not sufficient to declare a direction change, for the

reason that particulate contamination may mask one or more reflective bars on the optical or magnetic disk of the

sensor. Refer to Figure 38-20 for waveforms.

Figure 38-20. Rotation Change Detection

The direction change detection is disabled when QDTRANS is set in the TC_BMR. In this case, the DIR flag report

must not be used.

A quadrature error is also reported by the QDEC via the QERR flag in the TC_QISR. This error is reported if the

time difference between two edges on PHA, PHB is lower than a predefined value. This predefined value is

PHA

PHB

Direction Change under normal conditions

DIR

DIRCHG

change condition

Report Time

No direction change due to particulate contamination masking a reflective bar

PHA

PHB

DIR

DIRCHG
spurious change condition (if detected in a simple way)

same phase

missing pulse

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

972

configurable and corresponds to (MAXFILT + 1) × tperipheral clock ns. After being filtered there is no reason to have

two edges closer than (MAXFILT + 1) × tperipheral clock ns under normal mode of operation.

Figure 38-21. Quadrature Error Detection

MAXFILT must be tuned according to several factors such as the peripheral clock frequency, type of rotary sensor

and rotation speed to be achieved.

38.6.16.4 Position and Rotation Measurement

When the POSEN bit is set in the TC_BMR, the motor axis position is processed on channel 0 (by means of the

PHA, PHB edge detections) and the number of motor revolutions are recorded on channel 1 if the IDX signal is

provided on the TIOB1 input. If no IDX signal is available, the internal counter can be cleared for each revolution if

the number of counts per revolution is configured in TC_RC0.RC and the TC_CMR.CPCTRG bit is written to 1.

The position measurement can be read in the TC_CV0 register and the rotation measurement can be read in the

TC_CV1 register.

Channel 0 and 1 must be configured in Capture mode (TC_CMR0.WAVE = 0). ‘Rising edge’ must be selected as

the External Trigger Edge (TC_CMR.ETRGEDG = 0x01) and ‘TIOAx’ must be selected as the External Trigger

(TC_CMR.ABETRG = 0x1).

In parallel, the number of edges are accumulated on timer/counter channel 0 and can be read on the TC_CV0

register.

Therefore, the accurate position can be read on both TC_CV registers and concatenated to form a 32-bit word.

Peripheral Clock
MAXFILT = 2

PHA

PHB

Abnormally formatted optical disk strips (theoretical view)

PHA

PHB

strip edge inaccuracy due to disk etching/printing process

resulting PHA, PHB electrical waveforms

PHA

PHB

Even with an abnormally formatted disk, there is no occurrence of PHA, PHB switching at the same time.

QERR

duration < MAXFILT

973SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The timer/counter channel 0 is cleared for each increment of IDX count value.

Depending on the quadrature signals, the direction is decoded and allows to count up or down in timer/counter

channels 0 and 1. The direction status is reported on TC_QISR.

38.6.16.5 Speed Measurement

When SPEEDEN is set in the TC_BMR, the speed measure is enabled on channel 0.

A time base must be defined on channel 2 by writing the TC_RC2 period register. Channel 2 must be configured in

Waveform mode (WAVE bit set) in TC_CMR2. The WAVSEL field must be defined with 0x10 to clear the counter

by comparison and matching with TC_RC value. Field ACPC must be defined at 0x11 to toggle TIOAx output.

This time base is automatically fed back to TIOAx of channel 0 when QDEN and SPEEDEN are set.

Channel 0 must be configured in Capture mode (WAVE = 0 in TC_CMR0). The ABETRG bit of TC_CMR0 must be

configured at 1 to select TIOAx as a trigger for this channel.

EDGTRG must be set to 0x01, to clear the counter on a rising edge of the TIOAx signal and field LDRA must be

set accordingly to 0x01, to load TC_RA0 at the same time as the counter is cleared (LDRB must be set to 0x01).

As a consequence, at the end of each time base period the differentiation required for the speed calculation is

performed.

The process must be started by configuring bits CLKEN and SWTRG in the TC_CCR.

The speed can be read on field RA in TC_RA0.

Channel 1 can still be used to count the number of revolutions of the motor.

38.6.16.6 Detecting a Missing Index Pulse

To detect a missing index pulse due contamination, dust, etc., the TC_SR0.CPCS flag can be used. It is also

possible to assert the interrupt line if the TC_SR0.CPCS flag is enabled as a source of the interrupt by writing a ‘1’

to TC_IER0.CPCS.

The TC_RC0.RC field must be written with the nominal number of counts per revolution provided by the rotary

encoder, plus a margin to eliminate potential noise (e.g., if nominal count per revolution is 1024, then

TC_RC0.RC=1028).

If the index pulse is missing, the timer value is not cleared and the nominal value is exceeded, then the comparator

on the RC triggers an event, TC_SR0.CPCS=1, and the interrupt line is asserted if TC_IER0.CPCS=1.

38.6.17 2-bit Gray Up/Down Counter for Stepper Motor

Each channel can be independently configured to generate a 2-bit Gray count waveform on corresponding TIOAx,

TIOBx outputs by means of the GCEN bit in TC_SMMRx.

Up or Down count can be defined by writing bit DOWN in TC_SMMRx.

It is mandatory to configure the channel in Waveform mode in the TC_CMR.

The period of the counters can be programmed in TC_RCx.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

974

Figure 38-22. 2-bit Gray Up/Down Counter

38.6.18 Fault Mode

At any time, the TC_RCx registers can be used to perform a comparison on the respective current channel counter

value (TC_CVx) with the value of TC_RCx register.

The CPCSx flags can be set accordingly and an interrupt can be generated.

This interrupt is processed but requires an unpredictable amount of time to be achieve the required action.

It is possible to trigger the FAULT output of the TIMER1 with CPCS from TC_SR0 and/or CPCS from TC_SR1.

Each source can be independently enabled/disabled in the TC_FMR.

This can be useful to detect an overflow on speed and/or position when QDEC is processed and to act

immediately by using the FAULT output.

Figure 38-23. Fault Output Generation

TIOAx

TIOBx

DOWNx

TC_RCx

WAVEx = GCENx =1

TC_SR0 flag CPCS

TC_FMR / ENCF0

FAULT (to PWM input)

OR

AND

AND
TC_SR1 flag CPCS

TC_FMR / ENCF1

975SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.6.19 Register Write Protection

To prevent any single software error from corrupting TC behavior, certain registers in the address space can be

write-protected by setting the WPEN bit in the TC Write Protection Mode Register (TC_WPMR).

The Timer Counter clock of the first channel must be enabled to access TC_WPMR.

The following registers can be write-protected:

 TC Block Mode Register

 TC Channel Mode Register: Capture Mode

 TC Channel Mode Register: Waveform Mode

 TC Fault Mode Register

 TC Stepper Motor Mode Register

 TC Register A

 TC Register B

 TC Register C

 TC Extended Mode Register

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

976

38.7 Timer Counter (TC) User Interface

Notes: 1. Channel index ranges from 0 to 2.

2. Read-only if TC_CMRx.WAVE = 0

Table 38-6. Register Mapping

Offset(1) Register Name Access Reset

0x00 + channel * 0x40 + 0x00 Channel Control Register TC_CCR Write-only –

0x00 + channel * 0x40 + 0x04 Channel Mode Register TC_CMR Read/Write 0

0x00 + channel * 0x40 + 0x08 Stepper Motor Mode Register TC_SMMR Read/Write 0

0x00 + channel * 0x40 + 0x0C Register AB TC_RAB Read-only 0

0x00 + channel * 0x40 + 0x10 Counter Value TC_CV Read-only 0

0x00 + channel * 0x40 + 0x14 Register A TC_RA Read/Write(2) 0

0x00 + channel * 0x40 + 0x18 Register B TC_RB Read/Write(2) 0

0x00 + channel * 0x40 + 0x1C Register C TC_RC Read/Write 0

0x00 + channel * 0x40 + 0x20 Status Register TC_SR Read-only 0

0x00 + channel * 0x40 + 0x24 Interrupt Enable Register TC_IER Write-only –

0x00 + channel * 0x40 + 0x28 Interrupt Disable Register TC_IDR Write-only –

0x00 + channel * 0x40 + 0x2C Interrupt Mask Register TC_IMR Read-only 0

0x00 + channel * 0x40 + 0x30 Extended Mode Register TC_EMR Read/Write 0

0xC0 Block Control Register TC_BCR Write-only –

0xC4 Block Mode Register TC_BMR Read/Write 0

0xC8 QDEC Interrupt Enable Register TC_QIER Write-only –

0xCC QDEC Interrupt Disable Register TC_QIDR Write-only –

0xD0 QDEC Interrupt Mask Register TC_QIMR Read-only 0

0xD4 QDEC Interrupt Status Register TC_QISR Read-only 0

0xD8 Fault Mode Register TC_FMR Read/Write 0

0xE4 Write Protection Mode Register TC_WPMR Read/Write 0

 0xE8–0xFC Reserved – – –

0x100–0x1A4 Reserved for PDC Registers – – –

977SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.1 TC Channel Control Register

Name: TC_CCRx [x=0..2]

Address: 0x40090000 (0)[0], 0x40090040 (0)[1], 0x40090080 (0)[2], 0x40094000 (1)[0], 0x40094040 (1)[1],

0x40094080 (1)[2], 0x40098000 (2)[0], 0x40098040 (2)[1], 0x40098080 (2)[2]

Access: Write-only

• CLKEN: Counter Clock Enable Command

0: No effect.

1: Enables the clock if CLKDIS is not 1.

• CLKDIS: Counter Clock Disable Command

0: No effect.

1: Disables the clock.

• SWTRG: Software Trigger Command

0: No effect.

1: A software trigger is performed: the counter is reset and the clock is started.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – SWTRG CLKDIS CLKEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

978

38.7.2 TC Channel Mode Register: Capture Mode

Name: TC_CMRx [x=0..2] (CAPTURE_MODE)

Address: 0x40090004 (0)[0], 0x40090044 (0)[1], 0x40090084 (0)[2], 0x40094004 (1)[0], 0x40094044 (1)[1],

0x40094084 (1)[2], 0x40098004 (2)[0], 0x40098044 (2)[1], 0x40098084 (2)[2]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• TCCLKS: Clock Selection

To operate at maximum peripheral clock frequency, refer to Section 38.7.14 “TC Extended Mode Register”.

• CLKI: Clock Invert

0: Counter is incremented on rising edge of the clock.

1: Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– SBSMPLR LDRB LDRA

15 14 13 12 11 10 9 8

WAVE CPCTRG – – – ABETRG ETRGEDG

7 6 5 4 3 2 1 0

LDBDIS LDBSTOP BURST CLKI TCCLKS

Value Name Description

0 TIMER_CLOCK1 Clock selected: internal MCK/2 clock signal (from PMC)

1 TIMER_CLOCK2 Clock selected: internal MCK/8 clock signal (from PMC)

2 TIMER_CLOCK3 Clock selected: internal MCK/32 clock signal (from PMC)

3 TIMER_CLOCK4 Clock selected: internal MCK/128 clock signal (from PMC)

4 TIMER_CLOCK5 Clock selected: internal SLCK clock signal (from PMC)

5 XC0 Clock selected: XC0

6 XC1 Clock selected: XC1

7 XC2 Clock selected: XC2

Value Name Description

0 NONE The clock is not gated by an external signal.

1 XC0 XC0 is ANDed with the selected clock.

2 XC1 XC1 is ANDed with the selected clock.

3 XC2 XC2 is ANDed with the selected clock.

979SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• LDBSTOP: Counter Clock Stopped with RB Loading

0: Counter clock is not stopped when RB loading occurs.

1: Counter clock is stopped when RB loading occurs.

• LDBDIS: Counter Clock Disable with RB Loading

0: Counter clock is not disabled when RB loading occurs.

1: Counter clock is disabled when RB loading occurs.

• ETRGEDG: External Trigger Edge Selection

• ABETRG: TIOAx or TIOBx External Trigger Selection

0: TIOBx is used as an external trigger.

1: TIOAx is used as an external trigger.

• CPCTRG: RC Compare Trigger Enable

0: RC Compare has no effect on the counter and its clock.

1: RC Compare resets the counter and starts the counter clock.

• WAVE: Waveform Mode

0: Capture mode is enabled.

1: Capture mode is disabled (Waveform mode is enabled).

• LDRA: RA Loading Edge Selection

• LDRB: RB Loading Edge Selection

Value Name Description

0 NONE The clock is not gated by an external signal.

1 RISING Rising edge

2 FALLING Falling edge

3 EDGE Each edge

Value Name Description

0 NONE None

1 RISING Rising edge of TIOAx

2 FALLING Falling edge of TIOAx

3 EDGE Each edge of TIOAx

Value Name Description

0 NONE None

1 RISING Rising edge of TIOAx

2 FALLING Falling edge of TIOAx

3 EDGE Each edge of TIOAx

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

980

• SBSMPLR: Loading Edge Subsampling Ratio

Value Name Description

0 ONE Load a Capture Register each selected edge

1 HALF Load a Capture Register every 2 selected edges

2 FOURTH Load a Capture Register every 4 selected edges

3 EIGHTH Load a Capture Register every 8 selected edges

4 SIXTEENTH Load a Capture Register every 16 selected edges

981SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.3 TC Channel Mode Register: Waveform Mode

Name: TC_CMRx [x=0..2] (WAVEFORM_MODE)

Address: 0x40090004 (0)[0], 0x40090044 (0)[1], 0x40090084 (0)[2], 0x40094004 (1)[0], 0x40094044 (1)[1],

0x40094084 (1)[2], 0x40098004 (2)[0], 0x40098044 (2)[1], 0x40098084 (2)[2]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• TCCLKS: Clock Selection

To operate at maximum peripheral clock frequency, refer to Section 38.7.14 “TC Extended Mode Register”.

• CLKI: Clock Invert

0: Counter is incremented on rising edge of the clock.

1: Counter is incremented on falling edge of the clock.

• BURST: Burst Signal Selection

31 30 29 28 27 26 25 24

BSWTRG BEEVT BCPC BCPB

23 22 21 20 19 18 17 16

ASWTRG AEEVT ACPC ACPA

15 14 13 12 11 10 9 8

WAVE WAVSEL ENETRG EEVT EEVTEDG

7 6 5 4 3 2 1 0

CPCDIS CPCSTOP BURST CLKI TCCLKS

Value Name Description

0 TIMER_CLOCK1 Clock selected: internal MCK/2 clock signal (from PMC)

1 TIMER_CLOCK2 Clock selected: internal MCK/8 clock signal (from PMC)

2 TIMER_CLOCK3 Clock selected: internal MCK/32 clock signal (from PMC)

3 TIMER_CLOCK4 Clock selected: internal MCK/128 clock signal (from PMC)

4 TIMER_CLOCK5 Clock selected: internal SLCK clock signal (from PMC)

5 XC0 Clock selected: XC0

6 XC1 Clock selected: XC1

7 XC2 Clock selected: XC2

Value Name Description

0 NONE The clock is not gated by an external signal.

1 XC0 XC0 is ANDed with the selected clock.

2 XC1 XC1 is ANDed with the selected clock.

3 XC2 XC2 is ANDed with the selected clock.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

982

• CPCSTOP: Counter Clock Stopped with RC Compare

0: Counter clock is not stopped when counter reaches RC.

1: Counter clock is stopped when counter reaches RC.

• CPCDIS: Counter Clock Disable with RC Compare

0: Counter clock is not disabled when counter reaches RC.

1: Counter clock is disabled when counter reaches RC.

• EEVTEDG: External Event Edge Selection

• EEVT: External Event Selection

Signal selected as external event.

Note: 1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and

subsequently no IRQs.

• ENETRG: External Event Trigger Enable

0: The external event has no effect on the counter and its clock.

1: The external event resets the counter and starts the counter clock.

Note: Whatever the value programmed in ENETRG, the selected external event only controls the TIOAx output and TIOBx if not used as

input (trigger event input or other input used).

• WAVSEL: Waveform Selection

• WAVE: Waveform Mode

0: Waveform mode is disabled (Capture mode is enabled).

1: Waveform mode is enabled.

Value Name Description

0 NONE None

1 RISING Rising edge

2 FALLING Falling edge

3 EDGE Each edge

Value Name Description TIOB Direction

0 TIOB TIOB(1) Input

1 XC0 XC0 Output

2 XC1 XC1 Output

3 XC2 XC2 Output

Value Name Description

0 UP UP mode without automatic trigger on RC Compare

1 UPDOWN UPDOWN mode without automatic trigger on RC Compare

2 UP_RC UP mode with automatic trigger on RC Compare

3 UPDOWN_RC UPDOWN mode with automatic trigger on RC Compare

983SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• ACPA: RA Compare Effect on TIOAx

• ACPC: RC Compare Effect on TIOAx

• AEEVT: External Event Effect on TIOAx

• ASWTRG: Software Trigger Effect on TIOAx

• BCPB: RB Compare Effect on TIOBx

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

984

• BCPC: RC Compare Effect on TIOBx

• BEEVT: External Event Effect on TIOBx

• BSWTRG: Software Trigger Effect on TIOBx

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

Value Name Description

0 NONE None

1 SET Set

2 CLEAR Clear

3 TOGGLE Toggle

985SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.4 TC Stepper Motor Mode Register

Name: TC_SMMRx [x=0..2]

Address: 0x40090008 (0)[0], 0x40090048 (0)[1], 0x40090088 (0)[2], 0x40094008 (1)[0], 0x40094048 (1)[1],

0x40094088 (1)[2], 0x40098008 (2)[0], 0x40098048 (2)[1], 0x40098088 (2)[2]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• GCEN: Gray Count Enable

0: TIOAx [x=0..2] and TIOBx [x=0..2] are driven by internal counter of channel x.

1: TIOAx [x=0..2] and TIOBx [x=0..2] are driven by a 2-bit Gray counter.

• DOWN: Down Count

0: Up counter.

1: Down counter.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – DOWN GCEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

986

38.7.5 TC Register AB

Name: TC_RABx [x=0..2]

Address: 0x4009000C (0)[0], 0x4009004C (0)[1], 0x4009008C (0)[2], 0x4009400C (1)[0], 0x4009404C (1)[1],

0x4009408C (1)[2], 0x4009800C (2)[0], 0x4009804C (2)[1], 0x4009808C (2)[2]

Access: Read-only

• RAB: Register A or Register B

RAB contains the next unread capture Register A or Register B value in real time. It is usually read by the DMA after a

request due to a valid load edge on TIOAx.

When DMA is used, the RAB register address must be configured as source address of the transfer.

31 30 29 28 27 26 25 24

RAB

23 22 21 20 19 18 17 16

RAB

15 14 13 12 11 10 9 8

RAB

7 6 5 4 3 2 1 0

RAB

987SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.6 TC Counter Value Register

Name: TC_CVx [x=0..2]

Address: 0x40090010 (0)[0], 0x40090050 (0)[1], 0x40090090 (0)[2], 0x40094010 (1)[0], 0x40094050 (1)[1],

0x40094090 (1)[2], 0x40098010 (2)[0], 0x40098050 (2)[1], 0x40098090 (2)[2]

Access: Read-only

• CV: Counter Value

CV contains the counter value in real time.

31 30 29 28 27 26 25 24

CV

23 22 21 20 19 18 17 16

CV

15 14 13 12 11 10 9 8

CV

7 6 5 4 3 2 1 0

CV

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

988

38.7.7 TC Register A

Name: TC_RAx [x=0..2]

Address: 0x40090014 (0)[0], 0x40090054 (0)[1], 0x40090094 (0)[2], 0x40094014 (1)[0], 0x40094054 (1)[1],

0x40094094 (1)[2], 0x40098014 (2)[0], 0x40098054 (2)[1], 0x40098094 (2)[2]

Access: Read-only if TC_CMRx.WAVE = 0, Read/Write if TC_CMRx.WAVE = 1

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• RA: Register A

RA contains the Register A value in real time.

31 30 29 28 27 26 25 24

RA

23 22 21 20 19 18 17 16

RA

15 14 13 12 11 10 9 8

RA

7 6 5 4 3 2 1 0

RA

989SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.8 TC Register B

Name: TC_RBx [x=0..2]

Address: 0x40090018 (0)[0], 0x40090058 (0)[1], 0x40090098 (0)[2], 0x40094018 (1)[0], 0x40094058 (1)[1],

0x40094098 (1)[2], 0x40098018 (2)[0], 0x40098058 (2)[1], 0x40098098 (2)[2]

Access: Read-only if TC_CMRx.WAVE = 0, Read/Write if TC_CMRx.WAVE = 1

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• RB: Register B

RB contains the Register B value in real time.

31 30 29 28 27 26 25 24

RB

23 22 21 20 19 18 17 16

RB

15 14 13 12 11 10 9 8

RB

7 6 5 4 3 2 1 0

RB

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

990

38.7.9 TC Register C

Name: TC_RCx [x=0..2]

Address: 0x4009001C (0)[0], 0x4009005C (0)[1], 0x4009009C (0)[2], 0x4009401C (1)[0], 0x4009405C (1)[1],

0x4009409C (1)[2], 0x4009801C (2)[0], 0x4009805C (2)[1], 0x4009809C (2)[2]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• RC: Register C

RC contains the Register C value in real time.

31 30 29 28 27 26 25 24

RC

23 22 21 20 19 18 17 16

RC

15 14 13 12 11 10 9 8

RC

7 6 5 4 3 2 1 0

RC

991SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.10 TC Status Register

Name: TC_SRx [x=0..2]

Address: 0x40090020 (0)[0], 0x40090060 (0)[1], 0x400900A0 (0)[2], 0x40094020 (1)[0], 0x40094060 (1)[1],

0x400940A0 (1)[2], 0x40098020 (2)[0], 0x40098060 (2)[1], 0x400980A0 (2)[2]

Access: Read-only

• COVFS: Counter Overflow Status (cleared on read)

0: No counter overflow has occurred since the last read of the Status Register.

1: A counter overflow has occurred since the last read of the Status Register.

• LOVRS: Load Overrun Status (cleared on read)

0: Load overrun has not occurred since the last read of the Status Register or TC_CMRx.WAVE = 1.

1: RA or RB have been loaded at least twice without any read of the corresponding register since the last read of the Sta-

tus Register, if TC_CMRx.WAVE = 0.

• CPAS: RA Compare Status (cleared on read)

0: RA Compare has not occurred since the last read of the Status Register or TC_CMRx.WAVE = 0.

1: RA Compare has occurred since the last read of the Status Register, if TC_CMRx.WAVE = 1.

• CPBS: RB Compare Status (cleared on read)

0: RB Compare has not occurred since the last read of the Status Register or TC_CMRx.WAVE = 0.

1: RB Compare has occurred since the last read of the Status Register, if TC_CMRx.WAVE = 1.

• CPCS: RC Compare Status (cleared on read)

0: RC Compare has not occurred since the last read of the Status Register.

1: RC Compare has occurred since the last read of the Status Register.

• LDRAS: RA Loading Status (cleared on read)

0: RA Load has not occurred since the last read of the Status Register or TC_CMRx.WAVE = 1.

1: RA Load has occurred since the last read of the Status Register, if TC_CMRx.WAVE = 0.

• LDRBS: RB Loading Status (cleared on read)

0: RB Load has not occurred since the last read of the Status Register or TC_CMRx.WAVE = 1.

1: RB Load has occurred since the last read of the Status Register, if TC_CMRx.WAVE = 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – MTIOB MTIOA CLKSTA

15 14 13 12 11 10 9 8

– – – – – – RXBUFF ENDRX

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

992

• ETRGS: External Trigger Status (cleared on read)

0: External trigger has not occurred since the last read of the Status Register.

1: External trigger has occurred since the last read of the Status Register.

• ENDRX: End of Receiver Transfer (cleared by writing TC_RCR or TC_RNCR)

0: The Receive Counter Register has not reached 0 since the last write in TC_RCR(1) or TC_RNCR(1).

1: The Receive Counter Register has reached 0 since the last write in TC_RCR or TC_RNCR.

• RXBUFF: Reception Buffer Full (cleared by writing TC_RCR or TC_RNCR)

0: TC_RCR or TC_RNCR have a value other than 0.

1: Both TC_RCR and TC_RNCR have a value of 0.

Note: 1. TC_RCR and TC_RNCR are PDC registers.

• CLKSTA: Clock Enabling Status

0: Clock is disabled.

1: Clock is enabled.

• MTIOA: TIOAx Mirror

0: TIOAx is low. If TC_CMRx.WAVE = 0, this means that TIOAx pin is low. If TC_CMRx.WAVE = 1, this means that TIOAx

is driven low.

1: TIOAx is high. If TC_CMRx.WAVE = 0, this means that TIOAx pin is high. If TC_CMRx.WAVE = 1, this means that

TIOAx is driven high.

• MTIOB: TIOBx Mirror

0: TIOBx is low. If TC_CMRx.WAVE = 0, this means that TIOBx pin is low. If TC_CMRx.WAVE = 1, this means that TIOBx

is driven low.

1: TIOBx is high. If TC_CMRx.WAVE = 0, this means that TIOBx pin is high. If TC_CMRx.WAVE = 1, this means that

TIOBx is driven high.

993SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.11 TC Interrupt Enable Register

Name: TC_IERx [x=0..2]

Address: 0x40090024 (0)[0], 0x40090064 (0)[1], 0x400900A4 (0)[2], 0x40094024 (1)[0], 0x40094064 (1)[1],

0x400940A4 (1)[2], 0x40098024 (2)[0], 0x40098064 (2)[1], 0x400980A4 (2)[2]

Access: Write-only

• COVFS: Counter Overflow

0: No effect.

1: Enables the Counter Overflow Interrupt.

• LOVRS: Load Overrun

0: No effect.

1: Enables the Load Overrun Interrupt.

• CPAS: RA Compare

0: No effect.

1: Enables the RA Compare Interrupt.

• CPBS: RB Compare

0: No effect.

1: Enables the RB Compare Interrupt.

• CPCS: RC Compare

0: No effect.

1: Enables the RC Compare Interrupt.

• LDRAS: RA Loading

0: No effect.

1: Enables the RA Load Interrupt.

• LDRBS: RB Loading

0: No effect.

1: Enables the RB Load Interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – RXBUFF ENDRX

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

994

• ETRGS: External Trigger

0: No effect.

1: Enables the External Trigger Interrupt.

• ENDRX: End of Receiver Transfer

0: No effect.

1: Enables the PDC Receive End of Transfer Interrupt.

• RXBUFF: Reception Buffer Full

0: No effect.

1: Enables the PDC Receive Buffer Full Interrupt.

995SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.12 TC Interrupt Disable Register

Name: TC_IDRx [x=0..2]

Address: 0x40090028 (0)[0], 0x40090068 (0)[1], 0x400900A8 (0)[2], 0x40094028 (1)[0], 0x40094068 (1)[1],

0x400940A8 (1)[2], 0x40098028 (2)[0], 0x40098068 (2)[1], 0x400980A8 (2)[2]

Access: Write-only

• COVFS: Counter Overflow

0: No effect.

1: Disables the Counter Overflow Interrupt.

• LOVRS: Load Overrun

0: No effect.

1: Disables the Load Overrun Interrupt (if TC_CMRx.WAVE = 0).

• CPAS: RA Compare

0: No effect.

1: Disables the RA Compare Interrupt (if TC_CMRx.WAVE = 1).

• CPBS: RB Compare

0: No effect.

1: Disables the RB Compare Interrupt (if TC_CMRx.WAVE = 1).

• CPCS: RC Compare

0: No effect.

1: Disables the RC Compare Interrupt.

• LDRAS: RA Loading

0: No effect.

1: Disables the RA Load Interrupt (if TC_CMRx.WAVE = 0).

• LDRBS: RB Loading

0: No effect.

1: Disables the RB Load Interrupt (if TC_CMRx.WAVE = 0).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – RXBUFF ENDRX

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

996

• ETRGS: External Trigger

0: No effect.

1: Disables the External Trigger Interrupt.

• ENDRX: End of Receiver Transfer

0: No effect.

1: Disables the PDC Receive End of Transfer Interrupt.

• RXBUFF: Reception Buffer Full

0: No effect.

1: Disables the PDC Receive Buffer Full Interrupt.

997SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.13 TC Interrupt Mask Register

Name: TC_IMRx [x=0..2]

Address: 0x4009002C (0)[0], 0x4009006C (0)[1], 0x400900AC (0)[2], 0x4009402C (1)[0], 0x4009406C (1)[1],

0x400940AC (1)[2], 0x4009802C (2)[0], 0x4009806C (2)[1], 0x400980AC (2)[2]

Access: Read-only

• COVFS: Counter Overflow

0: The Counter Overflow Interrupt is disabled.

1: The Counter Overflow Interrupt is enabled.

• LOVRS: Load Overrun

0: The Load Overrun Interrupt is disabled.

1: The Load Overrun Interrupt is enabled.

• CPAS: RA Compare

0: The RA Compare Interrupt is disabled.

1: The RA Compare Interrupt is enabled.

• CPBS: RB Compare

0: The RB Compare Interrupt is disabled.

1: The RB Compare Interrupt is enabled.

• CPCS: RC Compare

0: The RC Compare Interrupt is disabled.

1: The RC Compare Interrupt is enabled.

• LDRAS: RA Loading

0: The Load RA Interrupt is disabled.

1: The Load RA Interrupt is enabled.

• LDRBS: RB Loading

0: The Load RB Interrupt is disabled.

1: The Load RB Interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – RXBUFF ENDRX

7 6 5 4 3 2 1 0

ETRGS LDRBS LDRAS CPCS CPBS CPAS LOVRS COVFS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

998

• ETRGS: External Trigger

0: The External Trigger Interrupt is disabled.

1: The External Trigger Interrupt is enabled.

• ENDRX: End of Receiver Transfer

0: The PDC Receive End of Transfer Interrupt is disabled.

1: The PDC Receive End of Transfer Interrupt is enabled.

• RXBUFF: Reception Buffer Full

0: The PDC Receive Buffer Full Interrupt is disabled.

1: The PDC Receive Buffer Full Interrupt is enabled.

999SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.14 TC Extended Mode Register

Name: TC_EMRx [x=0..2]

Address: 0x40090030 (0)[0], 0x40090070 (0)[1], 0x400900B0 (0)[2], 0x40094030 (1)[0], 0x40094070 (1)[1],

0x400940B0 (1)[2], 0x40098030 (2)[0], 0x40098070 (2)[1], 0x400980B0 (2)[2]

Access: Read/Write

• TRIGSRCA: Trigger Source for Input A

• TRIGSRCB: Trigger Source for Input B

• NODIVCLK: No Divided Clock

0: The selected clock is defined by field TCCLKS in TC_CMRx.

1: The selected clock is peripheral clock and TCCLKS field (TC_CMRx) has no effect.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – NODIVCLK

7 6 5 4 3 2 1 0

– – TRIGSRCB – – TRIGSRCA

Value Name Description

0 EXTERNAL_TIOAx The trigger/capture input A is driven by external pin TIOAx

1 PWMx The trigger/capture input A is driven internally by PWMx

Value Name Description

0 EXTERNAL_TIOBx The trigger/capture input B is driven by external pin TIOBx

1 PWMx
The trigger/capture input B is driven internally by the comparator output

(see Figure 38-16) of the PWMx.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1000

38.7.15 TC Block Control Register

Name: TC_BCR

Address: 0x400900C0 (0), 0x400940C0 (1), 0x400980C0 (2)

Access: Write-only

• SYNC: Synchro Command

0: No effect.

1: Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – SYNC

1001SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.16 TC Block Mode Register

Name: TC_BMR

Address: 0x400900C4 (0), 0x400940C4 (1), 0x400980C4 (2)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• TC0XC0S: External Clock Signal 0 Selection

• TC1XC1S: External Clock Signal 1 Selection

• TC2XC2S: External Clock Signal 2 Selection

31 30 29 28 27 26 25 24

– – – – – – MAXFILT

23 22 21 20 19 18 17 16

MAXFILT – – IDXPHB SWAP

15 14 13 12 11 10 9 8

INVIDX INVB INVA EDGPHA QDTRANS SPEEDEN POSEN QDEN

7 6 5 4 3 2 1 0

– – TC2XC2S TC1XC1S TC0XC0S

Value Name Description

0 TCLK0 Signal connected to XC0: TCLK0

1 – Reserved

2 TIOA1 Signal connected to XC0: TIOA1

3 TIOA2 Signal connected to XC0: TIOA2

Value Name Description

0 TCLK1 Signal connected to XC1: TCLK1

1 – Reserved

2 TIOA0 Signal connected to XC1: TIOA0

3 TIOA2 Signal connected to XC1: TIOA2

Value Name Description

0 TCLK2 Signal connected to XC2: TCLK2

1 – Reserved

2 TIOA0 Signal connected to XC2: TIOA0

3 TIOA1 Signal connected to XC2: TIOA1

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1002

• QDEN: Quadrature Decoder Enabled

0: Disabled.

1: Enables the QDEC (filter, edge detection and quadrature decoding).

Quadrature decoding (direction change) can be disabled using QDTRANS bit.

One of the POSEN or SPEEDEN bits must be also enabled.

• POSEN: Position Enabled

0: Disable position.

1: Enables the position measure on channel 0 and 1.

• SPEEDEN: Speed Enabled

0: Disabled.

1: Enables the speed measure on channel 0, the time base being provided by channel 2.

• QDTRANS: Quadrature Decoding Transparent

0: Full quadrature decoding logic is active (direction change detected).

1: Quadrature decoding logic is inactive (direction change inactive) but input filtering and edge detection are performed.

• EDGPHA: Edge on PHA Count Mode

0: Edges are detected on PHA only.

1: Edges are detected on both PHA and PHB.

• INVA: Inverted PHA

0: PHA (TIOA0) is directly driving the QDEC.

1: PHA is inverted before driving the QDEC.

• INVB: Inverted PHB

0: PHB (TIOB0) is directly driving the QDEC.

1: PHB is inverted before driving the QDEC.

• INVIDX: Inverted Index

0: IDX (TIOA1) is directly driving the QDEC.

1: IDX is inverted before driving the QDEC.

• SWAP: Swap PHA and PHB

0: No swap between PHA and PHB.

1: Swap PHA and PHB internally, prior to driving the QDEC.

• IDXPHB: Index Pin is PHB Pin

0: IDX pin of the rotary sensor must drive TIOA1.

1: IDX pin of the rotary sensor must drive TIOB0.

• MAXFILT: Maximum Filter

1–63: Defines the filtering capabilities.

Pulses with a period shorter than MAXFILT+1 peripheral clock cycles are discarded.

1003SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.17 TC QDEC Interrupt Enable Register

Name: TC_QIER

Address: 0x400900C8 (0), 0x400940C8 (1), 0x400980C8 (2)

Access: Write-only

• IDX: Index

0: No effect.

1: Enables the interrupt when a rising edge occurs on IDX input.

• DIRCHG: Direction Change

0: No effect.

1: Enables the interrupt when a change on rotation direction is detected.

• QERR: Quadrature Error

0: No effect.

1: Enables the interrupt when a quadrature error occurs on PHA, PHB.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – QERR DIRCHG IDX

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1004

38.7.18 TC QDEC Interrupt Disable Register

Name: TC_QIDR

Address: 0x400900CC (0), 0x400940CC (1), 0x400980CC (2)

Access: Write-only

• IDX: Index

0: No effect.

1: Disables the interrupt when a rising edge occurs on IDX input.

• DIRCHG: Direction Change

0: No effect.

1: Disables the interrupt when a change on rotation direction is detected.

• QERR: Quadrature Error

0: No effect.

1: Disables the interrupt when a quadrature error occurs on PHA, PHB.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – QERR DIRCHG IDX

1005SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.19 TC QDEC Interrupt Mask Register

Name: TC_QIMR

Address: 0x400900D0 (0), 0x400940D0 (1), 0x400980D0 (2)

Access: Read-only

• IDX: Index

0: The interrupt on IDX input is disabled.

1: The interrupt on IDX input is enabled.

• DIRCHG: Direction Change

0: The interrupt on rotation direction change is disabled.

1: The interrupt on rotation direction change is enabled.

• QERR: Quadrature Error

0: The interrupt on quadrature error is disabled.

1: The interrupt on quadrature error is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – QERR DIRCHG IDX

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1006

38.7.20 TC QDEC Interrupt Status Register

Name: TC_QISR

Address: 0x400900D4 (0), 0x400940D4 (1), 0x400980D4 (2)

Access: Read-only

• IDX: Index

0: No Index input change since the last read of TC_QISR.

1: The IDX input has changed since the last read of TC_QISR.

• DIRCHG: Direction Change

0: No change on rotation direction since the last read of TC_QISR.

1: The rotation direction changed since the last read of TC_QISR.

• QERR: Quadrature Error

0: No quadrature error since the last read of TC_QISR.

1: A quadrature error occurred since the last read of TC_QISR.

• DIR: Direction

Returns an image of the actual rotation direction.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – DIR

7 6 5 4 3 2 1 0

– – – – – QERR DIRCHG IDX

1007SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

38.7.21 TC Fault Mode Register

Name: TC_FMR

Address: 0x400900D8 (0), 0x400940D8 (1), 0x400980D8 (2)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• ENCF0: Enable Compare Fault Channel 0

0: Disables the FAULT output source (CPCS flag) from channel 0.

1: Enables the FAULT output source (CPCS flag) from channel 0.

• ENCF1: Enable Compare Fault Channel 1

0: Disables the FAULT output source (CPCS flag) from channel 1.

1: Enables the FAULT output source (CPCS flag) from channel 1.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – ENCF1 ENCF0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1008

38.7.22 TC Write Protection Mode Register

Name: TC_WPMR

Address: 0x400900E4 (0), 0x400940E4 (1), 0x400980E4 (2)

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x54494D (“TIM” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x54494D (“TIM” in ASCII).

The Timer Counter clock of the first channel must be enabled to access this register.

See Section 38.6.19 “Register Write Protection” for a list of registers that can be write-protected and Timer Counter clock

conditions.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x54494D PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit.

Always reads as 0.

1009SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39. Pulse Width Modulation Controller (PWM)

39.1 Description

The Pulse Width Modulation Controller (PWM) generates output pulses on 4 channels independently according to

parameters defined per channel. Each channel controls two complementary square output waveforms.

Characteristics of the output waveforms such as period, duty-cycle, polarity and dead-times (also called dead-

bands or non-overlapping times) are configured through the user interface. Each channel selects and uses one of

the clocks provided by the clock generator. The clock generator provides several clocks resulting from the division

of the PWM peripheral clock.

All accesses to the PWM are made through registers mapped on the peripheral bus. All channels integrate a

double buffering system in order to prevent an unexpected output waveform while modifying the period, the spread

spectrum, the duty-cycle or the dead-times.

Channels can be linked together as synchronous channels to be able to update their duty-cycle or dead-times at

the same time.

The update of duty-cycles of synchronous channels can be performed by the DMA Controller channel which offers

buffer transfer without processor Intervention.

The PWM includes a spread-spectrum counter to allow a constantly varying period (only for Channel 0). This

counter may be useful to minimize electromagnetic interference or to reduce the acoustic noise of a PWM driven

motor.

The PWM provides 8 independent comparison units capable of comparing a programmed value to the counter of

the synchronous channels (counter of channel 0). These comparisons are intended to generate software

interrupts, to trigger pulses on the 2 independent event lines (in order to synchronize ADC conversions with a lot of

flexibility independently of the PWM outputs) and to trigger DMA Controllertransfer requests.

PWM outputs can be overridden synchronously or asynchronously to their channel counter.

The PWM provides a fault protection mechanism with 8 fault inputs, capable to detect a fault condition and to

override the PWM outputs asynchronously (outputs forced to ‘0’, ‘1’ or Hi-Z).

For safety usage, some configuration registers are write-protected.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1010

39.2 Embedded Characteristics

 4 Channels

 Common Clock Generator Providing Thirteen Different Clocks

̶ A Modulo n Counter Providing Eleven Clocks

̶ Two Independent Linear Dividers Working on Modulo n Counter Outputs

 Independent Channels

̶ Independent 16-bit Counter for Each Channel

̶ Independent Complementary Outputs with 12-bit Dead-Time Generator (Also Called Dead-Band or

Non-Overlapping Time) for Each Channel

̶ Independent Enable Disable Command for Each Channel

̶ Independent Clock Selection for Each Channel

̶ Independent Period, Duty-Cycle and Dead-Time for Each Channel

̶ Independent Double Buffering of Period, Duty-Cycle and Dead-Times for Each Channel

̶ Independent Programmable Selection of The Output Waveform Polarity for Each Channel, with

Double Buffering

̶ Independent Programmable Center- or Left-aligned Output Waveform for Each Channel

̶ Independent Output Override for Each Channel

̶ Independent Interrupt for Each Channel, at Each Period for Left-Aligned or Center-Aligned

Configuration

̶ Independent Update Time Selection of Double Buffering Registers (Polarity, Duty Cycle) for Each

Channel, at Each Period for Left-Aligned or Center-Aligned Configuration

 2 2-bit Gray Up/Down Channels for Stepper Motor Control

 Spread Spectrum Counter to Allow a Constantly Varying Duty Cycle (only for Channel 0)

 Synchronous Channel Mode

̶ Synchronous Channels Share the Same Counter

̶ Mode to Update the Synchronous Channels Registers after a Programmable Number of Periods

̶ Synchronous Channels Supports Connection of one Peripheral DMA Controller Channel Which Offers

Buffer Transfer Without Processor Intervention To Update Duty-Cycle Registers

 2 Independent Events Lines Intended to Synchronize ADC Conversions

̶ Programmable delay for Events Lines to delay ADC measurements

 8 Comparison Units Intended to Generate Interrupts, Pulses on Event Lines and Peripheral DMA Controller

Transfer Requests

 8 Programmable Fault Inputs Providing an Asynchronous Protection of PWM Outputs

̶ 1 User Driven through PIO Inputs

̶ PMC Driven when Crystal Oscillator Clock Fails

̶ ADC Controller Driven through Configurable Comparison Function

̶ Analog Comparator Controller Driven

̶ Timer/Counter Driven through Configurable Comparison Function

 Register Write Protection

1011SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.3 Block Diagram

39.4 I/O Lines Description

Each channel outputs two complementary external I/O lines.

39.5 Product Dependencies

39.5.1 I/O Lines

The pins used for interfacing the PWM are multiplexed with PIO lines. The programmer must first program the PIO

controller to assign the desired PWM pins to their peripheral function. If I/O lines of the PWM are not used by the

application, they can be used for other purposes by the PIO controller.

Figure 39-1. Pulse Width Modulation Controller Block Diagram

APB

ADC
Comparison

Units

Interrupt
Controller

Interrupt Generator

event line 0
event line 1

Events
Generator

event line x

Comparator

Clock
Selector

Counter
Channel 0

Duty-Cycle

Period

Update

APB
Interface

CLOCK
Generator

PIO

PMC

Dead-Time
Generator

Output
Override

Fault
Protection

PIO

Comparator Dead-Time
Generator

Output
Override

Fault
Protection

Counter
Channel x

Duty-Cycle

Period

Update

Clock
Selector

Channel x

OCx
DTOHx

DTOLx

OOOHx PWMHx

PWMLxOOOLx

MUX

S
Y

N
C

x

PWM Controller

Peripheral Clock

Channel 0

OC0
DTOH0

DTOL0

OOOH0 PWMH0

PWML0OOOL0

PWMHx

PWMLx

PWMH0

PWML0

PWMFI0

PWMFIx

Table 39-1. I/O Line Description

Name Description Type

PWMHx PWM Waveform Output High for channel x Output

PWMLx PWM Waveform Output Low for channel x Output

PWMFIx PWM Fault Input x Input

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1012

All of the PWM outputs may or may not be enabled. If an application requires only four channels, then only four

PIO lines are assigned to PWM outputs.

39.5.2 Power Management

The PWM is not continuously clocked. The programmer must first enable the PWM clock in the Power

Management Controller (PMC) before using the PWM. However, if the application does not require PWM

operations, the PWM clock can be stopped when not needed and be restarted later. In this case, the PWM will

resume its operations where it left off.

39.5.3 Interrupt Sources

The PWM interrupt line is connected on one of the internal sources of the Interrupt Controller. Using the PWM

interrupt requires the Interrupt Controller to be programmed first.

39.5.4 Fault Inputs

The PWM has the fault inputs connected to the different modules. Refer to the implementation of these modules

within the product for detailed information about the fault generation procedure. The PWM receives faults from:

 PIO inputs

 the PMC

 the ADC controller

 the Analog Comparator Controller

 Timer/Counters

Note: 1. FPOL field in PWMC_FMR.

Table 39-2. Fault Inputs

Fault Generator External PWM Fault Input Number Polarity Level(1) Fault Input ID

Main OSC (PMC) – To be configured to 1 0

ADC – To be configured to 1 1

PXyy PWMFI0 User-defined 2

PXyy PWMFI1 User-defined 3

PXyy PWMFI2 User-defined 4

PXyy PWMFI3 User-defined 5

PXyy PWMFI4 User-defined 6

PXyy PWMFI5 User-defined 7

1013SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.6 Functional Description

The PWM controller is primarily composed of a clock generator module and 4 channels.

 Clocked by the peripheral clock, the clock generator module provides 13 clocks.

 Each channel can independently choose one of the clock generator outputs.

 Each channel generates an output waveform with attributes that can be defined independently for each

channel through the user interface registers.

39.6.1 PWM Clock Generator

Figure 39-2. Functional View of the Clock Generator Block Diagram

The PWM peripheral clock is divided in the clock generator module to provide different clocks available for all

channels. Each channel can independently select one of the divided clocks.

The clock generator is divided into different blocks:

̶ a modulo n counter which provides 11 clocks: fperipheral clock, fperipheral clock/2, fperipheral clock/4, fperipheral

clock/8, fperipheral clock/16, fperipheral clock/32, fperipheral clock/64, fperipheral clock/128, fperipheral clock/256, fperipheral

clock/512, fperipheral clock/1024

̶ two linear dividers (1, 1/2, 1/3, ... 1/255) that provide two separate clocks: clkA and clkB

Each linear divider can independently divide one of the clocks of the modulo n counter. The selection of the clock

to be divided is made according to the PREA (PREB) field of the PWM Clock register (PWM_CLK). The resulting

clock clkA (clkB) is the clock selected divided by DIVA (DIVB) field value.

modulo n counter

peripheral clock/2
peripheral clock/4

peripheral clock/16
peripheral clock/32
peripheral clock/64

peripheral clock/8

Divider A clkA

DIVA

PWM_MR

peripheral clock

peripheral clock/128
peripheral clock/256
peripheral clock/512
peripheral clock/1024

PREA

Divider B clkB

DIVB

PWM_MR

PREB

Peripheral Clock

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1014

After a reset of the PWM controller, DIVA (DIVB) and PREA (PREB) are set to ‘0’. This implies that after reset clkA

(clkB) are turned off.

At reset, all clocks provided by the modulo n counter are turned off except the peripheral clock. This situation is

also true when the PWM peripheral clock is turned off through the Power Management Controller.

CAUTION:

Before using the PWM controller, the programmer must first enable the peripheral clock in the Power Management

Controller (PMC).

39.6.2 PWM Channel

39.6.2.1 Channel Block Diagram

Figure 39-3. Functional View of the Channel Block Diagram

Each of the 4 channels is composed of six blocks:

 A clock selector which selects one of the clocks provided by the clock generator (described in Section 39.6.1

“PWM Clock Generator”).

 A counter clocked by the output of the clock selector. This counter is incremented or decremented according

to the channel configuration and comparators matches. The size of the counter is 16 bits.

 A comparator used to compute the OCx output waveform according to the counter value and the

configuration. The counter value can be the one of the channel counter or the one of the channel 0 counter

according to SYNCx bit in the PWM Sync Channels Mode Register (PWM_SCM).

 A 2-bit configurable gray counter enables the stepper motor driver. One gray counter drives 2 channels.

 A dead-time generator providing two complementary outputs (DTOHx/DTOLx) which allows to drive external

power control switches safely.

 An output override block that can force the two complementary outputs to a programmed value

(OOOHx/OOOLx).

 An asynchronous fault protection mechanism that has the highest priority to override the two complementary

outputs (PWMHx/PWMLx) in case of fault detection (outputs forced to ‘0’, ‘1’ or Hi-Z).

Comparator

x

Clock

Selector

Channel x

Dead-Time

Generator

Output

Override
OCx

DTOHx

DTOLx

Fault

Protection

OOOHx PWMHx

PWMLxOOOLx

Counter

Channel x

Duty-Cycle

Period

Update

Counter

Channel 0

MUX
SYNCx

Dead-Time

Generator

Output

Override
OCy

DTOHy

DTOLy

Fault

Protection

OOOHy PWMHy

PWMLyOOOLy

Channel y (= x+1)

M
U

X
M

U
X

2-bit gray

counter z

Comparator

y

from

Clock

Generator

from APB

Peripheral Bus

z = 0 (x = 0, y = 1),

z = 1 (x = 2, y = 3),

z = 2 (x = 4, y = 5),

z = 3 (x = 6, y = 7)

1015SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.6.2.2 Comparator

The comparator continuously compares its counter value with the channel period defined by CPRD in the PWM

Channel Period Register (PWM_CPRDx) and the duty-cycle defined by CDTY in the PWM Channel Duty Cycle

Register (PWM_CDTYx) to generate an output signal OCx accordingly.

The different properties of the waveform of the output OCx are:

 the clock selection. The channel counter is clocked by one of the clocks provided by the clock generator

described in the previous section. This channel parameter is defined in the CPRE field of the PWM Channel

Mode Register (PWM_CMRx). This field is reset at ‘0’.

 the waveform period. This channel parameter is defined in the CPRD field of the PWM_CPRDx register.

If the waveform is left-aligned, then the output waveform period depends on the counter source clock and

can be calculated:

By using the PWM peripheral clock divided by a given prescaler value “X” (where X = 2PREA is 1, 2, 4, 8, 16,

32, 64, 128, 256, 512, or 1024). The resulting period formula is:

By using the PWM peripheral clock divided by a given prescaler value “X” (see above) and by either the

DIVA or the DIVB divider. The formula becomes, respectively:

 or

If the waveform is center-aligned, then the output waveform period depends on the counter source clock and

can be calculated:

By using the PWM peripheral clock divided by a given prescaler value “X” (where X = 2PREA is 1, 2, 4, 8, 16,

32, 64, 128, 256, 512, or 1024). The resulting period formula is:

By using the PWM peripheral clock divided by a given prescaler value “X” (see above) and by either the

DIVA or the DIVB divider. The formula becomes, respectively:

 or

 the waveform duty-cycle. This channel parameter is defined in the CDTY field of the PWM_CDTYx

register.

If the waveform is left-aligned, then:

If the waveform is center-aligned, then:

 the waveform polarity. At the beginning of the period, the signal can be at high or low level. This property is

defined in the CPOL bit of PWM_CMRx. By default, the signal starts by a low level. the waveform

alignment. The output waveform can be left- or center-aligned. Center-aligned waveforms can be used to

X CPRD×()

fperipheral clock

X C× RPD DIVA×()

fperipheral clock

--
X C× RPD DIVB×()

fperipheral clock

--

2 X CPRD××()

fperipheral clock

--

2 X C× PRD DIVA××()

fperipheral clock

2 X C× PRD× DIVB×()

fperipheral clock

duty cycle
period 1 fchannel_x_clock CDTY×⁄–()

period
--=

duty cycle
period 2⁄() 1 fchannel_x_clock CDTY×⁄–())

period 2⁄()
---=

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1016

generate non-overlapped waveforms. This property is defined in the CALG bit of PWM_CMRx. The default

mode is left-aligned.

Figure 39-4. Non-Overlapped Center-Aligned Waveforms

Note: 1. See Figure 39-5 for a detailed description of center-aligned waveforms.

When center-aligned, the channel counter increases up to CPRD and decreases down to 0. This ends the period.

When left-aligned, the channel counter increases up to CPRD and is reset. This ends the period.

Thus, for the same CPRD value, the period for a center-aligned channel is twice the period for a left-aligned

channel.

Waveforms are fixed at 0 when:

 CDTY = CPRD and CPOL = 0

 CDTY = 0 and CPOL = 1

Waveforms are fixed at 1 (once the channel is enabled) when:

 CDTY = 0 and CPOL = 0

 CDTY = CPRD and CPOL = 1

The waveform polarity must be set before enabling the channel. This immediately affects the channel output level.

Modifying CPOL in PWM Channel Mode Register while the channel is enabled can lead to an unexpected

behavior of the device being driven by PWM.

In addition to generating the output signals OCx, the comparator generates interrupts depending on the counter

value. When the output waveform is left-aligned, the interrupt occurs at the end of the counter period. When the

output waveform is center-aligned, the bit CES of PWM_CMRx defines when the channel counter interrupt occurs.

If CES is set to ‘0’, the interrupt occurs at the end of the counter period. If CES is set to ‘1’, the interrupt occurs at

the end of the counter period and at half of the counter period.

Figure 39-5 illustrates the counter interrupts depending on the configuration.

OC0

OC1

Period

No overlap

1017SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 39-5. Waveform Properties

Channel x

slected clock

CHIDx(PWM_SR)

Center Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx

Output Waveform OCx

CPOL(PWM_CMRx) = 0

Output Waveform OCx

CPOL(PWM_CMRx) = 1

Counter Event

CHIDx(PWM_ISR)

CES(PWM_CMRx) = 0

Left Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx

Output Waveform OCx

CPOL(PWM_CMRx) = 0

 Output Waveform OCx

CPOL(PWM_CMRx) = 1

CALG(PWM_CMRx) = 0

CALG(PWM_CMRx) = 1

Period

Period

CHIDx(PWM_ENA)

CHIDx(PWM_DIS)

Counter Event

CHIDx(PWM_ISR)

CES(PWM_CMRx) = 1

Counter Event

CHIDx(PWM_ISR)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1018

39.6.2.3 Trigger Selection for Timer Counter

The PWM controller can be used as a trigger source for the Timer Counter (TC) to achieve the two application

examples described below.

Delay Measurement

To measure the delay between the channel x comparator output (OCx) and the feedback from the bridge driver of

the MOSFETs (see Figure 39-6), the bit TCTS in the PWM Channel Mode Register must be at 0. This defines the

comparator output of the channel x as the TC trigger source. The TIOB trigger (TC internal input) is used to start

the TC; the TIOA input (from PAD) is used to capture the delay.

Figure 39-6. Triggering the TC: Delay Measurement

Cumulated ON Time Measurement

To measure the cumulated “ON” time of MOSFETs (see Figure 39-7), the bit TCTS of the PWM Channel Mode

Register must be set to 1 to define the counter event (see Figure 39-5) as the Timer Counter trigger source.

MOSFETs

PIO

PWM

TIMER_COUNTER

BRIDGE

DRIVER

CH0 CH2CH1

TIOB TIOB TIOB

TIOA TIOA TIOA

PWM0

PWM2

PWM1

Triggers

Microcontroller

PWM: OCx

(internally routed to TIOB)

TC: TIOA

(from PAD)

Capture event

TC: Count value and capture event

(TIOA/TIOB rising edge triggered)

Capture event

TC: Count value and capture event

(TIOA/TIOB falling edge triggered)

1019SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 39-7. Triggering the TC: Cumulated “ON” Time Measurement

MOSFETs

PIO

PWM

TIMER_COUNTER

BRIDGE

DRIVER

CH0 CH2CH1

TIOB TIOB TIOB

TIOA TIOA TIOA

PWM0

PWM2

PWM1

Triggers

Microcontroller

Center Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx

PWM: OCx

PWM Counter Event

CES(PWM_CMRx) = 0

(internally routed to TIOB)

Left Aligned

CPRD(PWM_CPRDx)

CDTY(PWM_CDTYx)

PWM_CCNTx
CALG(PWM_CMRx) = 0

CALG(PWM_CMRx) = 1

Period

Period

TC: TIOA

(from PAD)

TC: Count value

(TIOA/TIOB rising edge triggered)

PWM: OCx

TC: TIOA

(from PAD)

PWM Counter Event

(internally routed to TIOB)

TC: Count value

(TIOA/TIOB rising edge triggered)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1020

39.6.2.4 2-bit Gray Up/Down Counter for Stepper Motor

A pair of channels may provide a 2-bit gray count waveform on two outputs. Dead-time generator and other

downstream logic can be configured on these channels.

Up or Down Count mode can be configured on-the-fly by means of PWM_SMMR configuration registers.

When GCEN0 is set to ‘1’, channels 0 and 1 outputs are driven with gray counter.

Figure 39-8. 2-bit Gray Up/Down Counter

39.6.2.5 Dead-Time Generator

The dead-time generator uses the comparator output OCx to provide the two complementary outputs DTOHx and

DTOLx, which allows the PWM macrocell to drive external power control switches safely. When the dead-time

generator is enabled by setting the bit DTE to 1 or 0 in the PWM Channel Mode Register (PWM_CMRx), dead-

times (also called dead-bands or non-overlapping times) are inserted between the edges of the two

complementary outputs DTOHx and DTOLx. Note that enabling or disabling the dead-time generator is allowed

only if the channel is disabled.

The dead-time is adjustable by the PWM Channel Dead Time Register (PWM_DTx). Each output of the dead-time

generator can be adjusted separately by DTH and DTL. The dead-time values can be updated synchronously to

the PWM period by using the PWM Channel Dead Time Update Register (PWM_DTUPDx).

The dead-time is based on a specific counter which uses the same selected clock that feeds the channel counter

of the comparator. Depending on the edge and the configuration of the dead-time, DTOHx and DTOLx are delayed

until the counter has reached the value defined by DTH or DTL. An inverted configuration bit (DTHI and DTLI bit in

PWM_CMRx) is provided for each output to invert the dead-time outputs. The following figure shows the waveform

of the dead-time generator.

PWMH0

DOWNx

GCEN0 = 1

PWMH1

PWML0

PWML1

1021SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 39-9. Complementary Output Waveforms

39.6.2.6 Output Override

The two complementary outputs DTOHx and DTOLx of the dead-time generator can be forced to a value defined

by the software.

DTHx DTLx

Output waveform OCx

CPOLx = 0

Output waveform DTOHx

DTHIx = 0

Output waveform DTOLx

DTLIx = 0

Output waveform DTOHx

DTHIx = 1

Output waveform DTOLx

DTLIx = 1

DTHx DTLx

Output waveform OCx

CPOLx = 1

Output waveform DTOHx

DTHIx = 0

Output waveform DTOLx

DTLIx = 0

Output waveform DTOHx

DTHIx = 1

Output waveform DTOLx

DTLIx = 1

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1022

Figure 39-10. Override Output Selection

The fields OSHx and OSLx in the PWM Output Selection Register (PWM_OS) allow the outputs of the dead-time

generator DTOHx and DTOLx to be overridden by the value defined in the fields OOVHx and OOVLx in the PWM

Output Override Value Register (PWM_OOV).

The set registers PWM Output Selection Set Register (PWM_OSS) and PWM Output Selection Set Update

Register (PWM_OSSUPD) enable the override of the outputs of a channel regardless of other channels. In the

same way, the clear registers PWM Output Selection Clear Register (PWM_OSC) and PWM Output Selection

Clear Update Register (PWM_OSCUPD) disable the override of the outputs of a channel regardless of other

channels.

By using buffer registers PWM_OSSUPD and PWM_OSCUPD, the output selection of PWM outputs is done

synchronously to the channel counter, at the beginning of the next PWM period.

By using registers PWM_OSS and PWM_OSC, the output selection of PWM outputs is done asynchronously to

the channel counter, as soon as the register is written.

The value of the current output selection can be read in PWM_OS.

While overriding PWM outputs, the channel counters continue to run, only the PWM outputs are forced to user

defined values.

DTOHx

OOVHx

OOOHx

OSHx

0

1

DTOLx

OOVLx

OOOLx

OSLx

0

1

1023SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.6.2.7 Fault Protection

8 inputs provide fault protection which can force any of the PWM output pairs to a programmable value. This

mechanism has priority over output overriding.

The polarity level of the fault inputs is configured by the FPOL field in the PWM Fault Mode Register (PWM_FMR).

For fault inputs coming from internal peripherals such as ADC or Timer Counter, the polarity level must be FPOL =

1. For fault inputs coming from external GPIO pins the polarity level depends on the user's implementation.

The configuration of the Fault Activation mode (FMOD field in PWMC_FMR) depends on the peripheral generating

the fault. If the corresponding peripheral does not have “Fault Clear” management, then the FMOD configuration to

use must be FMOD = 1, to avoid spurious fault detection. Refer to the corresponding peripheral documentation for

details on handling fault generation.

Fault inputs may or may not be glitch-filtered depending on the FFIL field in PWM_FMR. When the filter is

activated, glitches on fault inputs with a width inferior to the PWM peripheral clock period are rejected.

A fault becomes active as soon as its corresponding fault input has a transition to the programmed polarity level. If

the corresponding bit FMOD is set to ‘0’ in PWM_FMR, the fault remains active as long as the fault input is at this

polarity level. If the corresponding FMOD field is set to ‘1’, the fault remains active until the fault input is no longer

at this polarity level and until it is cleared by writing the corresponding bit FCLR in the PWM Fault Clear Register

(PWM_FCR). In the PWM Fault Status Register (PWM_FSR), the field FIV indicates the current level of the fault

inputs and the field FIS indicates whether a fault is currently active.

Each fault can be taken into account or not by the fault protection mechanism in each channel. To be taken into

account in the channel x, the fault y must be enabled by the bit FPEx[y] in the PWM Fault Protection Enable

registers (PWM_FPE1). However, synchronous channels (see Section 39.6.2.9 “Synchronous Channels”) do not

use their own fault enable bits, but those of the channel 0 (bits FPE0[y]).

The fault protection on a channel is triggered when this channel is enabled and when any one of the faults that are

enabled for this channel is active. It can be triggered even if the PWM peripheral clock is not running but only by a

fault input that is not glitch-filtered.

When the fault protection is triggered on a channel, the fault protection mechanism resets the counter of this

channel and forces the channel outputs to the values defined by the fields FPVHx and FPVLx in the PWM Fault

Protection Value Register 1 (PWM_FPV) and fields FPZHx/FPZLx in the PWM Fault Protection Value Register 2,

as shown in Table 39-3. The output forcing is made asynchronously to the channel counter.

Figure 39-11. Fault Protection

FIV0

fault input 0

Fault protection

on PWM

channel x

Glitch

Filter

FFIL0

from fault 0

from fault y

1

0

=

FPOL0 FMOD0

1

0 Fault 0 Status

FS0

FIV1
Glitch

Filter

FFIL1

1

0

=

FPOL1 FMOD1

1

0 Fault 1 Status

FS1
fault input 1 from fault 1

1

0

0

1

From Output

Override

OOHx

OOLx

From Output

Override

PWMHx

PWMLx

fault input y

FMOD1

Write FCLR0 at 1

FMOD0

Write FCLR1 at 1

SYNCx

1

0
FPEx[0]

FPE0[0]

SYNCx

1

0
FPEx[1]

FPE0[1]

0

1

FPVLx

High Impedance

State

0

1

FPVHx

High Impedance

State

FPZLx

FPZHx

SET

CLR

OUT

SET

CLR

OUT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1024

CAUTION:

 To prevent any unexpected activation of the status flag FSy in PWM_FSR, the FMODy bit can be set to ‘1’

only if the FPOLy bit has been previously configured to its final value.

 To prevent any unexpected activation of the Fault Protection on the channel x, the bit FPEx[y] can be set to

‘1’ only if the FPOLy bit has been previously configured to its final value.

If a comparison unit is enabled (see Section 39.6.3 “PWM Comparison Units”) and if a fault is triggered in the

channel 0, then the comparison cannot match.

As soon as the fault protection is triggered on a channel, an interrupt (different from the interrupt generated at the

end of the PWM period) can be generated but only if it is enabled and not masked. The interrupt is reset by reading

the interrupt status register, even if the fault which has caused the trigger of the fault protection is kept active.

39.6.2.8 Spread Spectrum Counter

The PWM macrocell includes a spread spectrum counter allowing the generation of a constantly varying duty cycle

on the output PWM waveform (only for the channel 0). This feature may be useful to minimize electromagnetic

interference or to reduce the acoustic noise of a PWM driven motor.

This is achieved by varying the effective period in a range defined by a spread spectrum value which is

programmed by the field SPRD in the PWM Spread Spectrum Register (PWM_SSPR). The effective period of the

output waveform is the value of the spread spectrum counter added to the programmed waveform period CPRD in

the PWM Channel Period Register (PWM_CPRD0).

It will cause the effective period to vary from CPRD-SPRD to CPRD+SPRD. This leads to a constantly varying duty

cycle on the PWM output waveform because the duty cycle value programmed is unchanged.

The value of the spread spectrum counter can change in two ways depending on the bit SPRDM in PWM_SSPR.

If SPRDM = 0, the Triangular mode is selected. The spread spectrum counter starts to count from -SPRD when

the channel 0 is enabled or after reset and counts upwards at each period of the channel counter. When it reaches

SPRD, it restarts to count from -SPRD again.

If SPRDM = 1, the Random mode is selected. A new random value is assigned to the spread spectrum counter at

each period of the channel counter. This random value is between -SPRD and +SPRD and is uniformly distributed.

Table 39-3. Forcing Values of PWM Outputs by Fault Protection

FPZH/Lx FPVH/Lx Forcing Value of PWMH/Lx

0 0 0

0 1 1

1 – High impedance state (Hi-Z)

1025SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 39-12. Spread Spectrum Counter

39.6.2.9 Synchronous Channels

Some channels can be linked together as synchronous channels. They have the same source clock, the same

period, the same alignment and are started together. In this way, their counters are synchronized together.

The synchronous channels are defined by the SYNCx bits in the PWM Sync Channels Mode Register

(PWM_SCM). Only one group of synchronous channels is allowed.

When a channel is defined as a synchronous channel, the channel 0 is also automatically defined as a

synchronous channel. This is because the channel 0 counter configuration is used by all the synchronous

channels.

If a channel x is defined as a synchronous channel, the fields/bits for the channel 0 are used instead of those of

channel x:

 CPRE in PWM_CMR0 instead of CPRE in PWM_CMRx (same source clock)

 CPRD in PWM_CPRD0 instead of CPRD in PWM_CPRDx (same period)

 CALG in PWM_CMR0 instead of CALG in PWM_CMRx (same alignment)

Modifying the fields CPRE, CPRD and CALG of for channels with index greater than 0 has no effect on output

waveforms.

Because counters of synchronous channels must start at the same time, they are all enabled together by enabling

the channel 0 (by the CHID0 bit in PWM_ENA register). In the same way, they are all disabled together by

disabling channel 0 (by the CHID0 bit in PWM_DIS register). However, a synchronous channel x different from

channel 0 can be enabled or disabled independently from others (by the CHIDx bit in PWM_ENA and PWM_DIS

registers).

Defining a channel as a synchronous channel while it is an asynchronous channel (by writing the bit SYNCx to ‘1’

while it was at ‘0’) is allowed only if the channel is disabled at this time (CHIDx = 0 in PWM_SR). In the same way,

defining a channel as an asynchronous channel while it is a synchronous channel (by writing the SYNCx bit to ‘0’

while it was ‘1’) is allowed only if the channel is disabled at this time.

The UPDM field (Update Mode) in the PWM_SCM register selects one of the three methods to update the

registers of the synchronous channels:

 Method 1 (UPDM = 0): The period value, the duty-cycle values and the dead-time values must be written by

the processor in their respective update registers (respectively PWM_CPRDUPDx, PWM_CDTYUPDx and

PWM_DTUPDx).The update is triggered at the next PWM period as soon as the bit UPDULOCK in the PWM

Period Value: CPRD

CPRD-SPRD

CPRD+SPRD

Duty Cycle Value: CDTY

0x0

Max value of the channel counter

Variation of the

effective period

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1026

Sync Channels Update Control Register (PWM_SCUC) is set to ‘1’ (see “Method 1: Manual write of duty-

cycle values and manual trigger of the update”).

 Method 2 (UPDM = 1): The period value, the duty-cycle values, the dead-time values and the update period

value must be written by the processor in their respective update registers (respectively PWM_CPRDUPDx,

PWM_CDTYUPDx and PWM_DTUPD). The update of the period value and of the dead-time values is

triggered at the next PWM period as soon as the bit UPDULOCK in the PWM_SCUC register is set to ‘1’.

The update of the duty-cycle values and the update period value is triggered automatically after an update

period defined by the field UPR in the PWM Sync Channels Update Period Register (PWM_SCUP) (see

“Method 2: Manual write of duty-cycle values and automatic trigger of the update”).

 Method 3 (UPDM = 2): Same as Method 2 apart from the fact that the duty-cycle values of ALL synchronous

channels are written by the Peripheral DMA Controller (see “Method 3: Automatic write of duty-cycle values

and automatic trigger of the update”). The user can choose to synchronize the Peripheral DMA Controller

transfer request with a comparison match (see Section 39.6.3 “PWM Comparison Units”), by the fields

PTRM and PTRCS in the PWM_SCM register. The DMA destination address must be configured to access

only the PWM DMA Register (PWM_DMAR). The DMA buffer data structure must consist of sequentially

repeated duty cycles. The number of duty cycles in each sequence corresponds to the number of

synchronized channels. Duty cycles in each sequence must be ordered from the lowest to the highest

channel index. The size of the duty cycle is 16 bits.

Method 1: Manual write of duty-cycle values and manual trigger of the update

In this mode, the update of the period value, the duty-cycle values and the dead-time values must be done by

writing in their respective update registers with the processor (respectively PWM_CPRDUPDx, PWM_CDTYUPDx

and PWM_DTUPDx).

To trigger the update, the user must use the bit UPDULOCK in the PWM_SCUC register which allows to update

synchronously (at the same PWM period) the synchronous channels:

 If the bit UPDULOCK is set to ‘1’, the update is done at the next PWM period of the synchronous channels.

 If the UPDULOCK bit is not set to ‘1’, the update is locked and cannot be performed.

After writing the UPDULOCK bit to ‘1’, it is held at this value until the update occurs, then it is read 0.

Sequence for Method 1:

1. Select the manual write of duty-cycle values and the manual update by setting the UPDM field to ‘0’ in the
PWM_SCM register.

2. Define the synchronous channels by the SYNCx bits in the PWM_SCM register.

Table 39-4. Summary of the Update of Registers of Synchronous Channels

Register UPDM = 0 UPDM = 1 UPDM = 2

Period Value

(PWM_CPRDUPDx)

Write by the processor

Update is triggered at the next PWM period as soon as the bit UPDULOCK is set to ‘1’

Dead-Time Values

(PWM_DTUPDx)

Write by the processor

Update is triggered at the next PWM period as soon as the bit UPDULOCK is set to ‘1’

Duty-Cycle Values

(PWM_CDTYUPDx)

Write by the processor Write by the processor
Write by the Peripheral DMA

Controller

Update is triggered at the next

PWM period as soon as the bit

UPDULOCK is set to ‘1’

Update is triggered at the next PWM period as soon as the update

period counter has reached the value UPR

Update Period Value

(PWM_SCUPUPD)

Not applicable Write by the processor

Not applicable
Update is triggered at the next PWM period as soon as the update

period counter has reached the value UPR

1027SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

3. Enable the synchronous channels by writing CHID0 in the PWM_ENA register.

4. If an update of the period value and/or the duty-cycle values and/or the dead-time values is required, write

registers that need to be updated (PWM_CPRDUPDx, PWM_CDTYUPDx and PWM_DTUPDx).

5. Set UPDULOCK to ‘1’ in PWM_SCUC.

6. The update of the registers will occur at the beginning of the next PWM period. When the UPDULOCK bit is

reset, go to Step 4. for new values.

Figure 39-13. Method 1 (UPDM = 0)

Method 2: Manual write of duty-cycle values and automatic trigger of the update

In this mode, the update of the period value, the duty-cycle values, the dead-time values and the update period

value must be done by writing in their respective update registers with the processor (respectively

PWM_CPRDUPDx, PWM_CDTYUPDx, PWM_DTUPDx and PWM_SCUPUPD).

To trigger the update of the period value and the dead-time values, the user must use the bit UPDULOCK in the

PWM_SCUC register, which updates synchronously (at the same PWM period) the synchronous channels:

 If the bit UPDULOCK is set to ‘1’, the update is done at the next PWM period of the synchronous channels.

 If the UPDULOCK bit is not set to ‘1’, the update is locked and cannot be performed.

After writing the UPDULOCK bit to ‘1’, it is held at this value until the update occurs, then it is read 0.

The update of the duty-cycle values and the update period is triggered automatically after an update period.

To configure the automatic update, the user must define a value for the update period by the UPR field in the

PWM_SCUP register. The PWM controller waits UPR+1 period of synchronous channels before updating

automatically the duty values and the update period value.

The status of the duty-cycle value write is reported in the PWM Interrupt Status Register 2 (PWM_ISR2) by the

following flags:

 WRDY: this flag is set to ‘1’ when the PWM Controller is ready to receive new duty-cycle values and a new

update period value. It is reset to ‘0’ when the PWM_ISR2 register is read.

Depending on the interrupt mask in the PWM Interrupt Mask Register 2 (PWM_IMR2), an interrupt can be

generated by these flags.

Sequence for Method 2:

1. Select the manual write of duty-cycle values and the automatic update by setting the field UPDM to ‘1’ in
the PWM_SCM register

2. Define the synchronous channels by the bits SYNCx in the PWM_SCM register.

3. Define the update period by the field UPR in the PWM_SCUP register.

4. Enable the synchronous channels by writing CHID0 in the PWM_ENA register.

5. If an update of the period value and/or of the dead-time values is required, write registers that need to be

updated (PWM_CPRDUPDx, PWM_DTUPDx), else go to Step 8.

CCNT0

CDTYUPD 0x20 0x40 0x60

UPDULOCK

CDTY 0x20 0x40 0x60

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1028

6. Set UPDULOCK to ‘1’ in PWM_SCUC.

7. The update of these registers will occur at the beginning of the next PWM period. At this moment the bit

UPDULOCK is reset, go to Step 5. for new values.

8. If an update of the duty-cycle values and/or the update period is required, check first that write of new update

values is possible by polling the flag WRDY (or by waiting for the corresponding interrupt) in PWM_ISR2.

9. Write registers that need to be updated (PWM_CDTYUPDx, PWM_SCUPUPD).

10. The update of these registers will occur at the next PWM period of the synchronous channels when the

Update Period is elapsed. Go to Step 8. for new values.

Figure 39-14. Method 2 (UPDM = 1)

Method 3: Automatic write of duty-cycle values and automatic trigger of the update

In this mode, the update of the duty cycle values is made automatically by the Peripheral DMA Controller. The

update of the period value, the dead-time values and the update period value must be done by writing in their

respective update registers with the processor (respectively PWM_CPRDUPDx, PWM_DTUPDx and

PWM_SCUPUPD).

To trigger the update of the period value and the dead-time values, the user must use the bit UPDULOCK which

allows to update synchronously (at the same PWM period) the synchronous channels:

 If the bit UPDULOCK is set to ‘1’, the update is done at the next PWM period of the synchronous channels.

 If the UPDULOCK bit is not set to ‘1’, the update is locked and cannot be performed.

After writing the UPDULOCK bit to ‘1’, it is held at this value until the update occurs, then it is read 0.

The update of the duty-cycle values and the update period value is triggered automatically after an update period.

To configure the automatic update, the user must define a value for the Update Period by the field UPR in the

PWM_SCUP register. The PWM controller waits UPR+1 periods of synchronous channels before updating

automatically the duty values and the update period value.

Using the Peripheral DMA Controller removes processor overhead by reducing its intervention during the transfer.

This significantly reduces the number of clock cycles required for a data transfer, which improves microcontroller

performance.

The Peripheral DMA Controller must write the duty-cycle values in the synchronous channels index order. For

example if the channels 0, 1 and 3 are synchronous channels, the Peripheral DMA Controller must write the duty-

cycle of the channel 0 first, then the duty-cycle of the channel 1, and finally the duty-cycle of the channel 3.

The status of the Peripheral DMA Controller transfer is reported in PWM_ISR2 by the following flags:

CCNT0

CDTYUPD 0x20 0x40 0x60

UPRCNT 0x0 0x1 0x0 0x1 0x0 0x1

CDTY 0x20 0x40

UPRUPD 0x1 0x3

WRDY

0x60

0x0 0x1 0x2 0x3 0x0 0x1 0x2

UPR 0x1 0x3

1029SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 WRDY: this flag is set to ‘1’ when the PWM Controller is ready to receive new duty-cycle values and a new

update period value. It is reset to ‘0’ when PWM_ISR2 is read. The user can choose to synchronize the

WRDY flag and the Peripheral DMA Controller transfer request with a comparison match (see Section

39.6.3 “PWM Comparison Units”), by the fields PTRM and PTRCS in the PWM_SCM register.

 ENDTX (not relevant if DMA is used): this flag is set to ‘1’ when a PDC transfer is completed

 TXBUFE (not relevant if DMA is used): this flag is set to ‘1’ when the PDC buffer is empty (no pending PDC

transfers)

 UNRE: this flag is set to ‘1’ when the update period defined by the UPR field has elapsed while the whole

data has not been written by the Peripheral DMA Controller. It is reset to ‘0’ when PWM_ISR2 is read.

Depending on the interrupt mask in PWM_IMR2, an interrupt can be generated by these flags.

Sequence for Method 3:

1. Select the automatic write of duty-cycle values and automatic update by setting the field UPDM to 2 in the
PWM_SCM register.

2. Define the synchronous channels by the bits SYNCx in the PWM_SCM register.

3. Define the update period by the field UPR in the PWM_SCUP register.

4. Define when the WRDY flag and the corresponding Peripheral DMA Controller transfer request must be set

in the update period by the PTRM bit and the PTRCS field in the PWM_SCM register (at the end of the

update period or when a comparison matches).

5. Define the Peripheral DMA Controller transfer settings for the duty-cycle values and enable it in the

Peripheral DMA Controller registers

6. Enable the synchronous channels by writing CHID0 in the PWM_ENA register.

7. If an update of the period value and/or of the dead-time values is required, write registers that need to be

updated (PWM_CPRDUPDx, PWM_DTUPDx), else go to Step 10.

8. Set UPDULOCK to ‘1’ in PWM_SCUC.

9. The update of these registers will occur at the beginning of the next PWM period. At this moment the bit

UPDULOCK is reset, go to Step 7. for new values.

10. If an update of the update period value is required, check first that write of a new update value is possible by

polling the flag WRDY (or by waiting for the corresponding interrupt) in PWM_ISR2, else go to Step 12.

11. Write the register that needs to be updated (PWM_SCUPUPD).

12. The update of this register will occur at the next PWM period of the synchronous channels when the Update

Period is elapsed. Go to Step 10. for new values.If DMA is used: Wait for the DMA status flag indicating that

the buffer transfer is complete. If the transfer has ended, define a new DMA transfer for new duty-cycle

values. Go to Step 5. If PDC is used: Check the end of the PDC transfer by the flag ENDTX. If the transfer

has ended, define a new PDC transfer in the PDC registers for new duty-cycle values. Go to Step 5.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1030

Figure 39-15. Method 3 (UPDM = 2 and PTRM = 0)

Figure 39-16. Method 3 (UPDM = 2 and PTRM = 1 and PTRCS = 0)

39.6.2.10 Update Time for Double-Buffering Registers

All channels integrate a double-buffering system in order to prevent an unexpected output waveform while

modifying the period, the spread spectrum value, the polarity, the duty-cycle, the dead-times, the output override,

and the synchronous channels update period.

This double-buffering system comprises the following update registers:

 PWM Sync Channels Update Period Update Register

 PWM Output Selection Set Update Register

 PWM Output Selection Clear Update Register

 PWM Spread Spectrum Update Register

 PWM Channel Duty Cycle Update Register

 PWM Channel Period Update Register

CCNT0

CDTYUPD 0x20 0x40 0x60

UPRCNT 0x0 0x1 0x0 0x1 0x0 0x1

CDTY

UPRUPD 0x1 0x3

transfer request

WRDY

0x0 0x1 0x2 0x3 0x0 0x1 0x2

UPR 0x1 0x3

0x80 0xA0 0xB0

0x20 0x40 0x60 0x80 0xA0

CCNT0

CDTYUPD 0x20 0x40 0x60

UPRCNT 0x0 0x1 0x0 0x1 0x0 0x1

CDTY

UPRUPD 0x1 0x3

CMP0 match

transfer request

WRDY

0x0 0x1 0x2 0x3 0x0 0x1 0x2

UPR 0x1 0x3

0x80 0xA0 0xB0

0x20 0x40 0x60 0x80 0xA0

1031SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 PWM Channel Dead Time Update Register

 PWM Channel Mode Update Register

When one of these update registers is written to, the write is stored, but the values are updated only at the next

PWM period border. In Left-aligned mode (CALG = 0), the update occurs when the channel counter reaches the

period value CPRD. In Center-aligned mode, the update occurs when the channel counter value is decremented

and reaches the 0 value.

In Center-aligned mode, it is possible to trigger the update of the polarity and the duty-cycle at the next half period

border. This mode concerns the following update registers:

 PWM Channel Duty Cycle Update Register

 PWM Channel Mode Update Register

The update occurs at the first half period following the write of the update register (either when the channel counter

value is incrementing and reaches the period value CPRD, or when the channel counter value is decrementing

and reaches the 0 value). To activate this mode, the user must write a one to the bit UPDS in the PWM Channel

Mode Register.

39.6.3 PWM Comparison Units

The PWM provides 8 independent comparison units able to compare a programmed value with the current value of

the channel 0 counter (which is the channel counter of all synchronous channels, Section 39.6.2.9 “Synchronous

Channels”). These comparisons are intended to generate pulses on the event lines (used to synchronize ADC, see

Section 39.6.4 “PWM Event Lines”), to generate software interrupts and to trigger Peripheral DMA Controller

transfer requests for the synchronous channels (see “Method 3: Automatic write of duty-cycle values and

automatic trigger of the update”).

Figure 39-17. Comparison Unit Block Diagram

The comparison x matches when it is enabled by the bit CEN in the PWM Comparison x Mode Register

(PWM_CMPMx for the comparison x) and when the counter of the channel 0 reaches the comparison value

defined by the field CV in PWM Comparison x Value Register (PWM_CMPVx for the comparison x). If the counter

of the channel 0 is center-aligned (CALG = 1 in PWM Channel Mode Register), the bit CVM in PWM_CMPVx

defines if the comparison is made when the counter is counting up or counting down (in Left-alignment mode

CALG = 0, this bit is useless).

=

fault on channel 0

CNT [PWM_CCNT0]

CNT [PWM_CCNT0] is decrementing

CALG [PWM_CMR0]

CV [PWM_CMPVx]

= 1

01

Comparison x

CVM [PWM_CMPVx]

=

CPRCNT [PWM_CMPMx]

CTR [PWM_CMPMx]

CEN [PWM_CMPMx]

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1032

If a fault is active on the channel 0, the comparison is disabled and cannot match (see Section 39.6.2.7 “Fault

Protection”).

The user can define the periodicity of the comparison x by the fields CTR and CPR in PWM_CMPMx. The

comparison is performed periodically once every CPR+1 periods of the counter of the channel 0, when the value of

the comparison period counter CPRCNT in PWM_CMPMx reaches the value defined by CTR. CPR is the

maximum value of the comparison period counter CPRCNT. If CPR = CTR = 0, the comparison is performed at

each period of the counter of the channel 0.

The comparison x configuration can be modified while the channel 0 is enabled by using the PWM Comparison x

Mode Update Register (PWM_CMPMUPDx registers for the comparison x). In the same way, the comparison x

value can be modified while the channel 0 is enabled by using the PWM Comparison x Value Update Register

(PWM_CMPVUPDx registers for the comparison x).

The update of the comparison x configuration and the comparison x value is triggered periodically after the

comparison x update period. It is defined by the field CUPR in PWM_CMPMx. The comparison unit has an update

period counter independent from the period counter to trigger this update. When the value of the comparison

update period counter CUPRCNT (in PWM_CMPMx) reaches the value defined by CUPR, the update is triggered.

The comparison x update period CUPR itself can be updated while the channel 0 is enabled by using the

PWM_CMPMUPDx register.

CAUTION: The write of PWM_CMPVUPDx must be followed by a write of PWM_CMPMUPDx.

The comparison match and the comparison update can be source of an interrupt, but only if it is enabled and not

masked. These interrupts can be enabled by the PWM Interrupt Enable Register 2 and disabled by the PWM

Interrupt Disable Register 2. The comparison match interrupt and the comparison update interrupt are reset by

reading the PWM Interrupt Status Register 2.

1033SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 39-18. Comparison Waveform

39.6.4 PWM Event Lines

The PWM provides 2 independent event lines intended to trigger actions in other peripherals (e.g., for the Analog-

to-Digital Converter (ADC)).

A pulse (one cycle of the peripheral clock) is generated on an event line, when at least one of the selected

comparisons is matching. The comparisons can be selected or unselected independently by the CSEL bits in the

PWM Event Line x Register (PWM_ELMRx for the Event Line x).

An example of event generation is provided in Figure 39-20.

CCNT0

CVUPD 0x6 0x2

CVMVUPD

CV 0x6 0x2

0x6

0x6

CVM

Comparison Update

CMPU

CTRUPD 0x1 0x2

CPR 0x1 0x3

0x0 0x1 0x0 0x1 0x0 0x1 0x2 0x3 0x0 0x1 0x2 0x3CPRCNT

0x0 0x1 0x2 0x3 0x0 0x1 0x2 0x0 0x1 0x2 0x0 0x1CUPRCNT

CPRUPD 0x1 0x3

CUPRUPD 0x3 0x2

CTR 0x1 0x2

CUPR 0x3 0x2

Comparison Match

CMPM

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1034

Figure 39-19. Event Line Block Diagram

Figure 39-20. Event Line Generation Waveform (Example)

39.6.5 PWM Controller Operations

39.6.5.1 Initialization

Before enabling the channels, they must be configured by the software application as described below:

 Unlock User Interface by writing the WPCMD field in PWM_WPCR.

 Configuration of the clock generator (DIVA, PREA, DIVB, PREB in the PWM_CLK register if required).

 Selection of the clock for each channel (CPRE field in PWM_CMRx)

 Configuration of the waveform alignment for each channel (CALG field in PWM_CMRx)

 Selection of the counter event selection (if CALG = 1) for each channel (CES field in PWM_CMRx)

 Configuration of the output waveform polarity for each channel (CPOL bit in PWM_CMRx)

PULSE

GENERATOR

Event Line x

CSEL0 (PWM_ELMRx)

CMPM0 (PWM_ISR2)

CSEL1 (PWM_ELMRx)

CMPM1 (PWM_ISR2)

CSEL2 (PWM_ELMRx)

CMPM2 (PWM_ISR2)

CSEL7 (PWM_ELMRx)

CMPM7 (PWM_ISR2)

CPRD(PWM_CPRD0)

CDTY(PWM_CDTY0)

PWM_CCNTx

Waveform OC2

CDTY(PWM_CDTY1)

CDTY(PWM_CDTY2)

Waveform OC1

Waveform OC0

CV (PWM_CMPV0)

CV (PWM_CMPV1)

Comparison

Unit 0 Output

PWM_CMPM0.CEN = 1
Comparison

Unit 1 Output

PWM_CMPM0.CEN = 1

Event Line 0

(trigger event for ADC)

PWM_ELMR0.CSEL0 = 1

PWM_ELMR0.CSEL1 = 1
configurable delay

PWM_CMPV0.CV configurable delay

PWM_CMPV1.CV

ADC conversion ADC conversion

1035SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 Configuration of the period for each channel (CPRD in the PWM_CPRDx register). Writing in PWM_CPRDx

register is possible while the channel is disabled. After validation of the channel, the user must use

PWM_CPRDUPDx register to update PWM_CPRDx as explained below.

 Configuration of the duty-cycle for each channel (CDTY in the PWM_CDTYx register). Writing in

PWM_CDTYx register is possible while the channel is disabled. After validation of the channel, the user

must use PWM_CDTYUPDx register to update PWM_CDTYx as explained below.

 Configuration of the dead-time generator for each channel (DTH and DTL in PWM_DTx) if enabled (DTE bit

in PWM_CMRx). Writing in the PWM_DTx register is possible while the channel is disabled. After validation

of the channel, the user must use PWM_DTUPDx register to update PWM_DTx

 Selection of the synchronous channels (SYNCx in the PWM_SCM register)

 Selection of the moment when the WRDY flag and the corresponding Peripheral DMA Controller transfer

request are set (PTRM and PTRCS in the PWM_SCM register)

 Configuration of the Update mode (UPDM in PWM_SCM register)

 Configuration of the update period (UPR in PWM_SCUP register) if needed

 Configuration of the comparisons (PWM_CMPVx and PWM_CMPMx)

 Configuration of the event lines (PWM_ELMRx)

 Configuration of the fault inputs polarity (FPOL in PWM_FMR)

 Configuration of the fault protection (FMOD and FFIL in PWM_FMR, PWM_FPV and PWM_FPE1)

 Enable of the interrupts (writing CHIDx and FCHIDx in PWM_IER1, and writing WRDY, ENDTX, TXBUFE,

UNRE, CMPMx and CMPUx in PWM_IER2)

 Enable of the PWM channels (writing CHIDx in the PWM_ENA register)

39.6.5.2 Source Clock Selection Criteria

The large number of source clocks can make selection difficult. The relationship between the value in the PWM

Channel Period Register (PWM_CPRDx) and the PWM Channel Duty Cycle Register (PWM_CDTYx) helps the

user select the appropriate clock. The event number written in the Period Register gives the PWM accuracy. The

Duty-Cycle quantum cannot be lower than 1/CPRDx value. The higher the value of PWM_CPRDx, the greater the

PWM accuracy.

For example, if the user sets 15 (in decimal) in PWM_CPRDx, the user is able to set a value from between 1 up to

14 in PWM_CDTYx. The resulting duty-cycle quantum cannot be lower than 1/15 of the PWM period.

39.6.5.3 Changing the Duty-Cycle, the Period and the Dead-Times

It is possible to modulate the output waveform duty-cycle, period and dead-times.

To prevent unexpected output waveform, the user must use the PWM Channel Duty Cycle Update Register

(PWM_CDTYUPDx), the PWM Channel Period Update Register (PWM_CPRDUPDx) and the PWM Channel

Dead Time Update Register (PWM_DTUPDx) to change waveform parameters while the channel is still enabled.

 If the channel is an asynchronous channel (SYNCx = 0 in PWM Sync Channels Mode Register

(PWM_SCM)), these registers hold the new period, duty-cycle and dead-times values until the end of the

current PWM period and update the values for the next period.

 If the channel is a synchronous channel and update method 0 is selected (SYNCx = 1 and UPDM = 0 in

PWM_SCM register), these registers hold the new period, duty-cycle and dead-times values until the bit

UPDULOCK is written at ‘1’ (in PWM Sync Channels Update Control Register (PWM_SCUC)) and the end

of the current PWM period, then update the values for the next period.

 If the channel is a synchronous channel and update method 1 or 2 is selected (SYNCx = 1 and UPDM = 1 or

2 in PWM_SCM register):

̶ registers PWM_CPRDUPDx and PWM_DTUPDx hold the new period and dead-times values until the

bit UPDULOCK is written at ‘1’ (in PWM_SCUC) and the end of the current PWM period, then update

the values for the next period.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1036

̶ register PWM_CDTYUPDx holds the new duty-cycle value until the end of the update period of

synchronous channels (when UPRCNT is equal to UPR in PWM Sync Channels Update Period

Register (PWM_SCUP)) and the end of the current PWM period, then updates the value for the next

period.

Note: If the update registers PWM_CDTYUPDx, PWM_CPRDUPDx and PWM_DTUPDx are written several times between

two updates, only the last written value is taken into account.

Figure 39-21. Synchronized Period, Duty-Cycle and Dead-Time Update

39.6.5.4 Changing the Update Period of Synchronous Channels

It is possible to change the update period of synchronous channels while they are enabled. See “Method 2:

Manual write of duty-cycle values and automatic trigger of the update” and “Method 3: Automatic write of duty-

cycle values and automatic trigger of the update” .

To prevent an unexpected update of the synchronous channels registers, the user must use the PWM Sync

Channels Update Period Update Register (PWM_SCUPUPD) to change the update period of synchronous

channels while they are still enabled. This register holds the new value until the end of the update period of

synchronous channels (when UPRCNT is equal to UPR in PWM_SCUP) and the end of the current PWM period,

then updates the value for the next period.

Note: If the update register PWM_SCUPUPD is written several times between two updates, only the last written value is

taken into account.

Note: Changing the update period does make sense only if there is one or more synchronous channels and if the update

method 1 or 2 is selected (UPDM = 1 or 2 in PWM Sync Channels Mode Register).

PWM_CPRDUPDx Value

PWM_CPRDx PWM_CDTYx

- If Asynchronous Channel

 -> End of PWM period

- If Synchronous Channel

 -> End of PWM period and UPDULOCK = 1

User's Writing

PWM_DTUPDx Value

User's Writing

PWM_DTx

- If Asynchronous Channel

 -> End of PWM period

- If Synchronous Channel

 - If UPDM = 0

 -> End of PWM period and UPDULOCK = 1

 - If UPDM = 1 or 2

 -> End of PWM period and end of Update Period

PWM_CDTYUPDx Value

User's Writing

1037SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 39-22. Synchronized Update of Update Period Value of Synchronous Channels

39.6.5.5 Changing the Comparison Value and the Comparison Configuration

It is possible to change the comparison values and the comparison configurations while the channel 0 is enabled

(see Section 39.6.3 “PWM Comparison Units”).

To prevent unexpected comparison match, the user must use the PWM Comparison x Value Update Register

(PWM_CMPVUPDx) and the PWM Comparison x Mode Update Register (PWM_CMPMUPDx) to change,

respectively, the comparison values and the comparison configurations while the channel 0 is still enabled. These

registers hold the new values until the end of the comparison update period (when CUPRCNT is equal to CUPR in

PWM Comparison x Mode Register (PWM_CMPMx) and the end of the current PWM period, then update the

values for the next period.

CAUTION: The write of the register PWM_CMPVUPDx must be followed by a write of the register

PWM_CMPMUPDx.

Note: If the update registers PWM_CMPVUPDx and PWM_CMPMUPDx are written several times between two updates,

only the last written value are taken into account.

End of PWM period and

end of update period

of synchronous channels

PWM_SCUPUPD Value

User's Writing

PWM_SCUP

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1038

Figure 39-23. Synchronized Update of Comparison Values and Configurations

39.6.5.6 Interrupt Sources

Depending on the interrupt mask in PWM_IMR1 and PWM_IMR2, an interrupt can be generated at the end of the

corresponding channel period (CHIDx in the PWM Interrupt Status Register 1 (PWM_ISR1)), after a fault event

(FCHIDx in PWM_ISR1), after a comparison match (CMPMx in PWM_ISR2), after a comparison update (CMPUx

in PWM_ISR2) or according to the Transfer mode of the synchronous channels (WRDY, ENDTX, TXBUFE and

UNRE in PWM_ISR2).

If the interrupt is generated by the flags CHIDx or FCHIDx, the interrupt remains active until a read operation in

PWM_ISR1 occurs.

If the interrupt is generated by the flags WRDY or UNRE or CMPMx or CMPUx, the interrupt remains active until a

read operation in PWM_ISR2 occurs.

A channel interrupt is enabled by setting the corresponding bit in PWM_IER1 and PWM_IER2. A channel interrupt
is disabled by setting the corresponding bit in PWM_IDR1 and PWM_IDR2.

PWM_CMPVUPDx Value

Comparison value

for comparison x

User's Writing

PWM_CMPVx

End of channel0 PWM period and

end of comparison update period

PWM_CMPMUPDx Value

Comparison configuration

for comparison x

PWM_CMPMx

User's Writing

End of channel0 PWM period and

end of comparison update period and

and PWM_CMPMx written

1039SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.6.6 Register Write Protection

To prevent any single software error that may corrupt PWM behavior, the registers listed below can be write-

protected by writing the field WPCMD in the PWM Write Protection Control Register (PWM_WPCR). They are

divided into six groups:

 Register group 0:

̶ PWM Clock Register

 Register group 1:

̶ PWM Disable Register

 Register group 2:

̶ PWM Sync Channels Mode Register

̶ PWM Channel Mode Register

̶ PWM Stepper Motor Mode Register

̶ PWM Channel Mode Update Register

 Register group 3:

̶ PWM Spread Spectrum Register

̶ PWM Spread Spectrum Update Register

̶ PWM Channel Period Register

̶ PWM Channel Period Update Register

 Register group 4:

̶ PWM Channel Dead Time Register

̶ PWM Channel Dead Time Update Register

 Register group 5:

̶ PWM Fault Mode Register

̶ PWM Fault Protection Value Register 1

There are two types of write protection:

 SW write protection—can be enabled or disabled by software

 HW write protection—can be enabled by software but only disabled by a hardware reset of the PWM

controller

Both types of write protection can be applied independently to a particular register group by means of the WPCMD

and WPRGx fields in PWM_WPCR. If at least one type of write protection is active, the register group is write-

protected. The value of field WPCMD defines the action to be performed:

 0: Disables SW write protection of the register groups of which the bit WPRGx is at ‘1’

 1: Enables SW write protection of the register groups of which the bit WPRGx is at ‘1’

 2: Enables HW write protection of the register groups of which the bit WPRGx is at ‘1’

At any time, the user can determine whether SW or HW write protection is active in a particular register group by

the fields WPSWS and WPHWS in the PWM Write Protection Status Register (PWM_WPSR).

If a write access to a write-protected register is detected, the WPVS flag in PWM_WPSR is set and the field

WPVSRC indicates the register in which the write access has been attempted.

The WPVS and WPVSRC fields are automatically cleared after reading PWM_WPSR.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1040

39.7 Pulse Width Modulation Controller (PWM) User Interface

Table 39-5. Register Mapping

Offset Register Name Access Reset

0x00 PWM Clock Register PWM_CLK Read/Write 0x0

0x04 PWM Enable Register PWM_ENA Write-only –

0x08 PWM Disable Register PWM_DIS Write-only –

0x0C PWM Status Register PWM_SR Read-only 0x0

0x10 PWM Interrupt Enable Register 1 PWM_IER1 Write-only –

0x14 PWM Interrupt Disable Register 1 PWM_IDR1 Write-only –

0x18 PWM Interrupt Mask Register 1 PWM_IMR1 Read-only 0x0

0x1C PWM Interrupt Status Register 1 PWM_ISR1 Read-only 0x0

0x20 PWM Sync Channels Mode Register PWM_SCM Read/Write 0x0

0x24 PWM DMA Register PWM_DMAR Write-only –

0x28 PWM Sync Channels Update Control Register PWM_SCUC Read/Write 0x0

0x2C PWM Sync Channels Update Period Register PWM_SCUP Read/Write 0x0

0x30 PWM Sync Channels Update Period Update Register PWM_SCUPUPD Write-only –

0x34 PWM Interrupt Enable Register 2 PWM_IER2 Write-only –

0x38 PWM Interrupt Disable Register 2 PWM_IDR2 Write-only –

0x3C PWM Interrupt Mask Register 2 PWM_IMR2 Read-only 0x0

0x40 PWM Interrupt Status Register 2 PWM_ISR2 Read-only 0x0

0x44 PWM Output Override Value Register PWM_OOV Read/Write 0x0

0x48 PWM Output Selection Register PWM_OS Read/Write 0x0

0x4C PWM Output Selection Set Register PWM_OSS Write-only –

0x50 PWM Output Selection Clear Register PWM_OSC Write-only –

0x54 PWM Output Selection Set Update Register PWM_OSSUPD Write-only –

0x58 PWM Output Selection Clear Update Register PWM_OSCUPD Write-only –

0x5C PWM Fault Mode Register PWM_FMR Read/Write 0x0

0x60 PWM Fault Status Register PWM_FSR Read-only 0x0

0x64 PWM Fault Clear Register PWM_FCR Write-only –

0x68 PWM Fault Protection Value Register 1 PWM_FPV1 Read/Write 0x0

0x6C PWM Fault Protection Enable Register PWM_FPE Read/Write 0x0

0x70–0x78 Reserved – – –

0x7C PWM Event Line 0 Mode Register PWM_ELMR0 Read/Write 0x0

0x80 PWM Event Line 1 Mode Register PWM_ELMR1 Read/Write 0x0

0x84–0x9C Reserved – – –

0xA0 PWM Spread Spectrum Register PWM_SSPR Read/Write 0x0

0xA4 PWM Spread Spectrum Update Register PWM_SSPUP Write-only –

0xA8–0xAC Reserved – – –

1041SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

0xB0 PWM Stepper Motor Mode Register PWM_SMMR Read/Write 0x0

0xB4–0xBC Reserved – – –

0xC0 PWM Fault Protection Value 2 Register PWM_FPV2 Read/Write 0x003F_003F

0xC4–0xE0 Reserved – – –

0xE4 PWM Write Protection Control Register PWM_WPCR Write-only –

0xE8 PWM Write Protection Status Register PWM_WPSR Read-only 0x0

0xEC–0xFC Reserved – – –

0x100–0x128 Reserved for PDC registers – – –

0x12C Reserved – – –

0x130 PWM Comparison 0 Value Register PWM_CMPV0 Read/Write 0x0

0x134 PWM Comparison 0 Value Update Register PWM_CMPVUPD0 Write-only –

0x138 PWM Comparison 0 Mode Register PWM_CMPM0 Read/Write 0x0

0x13C PWM Comparison 0 Mode Update Register PWM_CMPMUPD0 Write-only –

0x140 PWM Comparison 1 Value Register PWM_CMPV1 Read/Write 0x0

0x144 PWM Comparison 1 Value Update Register PWM_CMPVUPD1 Write-only –

0x148 PWM Comparison 1 Mode Register PWM_CMPM1 Read/Write 0x0

0x14C PWM Comparison 1 Mode Update Register PWM_CMPMUPD1 Write-only –

0x150 PWM Comparison 2 Value Register PWM_CMPV2 Read/Write 0x0

0x154 PWM Comparison 2 Value Update Register PWM_CMPVUPD2 Write-only –

0x158 PWM Comparison 2 Mode Register PWM_CMPM2 Read/Write 0x0

0x15C PWM Comparison 2 Mode Update Register PWM_CMPMUPD2 Write-only –

0x160 PWM Comparison 3 Value Register PWM_CMPV3 Read/Write 0x0

0x164 PWM Comparison 3 Value Update Register PWM_CMPVUPD3 Write-only –

0x168 PWM Comparison 3 Mode Register PWM_CMPM3 Read/Write 0x0

0x16C PWM Comparison 3 Mode Update Register PWM_CMPMUPD3 Write-only –

0x170 PWM Comparison 4 Value Register PWM_CMPV4 Read/Write 0x0

0x174 PWM Comparison 4 Value Update Register PWM_CMPVUPD4 Write-only –

0x178 PWM Comparison 4 Mode Register PWM_CMPM4 Read/Write 0x0

0x17C PWM Comparison 4 Mode Update Register PWM_CMPMUPD4 Write-only –

0x180 PWM Comparison 5 Value Register PWM_CMPV5 Read/Write 0x0

0x184 PWM Comparison 5 Value Update Register PWM_CMPVUPD5 Write-only –

0x188 PWM Comparison 5 Mode Register PWM_CMPM5 Read/Write 0x0

0x18C PWM Comparison 5 Mode Update Register PWM_CMPMUPD5 Write-only –

0x190 PWM Comparison 6 Value Register PWM_CMPV6 Read/Write 0x0

0x194 PWM Comparison 6 Value Update Register PWM_CMPVUPD6 Write-only –

0x198 PWM Comparison 6 Mode Register PWM_CMPM6 Read/Write 0x0

0x19C PWM Comparison 6 Mode Update Register PWM_CMPMUPD6 Write-only –

Table 39-5. Register Mapping (Continued)

Offset Register Name Access Reset

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1042

Notes: 1. Some registers are indexed with “ch_num” index ranging from 0 to 3.

0x1A0 PWM Comparison 7 Value Register PWM_CMPV7 Read/Write 0x0

0x1A4 PWM Comparison 7 Value Update Register PWM_CMPVUPD7 Write-only –

0x1A8 PWM Comparison 7 Mode Register PWM_CMPM7 Read/Write 0x0

0x1AC PWM Comparison 7 Mode Update Register PWM_CMPMUPD7 Write-only –

0x1B0–0x1FC Reserved – – –

0x200 + ch_num *

0x20 + 0x00
PWM Channel Mode Register(1) PWM_CMR Read/Write 0x0

0x200 + ch_num *

0x20 + 0x04
PWM Channel Duty Cycle Register(1) PWM_CDTY Read/Write 0x0

0x200 + ch_num *

0x20 + 0x08
PWM Channel Duty Cycle Update Register(1) PWM_CDTYUPD Write-only –

0x200 + ch_num *

0x20 + 0x0C
PWM Channel Period Register(1) PWM_CPRD Read/Write 0x0

0x200 + ch_num *

0x20 + 0x10
PWM Channel Period Update Register(1) PWM_CPRDUPD Write-only –

0x200 + ch_num *

0x20 + 0x14
PWM Channel Counter Register(1) PWM_CCNT Read-only 0x0

0x200 + ch_num *

0x20 + 0x18
PWM Channel Dead Time Register(1) PWM_DT Read/Write 0x0

0x200 + ch_num *

0x20 + 0x1C
PWM Channel Dead Time Update Register(1) PWM_DTUPD Write-only –

0x400 + ch_num *

0x20 + 0x00
PWM Channel Mode Update Register(1) PWM_CMUPD Write-only –

Table 39-5. Register Mapping (Continued)

Offset Register Name Access Reset

1043SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.1 PWM Clock Register

Name: PWM_CLK

Access: Read/Write

This register can only be written if bits WPSWS0 and WPHWS0 are cleared in the PWM Write Protection Status Register.

• DIVA: CLKA Divide Factor

• DIVB: CLKB Divide Factor

• PREA: CLKA Source Clock Selection

31 30 29 28 27 26 25 24

– – – – PREB

23 22 21 20 19 18 17 16

DIVB

15 14 13 12 11 10 9 8

– – – – PREA

7 6 5 4 3 2 1 0

DIVA

Value Name Description

0 CLKA_POFF CLKA clock is turned off

1 PREA CLKA clock is clock selected by PREA

2–255 PREA_DIV CLKA clock is clock selected by PREA divided by DIVA factor

Value Name Description

0 CLKB_POFF CLKB clock is turned off

1 PREB CLKB clock is clock selected by PREB

2–255 PREB_DIV CLKB clock is clock selected by PREB divided by DIVB factor

Value Name Description

0 CLK Peripheral clock

1 CLK_DIV2 Peripheral clock/2

2 CLK_DIV4 Peripheral clock/4

3 CLK_DIV8 Peripheral clock/8

4 CLK_DIV16 Peripheral clock/16

5 CLK_DIV32 Peripheral clock/32

6 CLK_DIV64 Peripheral clock/64

7 CLK_DIV128 Peripheral clock/128

8 CLK_DIV256 Peripheral clock/256

9 CLK_DIV512 Peripheral clock/512

10 CLK_DIV1024 Peripheral clock/1024

Other – Reserved

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1044

• PREB: CLKB Source Clock Selection

Value Name Description

0 CLK Peripheral clock

1 CLK_DIV2 Peripheral clock/2

2 CLK_DIV4 Peripheral clock/4

3 CLK_DIV8 Peripheral clock/8

4 CLK_DIV16 Peripheral clock/16

5 CLK_DIV32 Peripheral clock/32

6 CLK_DIV64 Peripheral clock/64

7 CLK_DIV128 Peripheral clock/128

8 CLK_DIV256 Peripheral clock/256

9 CLK_DIV512 Peripheral clock/512

10 CLK_DIV1024 Peripheral clock/1024

Other – Reserved

1045SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.2 PWM Enable Register

Name: PWM_ENA

Access: Write-only

• CHIDx: Channel ID

0: No effect.

1: Enable PWM output for channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1046

39.7.3 PWM Disable Register

Name: PWM_DIS

Access: Write-only

This register can only be written if bits WPSWS1 and WPHWS1 are cleared in the PWM Write Protection Status Register.

• CHIDx: Channel ID

0: No effect.

1: Disable PWM output for channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

1047SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.4 PWM Status Register

Name: PWM_SR

Access: Read-only

• CHIDx: Channel ID

0: PWM output for channel x is disabled.

1: PWM output for channel x is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1048

39.7.5 PWM Interrupt Enable Register 1

Name: PWM_IER1

Access: Write-only

• CHIDx: Counter Event on Channel x Interrupt Enable

• FCHIDx: Fault Protection Trigger on Channel x Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – FCHID3 FCHID2 FCHID1 FCHID0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

1049SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.6 PWM Interrupt Disable Register 1

Name: PWM_IDR1

Access: Write-only

• CHIDx: Counter Event on Channel x Interrupt Disable

• FCHIDx: Fault Protection Trigger on Channel x Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – FCHID3 FCHID2 FCHID1 FCHID0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1050

39.7.7 PWM Interrupt Mask Register 1

Name: PWM_IMR1

Access: Read-only

• CHIDx: Counter Event on Channel x Interrupt Mask

• FCHIDx: Fault Protection Trigger on Channel x Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – FCHID3 FCHID2 FCHID1 FCHID0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

1051SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.8 PWM Interrupt Status Register 1

Name: PWM_ISR1

Access: Read-only

• CHIDx: Counter Event on Channel x

0: No new counter event has occurred since the last read of PWM_ISR1.

1: At least one counter event has occurred since the last read of PWM_ISR1.

• FCHIDx: Fault Protection Trigger on Channel x

0: No new trigger of the fault protection since the last read of PWM_ISR1.

1: At least one trigger of the fault protection since the last read of PWM_ISR1.

Note: Reading PWM_ISR1 automatically clears CHIDx and FCHIDx flags.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – FCHID3 FCHID2 FCHID1 FCHID0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CHID3 CHID2 CHID1 CHID0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1052

39.7.9 PWM Sync Channels Mode Register

Name: PWM_SCM

Access: Read/Write

This register can only be written if bits WPSWS2 and WPHWS2 are cleared in the PWM Write Protection Status Register.

• SYNCx: Synchronous Channel x

0: Channel x is not a synchronous channel.

1: Channel x is a synchronous channel.

• UPDM: Synchronous Channels Update Mode

Notes: 1. The update occurs at the beginning of the next PWM period, when the UPDULOCK bit in PWM Sync Channels Update

Control Register is set.

2. The update occurs when the Update Period is elapsed.

• PTRM: Peripheral DMA Controller Transfer Request Mode

• PTRCS: Peripheral DMA Controller Transfer Request Comparison Selection

Selection of the comparison used to set the flag WRDY and the corresponding Peripheral DMA Controller transfer request.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – SYNC3 SYNC2 SYNC1 SYNC0

Value Name Description

0 MODE0 Manual write of double buffer registers and manual update of synchronous channels(1)

1 MODE1 Manual write of double buffer registers and automatic update of synchronous channels(2)

2 MODE2
Automatic write of duty-cycle update registers by the Peripheral DMA Controller and automatic

update of synchronous channels(2)

UPDM PTRM WRDY Flag and Peripheral DMA Controller Transfer Request

0 x The WRDY flag in PWM Interrupt Status Register 2 and the transfer request are never set to ‘1’.

1 x
The WRDY flag in PWM Interrupt Status Register 2 is set to ‘1’ as soon as the update period is

elapsed, the Peripheral DMA Controller transfer request is never set to ‘1’.

2

0
The WRDY flag in PWM Interrupt Status Register 2 and the transfer request are set to ‘1’ as

soon as the update period is elapsed.

1
The WRDY flag in PWM Interrupt Status Register 2 and the transfer request are set to ‘1’ as

soon as the selected comparison matches.

1053SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.10 PWM DMA Register

Name: PWM_DMAR

Access: Write- only

Only the first 16 bits (channel counter size) are significant.

• DMADUTY: Duty-Cycle Holding Register for DMA Access

Each write access to PWM_DMAR sequentially updates the CDTY field of PWM_CDTYx with DMADUTY (only for channel

configured as synchronous). See “Method 3: Automatic write of duty-cycle values and automatic trigger of the update” .

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

DMADUTY

15 14 13 12 11 10 9 8

DMADUTY

7 6 5 4 3 2 1 0

DMADUTY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1054

39.7.11 PWM Sync Channels Update Control Register

Name: PWM_SCUC

Access: Read/Write

• UPDULOCK: Synchronous Channels Update Unlock

0: No effect

1: If the UPDM field is set to ‘0’ in PWM Sync Channels Mode Register, writing the UPDULOCK bit to ‘1’ triggers the update

of the period value, the duty-cycle and the dead-time values of synchronous channels at the beginning of the next PWM

period. If the field UPDM is set to ‘1’ or ‘2’, writing the UPDULOCK bit to ‘1’ triggers only the update of the period value and

of the dead-time values of synchronous channels.

This bit is automatically reset when the update is done.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – UPDULOCK

1055SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.12 PWM Sync Channels Update Period Register

Name: PWM_SCUP

Access: Read/Write

• UPR: Update Period

Defines the time between each update of the synchronous channels if automatic trigger of the update is activated

(UPDM = 1 or UPDM = 2 in PWM Sync Channels Mode Register). This time is equal to UPR+1 periods of the synchronous

channels.

• UPRCNT: Update Period Counter

Reports the value of the update period counter.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

UPRCNT UPR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1056

39.7.13 PWM Sync Channels Update Period Update Register

Name: PWM_SCUPUPD

Access: Write-only

This register acts as a double buffer for the UPR value. This prevents an unexpected automatic trigger of the update of

synchronous channels.

• UPRUPD: Update Period Update

Defines the wanted time between each update of the synchronous channels if automatic trigger of the update is activated

(UPDM = 1 or UPDM = 2 in PWM Sync Channels Mode Register). This time is equal to UPR+1 periods of the synchronous

channels.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – UPRUPD

1057SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.14 PWM Interrupt Enable Register 2

Name: PWM_IER2

Access: Write-only

• WRDY: Write Ready for Synchronous Channels Update Interrupt Enable

• ENDTX: PDC End of TX Buffer Interrupt Enable

• TXBUFE: PDC TX Buffer Empty Interrupt Enable

• UNRE: Synchronous Channels Update Underrun Error Interrupt Enable

• CMPMx: Comparison x Match Interrupt Enable

• CMPUx: Comparison x Update Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CMPU7 CMPU6 CMPU5 CMPU4 CMPU3 CMPU2 CMPU1 CMPU0

15 14 13 12 11 10 9 8

CMPM7 CMPM6 CMPM5 CMPM4 CMPM3 CMPM2 CMPM1 CMPM0

7 6 5 4 3 2 1 0

– – – – UNRE TXBUFE ENDTX WRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1058

39.7.15 PWM Interrupt Disable Register 2

Name: PWM_IDR2

Access: Write-only

• WRDY: Write Ready for Synchronous Channels Update Interrupt Disable

• ENDTX: PDC End of TX Buffer Interrupt Disable

• TXBUFE: PDC TX Buffer Empty Interrupt Disable

• UNRE: Synchronous Channels Update Underrun Error Interrupt Disable

• CMPMx: Comparison x Match Interrupt Disable

• CMPUx: Comparison x Update Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CMPU7 CMPU6 CMPU5 CMPU4 CMPU3 CMPU2 CMPU1 CMPU0

15 14 13 12 11 10 9 8

CMPM7 CMPM6 CMPM5 CMPM4 CMPM3 CMPM2 CMPM1 CMPM0

7 6 5 4 3 2 1 0

– – – – UNRE TXBUFE ENDTX WRDY

1059SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.16 PWM Interrupt Mask Register 2

Name: PWM_IMR2

Access: Read-only

• WRDY: Write Ready for Synchronous Channels Update Interrupt Mask

• ENDTX: PDC End of TX Buffer Interrupt Mask

• TXBUFE: PDC TX Buffer Empty Interrupt Mask

• UNRE: Synchronous Channels Update Underrun Error Interrupt Mask

• CMPMx: Comparison x Match Interrupt Mask

• CMPUx: Comparison x Update Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CMPU7 CMPU6 CMPU5 CMPU4 CMPU3 CMPU2 CMPU1 CMPU0

15 14 13 12 11 10 9 8

CMPM7 CMPM6 CMPM5 CMPM4 CMPM3 CMPM2 CMPM1 CMPM0

7 6 5 4 3 2 1 0

– – – – UNRE TXBUFE ENDTX WRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1060

39.7.17 PWM Interrupt Status Register 2

Name: PWM_ISR2

Access: Read-only

• WRDY: Write Ready for Synchronous Channels Update

0: New duty-cycle and dead-time values for the synchronous channels cannot be written.

1: New duty-cycle and dead-time values for the synchronous channels can be written.

• ENDTX: PDC End of TX Buffer

0: The Transmit Counter register has not reached 0 since the last write of the PDC.

1: The Transmit Counter register has reached 0 since the last write of the PDC.

• TXBUFE: PDC TX Buffer Empty

0: PWM_TCR or PWM_TCNR has a value other than 0.

1: Both PWM_TCR and PWM_TCNR have a value other than 0.

• UNRE: Synchronous Channels Update Underrun Error

0: No Synchronous Channels Update Underrun has occurred since the last read of the PWM_ISR2 register.

1: At least one Synchronous Channels Update Underrun has occurred since the last read of the PWM_ISR2 register.

• CMPMx: Comparison x Match

0: The comparison x has not matched since the last read of the PWM_ISR2 register.

1: The comparison x has matched at least one time since the last read of the PWM_ISR2 register.

• CMPUx: Comparison x Update

0: The comparison x has not been updated since the last read of the PWM_ISR2 register.

1: The comparison x has been updated at least one time since the last read of the PWM_ISR2 register.

Note: Reading PWM_ISR2 automatically clears flags WRDY, UNRE and CMPSx.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CMPU7 CMPU6 CMPU5 CMPU4 CMPU3 CMPU2 CMPU1 CMPU0

15 14 13 12 11 10 9 8

CMPM7 CMPM6 CMPM5 CMPM4 CMPM3 CMPM2 CMPM1 CMPM0

7 6 5 4 3 2 1 0

– – – – UNRE TXBUFE ENDTX WRDY

1061SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.18 PWM Output Override Value Register

Name: PWM_OOV

Access: Read/Write

• OOVHx: Output Override Value for PWMH output of the channel x

0: Override value is 0 for PWMH output of channel x.

1: Override value is 1 for PWMH output of channel x.

• OOVLx: Output Override Value for PWML output of the channel x

0: Override value is 0 for PWML output of channel x.

1: Override value is 1 for PWML output of channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – OOVL3 OOVL2 OOVL1 OOVL0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – OOVH3 OOVH2 OOVH1 OOVH0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1062

39.7.19 PWM Output Selection Register

Name: PWM_OS

Access: Read/Write

• OSHx: Output Selection for PWMH output of the channel x

0: Dead-time generator output DTOHx selected as PWMH output of channel x.

1: Output override value OOVHx selected as PWMH output of channel x.

• OSLx: Output Selection for PWML output of the channel x

0: Dead-time generator output DTOLx selected as PWML output of channel x.

1: Output override value OOVLx selected as PWML output of channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – OSL3 OSL2 OSL1 OSL0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – OSH3 OSH2 OSH1 OSH0

1063SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.20 PWM Output Selection Set Register

Name: PWM_OSS

Access: Write-only

• OSSHx: Output Selection Set for PWMH output of the channel x

0: No effect.

1: Output override value OOVHx selected as PWMH output of channel x.

• OSSLx: Output Selection Set for PWML output of the channel x

0: No effect.

1: Output override value OOVLx selected as PWML output of channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – OSSL3 OSSL2 OSSL1 OSSL0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – OSSH3 OSSH2 OSSH1 OSSH0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1064

39.7.21 PWM Output Selection Clear Register

Name: PWM_OSC

Access: Write-only

• OSCHx: Output Selection Clear for PWMH output of the channel x

0: No effect.

1: Dead-time generator output DTOHx selected as PWMH output of channel x.

• OSCLx: Output Selection Clear for PWML output of the channel x

0: No effect.

1: Dead-time generator output DTOLx selected as PWML output of channel x.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – OSCL3 OSCL2 OSCL1 OSCL0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – OSCH3 OSCH2 OSCH1 OSCH0

1065SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.22 PWM Output Selection Set Update Register

Name: PWM_OSSUPD

Access: Write-only

• OSSUPHx: Output Selection Set for PWMH output of the channel x

0: No effect.

1: Output override value OOVHx selected as PWMH output of channel x at the beginning of the next channel x PWM

period.

• OSSUPLx: Output Selection Set for PWML output of the channel x

0: No effect.

1: Output override value OOVLx selected as PWML output of channel x at the beginning of the next channel x PWM

period.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – OSSUPL3 OSSUPL2 OSSUPL1 OSSUPL0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – OSSUPH3 OSSUPH2 OSSUPH1 OSSUPH0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1066

39.7.23 PWM Output Selection Clear Update Register

Name: PWM_OSCUPD

Access: Write-only

• OSCUPHx: Output Selection Clear for PWMH output of the channel x

0: No effect.

1: Dead-time generator output DTOHx selected as PWMH output of channel x at the beginning of the next channel x PWM

period.

• OSCUPLx: Output Selection Clear for PWML output of the channel x

0: No effect.

1: Dead-time generator output DTOLx selected as PWML output of channel x at the beginning of the next channel x PWM

period.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – OSCUPL3 OSCUPL2 OSCUPL1 OSCUPL0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – OSCUPH3 OSCUPH2 OSCUPH1 OSCUPH0

1067SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.24 PWM Fault Mode Register

Name: PWM_FMR

Access: Read/Write

This register can only be written if bits WPSWS5 and WPHWS5 are cleared in the PWM Write Protection Status Register.

Refer to Section 39.5.4 “Fault Inputs” for details on fault generation.

• FPOL: Fault Polarity

For each bit y of FPOL, where y is the fault input number:

0: The fault y becomes active when the fault input y is at 0.

1: The fault y becomes active when the fault input y is at 1.

• FMOD: Fault Activation Mode

For each bit y of FMOD, where y is the fault input number:

0: The fault y is active until the fault condition is removed at the peripheral(1) level.

1: The fault y stays active until the fault condition is removed at the peripheral(1) level AND until it is cleared in the PWM

Fault Clear Register.

Note: 1. The peripheral generating the fault.

• FFIL: Fault Filtering

For each bit y of FFIL, where y is the fault input number:

0: The fault input y is not filtered.

1: The fault input y is filtered.

CAUTION: To prevent an unexpected activation of the status flag FSy in the PWM Fault Status Register, the bit FMODy

can be set to ‘1’ only if the FPOLy bit has been previously configured to its final value.

31 30 29 28 27 26 25 24

–

23 22 21 20 19 18 17 16

FFIL

15 14 13 12 11 10 9 8

FMOD

7 6 5 4 3 2 1 0

FPOL

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1068

39.7.25 PWM Fault Status Register

Name: PWM_FSR

Access: Read-only

Refer to Section 39.5.4 “Fault Inputs” for details on fault generation.

• FIV: Fault Input Value

For each bit y of FIV, where y is the fault input number:

0: The current sampled value of the fault input y is 0 (after filtering if enabled).

1: The current sampled value of the fault input y is 1 (after filtering if enabled).

• FS: Fault Status

For each bit y of FS, where y is the fault input number:

0: The fault y is not currently active.

1: The fault y is currently active.

31 30 29 28 27 26 25 24

–

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

FS

7 6 5 4 3 2 1 0

FIV

1069SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.26 PWM Fault Clear Register

Name: PWM_FCR

Access: Write-only

Refer to Section 39.5.4 “Fault Inputs” for details on fault generation.

• FCLR: Fault Clear

For each bit y of FCLR, where y is the fault input number:

0: No effect.

1: If bit y of FMOD field is set to ‘1’ and if the fault input y is not at the level defined by the bit y of FPOL field, the fault y
is cleared and becomes inactive (FMOD and FPOL fields belong to PWM Fault Mode Register), else writing this bit to
‘1’ has no effect.

31 30 29 28 27 26 25 24

–

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

–

7 6 5 4 3 2 1 0

FCLR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1070

39.7.27 PWM Fault Protection Value Register 1

Name: PWM_FPV1

Access: Read/Write

This register can only be written if bits WPSWS5 and WPHWS5 are cleared in the PWM Write Protection Status Register.

Refer to Section 39.5.4 “Fault Inputs” for details on fault generation.

• FPVHx: Fault Protection Value for PWMH output on channel x

This bit is taken into account only if the bit FPZHx is set to ‘0’ in PWM Fault Protection Value Register 2.

0: PWMH output of channel x is forced to ‘0’ when fault occurs.

1: PWMH output of channel x is forced to ‘1’ when fault occurs.

• FPVLx: Fault Protection Value for PWML output on channel x

This bit is taken into account only if the bit FPZLx is set to ‘0’ in PWM Fault Protection Value Register 2.

0: PWML output of channel x is forced to ‘0’ when fault occurs.

1: PWML output of channel x is forced to ‘1’ when fault occurs.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – FPVL3 FPVL2 FPVL1 FPVL0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – FPVH3 FPVH2 FPVH1 FPVH0

1071SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.28 PWM Fault Protection Enable Register

Name: PWM_FPE

Access: Read/Write

This register can only be written if bits WPSWS5 and WPHWS5 are cleared in the PWM Write Protection Status Register.

Only the first 8 bits (number of fault input pins) of fields FPE0, FPE1, FPE2 and FPE3 are significant.

Refer to Section 39.5.4 “Fault Inputs” for details on fault generation.

• FPEx: Fault Protection Enable for channel x

For each bit y of FPEx, where y is the fault input number:

0: Fault y is not used for the fault protection of channel x.

1: Fault y is used for the fault protection of channel x.

CAUTION: To prevent an unexpected activation of the fault protection, the bit y of FPEx field can be set to ‘1’ only if the

corresponding FPOL field has been previously configured to its final value in PWM Fault Mode Register.

31 30 29 28 27 26 25 24

FPE3

23 22 21 20 19 18 17 16

FPE2

15 14 13 12 11 10 9 8

FPE1

7 6 5 4 3 2 1 0

FPE0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1072

39.7.29 PWM Event Line x Register

Name: PWM_ELMRx

Access: Read/Write

• CSELy: Comparison y Selection

0: A pulse is not generated on the event line x when the comparison y matches.

1: A pulse is generated on the event line x when the comparison y match.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

CSEL7 CSEL6 CSEL5 CSEL4 CSEL3 CSEL2 CSEL1 CSEL0

1073SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.30 PWM Spread Spectrum Register

Name: PWM_SSPR

Access: Read/Write

This register can only be written if bits WPSWS3 and WPHWS3 are cleared in the PWM Write Protection Status Register.

Only the first 16 bits (channel counter size) are significant.

• SPRD: Spread Spectrum Limit Value

The spread spectrum limit value defines the range for the spread spectrum counter. It is introduced in order to achieve con-

stant varying PWM period for the output waveform.

• SPRDM: Spread Spectrum Counter Mode

0: Triangular mode. The spread spectrum counter starts to count from -SPRD when the channel 0 is enabled and counts

upwards at each PWM period. When it reaches +SPRD, it restarts to count from -SPRD again.

1: Random mode. The spread spectrum counter is loaded with a new random value at each PWM period. This random

value is uniformly distributed and is between -SPRD and +SPRD.

31 30 29 28 27 26 25 24

– – – – – – – SPRDM

23 22 21 20 19 18 17 16

SPRD

15 14 13 12 11 10 9 8

SPRD

7 6 5 4 3 2 1 0

SPRD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1074

39.7.31 PWM Spread Spectrum Update Register

Name: PWM_SSPUP

Access: Write-only

This register can only be written if bits WPSWS3 and WPHWS3 are cleared in the PWM Write Protection Status Register.

This register acts as a double buffer for the SPRD value. This prevents an unexpected waveform when modifying the

spread spectrum limit value.

Only the first 16 bits (channel counter size) are significant.

• SPRDUP: Spread Spectrum Limit Value Update

The spread spectrum limit value defines the range for the spread spectrum counter. It is introduced in order to achieve con-

stant varying period for the output waveform.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

SPRDUP

15 14 13 12 11 10 9 8

SPRDUP

7 6 5 4 3 2 1 0

SPRDUP

1075SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.32 PWM Stepper Motor Mode Register

Name: PWM_SMMR

Access: Read/Write

• GCENx: Gray Count ENable

0: Disable gray count generation on PWML[2*x], PWMH[2*x], PWML[2*x +1], PWMH[2*x +1]

1: Enable gray count generation on PWML[2*x], PWMH[2*x], PWML[2*x +1], PWMH[2*x +1.

• DOWNx: DOWN Count

0: Up counter.

1: Down counter.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – DOWN1 DOWN0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – GCEN1 GCEN0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1076

39.7.33 PWM Fault Protection Value Register 2

Name: PWM_FPV2

Access: Read/Write

This register can only be written if bits WPSWS5 and WPHWS5 are cleared in the PWM Write Protection Status Register.

• FPZHx: Fault Protection to Hi-Z for PWMH output on channel x

0: When fault occurs, PWMH output of channel x is forced to value defined by the bit FPVHx in PWM Fault Protection

Value Register 1.

1: When fault occurs, PWMH output of channel x is forced to high-impedance state.

• FPZLx: Fault Protection to Hi-Z for PWML output on channel x

0: When fault occurs, PWML output of channel x is forced to value defined by the bit FPVLx in PWM Fault Protection Value

Register 1.

1: When fault occurs, PWML output of channel x is forced to high-impedance state.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – FPZL3 FPZL2 FPZL1 FPZL0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – FPZH3 FPZH2 FPZH1 FPZH0

1077SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.34 PWM Write Protection Control Register

Name: PWM_WPCR

Access: Write-only

See Section 39.6.6 “Register Write Protection” for the list of registers that can be write-protected.

• WPCMD: Write Protection Command

This command is performed only if the WPKEY corresponds to 0x50574D (“PWM” in ASCII).

• WPRGx: Write Protection Register Group x

0: The WPCMD command has no effect on the register group x.

1: The WPCMD command is applied to the register group x.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

WPRG5 WPRG4 WPRG3 WPRG2 WPRG1 WPRG0 WPCMD

Value Name Description

0 DISABLE_SW_PROT Disables the software write protection of the register groups of which the bit WPRGx is at ‘1’.

1 ENABLE_SW_PROT Enables the software write protection of the register groups of which the bit WPRGx is at ‘1’.

2 ENABLE_HW_PROT

Enables the hardware write protection of the register groups of which the bit WPRGx is at ‘1’.

Only a hardware reset of the PWM controller can disable the hardware write protection.

Moreover, to meet security requirements, the PIO lines associated with the PWM can not be

configured through the PIO interface.

Value Name Description

0x50574D PASSWD
Writing any other value in this field aborts the write operation of the WPCMD field.

Always reads as 0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1078

39.7.35 PWM Write Protection Status Register

Name: PWM_WPSR

Access: Read-only

• WPSWSx: Write Protect SW Status

0: The SW write protection x of the register group x is disabled.

1: The SW write protection x of the register group x is enabled.

• WPHWSx: Write Protect HW Status

0: The HW write protection x of the register group x is disabled.

1: The HW write protection x of the register group x is enabled.

• WPVS: Write Protect Violation Status

0: No write protection violation has occurred since the last read of PWM_WPSR.

1: At least one write protection violation has occurred since the last read of PWM_WPSR. If this violation is an unauthor-

ized attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protect Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

WPVSRC

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

– – WPHWS5 WPHWS4 WPHWS3 WPHWS2 WPHWS1 WPHWS0

7 6 5 4 3 2 1 0

WPVS – WPSWS5 WPSWS4 WPSWS3 WPSWS2 WPSWS1 WPSWS0

1079SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.36 PWM Comparison x Value Register

Name: PWM_CMPVx

Access: Read/Write

Only the first 16 bits (channel counter size) of field CV are significant.

• CV: Comparison x Value

Define the comparison x value to be compared with the counter of the channel 0.

• CVM: Comparison x Value Mode

0: The comparison x between the counter of the channel 0 and the comparison x value is performed when this counter is

incrementing.

1: The comparison x between the counter of the channel 0 and the comparison x value is performed when this counter is

decrementing.

Note: This bit is not relevant if the counter of the channel 0 is left-aligned (CALG = 0 in PWM Channel Mode Register)

31 30 29 28 27 26 25 24

– – – – – – – CVM

23 22 21 20 19 18 17 16

CV

15 14 13 12 11 10 9 8

CV

7 6 5 4 3 2 1 0

CV

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1080

39.7.37 PWM Comparison x Value Update Register

Name: PWM_CMPVUPDx

Access: Write-only

This register acts as a double buffer for the CV and CVM values. This prevents an unexpected comparison x match.

Only the first 16 bits (channel counter size) of field CVUPD are significant.

• CVUPD: Comparison x Value Update

Define the comparison x value to be compared with the counter of the channel 0.

• CVMUPD: Comparison x Value Mode Update

0: The comparison x between the counter of the channel 0 and the comparison x value is performed when this counter is

incrementing.

1: The comparison x between the counter of the channel 0 and the comparison x value is performed when this counter is

decrementing.

Note: This bit is not relevant if the counter of the channel 0 is left-aligned (CALG = 0 in PWM Channel Mode Register)

CAUTION: The write of the register PWM_CMPVUPDx must be followed by a write of the register PWM_CMPMUPDx.

31 30 29 28 27 26 25 24

– – – – – – – CVMUPD

23 22 21 20 19 18 17 16

CVUPD

15 14 13 12 11 10 9 8

CVUPD

7 6 5 4 3 2 1 0

CVUPD

1081SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.38 PWM Comparison x Mode Register

Name: PWM_CMPMx

Access: Read/Write

• CEN: Comparison x Enable

0: The comparison x is disabled and can not match.

1: The comparison x is enabled and can match.

• CTR: Comparison x Trigger

The comparison x is performed when the value of the comparison x period counter (CPRCNT) reaches the value defined

by CTR.

• CPR: Comparison x Period

CPR defines the maximum value of the comparison x period counter (CPRCNT). The comparison x value is performed

periodically once every CPR+1 periods of the channel 0 counter.

• CPRCNT: Comparison x Period Counter

Reports the value of the comparison x period counter.

Note: The field CPRCNT is read-only

• CUPR: Comparison x Update Period

Defines the time between each update of the comparison x mode and the comparison x value. This time is equal to

CUPR+1 periods of the channel 0 counter.

• CUPRCNT: Comparison x Update Period Counter

Reports the value of the comparison x update period counter.

Note: The field CUPRCNT is read-only

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CUPRCNT CUPR

15 14 13 12 11 10 9 8

CPRCNT CPR

7 6 5 4 3 2 1 0

CTR – – – CEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1082

39.7.39 PWM Comparison x Mode Update Register

Name: PWM_CMPMUPDx

Access: Write-only

This register acts as a double buffer for the CEN, CTR, CPR and CUPR values. This prevents an unexpected comparison

x match.

• CENUPD: Comparison x Enable Update

0: The comparison x is disabled and can not match.

1: The comparison x is enabled and can match.

• CTRUPD: Comparison x Trigger Update

The comparison x is performed when the value of the comparison x period counter (CPRCNT) reaches the value defined

by CTR.

• CPRUPD: Comparison x Period Update

CPR defines the maximum value of the comparison x period counter (CPRCNT). The comparison x value is performed

periodically once every CPR+1 periods of the channel 0 counter.

• CUPRUPD: Comparison x Update Period Update

Defines the time between each update of the comparison x mode and the comparison x value. This time is equal to

CUPR+1 periods of the channel 0 counter.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – CUPRUPD

15 14 13 12 11 10 9 8

– – – – CPRUPD

7 6 5 4 3 2 1 0

CTRUPD – – – CENUPD

1083SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.40 PWM Channel Mode Register

Name: PWM_CMRx [x=0..3]

Access: Read/Write

This register can only be written if bits WPSWS2 and WPHWS2 are cleared in the PWM Write Protection Status Register.

• CPRE: Channel Pre-scaler

• CALG: Channel Alignment

0: The period is left-aligned.

1: The period is center-aligned.

• CPOL: Channel Polarity

0: The OCx output waveform (output from the comparator) starts at a low level.

1: The OCx output waveform (output from the comparator) starts at a high level.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – DTLI DTHI DTE

15 14 13 12 11 10 9 8

– – TCTS – UPDS CES CPOL CALG

7 6 5 4 3 2 1 0

– – – – CPRE

Value Name Description

0 MCK Peripheral clock

1 MCK_DIV_2 Peripheral clock/2

2 MCK_DIV_4 Peripheral clock/4

3 MCK_DIV_8 Peripheral clock/8

4 MCK_DIV_16 Peripheral clock/16

5 MCK_DIV_32 Peripheral clock/32

6 MCK_DIV_64 Peripheral clock/64

7 MCK_DIV_128 Peripheral clock/128

8 MCK_DIV_256 Peripheral clock/256

9 MCK_DIV_512 Peripheral clock/512

10 MCK_DIV_1024 Peripheral clock/1024

11 CLKA Clock A

12 CLKB Clock B

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1084

• CES: Counter Event Selection

The bit CES defines when the channel counter event occurs when the period is center-aligned (flag CHIDx in PWM Inter-

rupt Status Register 1).

CALG = 0 (Left Alignment):

0/1: The channel counter event occurs at the end of the PWM period.

CALG = 1 (Center Alignment):

0: The channel counter event occurs at the end of the PWM period.

1: The channel counter event occurs at the end of the PWM period and at half the PWM period.

• UPDS: Update Selection

When the period is center aligned, the bit UPDS defines when the update of the duty cycle, the polarity value/mode occurs

after writing the corresponding update registers.

CALG = 0 (Left Alignment):

0/1: The update always occurs at the end of the PWM period after writing the update register(s).

CALG = 1 (Center Alignment):

0: The update occurs at the next end of the PWM period after writing the update register(s).

1: The update occurs at the next end of the PWM half period after writing the update register(s).

• TCTS: Timer Counter Trigger Selection

0: The comparator of the channel x (OCx) is used as the trigger source for the Timer Counter (TC).

1: The counter events of the channel x is used as the trigger source for the Timer Counter (TC).

• DTE: Dead-Time Generator Enable

0: The dead-time generator is disabled.

1: The dead-time generator is enabled.

• DTHI: Dead-Time PWMHx Output Inverted

0: The dead-time PWMHx output is not inverted.

1: The dead-time PWMHx output is inverted.

• DTLI: Dead-Time PWMLx Output Inverted

0: The dead-time PWMLx output is not inverted.

1: The dead-time PWMLx output is inverted.

1085SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.41 PWM Channel Duty Cycle Register

Name: PWM_CDTYx [x=0..3]

Access: Read/Write

Only the first 16 bits (channel counter size) are significant.

• CDTY: Channel Duty-Cycle

Defines the waveform duty-cycle. This value must be defined between 0 and CPRD (PWM_CPRDx).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CDTY

15 14 13 12 11 10 9 8

CDTY

7 6 5 4 3 2 1 0

CDTY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1086

39.7.42 PWM Channel Duty Cycle Update Register

Name: PWM_CDTYUPDx [x=0..3]

Access: Write-only.

This register acts as a double buffer for the CDTY value. This prevents an unexpected waveform when modifying the

waveform duty-cycle.

Only the first 16 bits (channel counter size) are significant.

• CDTYUPD: Channel Duty-Cycle Update

Defines the waveform duty-cycle. This value must be defined between 0 and CPRD (PWM_CPRDx).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CDTYUPD

15 14 13 12 11 10 9 8

CDTYUPD

7 6 5 4 3 2 1 0

CDTYUPD

1087SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.43 PWM Channel Period Register

Name: PWM_CPRDx [x=0..3]

Access: Read/Write

This register can only be written if bits WPSWS3 and WPHWS3 are cleared in the PWM Write Protection Status Register.

Only the first 16 bits (channel counter size) are significant.

• CPRD: Channel Period

If the waveform is left-aligned, then the output waveform period depends on the channel counter source clock and can be

calculated:

– By using the PWM peripheral clock divided by a given prescaler value “X” (where X = 2PREA is 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, or 1024). The resulting period formula is:

– By using the PWM peripheral clock divided by a given prescaler value “X” (see above) and by either the DIVA
or the DIVB divider. The formula becomes, respectively:

 or

If the waveform is center-aligned, then the output waveform period depends on the channel counter source clock and can

be calculated:

– By using the PWM peripheral clock divided by a given prescaler value “X” (where X = 2PREA is 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, or 1024). The resulting period formula is:

– By using the PWM peripheral clock divided by a given prescaler value “X” (see above) and by either the DIVA
or the DIVB divider. The formula becomes, respectively:

 or

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CPRD

15 14 13 12 11 10 9 8

CPRD

7 6 5 4 3 2 1 0

CPRD

X CPRD×()

fperipheral clock

X CRPD DIVA××()

fperipheral clock

--
X C× RPD DIVB×()

fperipheral clock

--

2 X CPRD××()

fperipheral clock

--

2 X C× PRD DIVA××()

fperipheral clock

2 X C× PRD× DIVB×()

fperipheral clock

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1088

39.7.44 PWM Channel Period Update Register

Name: PWM_CPRDUPDx [x=0..3]

Access: Write-only

This register can only be written if bits WPSWS3 and WPHWS3 are cleared in the PWM Write Protection Status Register.

This register acts as a double buffer for the CPRD value. This prevents an unexpected waveform when modifying the

waveform period.

Only the first 16 bits (channel counter size) are significant.

• CPRDUPD: Channel Period Update

If the waveform is left-aligned, then the output waveform period depends on the channel counter source clock and can be

calculated:

– By using the PWM peripheral clock divided by a given prescaler value “X” (where X = 2PREA is 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, or 1024). The resulting period formula is:

– By using the PWM peripheral clock divided by a given prescaler value “X” (see above) and by either the DIVA
or the DIVB divider. The formula becomes, respectively:

 or

If the waveform is center-aligned, then the output waveform period depends on the channel counter source
clock and can be calculated:

– By using the PWM peripheral clock divided by a given prescaler value “X” (where X = 2PREA is 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, or 1024). The resulting period formula is:

– By using the PWM peripheral clock divided by a given prescaler value “X” (see above) and by either the DIVA
or the DIVB divider. The formula becomes, respectively:

 or

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CPRDUPD

15 14 13 12 11 10 9 8

CPRDUPD

7 6 5 4 3 2 1 0

CPRDUPD

X CPRDUPD×()

fperipheral clock

--

X CRPDUPD DIVA××()

fperipheral clock

--
X CRPDUPD DIVB××()

fperipheral clock

--

2 X CPRDUPD××()

fperipheral clock

--

2 X C× PRDUPD DIVA××()

fperipheral clock

2 X C× PRDUPD× DIVB×()

fperipheral clock

1089SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.45 PWM Channel Counter Register

Name: PWM_CCNTx [x=0..3]

Access: Read-only

Only the first 16 bits (channel counter size) are significant.

• CNT: Channel Counter Register

Channel counter value. This register is reset when:

• the channel is enabled (writing CHIDx in the PWM_ENA register).

• the channel counter reaches CPRD value defined in the PWM_CPRDx register if the waveform is left-aligned.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

CNT

15 14 13 12 11 10 9 8

CNT

7 6 5 4 3 2 1 0

CNT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1090

39.7.46 PWM Channel Dead Time Register

Name: PWM_DTx [x=0..3]

Access: Read/Write

This register can only be written if bits WPSWS4 and WPHWS4 are cleared in the PWM Write Protection Status Register.

Only the first 12 bits (dead-time counter size) of fields DTH and DTL are significant.

• DTH: Dead-Time Value for PWMHx Output

Defines the dead-time value for PWMHx output. This value must be defined between 0 and the value (CPRD – CDTY)

(PWM_CPRDx and PWM_CDTYx).

• DTL: Dead-Time Value for PWMLx Output

Defines the dead-time value for PWMLx output. This value must be defined between 0 and CDTY (PWM_CDTYx).

31 30 29 28 27 26 25 24

DTL

23 22 21 20 19 18 17 16

DTL

15 14 13 12 11 10 9 8

DTH

7 6 5 4 3 2 1 0

DTH

1091SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

39.7.47 PWM Channel Dead Time Update Register

Name: PWM_DTUPDx [x=0..3]

Access: Write-only

This register can only be written if bits WPSWS4 and WPHWS4 are cleared in the PWM Write Protection Status Register.

This register acts as a double buffer for the DTH and DTL values. This prevents an unexpected waveform when modifying

the dead-time values.

Only the first 12 bits (dead-time counter size) of fields DTHUPD and DTLUPD are significant.

• DTHUPD: Dead-Time Value Update for PWMHx Output

Defines the dead-time value for PWMHx output. This value must be defined between 0 and the value (CPRD – CDTY)

(PWM_CPRDx and PWM_CDTYx). This value is applied only at the beginning of the next channel x PWM period.

• DTLUPD: Dead-Time Value Update for PWMLx Output

Defines the dead-time value for PWMLx output. This value must be defined between 0 and CDTY (PWM_CDTYx). This

value is applied only at the beginning of the next channel x PWM period.

31 30 29 28 27 26 25 24

DTLUPD

23 22 21 20 19 18 17 16

DTLUPD

15 14 13 12 11 10 9 8

DTHUPD

7 6 5 4 3 2 1 0

DTHUPD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1092

39.7.48 PWM Channel Mode Update Register

Name: PWM_CMUPDx [x=0..3]

Access: Read/Write

This register can only be written if bits WPSWS2 and WPHWS2 are cleared in the PWM Write Protection Status Register.

This register acts as a double buffer for the CPOL value. This prevents an unexpected waveform when modifying the polar-

ity value.

• CPOLUP: Channel Polarity Update

The write of this bit is taken into account only if the bit CPOLINVUP is written at ‘0’ at the same time.

0: The OCx output waveform (output from the comparator) starts at a low level.

1: The OCx output waveform (output from the comparator) starts at a high level.

• CPOLINVUP: Channel Polarity Inversion Update

If this bit is written at ‘1’, the write of the bit CPOLUP is not taken into account.

0: No effect.

1: The OCx output waveform (output from the comparator) is inverted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – CPOLINVUP – – – CPOLUP –

7 6 5 4 3 2 1 0

– – – – – – – –

1093SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40. High Speed Multimedia Card Interface (HSMCI)

40.1 Description

The High Speed Multimedia Card Interface (HSMCI) supports the MultiMedia Card (MMC) Specification V4.3, the

SD Memory Card Specification V2.0, the SDIO V2.0 specification and CE-ATA V1.1.

The HSMCI includes a command register, response registers, data registers, timeout counters and error detection

logic that automatically handle the transmission of commands and, when required, the reception of the associated

responses and data with a limited processor overhead.

The HSMCI supports stream, block and multi block data read and write, and is compatible with the Peripheral DMA

Controller (PDC) Channels, minimizing processor intervention for large buffer transfers.

The HSMCI operates at a rate of up to Master Clock divided by 2 and supports the interfacing of 1 slot(s). Each

slot may be used to interface with a High Speed MultiMedia Card bus (up to 30 Cards) or with an SD Memory

Card. A bit field in the SD Card Register performs this selection.

The SD Memory Card communication is based on a 9-pin interface (clock, command, four data and three power

lines) and the High Speed MultiMedia Card on a 7-pin interface (clock, command, one data, three power lines and

one reserved for future use).

The SD Memory Card interface also supports High Speed MultiMedia Card operations. The main differences

between SD and High Speed MultiMedia Cards are the initialization process and the bus topology.

HSMCI fully supports CE-ATA Revision 1.1, built on the MMC System Specification v4.0. The module includes

dedicated hardware to issue the command completion signal and capture the host command completion signal

disable.

40.2 Embedded Characteristics

 Compatible with MultiMedia Card Specification Version 4.3

 Compatible with SD Memory Card Specification Version 2.0

 Compatible with SDIO Specification Version 2.0

 Compatible with CE-ATA Specification 1.1

 Cards Clock Rate Up to Master Clock Divided by 2

 Boot Operation Mode Support

 High Speed Mode Support

 Embedded Power Management to Slow Down Clock Rate When Not Used

 Supports 1 Multiplexed Slot(s)

̶ Each Slot for either a High Speed MultiMedia Card Bus (Up to 30 Cards) or an SD Memory Card

 Support for Stream, Block and Multi-block Data Read and Write

 Supports Connection to Peripheral DMA Controller (PDC)

̶ Minimizes Processor Intervention for Large Buffer Transfers

 Built in FIFO (from 16 to 256 bytes) with Large Memory Aperture Supporting Incremental Access

 Support for CE-ATA Completion Signal Disable Command

 Protection Against Unexpected Modification On-the-Fly of the Configuration Registers

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1094

40.3 Block Diagram

Figure 40-1. Block Diagram (4-bit configuration)

Note: 1. When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to HSMCIx_CDA,

MCDAy to HSMCIx_DAy.

HSMCI Interface

Interrupt Control

PIO

PDC

APB Bridge

PMC
MCK

HSMCI Interrupt

MCCK(1)

MCCDA(1)

MCDA0(1)

MCDA1(1)

MCDA2(1)

MCDA3(1)

APB

1095SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.4 Application Block Diagram

Figure 40-2. Application Block Diagram

40.5 Pin Name List

Notes: 1. When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to HSMCIx_CDA,

MCDAy to HSMCIx_DAy.

2. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.

2 3 4 5 61 7

MMC

2 3 4 5 61 78

SDCard

9

Physical Layer

HSMCI Interface

Application Layer

ex: File System, Audio, Security, etc.

9 1011 1213 8

Table 40-1. I/O Lines Description for 4-bit Configuration

Pin Name(1) Pin Description Type(2) Comments

MCCDA Command/response I/O/PP/OD CMD of an MMC or SDCard/SDIO

MCCK Clock I/O CLK of an MMC or SD Card/SDIO

MCDA0–MCDA3 Data 0..3 of Slot A I/O/PP
DAT[0..3] of an MMC

DAT[0..3] of an SD Card/SDIO

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1096

40.6 Product Dependencies

40.6.1 I/O Lines

The pins used for interfacing the High Speed MultiMedia Cards or SD Cards are multiplexed with PIO lines. The

programmer must first program the PIO controllers to assign the peripheral functions to HSMCI pins.

40.6.2 Power Management

The HSMCI is clocked through the Power Management Controller (PMC), so the programmer must first configure

the PMC to enable the HSMCI clock.

40.6.3 Interrupt Sources

The HSMCI has an interrupt line connected to the interrupt controller.

Handling the HSMCI interrupt requires programming the interrupt controller before configuring the HSMCI.

40.7 Bus Topology

Figure 40-3. High Speed MultiMedia Memory Card Bus Topology

Table 40-2. I/O Lines

Instance Signal I/O Line Peripheral

HSMCI MCCDA PA28 C

HSMCI MCCK PA29 C

HSMCI MCDA0 PA30 C

HSMCI MCDA1 PA31 C

HSMCI MCDA2 PA26 C

HSMCI MCDA3 PA27 C

Table 40-3. Peripheral IDs

Instance ID

HSMCI 16

2 3 4 5 61 7

MMC

9 1011 1213 8

1097SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The High Speed MultiMedia Card communication is based on a 13-pin serial bus interface. It has three

communication lines and four supply lines.

Notes: 1. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.

2. When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to

HSMCIx_CDA, MCDAy to HSMCIx_DAy.

Figure 40-4. MMC Bus Connections (One Slot)

Note: When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to HSMCIx_CDA

MCDAy to HSMCIx_DAy.

Figure 40-5. SD Memory Card Bus Topology

Table 40-4. Bus Topology

Pin Number Name Type(1) Description

HSMCI Pin Name(2)

(Slot z)

1 DAT[3] I/O/PP Data MCDz3

2 CMD I/O/PP/OD Command/response MCCDz

3 VSS1 S Supply voltage ground VSS

4 VDD S Supply voltage VDD

5 CLK I/O Clock MCCK

6 VSS2 S Supply voltage ground VSS

7 DAT[0] I/O/PP Data 0 MCDz0

8 DAT[1] I/O/PP Data 1 MCDz1

9 DAT[2] I/O/PP Data 2 MCDz2

MCCDA

MCDA0

MCCK

HSMCI

2 3 4 5 61 7

MMC1

9 1011 1213 8

2 3 4 5 61 7

MMC2

9 1011 1213 8

2 3 4 5 61 7

MMC3

9 1011 1213 8

2 3 4 5 61 7 8

SD CARD
9

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1098

The SD Memory Card bus includes the signals listed in Table 40-5.

Notes: 1. I: input, O: output, PP: Push Pull, OD: Open Drain.

2. When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to

HSMCIx_CDA, MCDAy to HSMCIx_DAy.

Figure 40-6. SD Card Bus Connections with One Slot

Note: When several HSMCI (x HSMCI) are embedded in a product, MCCK refers to HSMCIx_CK, MCCDA to HSMCIx_CDA

MCDAy to HSMCIx_DAy.

When the HSMCI is configured to operate with SD memory cards, the width of the data bus can be selected in the

HSMCI_SDCR. Clearing the SDCBUS bit in this register means that the width is one bit; setting it means that the

width is four bits. In the case of High Speed MultiMedia cards, only the data line 0 is used. The other data lines can

be used as independent PIOs.

40.8 High Speed MultiMedia Card Operations

After a power-on reset, the cards are initialized by a special message-based High Speed MultiMedia Card bus

protocol. Each message is represented by one of the following tokens:

 Command—A command is a token that starts an operation. A command is sent from the host either to a

single card (addressed command) or to all connected cards (broadcast command). A command is

transferred serially on the CMD line.

 Response—A response is a token which is sent from an addressed card or (synchronously) from all

connected cards to the host as an answer to a previously received command. A response is transferred

serially on the CMD line.

 Data—Data can be transferred from the card to the host or vice versa. Data is transferred via the data line.

Table 40-5. SD Memory Card Bus Signals

Pin Number Name Type(1) Description

HSMCI Pin Name(2)

(Slot z)

1 CD/DAT[3] I/O/PP Card detect/ Data line Bit 3 MCDz3

2 CMD PP Command/response MCCDz

3 VSS1 S Supply voltage ground VSS

4 VDD S Supply voltage VDD

5 CLK I/O Clock MCCK

6 VSS2 S Supply voltage ground VSS

7 DAT[0] I/O/PP Data line Bit 0 MCDz0

8 DAT[1] I/O/PP Data line Bit 1 or Interrupt MCDz1

9 DAT[2] I/O/PP Data line Bit 2 MCDz2

2
3

4
5

6
1

7MCDA0 - MCDA3

MCCDA

MCCK

8

SD CARD

9

1099SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Card addressing is implemented using a session address assigned during the initialization phase by the bus

controller to all currently connected cards. Their unique CID number identifies individual cards.

The structure of commands, responses and data blocks is described in the High Speed MultiMedia Card System

Specification. See also Table 40-6 on page 1099.

High Speed MultiMedia Card bus data transfers are composed of these tokens.

There are different types of operations. Addressed operations always contain a command and a response token.

In addition, some operations have a data token; the others transfer their information directly within the command or

response structure. In this case, no data token is present in an operation. The bits on the DAT and the CMD lines

are transferred synchronous to the clock HSMCI clock.

Two types of data transfer commands are defined:

 Sequential commands—These commands initiate a continuous data stream. They are terminated only when

a stop command follows on the CMD line. This mode reduces the command overhead to an absolute

minimum.

 Block-oriented commands—These commands send a data block succeeded by CRC bits.

Both read and write operations allow either single or multiple block transmission. A multiple block transmission is

terminated when a stop command follows on the CMD line similarly to the sequential read or when a multiple block

transmission has a predefined block count (see Section 40.8.2 “Data Transfer Operation”).

The HSMCI provides a set of registers to perform the entire range of High Speed MultiMedia Card operations.

40.8.1 Command - Response Operation

After reset, the HSMCI is disabled and becomes valid after setting the MCIEN bit in the HSMCI_CR.

The PWSEN bit saves power by dividing the HSMCI clock by 2PWSDIV + 1 when the bus is inactive.

The two bits, RDPROOF and WRPROOF in the HSMCI Mode Register (HSMCI_MR) allow stopping the HSMCI

clock during read or write access if the internal FIFO is full. This will guarantee data integrity, not bandwidth.

All the timings for High Speed MultiMedia Card are defined in the High Speed MultiMedia Card System

Specification.

The two bus modes (open drain and push/pull) needed to process all the operations are defined in the HSMCI

Command Register (HSMCI_CMDR). The HSMCI_CMDR allows a command to be carried out.

For example, to perform an ALL_SEND_CID command:

The command ALL_SEND_CID and the fields and values for the HSMCI_CMDR are described in Table 40-6 and

Table 40-7.

Note: 1. bcr means broadcast command with response.

Host Command NID Cycles Response

High Impedance

State

CMD S T Content CRC E Z ****** Z S T
CID

Content
Z Z Z

Table 40-6. ALL_SEND_CID Command Description

CMD Index Type Argument Response Abbreviation Command Description

CMD2 bcr(1) [31:0] stuff bits R2 ALL_SEND_CID

Asks all cards to send

their CID numbers on the

CMD line

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1100

The HSMCI_ARGR contains the argument field of the command.

To send a command, the user must perform the following steps:

 Fill the argument register (HSMCI_ARGR) with the command argument.

 Set the command register (HSMCI_CMDR) (see Table 40-7).

The command is sent immediately after writing the command register.

While the card maintains a busy indication (at the end of a STOP_TRANSMISSION command CMD12, for

example), a new command shall not be sent. The NOTBUSY flag in the Status Register (HSMCI_SR) is asserted

when the card releases the busy indication.

If the command requires a response, it can be read in the HSMCI Response Register (HSMCI_RSPR). The

response size can be from 48 bits up to 136 bits depending on the command. The HSMCI embeds an error

detection to prevent any corrupted data during the transfer.

The following flowchart shows how to send a command to the card and read the response if needed. In this

example, the status register bits are polled but setting the appropriate bits in the HSMCI Interrupt Enable Register

(HSMCI_IER) allows using an interrupt method.

Table 40-7. Fields and Values for HSMCI_CMDR

Field Value

CMDNB (command number) 2 (CMD2)

RSPTYP (response type) 2 (R2: 136 bits response)

SPCMD (special command) 0 (not a special command)

OPCMD (open drain command) 1

MAXLAT (max latency for command to response) 0 (NID cycles ==> 5 cycles)

TRCMD (transfer command) 0 (No transfer)

TRDIR (transfer direction) X (available only in transfer command)

TRTYP (transfer type) X (available only in transfer command)

IOSPCMD (SDIO special command) 0 (not a special command)

1101SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 40-7. Command/Response Functional Flow Diagram

Note: If the command is SEND_OP_COND, the CRC error flag is always present (refer to R3 response in the High Speed

MultiMedia Card specification).

RETURN OK

RETURN ERROR
(1)

RETURN OK

Set the command argument

HSMCI_ARGR = Argument(1)

Set the command

HSMCI_CMDR = Command

Read HSMCI_SR

CMDRDY

Status error flags?

Read response if required

Yes

Wait for command

ready status flag

Check error bits in the

status register (1)

0

1

Does the command involve

a busy indication?

No

Read HSMCI_SR

0

NOTBUSY

1

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1102

40.8.2 Data Transfer Operation

The High Speed MultiMedia Card allows several read/write operations (single block, multiple blocks, stream, etc.).

These kinds of transfer can be selected setting the Transfer Type (TRTYP) field in the HSMCI Command Register

(HSMCI_CMDR).

These operations can be done using the features of the Peripheral DMA Controller (PDC). If the PDCMODE bit is

set in HSMCI_MR, then all reads and writes use the PDC facilities.

In all cases, the block length (BLKLEN field) must be defined either in the HSMCI Mode Register (HSMCI_MR) or

in the HSMCI Block Register (HSMCI_BLKR). This field determines the size of the data block.

Consequent to MMC Specification 3.1, two types of multiple block read (or write) transactions are defined (the host

can use either one at any time):

 Open-ended/Infinite Multiple block read (or write):

The number of blocks for the read (or write) multiple block operation is not defined. The card will

continuously transfer (or program) data blocks until a stop transmission command is received.

 Multiple block read (or write) with predefined block count (since version 3.1 and higher):

The card will transfer (or program) the requested number of data blocks and terminate the transaction. The

stop command is not required at the end of this type of multiple block read (or write), unless terminated with

an error. In order to start a multiple block read (or write) with predefined block count, the host must correctly

program the HSMCI Block Register (HSMCI_BLKR). Otherwise the card will start an open-ended multiple

block read. The BCNT field of the HSMCI_BLKR defines the number of blocks to transfer (from 1 to 65535

blocks). Programming the value 0 in the BCNT field corresponds to an infinite block transfer.

40.8.3 Read Operation

The following flowchart (Figure 40-8) shows how to read a single block with or without use of PDC facilities. In this

example, a polling method is used to wait for the end of read. Similarly, the user can configure the HSMCI Interrupt

Enable Register (HSMCI_IER) to trigger an interrupt at the end of read.

1103SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 40-8. Read Functional Flow Diagram

Note: 1. It is assumed that this command has been correctly sent (see Figure 40-7).

Read status register HSMCI_SR

Send SELECT/DESELECT_CARD

command(1) to select the card

Send SET_BLOCKLEN command(1)

Read with PDC

Reset the PDCMODE bit

HSMCI_MR &= ~PDCMODE

Set the block length (in bytes)

HSMCI_BLKR |= (BlockLength <<16)

Number of words to read = 0 ?

Poll the bit

RXRDY = 0?

Read data = HSMCI_RDR

Number of words to read =

Number of words to read -1

Send READ_SINGLE_BLOCK

command(1)

Yes

Set the PDCMODE bit

HSMCI_MR |= PDCMODE

Set the block length (in bytes)

HSMCI_BLKR |= (BlockLength << 16)

Configure the PDC channel

HSMCI_RPR = Data Buffer Address

HSMCI_RCR = BlockLength/4

HSMCI_PTCR = RXTEN

Send READ_SINGLE_BLOCK

command(1)

Read status register HSMCI_SR

Poll the bit

ENDRX = 0?
Yes

RETURN

RETURN

YesNo

No

No

Yes

No

Number of words to read = BlockLength/4

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1104

40.8.4 Write Operation

In write operation, the HSMCI Mode Register (HSMCI_MR) is used to define the padding value when writing non-

multiple block size. If the bit PADV is 0, then 0x00 value is used when padding data, otherwise 0xFF is used.

If set, the bit PDCMODE enables PDC transfer.

The flowchart in Figure 40-9 shows how to write a single block with or without use of PDC facilities. Polling or

interrupt method can be used to wait for the end of write according to the contents of the HSMCI Interrupt Mask

Register (HSMCI_IMR).

1105SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 40-9. Write Functional Flow Diagram

Note: 1. It is assumed that this command has been correctly sent (see Figure 40-7).

The flowchart in Figure 40-10 shows how to manage a multiple write block transfer with the PDC. Polling or

interrupt method can be used to wait for the end of write according to the contents of the HSMCI_IMR.

Send SELECT/DESELECT_CARD

command(1) to select the card

Send SET_BLOCKLEN command(1)

Write using PDC

Reset the PDCMODE bit

HSMCI_MR &= ~PDCMODE

Set the block length

HSMCI_BLKR |= (BlockLength <<16)

Send WRITE_SINGLE_BLOCK

command(1)

Set the PDCMODE bit

HSMCI_MR |= PDCMODE

Set the block length

HSMCI_BLKR |= (BlockLength << 16)

Configure the PDC channel

HSMCI_TPR = Data Buffer Address

HSMCI_TCR = BlockLength/4

Send WRITE_SINGLE_BLOCK

command(1)

Read status register HSMCI_SR

Poll the bit

NOTBUSY= 0?
Yes

RETURN

No Yes

No

Read status register HSMCI_SR

Number of words to write = 0 ?

Poll the bit

TXRDY = 0?

HSMCI_TDR = Data to write

Number of words to write =

Number of words to write -1

Yes

RETURN

No

Yes

No

Number of words to write = BlockLength/4

HSMCI_PTCR = TXTEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1106

Figure 40-10. Multiple Write Functional Flow Diagram

Note: 1. It is assumed that this command has been correctly sent (see Figure 40-7).

40.9 SD/SDIO Card Operation

The High Speed MultiMedia Card Interface allows processing of SD Memory (Secure Digital Memory Card) and

SDIO (SD Input Output) Card commands.

SD/SDIO cards are based on the MultiMedia Card (MMC) format, but are physically slightly thicker and feature

higher data transfer rates, a lock switch on the side to prevent accidental overwriting and security features. The

Send SELECT/DESELECT_CARD

command(1) to select the card

Send SET_BLOCKLEN command(1)

Set the PDCMODE bit

HSMCI_MR |= PDCMODE

Set the block length

HSMCI_BLKR |= (BlockLength << 16)

Configure the PDC channel

HSMCI_TPR = Data Buffer Address

HSMCI_TCR = BlockLength/4

Send WRITE_MULTIPLE_BLOCK

command(1)

Read status register HSMCI_SR

Poll the bit

BLKE = 0?
Yes

No

HSMCI_PTCR = TXTEN

Poll the bit

NOTBUSY = 0?

Yes

RETURN

No

Send STOP_TRANSMISSION

command(1)

1107SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

physical form factor, pin assignment and data transfer protocol are forward-compatible with the High Speed

MultiMedia Card with some additions. SD slots can actually be used for more than flash memory cards. Devices

that support SDIO can use small devices designed for the SD form factor, such as GPS receivers, Wi-Fi or

Bluetooth adapters, modems, barcode readers, IrDA adapters, FM radio tuners, RFID readers, digital cameras

and more.

SD/SDIO is covered by numerous patents and trademarks, and licensing is only available through the Secure

Digital Card Association.

The SD/SDIO Card communication is based on a 9-pin interface (Clock, Command, 4 x Data and 3 x Power lines).

The communication protocol is defined as a part of this specification. The main difference between the SD/SDIO

Card and the High Speed MultiMedia Card is the initialization process.

The SD/SDIO Card Register (HSMCI_SDCR) allows selection of the Card Slot and the data bus width.

The SD/SDIO Card bus allows dynamic configuration of the number of data lines. After power up, by default, the

SD/SDIO Card uses only DAT0 for data transfer. After initialization, the host can change the bus width (number of

active data lines).

40.9.1 SDIO Data Transfer Type

SDIO cards may transfer data in either a multi-byte (1 to 512 bytes) or an optional block format (1 to 511 blocks),

while the SD memory cards are fixed in the block transfer mode. The TRTYP field in the HSMCI Command

Register (HSMCI_CMDR) allows to choose between SDIO Byte or SDIO Block transfer.

The number of bytes/blocks to transfer is set through the BCNT field in the HSMCI Block Register (HSMCI_BLKR).

In SDIO Block mode, the field BLKLEN must be set to the data block size while this field is not used in SDIO Byte

mode.

An SDIO Card can have multiple I/O or combined I/O and memory (called Combo Card). Within a multi-function

SDIO or a Combo card, there are multiple devices (I/O and memory) that share access to the SD bus. In order to

allow the sharing of access to the host among multiple devices, SDIO and combo cards can implement the

optional concept of suspend/resume (Refer to the SDIO Specification for more details). To send a suspend or a

resume command, the host must set the SDIO Special Command field (IOSPCMD) in the HSMCI Command

Register.

40.9.2 SDIO Interrupts

Each function within an SDIO or Combo card may implement interrupts (Refer to the SDIO Specification for more

details). In order to allow the SDIO card to interrupt the host, an interrupt function is added to a pin on the DAT[1]

line to signal the card’s interrupt to the host. An SDIO interrupt on each slot can be enabled through the HSMCI

Interrupt Enable Register. The SDIO interrupt is sampled regardless of the currently selected slot.

40.10 CE-ATA Operation

CE-ATA maps the streamlined ATA command set onto the MMC interface. The ATA task file is mapped onto MMC

register space.

CE-ATA utilizes five MMC commands:

 GO_IDLE_STATE (CMD0): used for hard reset.

 STOP_TRANSMISSION (CMD12): causes the ATA command currently executing to be aborted.

 FAST_IO (CMD39): Used for single register access to the ATA taskfile registers, 8-bit access only.

 RW_MULTIPLE_REGISTERS (CMD60): used to issue an ATA command or to access the control/status

registers.

 RW_MULTIPLE_BLOCK (CMD61): used to transfer data for an ATA command.

CE-ATA utilizes the same MMC command sequences for initialization as traditional MMC devices.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1108

40.10.1 Executing an ATA Polling Command

1. Issue READ_DMA_EXT with RW_MULTIPLE_REGISTER (CMD60) for 8 KB of DATA.

2. Read the ATA status register until DRQ is set.

3. Issue RW_MULTIPLE_BLOCK (CMD61) to transfer DATA.

4. Read the ATA status register until DRQ && BSY are configured to 0.

40.10.2 Executing an ATA Interrupt Command

1. Issue READ_DMA_EXT with RW_MULTIPLE_REGISTER (CMD60) for 8 KB of DATA with nIEN field set
to zero to enable the command completion signal in the device.

2. Issue RW_MULTIPLE_BLOCK (CMD61) to transfer DATA.

3. Wait for Completion Signal Received Interrupt.

40.10.3 Aborting an ATA Command

If the host needs to abort an ATA command prior to the completion signal it must send a special command to avoid

potential collision on the command line. The SPCMD field of the HSMCI_CMDR must be set to 3 to issue the CE-

ATA completion Signal Disable Command.

40.10.4 CE-ATA Error Recovery

Several methods of ATA command failure may occur, including:

 No response to an MMC command, such as RW_MULTIPLE_REGISTER (CMD60).

 CRC is invalid for an MMC command or response.

 CRC16 is invalid for an MMC data packet.

 ATA Status register reflects an error by setting the ERR bit to one.

 The command completion signal does not arrive within a host specified time out period.

Error conditions are expected to happen infrequently. Thus, a robust error recovery mechanism may be used for

each error event. The recommended error recovery procedure after a timeout is:

 Issue the command completion signal disable if nIEN was cleared to zero and the RW_MULTIPLE_BLOCK

(CMD61) response has been received.

 Issue STOP_TRANSMISSION (CMD12) and successfully receive the R1 response.

 Issue a software reset to the CE-ATA device using FAST_IO (CMD39).

If STOP_TRANMISSION (CMD12) is successful, then the device is again ready for ATA commands. However, if

the error recovery procedure does not work as expected or there is another timeout, the next step is to issue

GO_IDLE_STATE (CMD0) to the device. GO_IDLE_STATE (CMD0) is a hard reset to the device and completely

resets all device states.

Note that after issuing GO_IDLE_STATE (CMD0), all device initialization needs to be completed again. If the CE-

ATA device completes all MMC commands correctly but fails the ATA command with the ERR bit set in the ATA

Status register, no error recovery action is required. The ATA command itself failed implying that the device could

not complete the action requested, however, there was no communication or protocol failure. After the device

signals an error by setting the ERR bit to one in the ATA Status register, the host may attempt to retry the

command.

40.11 HSMCI Boot Operation Mode

In boot operation mode, the processor can read boot data from the slave (MMC device) by keeping the CMD line

low after power-on before issuing CMD1. The data can be read from either the boot area or user area, depending

on register setting. As it is not possible to boot directly on SD-CARD, a preliminary boot code must be stored in

internal Flash.

1109SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.11.1 Boot Procedure, Processor Mode

1. Configure the HSMCI data bus width programming SDCBUS Field in the HSMCI_SDCR. The
BOOT_BUS_WIDTH field located in the device Extended CSD register must be set accordingly.

2. Set the byte count to 512 bytes and the block count to the desired number of blocks, writing BLKLEN and

BCNT fields of the HSMCI_BLKR.

3. Issue the Boot Operation Request command by writing to the HSMCI_CMDR with SPCMD field set to

BOOTREQ, TRDIR set to READ and TRCMD set to “start data transfer”.

4. The BOOT_ACK field located in the HSMCI_CMDR must be set to one, if the BOOT_ACK field of the MMC

device located in the Extended CSD register is set to one.

5. Host processor can copy boot data sequentially as soon as the RXRDY flag is asserted.

6. When Data transfer is completed, host processor shall terminate the boot stream by writing the

HSMCI_CMDR with SPCMD field set to BOOTEND.

40.12 HSMCI Transfer Done Timings

40.12.1 Definition

The XFRDONE flag in the HSMCI_SR indicates exactly when the read or write sequence is finished.

40.12.2 Read Access

During a read access, the XFRDONE flag behaves as shown in Figure 40-11.

Figure 40-11. XFRDONE During a Read Access

40.12.3 Write Access

During a write access, the XFRDONE flag behaves as shown in Figure 40-12.

CMD line

HSMCI read CMD Card response

CMDRDY flag

Data

1st Block Last Block

Not busy flag

XFRDONE flag

The CMDRDY flag is released 8 tbit after the end of the card response.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1110

Figure 40-12. XFRDONE During a Write Access

CMD line

Card response

CMDRDY flag

Data bus - D0

1st Block

Not busy flag

XFRDONE flag

The CMDRDY flag is released 8 tbit after the end of the card response.

Last Block

D0

1st Block Last Block

D0 is tied by the card

D0 is released

HSMCI write CMD

1111SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.13 Register Write Protection

To prevent any single software error from corrupting HSMCI behavior, certain registers in the address space can

be write-protected by setting the WPEN bit in the HSMCI Write Protection Mode Register (HSMCI_WPMR).

If a write access to a write-protected register is detected, the WPVS bit in the HSMCI Write Protection Status

Register (HSMCI_WPSR) is set and the field WPVSRC indicates the register in which the write access has been

attempted.

The WPVS bit is automatically cleared after reading the HSMCI_WPSR.

The following registers can be protected:

 HSMCI Mode Register

 HSMCI Data Timeout Register

 HSMCI SDCard/SDIO Register

 HSMCI Completion Signal Timeout Register

 HSMCI Configuration Register

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1112

40.14 High Speed MultiMedia Card Interface (HSMCI) User Interface

Notes: 1. The Response Register can be read by N accesses at the same HSMCI_RSPR or at consecutive addresses (0x20 to

0x2C). N depends on the size of the response.

Table 40-8. Register Mapping

Offset Register Name Access Reset

0x00 Control Register HSMCI_CR Write-only –

0x04 Mode Register HSMCI_MR Read/Write 0x0

0x08 Data Timeout Register HSMCI_DTOR Read/Write 0x0

0x0C SD/SDIO Card Register HSMCI_SDCR Read/Write 0x0

0x10 Argument Register HSMCI_ARGR Read/Write 0x0

0x14 Command Register HSMCI_CMDR Write-only –

0x18 Block Register HSMCI_BLKR Read/Write 0x0

0x1C Completion Signal Timeout Register HSMCI_CSTOR Read/Write 0x0

0x20 Response Register(1) HSMCI_RSPR Read-only 0x0

0x24 Response Register(1) HSMCI_RSPR Read-only 0x0

0x28 Response Register(1) HSMCI_RSPR Read-only 0x0

0x2C Response Register(1) HSMCI_RSPR Read-only 0x0

0x30 Receive Data Register HSMCI_RDR Read-only 0x0

0x34 Transmit Data Register HSMCI_TDR Write-only –

0x38–0x3C Reserved – – –

0x40 Status Register HSMCI_SR Read-only 0xC0E5

0x44 Interrupt Enable Register HSMCI_IER Write-only –

0x48 Interrupt Disable Register HSMCI_IDR Write-only –

0x4C Interrupt Mask Register HSMCI_IMR Read-only 0x0

0x50 Reserved – – –

0x54 Configuration Register HSMCI_CFG Read/Write 0x00

0x58–0xE0 Reserved – – –

0xE4 Write Protection Mode Register HSMCI_WPMR Read/Write –

0xE8 Write Protection Status Register HSMCI_WPSR Read-only –

0xEC–0xFC Reserved – – –

0x100–0x128 Reserved for PDC registers – – –

0x12C–0x1FC Reserved – – –

0x200 FIFO Memory Aperture0 HSMCI_FIFO0 Read/Write 0x0

...

0x5FC FIFO Memory Aperture255 HSMCI_FIFO255 Read/Write 0x0

1113SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.14.1 HSMCI Control Register

Name: HSMCI_CR

Address: 0x40080000

Access: Write-only

• MCIEN: Multi-Media Interface Enable

0: No effect.

1: Enables the Multi-Media Interface if MCDIS is 0.

• MCIDIS: Multi-Media Interface Disable

0: No effect.

1: Disables the Multi-Media Interface.

• PWSEN: Power Save Mode Enable

0: No effect.

1: Enables the Power Saving Mode if PWSDIS is 0.

Warning: Before enabling this mode, the user must set a value different from 0 in the PWSDIV field of the HSMCI_MR.

• PWSDIS: Power Save Mode Disable

0: No effect.

1: Disables the Power Saving Mode.

• SWRST: Software Reset

0: No effect.

1: Resets the HSMCI. A software triggered hardware reset of the HSMCI is performed.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – PWSDIS PWSEN MCIDIS MCIEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1114

40.14.2 HSMCI Mode Register

Name: HSMCI_MR

Address: 0x40080004

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the HSMCI Write Protection Mode Register.

• CLKDIV: Clock Divider

High Speed MultiMedia Card Interface clock (MCCK or HSMCI_CK) is Master Clock (MCK) divided by

({CLKDIV,CLKODD}+2).

• PWSDIV: Power Saving Divider

High Speed MultiMedia Card Interface clock is divided by 2(PWSDIV) + 1 when entering Power Saving Mode.

Warning: This value must be different from 0 before enabling the Power Save Mode in the HSMCI_CR (HSMCI_PWSEN

bit).

• RDPROOF: Read Proof Enable

Enabling Read Proof allows to stop the HSMCI Clock during read access if the internal FIFO is full. This will guarantee data

integrity, not bandwidth.

0: Disables Read Proof.

1: Enables Read Proof.

• WRPROOF: Write Proof Enable

Enabling Write Proof allows to stop the HSMCI Clock during write access if the internal FIFO is full. This will guarantee

data integrity, not bandwidth.

0: Disables Write Proof.

1: Enables Write Proof.

• FBYTE: Force Byte Transfer

Enabling Force Byte Transfer allow byte transfers, so that transfer of blocks with a size different from modulo 4 can be

supported.

Warning: BLKLEN value depends on FBYTE.

0: Disables Force Byte Transfer.

1: Enables Force Byte Transfer.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – CLKODD

15 14 13 12 11 10 9 8

PDCMODE PADV FBYTE WRPROOF RDPROOF PWSDIV

7 6 5 4 3 2 1 0

CLKDIV

1115SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• PADV: Padding Value

0: 0x00 value is used when padding data in write transfer.

1: 0xFF value is used when padding data in write transfer.

PADV may be only in manual transfer.

• PDCMODE: PDC-oriented Mode

0: Disables PDC transfer

1: Enables PDC transfer. In this case, UNRE and OVRE flags in the HSMCI Status Register (HSMCI_SR) are deactivated

after the PDC transfer has been completed.

• CLKODD: Clock divider is odd

This bit is the least significant bit of the clock divider and indicates the clock divider parity.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1116

40.14.3 HSMCI Data Timeout Register

Name: HSMCI_DTOR

Address: 0x40080008

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the HSMCI Write Protection Mode Register.

• DTOCYC: Data Timeout Cycle Number

This field determines the maximum number of Master Clock cycles that the HSMCI waits between two data block transfers.

It equals (DTOCYC x Multiplier).

• DTOMUL: Data Timeout Multiplier

If the data time-out set by DTOCYC and DTOMUL has been exceeded, the Data Time-out Error flag (DTOE) in the HSMCI

Status Register (HSMCI_SR) rises.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– DTOMUL DTOCYC

Value Name Description

0 1 DTOCYC

1 16 DTOCYC x 16

2 128 DTOCYC x 128

3 256 DTOCYC x 256

4 1024 DTOCYC x 1024

5 4096 DTOCYC x 4096

6 65536 DTOCYC x 65536

7 1048576 DTOCYC x 1048576

1117SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.14.4 HSMCI SDCard/SDIO Register

Name: HSMCI_SDCR

Address: 0x4008000C

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the HSMCI Write Protection Mode Register.

• SDCSEL: SDCard/SDIO Slot

• SDCBUS: SDCard/SDIO Bus Width

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SDCBUS – – – – SDCSEL

Value Name Description

0 SLOTA Slot A is selected.

1 SLOTB –

2 SLOTC –

3 SLOTD –

Value Name Description

0 1 1 bit

1 – Reserved

2 4 4 bits

3 8 8 bits

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1118

40.14.5 HSMCI Argument Register

Name: HSMCI_ARGR

Address: 0x40080010

Access: Read/Write

• ARG: Command Argument

31 30 29 28 27 26 25 24

ARG

23 22 21 20 19 18 17 16

ARG

15 14 13 12 11 10 9 8

ARG

7 6 5 4 3 2 1 0

ARG

1119SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.14.6 HSMCI Command Register

Name: HSMCI_CMDR

Address: 0x40080014

Access: Write-only

This register is write-protected while CMDRDY is 0 in HSMCI_SR. If an Interrupt command is sent, this register is only writ-

able by an interrupt response (field SPCMD). This means that the current command execution cannot be interrupted or

modified.

• CMDNB: Command Number

This is the command index.

• RSPTYP: Response Type

• SPCMD: Special Command

31 30 29 28 27 26 25 24

– – – – BOOT_ACK ATACS IOSPCMD

23 22 21 20 19 18 17 16

– – TRTYP TRDIR TRCMD

15 14 13 12 11 10 9 8

– – – MAXLAT OPDCMD SPCMD

7 6 5 4 3 2 1 0

RSPTYP CMDNB

Value Name Description

0 NORESP No response

1 48_BIT 48-bit response

2 136_BIT 136-bit response

3 R1B R1b response type

Value Name Description

0 STD Not a special CMD.

1 INIT
Initialization CMD:

74 clock cycles for initialization sequence.

2 SYNC
Synchronized CMD:

Wait for the end of the current data block transfer before sending the pending command.

3 CE_ATA
CE-ATA Completion Signal disable Command.

The host cancels the ability for the device to return a command completion signal on the command line.

4 IT_CMD
Interrupt command:

Corresponds to the Interrupt Mode (CMD40).

5 IT_RESP
Interrupt response:

Corresponds to the Interrupt Mode (CMD40).

6 BOR
Boot Operation Request.

Start a boot operation mode, the host processor can read boot data from the MMC device directly.

7 EBO
End Boot Operation.

This command allows the host processor to terminate the boot operation mode.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1120

• OPDCMD: Open Drain Command

0 (PUSHPULL): Push pull command.

1 (OPENDRAIN): Open drain command.

• MAXLAT: Max Latency for Command to Response

0 (5): 5-cycle max latency.

1 (64): 64-cycle max latency.

• TRCMD: Transfer Command

• TRDIR: Transfer Direction

0 (WRITE): Write.

1 (READ): Read.

• TRTYP: Transfer Type

• IOSPCMD: SDIO Special Command

• ATACS: ATA with Command Completion Signal

0 (NORMAL): Normal operation mode.

1 (COMPLETION): This bit indicates that a completion signal is expected within a programmed amount of time

(HSMCI_CSTOR).

• BOOT_ACK: Boot Operation Acknowledge

The master can choose to receive the boot acknowledge from the slave when a Boot Request command is issued. When

set to one this field indicates that a Boot acknowledge is expected within a programmable amount of time defined with

DTOMUL and DTOCYC fields located in the HSMCI_DTOR. If the acknowledge pattern is not received then an acknowl-

edge timeout error is raised. If the acknowledge pattern is corrupted then an acknowledge pattern error is set.

Value Name Description

0 NO_DATA No data transfer

1
START_DAT

A
Start data transfer

2 STOP_DATA Stop data transfer

3 – Reserved

Value Name Description

0 SINGLE MMC/SD Card Single Block

1 MULTIPLE MMC/SD Card Multiple Block

2 STREAM MMC Stream

4 BYTE SDIO Byte

5 BLOCK SDIO Block

Value Name Description

0 STD Not an SDIO Special Command

1 SUSPEND SDIO Suspend Command

2 RESUME SDIO Resume Command

1121SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.14.7 HSMCI Block Register

Name: HSMCI_BLKR

Address: 0x40080018

Access: Read/Write

• BCNT: MMC/SDIO Block Count - SDIO Byte Count

This field determines the number of data byte(s) or block(s) to transfer.

The transfer data type and the authorized values for BCNT field are determined by the TRTYP field in the HSMCI Com-

mand Register (HSMCI_CMDR).

When TRTYP = 1 (MMC/SDCARD Multiple Block), BCNT can be programmed from 1 to 65535, 0 corresponds to an infi-

nite block transfer.

When TRTYP = 4 (SDIO Byte), BCNT can be programmed from 1 to 511, 0 corresponds to 512-byte transfer. Values in

range 512 to 65536 are forbidden.

When TRTYP = 5 (SDIO Block), BCNT can be programmed from 1 to 511, 0 corresponds to an infinite block transfer. Val-

ues in range 512 to 65536 are forbidden.

Warning: In SDIO Byte and Block modes (TRTYP = 4 or 5), writing the 7 last bits of BCNT field with a value which differs

from 0 is forbidden and may lead to unpredictable results.

• BLKLEN: Data Block Length

This field determines the size of the data block.

Bits 16 and 17 must be configured to 0 if FBYTE is disabled.

Note: In SDIO Byte mode, BLKLEN field is not used.

31 30 29 28 27 26 25 24

BLKLEN

23 22 21 20 19 18 17 16

BLKLEN

15 14 13 12 11 10 9 8

BCNT

7 6 5 4 3 2 1 0

BCNT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1122

40.14.8 HSMCI Completion Signal Timeout Register

Name: HSMCI_CSTOR

Address: 0x4008001C

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the HSMCI Write Protection Mode Register.

• CSTOCYC: Completion Signal Timeout Cycle Number

This field determines the maximum number of Master Clock cycles that the HSMCI waits between two data block transfers.

Its value is calculated by (CSTOCYC x Multiplier).

• CSTOMUL: Completion Signal Timeout Multiplier

This field determines the maximum number of Master Clock cycles that the HSMCI waits between two data block transfers.

Its value is calculated by (CSTOCYC x Multiplier).

These fields determine the maximum number of Master Clock cycles that the HSMCI waits between the end of the data

transfer and the assertion of the completion signal. The data transfer comprises data phase and the optional busy phase. If

a non-DATA ATA command is issued, the HSMCI starts waiting immediately after the end of the response until the comple-

tion signal.

Multiplier is defined by CSTOMUL as shown in the following table:

If the data time-out set by CSTOCYC and CSTOMUL has been exceeded, the Completion Signal Time-out Error flag

(CSTOE) in the HSMCI Status Register (HSMCI_SR) rises.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– CSTOMUL CSTOCYC

Value Name Description

0 1 CSTOCYC x 1

1 16 CSTOCYC x 16

2 128 CSTOCYC x 128

3 256 CSTOCYC x 256

4 1024 CSTOCYC x 1024

5 4096 CSTOCYC x 4096

6 65536 CSTOCYC x 65536

7 1048576 CSTOCYC x 1048576

1123SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.14.9 HSMCI Response Register

Name: HSMCI_RSPR

Address: 0x40080020

Access: Read-only

• RSP: Response

Note: 1. The response register can be read by N accesses at the same HSMCI_RSPR or at consecutive addresses (0x20 to 0x2C).

N depends on the size of the response.

31 30 29 28 27 26 25 24

RSP

23 22 21 20 19 18 17 16

RSP

15 14 13 12 11 10 9 8

RSP

7 6 5 4 3 2 1 0

RSP

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1124

40.14.10 HSMCI Receive Data Register

Name: HSMCI_RDR

Address: 0x40080030

Access: Read-only

• DATA: Data to Read

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

1125SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.14.11 HSMCI Transmit Data Register

Name: HSMCI_TDR

Address: 0x40080034

Access: Write-only

• DATA: Data to Write

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1126

40.14.12 HSMCI Status Register

Name: HSMCI_SR

Address: 0x40080040

Access: Read-only

• CMDRDY: Command Ready (cleared by writing in HSMCI_CMDR)

0: A command is in progress.

1: The last command has been sent.

• RXRDY: Receiver Ready (cleared by reading HSMCI_RDR)

0: Data has not yet been received since the last read of HSMCI_RDR.

1: Data has been received since the last read of HSMCI_RDR.

• TXRDY: Transmit Ready (cleared by writing in HSMCI_TDR)

0: The last data written in HSMCI_TDR has not yet been transferred in the Shift Register.

1: The last data written in HSMCI_TDR has been transferred in the Shift Register.

• BLKE: Data Block Ended (cleared on read)

This flag must be used only for Write Operations.

0: A data block transfer is not yet finished.

1: A data block transfer has ended, including the CRC16 Status transmission. The flag is set for each transmitted CRC

Status.

Refer to the MMC or SD Specification for more details concerning the CRC Status.

• DTIP: Data Transfer in Progress (cleared at the end of CRC16 calculation)

0: No data transfer in progress.

1: The current data transfer is still in progress, including CRC16 calculation.

• NOTBUSY: HSMCI Not Busy

A block write operation uses a simple busy signalling of the write operation duration on the data (DAT0) line: during a data

transfer block, if the card does not have a free data receive buffer, the card indicates this condition by pulling down the data

line (DAT0) to LOW. The card stops pulling down the data line as soon as at least one receive buffer for the defined data

transfer block length becomes free.

Refer to the MMC or SD Specification for more details concerning the busy behavior.

31 30 29 28 27 26 25 24

UNRE OVRE ACKRCVE ACKRCV XFRDONE FIFOEMPTY – –

23 22 21 20 19 18 17 16

CSTOE DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF CSRCV SDIOWAIT – – – SDIOIRQA

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

1127SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

For all the read operations, the NOTBUSY flag is cleared at the end of the host command.

For the Infinite Read Multiple Blocks, the NOTBUSY flag is set at the end of the STOP_TRANSMISSION host command

(CMD12).

For the Single Block Reads, the NOTBUSY flag is set at the end of the data read block.

For the Multiple Block Reads with predefined block count, the NOTBUSY flag is set at the end of the last received data

block.

The NOTBUSY flag allows to deal with these different states.

0: The HSMCI is not ready for new data transfer. Cleared at the end of the card response.

1: The HSMCI is ready for new data transfer. Set when the busy state on the data line has ended. This corresponds to a

free internal data receive buffer of the card.

• ENDRX: End of RX Buffer (cleared by writing HSMCI_RCR or HSMCI_RNCR(1))

0: The Receive Counter Register has not reached 0 since the last write in HSMCI_RCR or HSMCI_RNCR.

1: The Receive Counter Register has reached 0 since the last write in HSMCI_RCR or HSMCI_RNCR.

• ENDTX: End of TX Buffer (cleared by writing HSMCI_TCR or HSMCI_TNCR(1))

0: The Transmit Counter Register has not reached 0 since the last write in HSMCI_TCR or HSMCI_TNCR.

1: The Transmit Counter Register has reached 0 since the last write in HSMCI_TCR or HSMCI_TNCR.

Note: BLKE and NOTBUSY flags can be used to check that the data has been successfully transmitted on the data lines and not only

transferred from the PDC to the HSMCI Controller.

• SDIOIRQA: SDIO Interrupt for Slot A (cleared on read)

0: No interrupt detected on SDIO Slot A.

1: An SDIO Interrupt on Slot A occurred.

• SDIOWAIT: SDIO Read Wait Operation Status

0: Normal Bus operation.

1: The data bus has entered IO wait state.

• CSRCV: CE-ATA Completion Signal Received (cleared on read)

0: No completion signal received since last status read operation.

1: The device has issued a command completion signal on the command line.

• RXBUFF: RX Buffer Full (cleared by writing HSMCI_RCR or HSMCI_RNCR(1))

0: HSMCI_RCR or HSMCI_RNCR has a value other than 0.

1: Both HSMCI_RCR and HSMCI_RNCR have a value of 0.

• TXBUFE: TX Buffer Empty (cleared by writing HSMCI_TCR or HSMCI_TNCR(1))

0: HSMCI_TCR or HSMCI_TNCR has a value other than 0.

1: Both HSMCI_TCR and HSMCI_TNCR have a value of 0.

Note: BLKE and NOTBUSY flags can be used to check that the data has been successfully transmitted on the data lines and not only

transferred from the PDC to the HSMCI Controller.

• RINDE: Response Index Error (cleared by writing in HSMCI_CMDR)

0: No error.

1: A mismatch is detected between the command index sent and the response index received.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1128

• RDIRE: Response Direction Error (cleared by writing in HSMCI_CMDR)

0: No error.

1: The direction bit from card to host in the response has not been detected.

• RCRCE: Response CRC Error (cleared by writing in HSMCI_CMDR)

0: No error.

1: A CRC7 error has been detected in the response.

• RENDE: Response End Bit Error (cleared by writing in HSMCI_CMDR)

0: No error.

1: The end bit of the response has not been detected.

• RTOE: Response Time-out Error (cleared by writing in HSMCI_CMDR)

0: No error.

1: The response time-out set by MAXLAT in the HSMCI_CMDR has been exceeded.

• DCRCE: Data CRC Error (cleared on read)

0: No error.

1: A CRC16 error has been detected in the last data block.

• DTOE: Data Time-out Error (cleared on read)

0: No error.

1: The data time-out set by DTOCYC and DTOMUL in HSMCI_DTOR has been exceeded.

• CSTOE: Completion Signal Time-out Error (cleared on read)

0: No error.

1: The completion signal time-out set by CSTOCYC and CSTOMUL in HSMCI_CSTOR has been exceeded.

• FIFOEMPTY: FIFO empty flag

0: FIFO contains at least one byte.

1: FIFO is empty.

• XFRDONE: Transfer Done flag

0: A transfer is in progress.

1: Command Register is ready to operate and the data bus is in the idle state.

• ACKRCV: Boot Operation Acknowledge Received (cleared on read)

0: No Boot acknowledge received since the last read of the HSMCI_SR.

1: A Boot acknowledge signal has been received since the last read of HSMCI_SR.

• ACKRCVE: Boot Operation Acknowledge Error (cleared on read)

0: No boot operation error since the last read of HSMCI_SR

1: Corrupted Boot Acknowledge signal received since the last read of HSMCI_SR.

1129SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• OVRE: Overrun (if FERRCTRL = 1, cleared by writing in HSMCI_CMDR or cleared on read if FERRCTRL = 0)

0: No error.

1: At least one 8-bit received data has been lost (not read).

If FERRCTRL = 1 in HSMCI_CFG, OVRE is cleared on read.

If FERRCTRL = 0 in HSMCI_CFG, OVRE is cleared by writing HSMCI_CMDR.

• UNRE: Underrun (if FERRCTRL = 1, cleared by writing in HSMCI_CMDR or cleared on read if FERRCTRL = 0)

0: No error.

1: At least one 8-bit data has been sent without valid information (not written).

If FERRCTRL = 1 in HSMCI_CFG, OVRE is cleared on read.

If FERRCTRL = 0 in HSMCI_CFG, OVRE is cleared by writing HSMCI_CMDR.

Note: 1. HSMCI_RCR, HSMCI_RNCR, HSMCI_TCR, HSMCI_TNCR are PDC registers.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1130

40.14.13 HSMCI Interrupt Enable Register

Name: HSMCI_IER

Address: 0x40080044

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• CMDRDY: Command Ready Interrupt Enable

• RXRDY: Receiver Ready Interrupt Enable

• TXRDY: Transmit Ready Interrupt Enable

• BLKE: Data Block Ended Interrupt Enable

• DTIP: Data Transfer in Progress Interrupt Enable

• NOTBUSY: Data Not Busy Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• SDIOIRQA: SDIO Interrupt for Slot A Interrupt Enable

• SDIOWAIT: SDIO Read Wait Operation Status Interrupt Enable

• CSRCV: Completion Signal Received Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

• RINDE: Response Index Error Interrupt Enable

• RDIRE: Response Direction Error Interrupt Enable

• RCRCE: Response CRC Error Interrupt Enable

• RENDE: Response End Bit Error Interrupt Enable

31 30 29 28 27 26 25 24

UNRE OVRE ACKRCVE ACKRCV XFRDONE FIFOEMPTY – –

23 22 21 20 19 18 17 16

CSTOE DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF CSRCV SDIOWAIT – – – SDIOIRQA

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

1131SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• RTOE: Response Time-out Error Interrupt Enable

• DCRCE: Data CRC Error Interrupt Enable

• DTOE: Data Time-out Error Interrupt Enable

• CSTOE: Completion Signal Timeout Error Interrupt Enable

• FIFOEMPTY: FIFO empty Interrupt enable

• XFRDONE: Transfer Done Interrupt enable

• ACKRCV: Boot Acknowledge Interrupt Enable

• ACKRCVE: Boot Acknowledge Error Interrupt Enable

• OVRE: Overrun Interrupt Enable

• UNRE: Underrun Interrupt Enable

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1132

40.14.14 HSMCI Interrupt Disable Register

Name: HSMCI_IDR

Address: 0x40080048

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• CMDRDY: Command Ready Interrupt Disable

• RXRDY: Receiver Ready Interrupt Disable

• TXRDY: Transmit Ready Interrupt Disable

• BLKE: Data Block Ended Interrupt Disable

• DTIP: Data Transfer in Progress Interrupt Disable

• NOTBUSY: Data Not Busy Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• SDIOIRQA: SDIO Interrupt for Slot A Interrupt Disable

• SDIOWAIT: SDIO Read Wait Operation Status Interrupt Disable

• CSRCV: Completion Signal received interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

• RINDE: Response Index Error Interrupt Disable

• RDIRE: Response Direction Error Interrupt Disable

• RCRCE: Response CRC Error Interrupt Disable

• RENDE: Response End Bit Error Interrupt Disable

31 30 29 28 27 26 25 24

UNRE OVRE ACKRCVE ACKRCV XFRDONE FIFOEMPTY – –

23 22 21 20 19 18 17 16

CSTOE DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF CSRCV SDIOWAIT – – – SDIOIRQA

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

1133SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• RTOE: Response Time-out Error Interrupt Disable

• DCRCE: Data CRC Error Interrupt Disable

• DTOE: Data Time-out Error Interrupt Disable

• CSTOE: Completion Signal Time out Error Interrupt Disable

• FIFOEMPTY: FIFO empty Interrupt Disable

• XFRDONE: Transfer Done Interrupt Disable

• ACKRCV: Boot Acknowledge Interrupt Disable

• ACKRCVE: Boot Acknowledge Error Interrupt Disable

• OVRE: Overrun Interrupt Disable

• UNRE: Underrun Interrupt Disable

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1134

40.14.15 HSMCI Interrupt Mask Register

Name: HSMCI_IMR

Address: 0x4008004C

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• CMDRDY: Command Ready Interrupt Mask

• RXRDY: Receiver Ready Interrupt Mask

• TXRDY: Transmit Ready Interrupt Mask

• BLKE: Data Block Ended Interrupt Mask

• DTIP: Data Transfer in Progress Interrupt Mask

• NOTBUSY: Data Not Busy Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• SDIOIRQA: SDIO Interrupt for Slot A Interrupt Mask

• SDIOWAIT: SDIO Read Wait Operation Status Interrupt Mask

• CSRCV: Completion Signal Received Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

• RINDE: Response Index Error Interrupt Mask

• RDIRE: Response Direction Error Interrupt Mask

• RCRCE: Response CRC Error Interrupt Mask

• RENDE: Response End Bit Error Interrupt Mask

31 30 29 28 27 26 25 24

UNRE OVRE ACKRCVE ACKRCV XFRDONE FIFOEMPTY – –

23 22 21 20 19 18 17 16

CSTOE DTOE DCRCE RTOE RENDE RCRCE RDIRE RINDE

15 14 13 12 11 10 9 8

TXBUFE RXBUFF CSRCV SDIOWAIT – – – SDIOIRQA

7 6 5 4 3 2 1 0

ENDTX ENDRX NOTBUSY DTIP BLKE TXRDY RXRDY CMDRDY

1135SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• RTOE: Response Time-out Error Interrupt Mask

• DCRCE: Data CRC Error Interrupt Mask

• DTOE: Data Time-out Error Interrupt Mask

• CSTOE: Completion Signal Time-out Error Interrupt Mask

• FIFOEMPTY: FIFO Empty Interrupt Mask

• XFRDONE: Transfer Done Interrupt Mask

• ACKRCV: Boot Operation Acknowledge Received Interrupt Mask

• ACKRCVE: Boot Operation Acknowledge Error Interrupt Mask

• OVRE: Overrun Interrupt Mask

• UNRE: Underrun Interrupt Mask

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1136

40.14.16 HSMCI Configuration Register

Name: HSMCI_CFG

Address: 0x40080054

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the HSMCI Write Protection Mode Register.

• FIFOMODE: HSMCI Internal FIFO control mode

0: A write transfer starts when a sufficient amount of data is written into the FIFO.

When the block length is greater than or equal to 3/4 of the HSMCI internal FIFO size, then the write transfer starts as soon

as half the FIFO is filled. When the block length is greater than or equal to half the internal FIFO size, then the write trans-

fer starts as soon as one quarter of the FIFO is filled. In other cases, the transfer starts as soon as the total amount of data

is written in the internal FIFO.

1: A write transfer starts as soon as one data is written into the FIFO.

• FERRCTRL: Flow Error flag reset control mode

0: When an underflow/overflow condition flag is set, a new Write/Read command is needed to reset the flag.

1: When an underflow/overflow condition flag is set, a read status resets the flag.

• HSMODE: High Speed Mode

0: Default bus timing mode.

1: If set to one, the host controller outputs command line and data lines on the rising edge of the card clock. The Host

driver shall check the high speed support in the card registers.

• LSYNC: Synchronize on the last block

0: The pending command is sent at the end of the current data block.

1: The pending command is sent at the end of the block transfer when the transfer length is not infinite (block count shall

be different from zero).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – LSYNC – – – HSMODE

7 6 5 4 3 2 1 0

– – – FERRCTRL – – – FIFOMODE

1137SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.14.17 HSMCI Write Protection Mode Register

Name: HSMCI_WPMR

Address: 0x400800E4

Access: Read/Write

• WPEN: Write Protect Enable

0: Disables the Write Protection if WPKEY corresponds to 0x4D4349 (“MCI” in ASCII).

1: Enables the Write Protection if WPKEY corresponds to 0x4D4349 (“MCI” in ASCII).

See Section 40.13 “Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protect Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x4D4349 PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit.

Always reads as 0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1138

40.14.18 HSMCI Write Protection Status Register

Name: HSMCI_WPSR

Address: 0x400800E8

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of the HSMCI_WPSR.

1: A write protection violation has occurred since the last read of the HSMCI_WPSR. If this violation is an unauthorized

attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

1139SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.14.19 HSMCI FIFOx Memory Aperture

Name: HSMCI_FIFOx [x=0..255]

Address: 0x40080200

Access: Read/Write

• DATA: Data to Read or Data to Write

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1140

41. USB Device Port (UDP)

41.1 Description

The USB Device Port (UDP) is compliant with the Universal Serial Bus (USB) 2.0 full-speed device specification.

Each endpoint can be configured in one of several USB transfer types. It can be associated with one or two banks

of a dual-port RAM used to store the current data payload. If two banks are used, one DPR bank is read or written

by the processor, while the other is read or written by the USB device peripheral. This feature is mandatory for

isochronous endpoints. Thus the device maintains the maximum bandwidth (1 Mbyte/s) by working with endpoints

with two banks of DPR.

Note: 1. The Dual-Bank function provides two banks for an endpoint. This feature is used for ping-pong mode.

Suspend and resume are automatically detected by the USB device, which notifies the processor by raising an

interrupt. Depending on the product, an external signal can be used to send a wakeup request to the USB host

controller.

41.2 Embedded Characteristics

 USB 2.0 Full-speed Compliant, 12 Mbit/s

 Embedded USB 2.0 Full-speed Transceiver

 Integrated Pull-up on DDP

 Integrated Pull-down on DDM

 8 Endpoints

 Embedded Dual-port RAM for Endpoints

 Suspend/Resume Logic

 Ping-pong Mode (2 Memory Banks) for Isochronous and Bulk Endpoints

Table 41-1. USB Endpoint Description

Endpoint No. Mnemonic Dual-Bank(1) Max. Endpoint Size Endpoint Type

0 EP0 No 64 Control/Bulk/Interrupt

1 EP1 Yes 64 Bulk/Iso/Interrupt

2 EP2 Yes 64 Bulk/Iso/Interrupt

3 EP3 No 64 Control/Bulk/Interrupt

4 EP4 Yes 512 Bulk/Iso/Interrupt

5 EP5 Yes 512 Bulk/Iso/Interrupt

6 EP6 Yes 64 Bulk/Iso/Interrupt

7 EP7 Yes 64 Bulk/Iso/Interrupt

1141SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.3 Block Diagram

Figure 41-1. Block Diagram

Access to the UDP is via the APB bus interface. Read and write to the data FIFO are done by reading and writing

8-bit values to APB registers.

The UDP peripheral requires two clocks: one peripheral clock used by the Master Clock domain (MCK) and a 48

MHz clock (UDPCK) used by the 12 MHz domain.

A USB 2.0 full-speed pad is embedded and controlled by the Serial Interface Engine (SIE).

The signal external_resume is optional. It allows the UDP peripheral to wake up once in system mode. The host is

then notified that the device asks for a resume. This optional feature must also be negotiated with the host during

the enumeration.

41.3.1 Signal Description

41.4 Product Dependencies

For further details on the USB Device hardware implementation, see the specific Product Properties document.

Atmel Bridge

12 MHz

Suspend/Resume Logic

Serial

Interface

Engine

SIE

MCK

Master Clock

Domain

Dual

Port

RAM

FIFO

UDPCK

Recovered 12 MHz

Domain

udp_int

(interrupt line)

USB Device

Embedded

USB

Transceiver

DDP

DDM

APB

to

MCU

Bus
txoen

eopn

txd

rxdm

rxd

rxdp

W
ra

p
p

e
r

W
ra

p
p

e
r

User

Interface

Table 41-2. Signal Names

Signal Name Description Type

UDPCK 48 MHz clock Input

MCK Master clock Input

udp_int Interrupt line connected to the Interrupt Controller Input

DDP USB D+ line I/O

DDM USB D- line I/O

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1142

The USB physical transceiver is integrated into the product. The bidirectional differential signals DDP and DDM

are available from the product boundary.

One I/O line may be used by the application to check that VBUS is still available from the host. Self-powered

devices may use this entry to be notified that the host has been powered off. In this case, the pull-up on DDP must

be disabled in order to prevent feeding current to the host. The application should disconnect the transceiver, then

remove the pull-up.

41.4.1 I/O Lines

The USB pins are shared with PIO lines. By default, the USB function is activated, and pins DDP and DDM are

used for USB. To configure DDP or DDM as PIOs, the user needs to configure the system I/O configuration

register (CCFG_SYSIO) in the MATRIX.

41.4.2 Power Management

The USB device peripheral requires a 48 MHz clock. This clock must be generated by a PLL driven by a clock

source with an accuracy of ± 0.25% (note that the fast RC oscillator cannot be used).

Thus, the USB device receives two clocks from the Power Management Controller (PMC): the master clock, MCK,

used to drive the peripheral user interface, and the UDPCK, used to interface with the bus USB signals (recovered

12 MHz domain).

WARNING: The UDP peripheral clock in the Power Management Controller (PMC) must be enabled before any

read/write operations to the UDP registers including the UDP_TXVC register.

41.4.3 Interrupt

The USB device interface has an interrupt line connected to the Interrupt Controller.

Handling the USB device interrupt requires programming the Interrupt Controller before configuring the UDP.

41.5 Typical Connection

Figure 41-2. Board Schematic to Interface Device Peripheral

41.5.1 USB Device Transceiver

The USB device transceiver is embedded in the product. However, discrete components are required for each of

the following actions:

Table 41-3. Peripheral IDs

Instance ID

UDP 35

REXT

REXT

DDM

DDP

PIO
27 K

47 K

Type B

Connector

12

3 4

5V Bus Monitoring

1143SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

 to monitor VBUS voltage

 for line termination

 to disconnect the host for reduced power consumption

41.5.2 VBUS Monitoring

VBUS monitoring is required to detect host connection. VBUS monitoring is done using a standard PIO with

internal pull-up disabled. When the host is switched off, it should be considered as a disconnect, the pull-up must

be disabled in order to prevent powering the host through the pull-up resistor.

When the host is disconnected and the transceiver is enabled, then DDP and DDM are floating. This may lead to

over consumption. A solut ion is to enable the integrated pul l-down by disabling the transceiver

(UDP_TXVC.TXVDIS = 1) and then remove the pull-up (UDP_TXVC.PUON = 0).

A termination serial resistor must be connected to DDP and DDM. The resistor value is defined in the electrical

specification of the product (REXT).

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1144

41.6 Functional Description

41.6.1 USB 2.0 Full-speed Introduction

The USB 2.0 full-speed provides communication services between host and attached USB devices. Each device is

offered with a collection of communication flows (pipes) associated with each endpoint. Software on the host

communicates with a USB device through a set of communication flows.

Figure 41-3. Example of USB 2.0 Full-speed Communication Control

The Control Transfer endpoint EP0 is always used when a USB device is first configured (USB 2.0 specifications).

41.6.1.1 USB 2.0 Full-speed Transfer Types

A communication flow is carried over one of four transfer types defined by the USB device.

41.6.1.2 USB Bus Transactions

Each transfer results in one or more transactions over the USB bus. There are three kinds of transactions flowing

across the bus in packets:

 Setup Transaction

 Data IN Transaction

 Data OUT Transaction

EP0

USB Host V2.0

Software Client 1 Software Client 2

Data Flow: Bulk Out Transfer

Data Flow: Bulk In Transfer

Data Flow: Control Transfer

Data Flow: Control Transfer

EP1

EP2

USB Device 2.0
Block 1

USB Device 2.0
Block 2

EP5

EP4

EP0

Data Flow: Isochronous In Transfer

Data Flow: Isochronous Out Transfer

USB Device endpoint configuration requires that
in the first instance Control Transfer must be EP0.

Table 41-4. USB Communication Flow

Transfer Direction Bandwidth

Supported

Endpoint Size Error Detection Retrying

Control Bidirectional Not guaranteed 8, 16, 32, 64 Yes Automatic

Isochronous Unidirectional Guaranteed 512 Yes No

Interrupt Unidirectional Not guaranteed ≤ 64 Yes Yes

Bulk Unidirectional Not guaranteed 8, 16, 32, 64 Yes Yes

1145SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.6.1.3 USB Transfer Event Definitions

As indicated below, transfers are sequential events carried out on the USB bus.

Notes: 1. Control transfer must use endpoints with no ping-pong attributes.

2. Isochronous transfers must use endpoints with ping-pong attributes.

3. Control transfers can be aborted using a stall handshake.

A status transaction is a special type of host-to-device transaction used only in a control transfer. The control

transfer must be performed using endpoints with no ping-pong attributes. According to the control sequence (read

or write), the USB device sends or receives a status transaction.

Figure 41-4. Control Read and Write Sequences

Notes: 1. During the Status IN stage, the host waits for a zero length packet (Data IN transaction with no data) from the

device using DATA1 PID. Refer to Chapter 8 of the Universal Serial Bus Specification, Rev. 2.0, for more

information on the protocol layer.

Table 41-5. USB Transfer Events

Transfer

TransactionDirection Type

CONTROL (bidirectional) Control(1)(3)

Setup transaction → Data IN transactions → Status OUT transaction

Setup transaction → Data OUT transactions → Status IN transaction

Setup transaction → Status IN transaction

IN (device toward host)

Interrupt IN

Data IN transaction → Data IN transactionIsochronous IN(2)

Bulk IN

OUT (host toward device)

Interrupt OUT

Data OUT transaction → Data OUT transactionIsochronous OUT(2)

Bulk OUT

Control Read Setup TX Data OUT TX Data OUT TX

Data Stage

Control Write

Setup Stage

Setup Stage

Setup TX

Setup TX
No Data
Control

Data IN TX Data IN TX

Status Stage

Status Stage

Status IN TX

Status OUT TX

Status IN TX

Data Stage

Setup Stage Status Stage

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1146

2. During the Status OUT stage, the host emits a zero length packet to the device (Data OUT transaction with no

data).

41.6.2 Handling Transactions with USB 2.0 Device Peripheral

41.6.2.1 Setup Transaction

Setup is a special type of host-to-device transaction used during control transfers. Control transfers must be

performed using endpoints with no ping-pong attributes. A setup transaction needs to be handled as soon as

possible by the firmware. It is used to transmit requests from the host to the device. These requests are then

handled by the USB device and may require more arguments. The arguments are sent to the device by a Data

OUT transaction which follows the setup transaction. These requests may also return data. The data is carried out

to the host by the next Data IN transaction which follows the setup transaction. A status transaction ends the

control transfer.

When a setup transfer is received by the USB endpoint:

 The USB device automatically acknowledges the setup packet

 RXSETUP is set in the UDP_CSRx

 An endpoint interrupt is generated while the RXSETUP is not cleared. This interrupt is carried out to the

microcontroller if interrupts are enabled for this endpoint.

Thus, firmware must detect the RXSETUP polling the UDP_CSRx or catching an interrupt, read the setup packet

in the FIFO, then clear the RXSETUP. RXSETUP cannot be cleared before the setup packet has been read in the

FIFO. Otherwise, the USB device would accept the next Data OUT transfer and overwrite the setup packet in the

FIFO.

Figure 41-5. Setup Transaction Followed by a Data OUT Transaction

41.6.2.2 Data IN Transaction

Data IN transactions are used in control, isochronous, bulk and interrupt transfers and conduct the transfer of data

from the device to the host. Data IN transactions in isochronous transfer must be done using endpoints with ping-

pong attributes.

RX_Data_BKO
(UDP_CSRx)

ACK
PIDData OUTData OUT

PID
NAK
PID

ACK
PIDData SetupSetup

PID
USB
Bus Packets

RXSETUP Flag

Set by USB Device Cleared by Firmware
Set by USB
Device Peripheral

FIFO (DPR)
Content

Data Setup DataXX XX OUT

Interrupt Pending

Setup Received Setup Handled by Firmware Data Out Received

Data OUTData OUT
PID

1147SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Using Endpoints Without Ping-pong Attributes

To perform a Data IN transaction using a non ping-pong endpoint:

1. The application checks if it is possible to write in the FIFO by polling TXPKTRDY in the endpoint’s UDP_CSRx

(TXPKTRDY must be cleared).

2. The application writes the first packet of data to be sent in the endpoint’s FIFO, writing zero or more byte

values in the endpoint’s UDP_FDRx.

3. The application notifies the USB peripheral it has finished by setting the TXPKTRDY in the endpoint’s

UDP_CSRx.

4. The application is notified that the endpoint’s FIFO has been released by the USB device when TXCOMP in

the endpoint’s UDP_CSRx has been set. Then an interrupt for the corresponding endpoint is pending while

TXCOMP is set.

5. The microcontroller writes the second packet of data to be sent in the endpoint’s FIFO, writing zero or more

byte values in the endpoint’s UDP_FDRx.

6. The microcontroller notifies the USB peripheral it has finished by setting the TXPKTRDY in the endpoint’s

UDP_CSRx.

7. The application clears the TXCOMP in the endpoint’s UDP_CSRx.

After the last packet has been sent, the application must clear TXCOMP once this has been set.

TXCOMP is set by the USB device when it has received an ACK PID signal for the Data IN packet. An interrupt is

pending while TXCOMP is set.

Warning: TX_COMP must be cleared after TX_PKTRDY has been set.

Note: Refer to Chapter 8 of the Universal Serial Bus Specification, Rev 2.0, for more information on the Data IN protocol

layer.

Figure 41-6. Data IN Transfer for Non Ping-pong Endpoint

Using Endpoints With Ping-pong Attribute

The use of an endpoint with ping-pong attributes is necessary during isochronous transfer. This also allows

handling the maximum bandwidth defined in the USB specification during bulk transfer. To be able to guarantee a

constant or the maximum bandwidth, the microcontroller must prepare the next data payload to be sent while the

current one is being sent by the USB device. Thus two banks of memory are used. While one is available for the

microcontroller, the other one is locked by the USB device.

USB Bus Packets Data IN 2Data IN NAKACKData IN 1

FIFO (DPR)
Content Data IN 2Load In ProgressData IN 1

Cleared by Firmware

DPR access by the firmware

Payload in FIFO
TXCOMP Flag
(UDP_CSRx)

TXPKTRDY Flag
(UDP_CSRx)

PID
Data IN Data IN

PIDPID PIDPID
ACK
PID

Prevous Data IN TX Microcontroller Load Data in FIFO Data is Sent on USB Bus

Interrupt
Pending

Interrupt Pending

Set by the firmware Set by the firmware

Cleared by
Firmware

Cleared by HwCleared by Hw

DPR access by the hardware

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1148

Figure 41-7. Bank Swapping Data IN Transfer for Ping-pong Endpoints

When using a ping-pong endpoint, the following procedures are required to perform Data IN transactions:

1. The microcontroller checks if it is possible to write in the FIFO by polling TXPKTRDY to be cleared in the end-

point’s UDP_CSRx.

2. The microcontroller writes the first data payload to be sent in the FIFO (Bank 0), writing zero or more byte

values in the endpoint’s UDP_FDRx.

3. The microcontroller notifies the USB peripheral it has finished writing in Bank 0 of the FIFO by setting the

TXPKTRDY in the endpoint’s UDP_CSRx.

4. Without waiting for TXPKTRDY to be cleared, the microcontroller writes the second data payload to be sent

in the FIFO (Bank 1), writing zero or more byte values in the endpoint’s UDP_FDRx.

5. The microcontroller is notified that the first Bank has been released by the USB device when TXCOMP in the

endpoint’s UDP_CSRx is set. An interrupt is pending while TXCOMP is being set.

6. Once the microcontroller has received TXCOMP for the first Bank, it notifies the USB device that it has

prepared the second Bank to be sent, raising TXPKTRDY in the endpoint’s UDP_CSRx.

7. At this step, Bank 0 is available and the microcontroller can prepare a third data payload to be sent.

USB Device USB Bus

ReadWrite

Read and Write at the Same Time

1st Data Payload

2nd Data Payload

3rd Data Payload

3rd Data Payload

2nd Data Payload

1st Data Payload

Data IN Packet

Data IN Packet

Data IN Packet

Microcontroller

Endpoint 1
Bank 0

Endpoint 1
Bank 1

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 1

1149SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 41-8. Data IN Transfer for Ping-pong Endpoint

Warning: There is software critical path due to the fact that once the second bank is filled, the driver has to wait for

TX_COMP to set TX_PKTRDY. If the delay between receiving TX_COMP is set and TX_PKTRDY is set too long,

some Data IN packets may be NACKed, reducing the bandwidth.

Warning: TX_COMP must be cleared after TX_PKTRDY has been set.

41.6.2.3 Data OUT Transaction

Data OUT transactions are used in control, isochronous, bulk and interrupt transfers and conduct the transfer of

data from the host to the device. Data OUT transactions in isochronous transfers must be done using endpoints

with ping-pong attributes.

Data OUT Transaction Without Ping-pong Attributes

To perform a Data OUT transaction, using a non ping-pong endpoint:

1. The host generates a Data OUT packet.

2. This packet is received by the USB device endpoint. While the FIFO associated to this endpoint is being

used by the microcontroller, a NAK PID is returned to the host. Once the FIFO is available, data are written

to the FIFO by the USB device and an ACK is automatically carried out to the host.

3. The microcontroller is notified that the USB device has received a data payload polling RX_DATA_BK0 in the

endpoint’s UDP_CSRx. An interrupt is pending for this endpoint while RX_DATA_BK0 is set.

4. The number of bytes available in the FIFO is made available by reading RXBYTECNT in the endpoint’s

UDP_CSRx.

5. The microcontroller carries out data received from the endpoint’s memory to its memory. Data received is

available by reading the endpoint’s UDP_FDRx.

6. The microcontroller notifies the USB device that it has finished the transfer by clearing RX_DATA_BK0 in the

endpoint’s UDP_CSRx.

7. A new Data OUT packet can be accepted by the USB device.

Data INData IN

 Read by USB Device

 Read by USB DeviceBank 1

Bank 0
FIFO (DPR)

TXCOMP Flag
(UDP_CSRx)

Interrupt Cleared by Firmware

Set by USB
Device

TXPKTRDY Flag
(UDP_MCSRx)

ACK
PID

Data IN
PID

ACK
PID

Set by Firmware,
Data Payload Written in FIFO Bank 1

Cleared by USB Device,
Data Payload Fully Transmitted

Data IN
PID

USB Bus
Packets

Set by USB Device

Set by Firmware,
Data Payload Written in FIFO Bank 0

Written by FIFO (DPR)
Microcontroller

Written by
Microcontroller

Written by
Microcontroller

Microcontroller
Load Data IN Bank 0

Microcontroller Load Data IN Bank 1
USB Device Send Bank 0

Microcontroller Load Data IN Bank 0
USB Device Send Bank 1

Interrupt Pending

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1150

Figure 41-9. Data OUT Transfer for Non Ping-pong Endpoints

An interrupt is pending while the flag RX_DATA_BK0 is set. Memory transfer between the USB device, the FIFO

and microcontroller memory is not possible after RX_DATA_BK0 has been cleared. Otherwise, the USB device

would accept the next Data OUT transfer and overwrite the current Data OUT packet in the FIFO.

Using Endpoints With Ping-pong Attributes

During isochronous transfer, using an endpoint with ping-pong attributes is obligatory. To be able to guarantee a

constant bandwidth, the microcontroller must read the previous data payload sent by the host, while the current

data payload is received by the USB device. Thus two banks of memory are used. While one is available for the

microcontroller, the other one is locked by the USB device.

Figure 41-10. Bank Swapping in Data OUT Transfers for Ping-pong Endpoints

When using a ping-pong endpoint, the following procedures are required to perform Data OUT transactions:

1. The host generates a Data OUT packet.

2. This packet is received by the USB device endpoint. It is written in the endpoint’s FIFO Bank 0.

3. The USB device sends an ACK PID packet to the host. The host can immediately send a second Data OUT

packet. It is accepted by the device and copied to FIFO Bank 1.

4. The microcontroller is notified that the USB device has received a data payload, polling RX_DATA_BK0 in

the endpoint’s UDP_CSRx. An interrupt is pending for this endpoint while RX_DATA_BK0 is set.

ACK
PID

Data OUTNAK
PIDPIDPIDPIDPID

Data OUT2ACKData OUT Data OUT 1USB Bus
Packets

RX_DATA_BK0

Set by USB Device Cleared by Firmware,
Data Payload Written in FIFO

FIFO (DPR)
Content

Written by USB Device Microcontroller Read

Data OUT 1 Data OUT 1 Data OUT 2

Data OUT2 Data OUT2

Written by USB Device

(UDP_CSRx)
Interrupt Pending

USB Device USB Bus

ReadWrite

Write and Read at the Same Time

1st Data Payload

2nd Data Payload

3rd Data Payload

3rd Data Payload

2nd Data Payload

1st Data Payload

Data IN Packet

Data IN Packet

Data IN Packet

Microcontroller

Endpoint 1
Bank 0

Endpoint 1
Bank 1

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 0

Endpoint 1
Bank 1

1151SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

5. The number of bytes available in the FIFO is made available by reading RXBYTECNT in the endpoint’s

UDP_CSRx.

6. The microcontroller transfers out data received from the endpoint’s memory to the microcontroller’s memory.

Data received is made available by reading the endpoint’s UDP_FDRx.

7. The microcontroller notifies the USB peripheral device that it has finished the transfer by clearing

RX_DATA_BK0 in the endpoint’s UDP_CSRx.

8. A third Data OUT packet can be accepted by the USB peripheral device and copied in the FIFO Bank 0.

9. If a second Data OUT packet has been received, the microcontroller is notified by the flag RX_DATA_BK1

set in the endpoint’s UDP_CSRx. An interrupt is pending for this endpoint while RX_DATA_BK1 is set.

10. The microcontroller transfers out data received from the endpoint’s memory to the microcontroller’s memory.

Data received is available by reading the endpoint’s UDP_FDRx.

11. The microcontroller notifies the USB device it has finished the transfer by clearing RX_DATA_BK1 in the

endpoint’s UDP_CSRx.

12. A fourth Data OUT packet can be accepted by the USB device and copied in the FIFO Bank 1.

Figure 41-11. Data OUT Transfer for Ping-pong Endpoint

Note: An interrupt is pending while the RX_DATA_BK0 or RX_DATA_BK1 flag is set.

Warning: When RX_DATA_BK0 and RX_DATA_BK1 are both set, there is no way to determine which one to

clear first. Thus the software must keep an internal counter to be sure to clear alternatively RX_DATA_BK0 then

RX_DATA_BK1. This situation may occur when the software application is busy elsewhere and the two banks are

filled by the USB host. Once the application comes back to the USB driver, the two flags are set.

41.6.2.4 Stall Handshake

A stall handshake can be used in one of two distinct occasions. (For more information on the stall handshake, refer

to Chapter 8 of the Universal Serial Bus Specification, Rev 2.0.)

 A functional stall is used when the halt feature associated with the endpoint is set. (Refer to Chapter 9 of the

Universal Serial Bus Specification, Rev 2.0, for more information on the halt feature.)

A

P

Data OUT
PID

ACK Data OUT 3Data OUTData OUT 2Data OUTData OUT 1PID

Data OUT 3Data OUT 1Data OUT1

Data OUT 2 Data OUT 2

PID PID PID
ACK

 Cleared by Firmware

USB Bus
Packets

RX_DATA_BK0 Flag

RX_DATA_BK1 Flag

Set by USB Device,
Data Payload Written
in FIFO Endpoint Bank 1

FIFO (DPR)
Bank 0

Bank 1

Write by USB Device Write In Progress

Read By Microcontroller

Read By Microcontroller

Set by USB Device,
Data Payload Written
in FIFO Endpoint Bank 0

Host Sends First Data Payload
 Microcontroller Reads Data 1 in Bank 0,
 Host Sends Second Data Payload

 Microcontroller Reads Data2 in Bank 1,
 Host Sends Third Data Payload

Cleared by Firmware

Write by USB Device

FIFO (DPR)

(UDP_CSRx)

(UDP_CSRx)

Interrupt Pending

Interrupt Pending

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1152

 To abort the current request, a protocol stall is used, but uniquely with control transfer.

The following procedure generates a stall packet:

1. The microcontroller sets the FORCESTALL flag in the UDP_CSRx endpoint’s register.

2. The host receives the stall packet.

3. The microcontroller is notified that the device has sent the stall by polling the STALLSENT to be set. An

endpoint interrupt is pending while STALLSENT is set. The microcontroller must clear STALLSENT to clear

the interrupt.

When a setup transaction is received after a stall handshake, STALLSENT must be cleared in order to prevent

interrupts due to STALLSENT being set.

Figure 41-12. Stall Handshake (Data IN Transfer)

Figure 41-13. Stall Handshake (Data OUT Transfer)

Data IN Stall PIDPIDUSB Bus
Packets

Cleared by Firmware

Set by FirmwareFORCESTALL

STALLSENT

Set by
USB Device

Cleared by Firmware

Interrupt Pending

Data OUT PID Stall PID Data OUTUSB Bus
Packets

Cleared by Firmware

Set by FirmwareFORCESTALL

STALLSENT

Set by USB Device

Interrupt Pending

1153SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.6.2.5 Transmit Data Cancellation

Some endpoints have dual-banks whereas some endpoints have only one bank. The procedure to cancel

transmission data held in these banks is described below.

To see the organization of dual-bank availability refer to Table 41-1 ”USB Endpoint Description”.

Endpoints Without Dual-Banks

The cancellation procedure depends on the TXPKTRDY flag value in the UDP_CSR:

 TXPKTRDY is not set:

̶ Reset the endpoint to clear the FIFO (pointers). (See Section 41.7.9 ”UDP Reset Endpoint Register”.)

 TXPKTRDY has already been set:

̶ Clear TXPKTRDY so that no packet is ready to be sent

̶ Reset the endpoint to clear the FIFO (pointers). (See Section 41.7.9 ”UDP Reset Endpoint Register”.)

Endpoints With Dual-Banks

The cancellation procedure depends on the TXPKTRDY flag value in the UDP_CSR:

 TXPKTRDY is not set:

̶ Reset the endpoint to clear the FIFO (pointers). (See Section 41.7.9 ”UDP Reset Endpoint Register”.)

 TXPKTRDY has already been set:

̶ Clear TXPKTRDY and read it back until actually read at 0.

̶ Set TXPKTRDY and read it back until actually read at 1.

̶ Clear TXPKTRDY so that no packet is ready to be sent.

̶ Reset the endpoint to clear the FIFO (pointers). (See Section 41.7.9 ”UDP Reset Endpoint Register”.)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1154

41.6.3 Controlling Device States

A USB device has several possible states. Refer to Chapter 9 of the Universal Serial Bus Specification, Rev 2.0.

Figure 41-14. USB Device State Diagram

Movement from one state to another depends on the USB bus state or on standard requests sent through control

transactions via the default endpoint (endpoint 0).

After a period of bus inactivity, the USB device enters Suspend Mode. Accepting Suspend/Resume requests from

the USB host is mandatory. Constraints in Suspend Mode are very strict for bus-powered applications; devices

must not consume more than 2.5 mA on the USB bus.

While in Suspend Mode, the host may wake up a device by sending a resume signal (bus activity) or a USB device

may send a wakeup request to the host, e.g., waking up a PC by moving a USB mouse.

The wakeup feature is not mandatory for all devices and must be negotiated with the host.

41.6.3.1 Not Powered State

Self powered devices can detect 5V VBUS using a PIO as described in the typical connection section. When the

device is not connected to a host, device power consumption can be reduced by disabling MCK for the UDP,

disabling UDPCK and disabling the transceiver. DDP and DDM lines are pulled down by 330 KΩ resistors.

Attached

Suspended

Suspended

Suspended

Suspended

Hub Reset
or

Deconfigured

Hub
Configured

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Bus Inactive

Bus Activity

Reset

Reset

Address
Assigned

Device
Deconfigured

Device
Configured

Powered

Default

Address

Configured

Power
Interruption

1155SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.6.3.2 Entering Attached State

To enable integrated pull-up, the PUON bit in the UDP_TXVC register must be set.

Warning: To write to the UDP_TXVC register, MCK clock must be enabled on the UDP. This is done in the Power

Management Controller.

After pull-up connection, the device enters the powered state. In this state, the UDPCK and MCK must be enabled

in the Power Management Controller. The transceiver can remain disabled.

41.6.3.3 From Powered State to Default State

After its connection to a USB host, the USB device waits for an end-of-bus reset. The unmaskable flag

ENDBUSRES is set in the UDP_ISR and an interrupt is triggered.

Once the ENDBUSRES interrupt has been triggered, the device enters Default State. In this state, the UDP

software must:

 Enable the default endpoint, setting the EPEDS flag in the UDP_CSR0 and, optionally, enabling the interrupt

for endpoint 0 by writing 1 to the UDP_IER. The enumeration then begins by a control transfer.

 Configure the interrupt mask register which has been reset by the USB reset detection

 Enable the transceiver clearing the TXVDIS flag in the UDP_TXVC register.

In this state UDPCK and MCK must be enabled.

Warning: Each time an ENDBUSRES interrupt is triggered, the Interrupt Mask Register and UDP_CSRs have

been reset.

41.6.3.4 From Default State to Address State

After a set address standard device request, the USB host peripheral enters the address state.

Warning: Before the device enters in address state, it must achieve the Status IN transaction of the control

transfer, i.e., the UDP device sets its new address once the TXCOMP flag in the UDP_CSR0 has been received

and cleared.

To move to address state, the driver software sets the FADDEN flag in the UDP_GLB_STAT register, sets its new

address, and sets the FEN bit in the UDP_FADDR register.

41.6.3.5 From Address State to Configured State

Once a valid Set Configuration standard request has been received and acknowledged, the device enables

endpoints corresponding to the current configuration. This is done by setting the EPEDS and EPTYPE fields in the

UDP_CSRx and, optionally, enabling corresponding interrupts in the UDP_IER.

41.6.3.6 Entering in Suspend State

When a Suspend (no bus activity on the USB bus) is detected, the RXSUSP signal in the UDP_ISR is set. This

triggers an interrupt if the corresponding bit is set in the UDP_IMR. This flag is cleared by writing to the UDP_ICR.

Then the device enters Suspend Mode.

In this state bus powered devices must drain no more than 2.5 mA from the 5V VBUS. As an example, the

microcontroller switches to slow clock, disables the PLL and main oscillator, and goes into Idle Mode. It may also

switch off other devices on the board.

The USB device peripheral clocks can be switched off. Resume event is asynchronously detected. MCK and

UDPCK can be switched off in the Power Management controller and the USB transceiver can be disabled by

setting the TXVDIS bit in the UDP_TXVC register.

Warning: Read, write operations to the UDP registers are allowed only if MCK is enabled for the UDP peripheral.

Switching off MCK for the UDP peripheral must be one of the last operations after writing to the UDP_TXVC

register and acknowledging the RXSUSP.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1156

41.6.3.7 Receiving a Host Resume

In suspend mode, a resume event on the USB bus line is detected asynchronously, transceiver and clocks are

disabled (however the pull-up shall not be removed).

Once the resume is detected on the bus, the WAKEUP signal in the UDP_ISR is set. It may generate an interrupt

if the corresponding bit in the UDP_IMR is set. This interrupt may be used to wake up the core, enable PLL and

main oscillators and configure clocks.

Warning: Read, write operations to the UDP registers are allowed only if MCK is enabled for the UDP peripheral.

MCK for the UDP must be enabled before clearing the WAKEUP bit in the UDP_ICR and clearing TXVDIS in the

UDP_TXVC register.

41.6.3.8 Sending a Device Remote Wakeup Request

In Suspend state it is possible to wake up the host sending an external resume.

 The device must wait at least 5 ms after being entered in suspend before sending an external resume.

 The device has 10 ms from the moment it starts to drain current and it forces a K state to resume the host.

 The device must force a K state from 1 to 15 ms to resume the host

Before sending a K state to the host, MCK, UDPCK and the transceiver must be enabled. Then to enable the

remote wakeup feature, the RMWUPE bit in the UDP_GLB_STAT register must be enabled. To force the K state

on the line, a transition of the ESR bit from 0 to 1 has to be done in the UDP_GLB_STAT register by first writing a

0 in the ESR bit and then writing a 1.

The K state is automatically generated and released according to the USB 2.0 specification.

1157SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7 USB Device Port (UDP) User Interface

WARNING: The UDP peripheral clock in the Power Management Controller (PMC) must be enabled before any read/write

operations to the UDP registers, including the UDP_TXVC register.

Notes: 1. Reset values are not defined for UDP_ISR or UDP_FDRx. UDP_FDRs reflect Dual Port RAM memory locations which are

not affected by any reset signals.

2. See Warning above the ”Register Mapping” on this page.

Table 41-6. Register Mapping

Offset Register Name Access Reset

0x000 Frame Number Register UDP_FRM_NUM Read-only 0x0000_0000

0x004 Global State Register UDP_GLB_STAT Read/Write 0x0000_0010

0x008 Function Address Register UDP_FADDR Read/Write 0x0000_0100

0x00C Reserved – – –

0x010 Interrupt Enable Register UDP_IER Write-only

0x014 Interrupt Disable Register UDP_IDR Write-only

0x018 Interrupt Mask Register UDP_IMR Read-only 0x0000_1200

0x01C Interrupt Status Register UDP_ISR Read-only –(1)

0x020 Interrupt Clear Register UDP_ICR Write-only

0x024 Reserved – – –

0x028 Reset Endpoint Register UDP_RST_EP Read/Write 0x0000_0000

0x02C Reserved – – –

0x030 Endpoint Control and Status Register 0 UDP_CSR0 Read/Write 0x0000_0000

...

0x030 + 0x4 * 7 Endpoint Control and Status Register 7 UDP_CSR7 Read/Write 0x0000_0000

0x050 Endpoint FIFO Data Register 0 UDP_FDR0 Read/Write –(1)

...

0x050 + 0x4 * 7 Endpoint FIFO Data Register 7 UDP_FDR7 Read/Write –(1)

0x070 Reserved – – –

0x074 Transceiver Control Register UDP_TXVC(2) Read/Write 0x0000_0100

0x078–0xFC Reserved – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1158

41.7.1 UDP Frame Number Register

Name: UDP_FRM_NUM

Address: 0x40084000

Access: Read-only

• FRM_NUM[10:0]: Frame Number as Defined in the Packet Field Formats

This 11-bit value is incremented by the host on a per frame basis. This value is updated at each start of frame.

Value updated at the SOF_EOP (Start of Frame End of Packet).

• FRM_ERR: Frame Error

This bit is set at SOF_EOP when the SOF packet is received containing an error.

This bit is reset upon receipt of SOF_PID.

• FRM_OK: Frame OK

This bit is set at SOF_EOP when the SOF packet is received without any error.

This bit is reset upon receipt of SOF_PID (Packet Identification).

In the Interrupt Status Register, the SOF interrupt is updated upon receiving SOF_PID. This bit is set without waiting for

EOP.

Note: In the 8-bit Register Interface, FRM_OK is bit 4 of FRM_NUM_H and FRM_ERR is bit 3 of FRM_NUM_L.

31 30 29 28 27 26 25 24

--- --- --- --- --- --- --- ---

23 22 21 20 19 18 17 16

– – – – – – FRM_OK FRM_ERR

15 14 13 12 11 10 9 8

– – – – – FRM_NUM

7 6 5 4 3 2 1 0

FRM_NUM

1159SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7.2 UDP Global State Register

Name: UDP_GLB_STAT

Address: 0x40084004

Access: Read/Write

This register is used to get and set the device state as specified in Chapter 9 of the USB Serial Bus Specification, Rev.2.0.

• FADDEN: Function Address Enable

Read:

0: Device is not in address state

1: Device is in address state

Write:

0: No effect, only a reset can bring back a device to the default state.

1: Sets device in address state. This occurs after a successful Set Address request. Beforehand, the UDP_FADDR register

must have been initialized with Set Address parameters. Set Address must complete the Status Stage before setting FAD-

DEN. Refer to chapter 9 of the Universal Serial Bus Specification, Rev. 2.0 for more details.

• CONFG: Configured

Read:

0: Device is not in configured state

1: Device is in configured state

Write:

0: Sets device in a non configured state

1: Sets device in configured state

The device is set in configured state when it is in address state and receives a successful Set Configuration request. Refer

to Chapter 9 of the Universal Serial Bus Specification, Rev. 2.0 for more details.

• ESR: Enable Send Resume

0: Mandatory value prior to starting any Remote Wakeup procedure

1: Starts the Remote Wakeup procedure if this bit value was 0 and if RMWUPE is enabled

• RMWUPE: Remote Wakeup Enable

0: The Remote Wakeup feature of the device is disabled.

1: The Remote Wakeup feature of the device is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – RMWUPE RSMINPR ESR CONFG FADDEN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1160

41.7.3 UDP Function Address Register

Name: UDP_FADDR

Address: 0x40084008

Access: Read/Write

• FADD[6:0]: Function Address Value

The Function Address Value must be programmed by firmware once the device receives a set address request from the

host, and has achieved the status stage of the no-data control sequence. Refer to the Universal Serial Bus Specification,

Rev. 2.0 for more information. After power up or reset, the function address value is set to 0.

• FEN: Function Enable

Read:

0: Function endpoint disabled

1: Function endpoint enabled

Write:

0: Disables function endpoint

1: Default value

The Function Enable bit (FEN) allows the microcontroller to enable or disable the function endpoints. The microcontroller

sets this bit after receipt of a reset from the host. Once this bit is set, the USB device is able to accept and transfer data

packets from and to the host.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – FEN

7 6 5 4 3 2 1 0

– FADD

1161SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7.4 UDP Interrupt Enable Register

Name: UDP_IER

Address: 0x40084010

Access: Write-only

• EP0INT: Enable Endpoint 0 Interrupt

• EP1INT: Enable Endpoint 1 Interrupt

• EP2INT: Enable Endpoint 2Interrupt

• EP3INT: Enable Endpoint 3 Interrupt

• EP4INT: Enable Endpoint 4 Interrupt

• EP5INT: Enable Endpoint 5 Interrupt

• EP6INT: Enable Endpoint 6 Interrupt

• EP7INT: Enable Endpoint 7 Interrupt

0: No effect

1: Enables corresponding Endpoint Interrupt

• RXSUSP: Enable UDP Suspend Interrupt

0: No effect

1: Enables UDP Suspend Interrupt

• RXRSM: Enable UDP Resume Interrupt

0: No effect

1: Enables UDP Resume Interrupt

• SOFINT: Enable Start Of Frame Interrupt

0: No effect

1: Enables Start Of Frame Interrupt

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP – SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

EP7INT EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1162

• WAKEUP: Enable UDP Bus Wakeup Interrupt

0: No effect

1: Enables USB bus Interrupt

1163SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7.5 UDP Interrupt Disable Register

Name: UDP_IDR

Address: 0x40084014

Access: Write-only

• EP0INT: Disable Endpoint 0 Interrupt

• EP1INT: Disable Endpoint 1 Interrupt

• EP2INT: Disable Endpoint 2 Interrupt

• EP3INT: Disable Endpoint 3 Interrupt

• EP4INT: Disable Endpoint 4 Interrupt

• EP5INT: Disable Endpoint 5 Interrupt

• EP6INT: Disable Endpoint 6 Interrupt

• EP7INT: Disable Endpoint 7 Interrupt

0: No effect

1: Disables corresponding Endpoint Interrupt

• RXSUSP: Disable UDP Suspend Interrupt

0: No effect

1: Disables UDP Suspend Interrupt

• RXRSM: Disable UDP Resume Interrupt

0: No effect

1: Disables UDP Resume Interrupt

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP – SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

EP7INT EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1164

• SOFINT: Disable Start Of Frame Interrupt

0: No effect

1: Disables Start Of Frame Interrupt

• WAKEUP: Disable USB Bus Interrupt

0: No effect

1: Disables USB Bus Wakeup Interrupt

1165SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7.6 UDP Interrupt Mask Register

Name: UDP_IMR

Address: 0x40084018

Access: Read-only

• EP0INT: Mask Endpoint 0 Interrupt

• EP1INT: Mask Endpoint 1 Interrupt

• EP2INT: Mask Endpoint 2 Interrupt

• EP3INT: Mask Endpoint 3 Interrupt

• EP4INT: Mask Endpoint 4 Interrupt

• EP5INT: Mask Endpoint 5 Interrupt

• EP6INT: Mask Endpoint 6 Interrupt

• EP7INT: Mask Endpoint 7 Interrupt

0: Corresponding Endpoint Interrupt is disabled

1: Corresponding Endpoint Interrupt is enabled

• RXSUSP: Mask UDP Suspend Interrupt

0: UDP Suspend Interrupt is disabled

1: UDP Suspend Interrupt is enabled

• RXRSM: Mask UDP Resume Interrupt.

0: UDP Resume Interrupt is disabled

1: UDP Resume Interrupt is enabled

• SOFINT: Mask Start Of Frame Interrupt

0: Start of Frame Interrupt is disabled

1: Start of Frame Interrupt is enabled

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP BIT12 SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

EP7INT EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1166

• BIT12: UDP_IMR Bit 12

Bit 12 of UDP_IMR cannot be masked and is always read at 1.

• WAKEUP: USB Bus Wakeup Interrupt

0: USB Bus Wakeup Interrupt is disabled

1: USB Bus Wakeup Interrupt is enabled

Note: When the USB block is in suspend mode, the application may power down the USB logic. In this case, any USB HOST resume

request that is made must be taken into account and, thus, the reset value of the RXRSM bit of the register UDP_IMR is enabled.

1167SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7.7 UDP Interrupt Status Register

Name: UDP_ISR

Address: 0x4008401C

Access: Read-only

• EP0INT: Endpoint 0 Interrupt Status

• EP1INT: Endpoint 1 Interrupt Status

• EP2INT: Endpoint 2 Interrupt Status

• EP3INT: Endpoint 3 Interrupt Status

• EP4INT: Endpoint 4 Interrupt Status

• EP5INT: Endpoint 5 Interrupt Status

• EP6INT: Endpoint 6 Interrupt Status

• EP7INT: Endpoint 7Interrupt Status

0: No Endpoint0 Interrupt pending

1: Endpoint0 Interrupt has been raised

Several signals can generate this interrupt. The reason can be found by reading UDP_CSR0:

RXSETUP set to 1

RX_DATA_BK0 set to 1

RX_DATA_BK1 set to 1

TXCOMP set to 1

STALLSENT set to 1

EP0INT is a sticky bit. Interrupt remains valid until EP0INT is cleared by writing in the corresponding UDP_CSR0 bit.

• RXSUSP: UDP Suspend Interrupt Status

0: No UDP Suspend Interrupt pending

1: UDP Suspend Interrupt has been raised

The USB device sets this bit when it detects no activity for 3 ms. The USB device enters Suspend mode.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP ENDBUSRES SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

EP7INT EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1168

• RXRSM: UDP Resume Interrupt Status

0: No UDP Resume Interrupt pending

1: UDP Resume Interrupt has been raised

The USB device sets this bit when a UDP resume signal is detected at its port.

After reset, the state of this bit is undefined, the application must clear this bit by setting the RXRSM flag in the UDP_ICR.

• SOFINT: Start of Frame Interrupt Status

0: No Start of Frame Interrupt pending

1: Start of Frame Interrupt has been raised

This interrupt is raised each time a SOF token has been detected. It can be used as a synchronization signal by using iso-

chronous endpoints.

• ENDBUSRES: End of BUS Reset Interrupt Status

0: No End of Bus Reset Interrupt pending

1: End of Bus Reset Interrupt has been raised

This interrupt is raised at the end of a UDP reset sequence. The USB device must prepare to receive requests on the end-

point 0. The host starts the enumeration, then performs the configuration.

• WAKEUP: UDP Resume Interrupt Status

0: No Wakeup Interrupt pending

1: A Wakeup Interrupt (USB Host Sent a RESUME or RESET) occurred since the last clear.

After reset the state of this bit is undefined; the application must clear this bit by setting the WAKEUP flag in the UDP_ICR.

1169SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7.8 UDP Interrupt Clear Register

Name: UDP_ICR

Address: 0x40084020

Access: Write-only

• RXSUSP: Clear UDP Suspend Interrupt

0: No effect

1: Clears UDP Suspend Interrupt

• RXRSM: Clear UDP Resume Interrupt

0: No effect

1: Clears UDP Resume Interrupt

• SOFINT: Clear Start Of Frame Interrupt

0: No effect

1: Clears Start Of Frame Interrupt

• ENDBUSRES: Clear End of Bus Reset Interrupt

0: No effect

1: Clears End of Bus Reset Interrupt

• WAKEUP: Clear Wakeup Interrupt

0: No effect

1: Clears Wakeup Interrupt

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP ENDBUSRES SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

– – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1170

41.7.9 UDP Reset Endpoint Register

Name: UDP_RST_EP

Address: 0x40084028

Access: Read/Write

• EP0: Reset Endpoint 0

• EP1: Reset Endpoint 1

• EP2: Reset Endpoint 2

• EP3: Reset Endpoint 3

• EP4: Reset Endpoint 4

• EP5: Reset Endpoint 5

• EP6: Reset Endpoint 6

• EP7: Reset Endpoint 7

This flag is used to reset the FIFO associated with the endpoint and the bit RXBYTECOUNT in the UDP_CSRx. It also

resets the data toggle to DATA0. It is useful after removing a HALT condition on a BULK endpoint. Refer to Chapter 5.8.5

in the USB Serial Bus Specification, Rev.2.0.

Warning: This flag must be cleared at the end of the reset. It does not clear UDP_CSRx flags.

0: No reset

1: Forces the corresponding endpoint FIF0 pointers to 0, therefore RXBYTECNT field is read at 0 in UDP_CSRx

Resetting the endpoint is a two-step operation:

1. Set the corresponding EPx field.

2. Clear the corresponding EPx field.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

EP7 EP6 EP5 EP4 EP3 EP2 EP1 EP0

1171SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7.10 UDP Endpoint Control and Status Register (CONTROL_BULK)

Name: UDP_CSRx [x = 0..7] (CONTROL_BULK)

Address: 0x40084030

Access: Read/Write

WARNING: Due to synchronization between MCK and UDPCK, the software application must wait for the end of the write

operation before executing another write by polling the bits which must be set/cleared.

As an example, to perform a control operation on the endpoint without modifying the status flags while accessing the con-

trol bits and fields of this register, the status flag bits must first be defined with the “No effect” value ‘1’. Once the overall

UDP_CSR value is defined, the register can be written and then the synchronization wait procedure must be executed.

• TXCOMP: Generates an IN Packet with Data Previously Written in the DPR

This flag generates an interrupt while it is set to one.

Write (cleared by the firmware):

0: Clear the flag, clear the interrupt

1: No effect

Read (Set by the USB peripheral):

0: Data IN transaction has not been acknowledged by the Host

1: Data IN transaction is achieved, acknowledged by the Host

After having issued a Data IN transaction setting TXPKTRDY, the device firmware waits for TXCOMP to be sure that the

host has acknowledged the transaction.

• RX_DATA_BK0: Receive Data Bank 0

This flag generates an interrupt while it is set to one.

Write (cleared by the firmware):

0: Notify USB peripheral device that data have been read in the FIFO’s Bank 0.

1: To leave the read value unchanged.

Read (Set by the USB peripheral):

0: No data packet has been received in the FIFO’s Bank 0.

1: A data packet has been received, it has been stored in the FIFO’s Bank 0.

When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to

the microcontroller memory. The number of bytes received is available in RXBYTCENT field. Bank 0 FIFO values are read

31 30 29 28 27 26 25 24

– – – – – RXBYTECNT

23 22 21 20 19 18 17 16

RXBYTECNT

15 14 13 12 11 10 9 8

EPEDS – – – DTGLE EPTYPE

7 6 5 4 3 2 1 0

DIR RX_DATA_BK1 FORCESTALL TXPKTRDY STALLSENT RXSETUP
RX_DATA_

BK0
TXCOMP

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1172

through the UDP_FDRx. Once a transfer is done, the device firmware must release Bank 0 to the USB peripheral device

by clearing RX_DATA_BK0.

After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before

accessing DPR.

• RXSETUP: Received Setup

This flag generates an interrupt while it is set to one.

Read:

0: No setup packet available.

1: A setup data packet has been sent by the host and is available in the FIFO.

Write:

0: Device firmware notifies the USB peripheral device that it has read the setup data in the FIFO.

1: No effect.

This flag is used to notify the USB device firmware that a valid Setup data packet has been sent by the host and success-

fully received by the USB device. The USB device firmware may transfer Setup data from the FIFO by reading the

UDP_FDRx to the microcontroller memory. Once a transfer has been done, RXSETUP must be cleared by the device

firmware.

Ensuing Data OUT transaction is not accepted while RXSETUP is set.

• STALLSENT: Stall Sent

This flag generates an interrupt while it is set to one.

This ends a STALL handshake.

Read:

0: Host has not acknowledged a stall

1: Host has acknowledged the stall

Write:

0: Resets the STALLSENT flag, clears the interrupt

1: No effect

This is mandatory for the device firmware to clear this flag. Otherwise the interrupt remains.

Refer to chapters 8.4.5 and 9.4.5 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the STALL

handshake.

1173SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• TXPKTRDY: Transmit Packet Ready

This flag is cleared by the USB device.

This flag is set by the USB device firmware.

Read:

0: There is no data to send.

1: The data is waiting to be sent upon reception of token IN.

Write:

0: Can be used in the procedure to cancel transmission data. (See Section 41.6.2.5 “Transmit Data Cancellation” on page

1153)

1: A new data payload has been written in the FIFO by the firmware and is ready to be sent.

This flag is used to generate a Data IN transaction (device to host). Device firmware checks that it can write a data payload

in the FIFO, checking that TXPKTRDY is cleared. Transfer to the FIFO is done by writing in the UDP_FDRx. Once the data

payload has been transferred to the FIFO, the firmware notifies the USB device setting TXPKTRDY to one. USB bus trans-

actions can start. TXCOMP is set once the data payload has been received by the host.

After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before

accessing DPR.

• FORCESTALL: Force Stall (used by Control, Bulk and Isochronous Endpoints)

Read:

0: Normal state

1: Stall state

Write:

0: Return to normal state

1: Send STALL to the host

Refer to chapters 8.4.5 and 9.4.5 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the STALL

handshake.

Control endpoints: During the data stage and status stage, this bit indicates that the microcontroller cannot complete the

request.

Bulk and interrupt endpoints: This bit notifies the host that the endpoint is halted.

The host acknowledges the STALL, device firmware is notified by the STALLSENT flag.

• RX_DATA_BK1: Receive Data Bank 1 (only used by endpoints with ping-pong attributes)

This flag generates an interrupt while it is set to one.

Write (cleared by the firmware):

0: Notifies USB device that data have been read in the FIFO’s Bank 1.

1: To leave the read value unchanged.

Read (Set by the USB peripheral):

0: No data packet has been received in the FIFO’s Bank 1.

1: A data packet has been received, it has been stored in FIFO’s Bank 1.

When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to

microcontroller memory. The number of bytes received is available in RXBYTECNT field. Bank 1 FIFO values are read

through UDP_FDRx. Once a transfer is done, the device firmware must release Bank 1 to the USB device by clearing

RX_DATA_BK1.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1174

After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before

accessing DPR.

• DIR: Transfer Direction (only available for control endpoints) (Read/Write)

0: Allows Data OUT transactions in the control data stage.

1: Enables Data IN transactions in the control data stage.

Refer to Chapter 8.5.3 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the control data stage.

This bit must be set before UDP_CSRx/RXSETUP is cleared at the end of the setup stage. According to the request sent

in the setup data packet, the data stage is either a device to host (DIR = 1) or host to device (DIR = 0) data transfer. It is not

necessary to check this bit to reverse direction for the status stage.

• EPTYPE[2:0]: Endpoint Type (Read/Write)

• DTGLE: Data Toggle (Read-only)

0: Identifies DATA0 packet

1: Identifies DATA1 packet

Refer to Chapter 8 of the Universal Serial Bus Specification, Rev. 2.0 for more information on DATA0, DATA1 packet

definitions.

• EPEDS: Endpoint Enable Disable

Read:

0: Endpoint disabled

1: Endpoint enabled

Write:

0: Disables endpoint

1: Enables endpoint

Control endpoints are always enabled. Reading or writing this field has no effect on control endpoints.

Note: After reset, all endpoints are configured as control endpoints (zero).

• RXBYTECNT[10:0]: Number of Bytes Available in the FIFO (Read-only)

When the host sends a data packet to the device, the USB device stores the data in the FIFO and notifies the microcon-

troller. The microcontroller can load the data from the FIFO by reading RXBYTECENT bytes in the UDP_FDRx.

Value Name Description

0 CTRL Control

1 ISO_OUT Isochronous OUT

5 ISO_IN Isochronous IN

2 BULK_OUT Bulk OUT

6 BULK_IN Bulk IN

3 INT_OUT Interrupt OUT

7 INT_IN Interrupt IN

1175SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7.11 UDP Endpoint Control and Status Register (ISOCHRONOUS)

Name: UDP_CSRx [x = 0..7] (ISOCHRONOUS)

Address: 0x40084030

Access: Read/Write

• TXCOMP: Generates an IN Packet with Data Previously Written in the DPR

This flag generates an interrupt while it is set to one.

Write (cleared by the firmware):

0: Clear the flag, clear the interrupt.

1: No effect.

Read (Set by the USB peripheral):

0: Data IN transaction has not been acknowledged by the Host.

1: Data IN transaction is achieved, acknowledged by the Host.

After having issued a Data IN transaction setting TXPKTRDY, the device firmware waits for TXCOMP to be sure that the

host has acknowledged the transaction.

• RX_DATA_BK0: Receive Data Bank 0

This flag generates an interrupt while it is set to one.

Write (cleared by the firmware):

0: Notify USB peripheral device that data have been read in the FIFO’s Bank 0.

1: To leave the read value unchanged.

Read (Set by the USB peripheral):

0: No data packet has been received in the FIFO’s Bank 0.

1: A data packet has been received, it has been stored in the FIFO’s Bank 0.

When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to

the microcontroller memory. The number of bytes received is available in RXBYTCENT field. Bank 0 FIFO values are read

through the UDP_FDRx. Once a transfer is done, the device firmware must release Bank 0 to the USB peripheral device

by clearing RX_DATA_BK0.

After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before

accessing DPR.

31 30 29 28 27 26 25 24

– – – – – RXBYTECNT

23 22 21 20 19 18 17 16

RXBYTECNT

15 14 13 12 11 10 9 8

EPEDS – – – DTGLE EPTYPE

7 6 5 4 3 2 1 0

DIR RX_DATA_BK1 FORCESTALL TXPKTRDY ISOERROR RXSETUP
RX_DATA_

BK0
TXCOMP

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1176

• RXSETUP: Received Setup

This flag generates an interrupt while it is set to one.

Read:

0: No setup packet available.

1: A setup data packet has been sent by the host and is available in the FIFO.

Write:

0: Device firmware notifies the USB peripheral device that it has read the setup data in the FIFO.

1: No effect.

This flag is used to notify the USB device firmware that a valid Setup data packet has been sent by the host and success-

fully received by the USB device. The USB device firmware may transfer Setup data from the FIFO by reading the

UDP_FDRx to the microcontroller memory. Once a transfer has been done, RXSETUP must be cleared by the device

firmware.

Ensuing Data OUT transaction is not accepted while RXSETUP is set.

• ISOERROR: A CRC error has been detected in an isochronous transfer

This flag generates an interrupt while it is set to one.

Read:

0: No error in the previous isochronous transfer.

1: CRC error has been detected, data available in the FIFO are corrupted.

Write:

0: Resets the ISOERROR flag, clears the interrupt.

1: No effect.

• TXPKTRDY: Transmit Packet Ready

This flag is cleared by the USB device.

This flag is set by the USB device firmware.

Read:

0: There is no data to send.

1: The data is waiting to be sent upon reception of token IN.

Write:

0: Can be used in the procedure to cancel transmission data. (See Section 41.6.2.5 “Transmit Data Cancellation” on page

1153)

1: A new data payload has been written in the FIFO by the firmware and is ready to be sent.

This flag is used to generate a Data IN transaction (device to host). Device firmware checks that it can write a data payload

in the FIFO, checking that TXPKTRDY is cleared. Transfer to the FIFO is done by writing in the UDP_FDRx. Once the data

payload has been transferred to the FIFO, the firmware notifies the USB device setting TXPKTRDY to one. USB bus trans-

actions can start. TXCOMP is set once the data payload has been received by the host.

After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before

accessing DPR.

1177SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• FORCESTALL: Force Stall (used by Control, Bulk and Isochronous Endpoints)

Read:

0: Normal state.

1: Stall state.

Write:

0: Return to normal state.

1: Send STALL to the host.

Refer to chapters 8.4.5 and 9.4.5 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the STALL

handshake.

Control endpoints: During the data stage and status stage, this bit indicates that the microcontroller cannot complete the

request.

Bulk and interrupt endpoints: This bit notifies the host that the endpoint is halted.

The host acknowledges the STALL, device firmware is notified by the STALLSENT flag.

• RX_DATA_BK1: Receive Data Bank 1 (only used by endpoints with ping-pong attributes)

This flag generates an interrupt while it is set to one.

Write (cleared by the firmware):

0: Notifies USB device that data have been read in the FIFO’s Bank 1.

1: To leave the read value unchanged.

Read (set by the USB peripheral):

0: No data packet has been received in the FIFO’s Bank 1.

1: A data packet has been received, it has been stored in FIFO’s Bank 1.

When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to

microcontroller memory. The number of bytes received is available in RXBYTECNT field. Bank 1 FIFO values are read

through UDP_FDRx. Once a transfer is done, the device firmware must release Bank 1 to the USB device by clearing

RX_DATA_BK1.

After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before

accessing DPR.

• DIR: Transfer Direction (only available for control endpoints) (Read/Write)

0: Allows Data OUT transactions in the control data stage.

1: Enables Data IN transactions in the control data stage.

Refer to Chapter 8.5.3 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the control data stage.

This bit must be set before UDP_CSRx/RXSETUP is cleared at the end of the setup stage. According to the request sent

in the setup data packet, the data stage is either a device to host (DIR = 1) or host to device (DIR = 0) data transfer. It is not

necessary to check this bit to reverse direction for the status stage.

• EPTYPE[2:0]: Endpoint Type (Read/Write)

Value Name Description

0 CTRL Control

1 ISO_OUT Isochronous OUT

5 ISO_IN Isochronous IN

2 BULK_OUT Bulk OUT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1178

• DTGLE: Data Toggle (Read-only)

0: Identifies DATA0 packet

1: Identifies DATA1 packet

Refer to Chapter 8 of the Universal Serial Bus Specification, Rev. 2.0 for more information on DATA0, DATA1 packet

definitions.

• EPEDS: Endpoint Enable Disable

Read:

0: Endpoint disabled

1: Endpoint enabled

Write:

0: Disables endpoint

1: Enables endpoint

Control endpoints are always enabled. Reading or writing this field has no effect on control endpoints.

Note: After reset, all endpoints are configured as control endpoints (zero).

• RXBYTECNT[10:0]: Number of Bytes Available in the FIFO (Read-only)

When the host sends a data packet to the device, the USB device stores the data in the FIFO and notifies the microcon-

troller. The microcontroller can load the data from the FIFO by reading RXBYTECENT bytes in the UDP_FDRx.

6 BULK_IN Bulk IN

3 INT_OUT Interrupt OUT

7 INT_IN Interrupt IN

Value Name Description

1179SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

41.7.12 UDP FIFO Data Register

Name: UDP_FDRx [x = 0..7]

Address: 0x40084050

Access: Read/Write

• FIFO_DATA[7:0]: FIFO Data Value

The microcontroller can push or pop values in the FIFO through this register.

RXBYTECNT in the corresponding UDP_CSRx is the number of bytes to be read from the FIFO (sent by the host).

The maximum number of bytes to write is fixed by the Max Packet Size in the Standard Endpoint Descriptor. It can not be

more than the physical memory size associated to the endpoint. Refer to the Universal Serial Bus Specification, Rev. 2.0

for more information.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

FIFO_DATA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1180

41.7.13 UDP Transceiver Control Register

Name: UDP_TXVC

Address: 0x40084074

Access: Read/Write

WARNING: The UDP peripheral clock in the Power Management Controller (PMC) must be enabled before any read/write

operations to the UDP registers including the UDP_TXVC register.

• TXVDIS: Transceiver Disable

When UDP is disabled, power consumption can be reduced significantly by disabling the embedded transceiver. This can

be done by setting TXVDIS bit.

To enable the transceiver, TXVDIS must be cleared.

• PUON: Pull-up On

0: The 1.5KΩ integrated pull-up on DDP is disconnected.

1: The 1.5 KΩ integrated pull-up on DDP is connected.

NOTE: If the USB pull-up is not connected on DDP, the user should not write in any UDP register other than the

UDP_TXVC register. This is because if DDP and DDM are floating at 0, or pulled down, then SE0 is received by the device

with the consequence of a USB Reset.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – PUON TXVDIS

7 6 5 4 3 2 1 0

– – – – – – – –

1181SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42. Ethernet MAC (GMAC)

42.1 Description

The Ethernet MAC (GMAC) module implements a 10/100 Mbps Ethernet MAC compatible with the IEEE 802.3

standard. The GMAC can operate in either half or full duplex mode at all supported speeds. The GMAC Network

Configuration Register is used to select the speed, duplex mode and interface type (MII).

42.2 Embedded Characteristics

 Compatible with IEEE Standard 802.3

 10, 100 Mbps Operation

 Full and Half Duplex Operation at all Supported Speeds of Operation

 MII Interface to the Physical Layer

 Integrated Physical Coding

 Direct Memory Access (DMA) Interface to External Memory

 Programmable Burst Length and Endianism for DMA

 Interrupt Generation to Signal Receive and Transmit Completion, Errors or Other Events

 Automatic Pad and Cyclic Redundancy Check (CRC) Generation on Transmitted Frames

 Automatic Discard of Frames Received with Errors

 Receive and Transmit IP, TCP and UDP Checksum Offload. Both IPv4 and IPv6 Packet Types Supported

 Address Checking Logic for Four Specific 48-bit Addresses, Four Type IDs, Promiscuous Mode, Hash

Matching of Unicast and Multicast Destination Addresses and Wake-on-LAN

 Management Data Input/Output (MDIO) Interface for Physical Layer Management

 Support for Jumbo Frames up to 10240 Bytes

 Full Duplex Flow Control with Recognition of Incoming Pause Frames and Hardware Generation of

Transmitted Pause Frames

 Half Duplex Flow Control by Forcing Collisions on Incoming Frames

 Support for 802.1Q VLAN Tagging with Recognition of Incoming VLAN and Priority Tagged Frames

 Support for 802.1Qbb Priority-based Flow Control

 Programmable Inter Packet Gap (IPG) Stretch

 Recognition of IEEE 1588 PTP Frames

 IEEE 1588 Time Stamp Unit (TSU)

 Support for 802.1AS Timing and Synchronization

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1182

42.3 Block Diagram

Figure 42-1. Block Diagram

42.4 Signal Interfaces

The GMAC includes the following signal interfaces:

 MII to an external PHY

 MDIO interface for external PHY management

 Slave APB interface for accessing GMAC registers

 Master AHB interface for memory access

Register

Interface

Status

Registers

Control

Registers

FIFO

Interface

AHB DMA

Interface

MAC Transmitter

MAC Receiver

Frame Filtering

MDIO

Media Interface

APB

AHB

Table 42-1. GMAC Connections in Different Modes

Signal Name Function MII

GTXCK Transmit Clock or Reference Clock TXCK

GTXEN Transmit Enable TXEN

GTX[3..0] Transmit Data TXD[3:0]

GTXER Transmit Coding Error TXER

GRXCK Receive Clock RXCK

GRXDV Receive Data Valid RXDV

GRX[3..0] Receive Data RXD[3:0]

GRXER Receive Error RXER

GCRS Carrier Sense and Data Valid CRS

1183SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.5 Product Dependencies

42.5.1 I/O Lines

The pins used for interfacing the GMAC may be multiplexed with PIO lines. The programmer must first program

the PIO Controller to assign the pins to their peripheral function. If I/O lines of the GMAC are not used by the

application, they can be used for other purposes by the PIO Controller.

42.5.2 Power Management

The GMAC is not continuously clocked. The user must first enable the GMAC clock in the Power Management

Controller before using it.

GCOL Collision Detect COL

GMDC Management Data Clock MDC

GMDIO Management Data Input/Output MDIO

Table 42-1. GMAC Connections in Different Modes (Continued)

Signal Name Function MII

Table 42-2. I/O Lines

Instance Signal I/O Line Peripheral

GMAC GCOL PD13 A

GMAC GCRS PD10 A

GMAC GCRSDV/GRXDV PD4 A

GMAC GMDC PD8 A

GMAC GMDIO PD9 A

GMAC GRXCK PD14 A

GMAC GRXER PD7 A

GMAC GRX0 PD5 A

GMAC GRX0 PD6 A

GMAC GRX2 PD11 A

GMAC GRX3 PD12 A

GMAC GTXCK/GREFCK PD0 A

GMAC GTXEN PD1 A

GMAC GTXER PD17 A

GMAC GTX0 PD2 A

GMAC GTX1 PD3 A

GMAC GTX2 PD15 A

GMAC GTX3 PD16 A

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1184

42.5.3 Interrupt Sources

The GMAC interrupt line is connected to one of the internal sources of the interrupt controller. Using the GMAC

interrupt requires prior programming of the interrupt controller.

42.6 Functional Description

42.6.1 Media Access Controller

The Media Access Controller (MAC) transmit block takes data from FIFO, adds preamble and, if necessary, pad

and frame check sequence (FCS). Both half duplex and full duplex Ethernet modes of operation are supported.

When operating in half duplex mode, the MAC transmit block generates data according to the carrier sense

multiple access with collision detect (CSMA/CD) protocol. The start of transmission is deferred if carrier sense

(CRS) is active. If collision (COL) becomes active during transmission, a jam sequence is asserted and the

transmission is retried after a random back off. The CRS and COL signals have no effect in full duplex mode.

The MAC receive block checks for valid preamble, FCS, alignment and length, and presents received frames to

the MAC address checking block and FIFO. Software can configure the GMAC to receive jumbo frames up to

10240 bytes. It can optionally strip CRC from the received frame prior to transfer to FIFO.

The address checker recognizes four specific 48-bit addresses, can recognize four different type ID values, and

contains a 64-bit Hash register for matching multicast and unicast addresses as required. It can recognize the

broadcast address of all ones and copy all frames. The MAC can also reject all frames that are not VLAN tagged

and recognize Wake on LAN events.

The MAC receive block supports offloading of IP, TCP and UDP checksum calculations (both IPv4 and IPv6

packet types supported), and can automatically discard bad checksum frames.

42.6.2 1588 Time Stamp Unit

The 1588 time stamp unit (TSU) is a timer implemented as a 62-bit timer comprising two registers (GMAC_TSL

and GMAC_TN).

The 32 upper bits count seconds and are accessible in the “GMAC 1588 Timer Seconds Low Register”

(GMAC_TSL).

The 30 lower bits count nanoseconds and are accessible in the “GMAC 1588 Timer Nanoseconds Register”

(GMAC_TN).

The 30 lower bits roll over when they have counted to one second. The timer increments by a programmable

number of nanoseconds with each MCK period and can be adjusted (incremented or decremented) through APB

register accesses.

Table 42-3. Peripheral IDs

Instance ID

GMAC 44

1185SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.6.3 AHB Direct Memory Access Interface

The GMAC DMA controller performs six types of operations on the AHB bus. The order of priority of these

operations is:

1. Receive buffer manager write

2. Receive buffer manager read

3. Transmit buffer manager write

4. Transmit buffer manager read

5. Receive data DMA write

6. Transmit data DMA read

42.6.3.1 Receive AHB Buffers

Received frames, optionally including FCS, are written to receive AHB buffers stored in memory. The receive

buffer depth is programmable in the range of 64 bytes to 16 Kbytes through the DMA Configuration register, with

the default being 128 bytes.

The start location for each receive AHB buffer is stored in memory in a list of receive buffer descriptors at an

address location pointed to by the receive buffer queue pointer. The base address for the receive buffer queue

pointer is configured in software using the Receive Buffer Queue Base Address register.

Each list entry consists of two words. The first is the address of the receive AHB buffer and the second the receive

status. If the length of a receive frame exceeds the AHB buffer length, the status word for the used buffer is written

with zeroes except for the “start of frame” bit, which is always set for the first buffer in a frame. Bit zero of the

address field is written to 1 to show the buffer has been used. The receive buffer manager then reads the location

of the next receive AHB buffer and fills that with the next part of the received frame data. AHB buffers are filled until

the frame is complete and the final buffer descriptor status word contains the complete frame status. Refer to

Table 42-4 for details of the receive buffer descriptor list.

Each receive AHB buffer start location is a word address. The start of the first AHB buffer in a frame can be offset

by up to three bytes, depending on the value written to bits 14 and 15 of the Network Configuration register. If the

start location of the AHB buffer is offset, the available length of the first AHB buffer is reduced by the

corresponding number of bytes.

Table 42-4. Receive Buffer Descriptor Entry

Bit Function

Word 0

31:2 Address of beginning of buffer

1 Wrap—marks last descriptor in receive buffer descriptor list.

0

Ownership—needs to be zero for the GMAC to write data to the receive buffer. The GMAC sets this to one once it has

successfully written a frame to memory.

Software has to clear this bit before the buffer can be used again.

Word 1

31 Global all ones broadcast address detected

30 Multicast hash match

29 Unicast hash match

28 –

27 Specific Address Register match found, bit 25 and bit 26 indicate which Specific Address Register causes the match.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1186

26:25

Specific Address Register match. Encoded as follows:

00: Specific Address Register 1 match

01: Specific Address Register 2 match

10: Specific Address Register 3 match

11: Specific Address Register 4 match

If more than one specific address is matched only one is indicated with priority 4 down to 1.

24

This bit has a different meaning depending on whether RX checksum offloading is enabled.

With RX checksum offloading disabled: (bit 24 clear in Network Configuration Register)

Type ID register match found, bit 22 and bit 23 indicate which type ID register causes the match.

With RX checksum offloading enabled: (bit 24 set in Network Configuration Register)

0: The frame was not SNAP encoded and/or had a VLAN tag with the Canonical Format Indicator (CFI) bit set.

1: The frame was SNAP encoded and had either no VLAN tag or a VLAN tag with the CFI bit not set.

23:22

This bit has a different meaning depending on whether RX checksum offloading is enabled.

With RX checksum offloading disabled: (bit 24 clear in Network Configuration)

Type ID register match. Encoded as follows:

00: Type ID register 1 match

01: Type ID register 2 match

10: Type ID register 3 match

11: Type ID register 4 match

If more than one Type ID is matched only one is indicated with priority 4 down to 1.

With RX checksum offloading enabled: (bit 24 set in Network Configuration Register)

00: Neither the IP header checksum nor the TCP/UDP checksum was checked.

01: The IP header checksum was checked and was correct. Neither the TCP nor UDP checksum was checked.

10: Both the IP header and TCP checksum were checked and were correct.

11: Both the IP header and UDP checksum were checked and were correct.

21
VLAN tag detected—type ID of 0x8100. For packets incorporating the stacked VLAN processing feature, this bit will be set

if the second VLAN tag has a type ID of 0x8100

20
Priority tag detected—type ID of 0x8100 and null VLAN identifier. For packets incorporating the stacked VLAN processing

feature, this bit will be set if the second VLAN tag has a type ID of 0x8100 and a null VLAN identifier.

19:17 VLAN priority—only valid if bit 21 is set.

16 Canonical format indicator (CFI) bit (only valid if bit 21 is set).

15
End of frame—when set the buffer contains the end of a frame. If end of frame is not set, then the only valid status bit is

start of frame (bit 14).

14
Start of frame—when set the buffer contains the start of a frame. If both bits 15 and 14 are set, the buffer contains a whole

frame.

Table 42-4. Receive Buffer Descriptor Entry (Continued)

Bit Function

1187SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

To receive frames, the AHB buffer descriptors must be initialized by writing an appropriate address to bits 31:2 in

the first word of each list entry. Bit 0 must be written with zero. Bit 1 is the wrap bit and indicates the last entry in

the buffer descriptor list.

The start location of the receive buffer descriptor list must be written with the receive buffer queue base address

before reception is enabled (receive enable in the Network Control register). Once reception is enabled, any writes

to the Receive Buffer Queue Base Address register are ignored. When read, it will return the current pointer

position in the descriptor list, though this is only valid and stable when receive is disabled.

If the filter block indicates that a frame should be copied to memory, the receive data DMA operation starts writing

data into the receive buffer. If an error occurs, the buffer is recovered.

An internal counter within the GMAC represents the receive buffer queue pointer and it is not visible through the

CPU interface. The receive buffer queue pointer increments by two words after each buffer has been used. It re-

initializes to the receive buffer queue base address if any descriptor has its wrap bit set.

As receive AHB buffers are used, the receive AHB buffer manager sets bit zero of the first word of the descriptor to

logic one indicating the AHB buffer has been used.

Software should search through the “used” bits in the AHB buffer descriptors to find out how many frames have

been received, checking the start of frame and end of frame bits.

To function properly, a 10/100 Ethernet system should have no excessive length frames or frames greater than

128 bytes with CRC errors. Collision fragments will be less than 128 bytes long, therefore it will be a rare

occurrence to find a frame fragment in a receive AHB buffer, when using the default value of 128 bytes for the

receive buffers size.

If bit zero of the receive buffer descriptor is already set when the receive buffer manager reads the location of the

receive AHB buffer, then the buffer has been already used and cannot be used again until software has processed

the frame and cleared bit zero. In this case, the “buffer not available” bit in the Receive Status register is set and an

interrupt triggered.

13

This bit has a different meaning depending on whether jumbo frames and ignore FCS modes are enabled. If neither mode

is enabled this bit will be zero.

With jumbo frame mode enabled: (bit 3 set in Network Configuration Register) Additional bit for length of frame (bit[13]),

that is concatenated with bits[12:0]

With ignore FCS mode enabled and jumbo frames disabled: (bit 26 set in Network Configuration Register and bit 3

clear in Network Configuration Register) This indicates per frame FCS status as follows:

0: Frame had good FCS

1: Frame had bad FCS, but was copied to memory as ignore FCS enabled.

12:0

These bits represent the length of the received frame which may or may not include FCS depending on whether FCS

discard mode is enabled.

With FCS discard mode disabled: (bit 17 clear in Network Configuration Register)

Least significant 12 bits for length of frame including FCS. If jumbo frames are enabled, these 12 bits are concatenated with

bit[13] of the descriptor above.

With FCS discard mode enabled: (bit 17 set in Network Configuration Register)

Least significant 12 bits for length of frame excluding FCS. If jumbo frames are enabled, these 12 bits are concatenated

with bit[13] of the descriptor above.

Table 42-4. Receive Buffer Descriptor Entry (Continued)

Bit Function

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1188

42.6.3.2 Transmit AHB Buffers

Frames to transmit are stored in one or more transmit AHB buffers. Transmit frames can be between 1 and 16384

bytes long, so it is possible to transmit frames longer than the maximum length specified in the IEEE 802.3

standard. It should be noted that zero length AHB buffers are allowed and that the maximum number of buffers

permitted for each transmit frame is 128.

The start location for each transmit AHB buffer is stored in memory in a list of transmit buffer descriptors at a

location pointed to by the transmit buffer queue pointer. The base address for this queue pointer is set in software

using the Transmit Buffer Queue Base Address register. Each list entry consists of two words. The first is the byte

address of the transmit buffer and the second containing the transmit control and status. For the FIFO-based DMA

configured with a 32-bit data path the address of the buffer is a byte address.

Frames can be transmitted with or without automatic CRC generation. If CRC is automatically generated, pad will

also be automatically generated to take frames to a minimum length of 64 bytes. When CRC is not automatically

generated (as defined in word 1 of the transmit buffer descriptor), the frame is assumed to be at least 64 bytes long

and pad is not generated.

An entry in the transmit buffer descriptor list is described in Table 42-5.

To transmit frames, the buffer descriptors must be initialized by writing an appropriate byte address to bits [31:0] in

the first word of each descriptor list entry.

The second word of the transmit buffer descriptor is initialized with control information that indicates the length of

the frame, whether or not the MAC is to append CRC and whether the buffer is the last buffer in the frame.

After transmission the status bits are written back to the second word of the first buffer along with the used bit. Bit

31 is the used bit which must be zero when the control word is read if transmission is to take place. It is written to

one once the frame has been transmitted. Bits[29:20] indicate various transmit error conditions. Bit 30 is the wrap

bit which can be set for any buffer within a frame. If no wrap bit is encountered the queue pointer continues to

increment.

The Transmit Buffer Queue Base Address register can only be updated while transmission is disabled or halted;

otherwise any attempted write will be ignored. When transmission is halted the transmit buffer queue pointer will

maintain its value. Therefore when transmission is restarted the next descriptor read from the queue will be from

immediately after the last successfully transmitted frame. while transmit is disabled (bit 3 of the Network Control

register set low), the transmit buffer queue pointer resets to point to the address indicated by the Transmit Buffer

Queue Base Address register. Note that disabling receive does not have the same effect on the receive buffer

queue pointer.

Once the transmit queue is initialized, transmit is activated by writing to the transmit start bit (bit 9) of the Network

Control register. Transmit is halted when a buffer descriptor with its used bit set is read, a transmit error occurs, or

by writing to the transmit halt bit of the Network Control register. Transmission is suspended if a pause frame is

received while the pause enable bit is set in the Network Configuration register. Rewriting the start bit while

transmission is active is allowed. This is implemented with TXGO variable which is readable in the Transmit Status

register at bit location 3. The TXGO variable is reset when:

 Transmit is disabled.

 A buffer descriptor with its ownership bit set is read.

 Bit 10, THALT, of the Network Control register is written.

 There is a transmit error such as too many retries or a transmit underrun.

To set TXGO, write TSTART to the bit 9 of the Network Control register. Transmit halt does not take effect until any

ongoing transmit finishes.

The DMA transmission will automatically restart from the first buffer of the frame.

If a used bit is read midway through transmission of a multi-buffer frame, this is treated as a transmit error.

Transmission stops, GTXER is asserted and the FCS will be bad.

1189SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

If transmission stops due to a transmit error or a used bit being read, transmission restarts from the first buffer

descriptor of the frame being transmitted when the transmit start bit is rewritten.

42.6.3.3 DMA Bursting on the AHB

The DMA will always use SINGLE, or INCR type AHB accesses for buffer management operations. When

performing data transfers, the AHB burst length used can be programmed using bits 4:0 of the DMA Configuration

register so that either SINGLE, INCR or fixed length incrementing bursts (INCR4, INCR8 or INCR16) are used

where possible.

Table 42-5. Transmit Buffer Descriptor Entry

Bit Function

Word 0

31:0 Byte address of buffer

Word 1

31
Used—must be zero for the GMAC to read data to the transmit buffer. The GMAC sets this to one for the first buffer of a

frame once it has been successfully transmitted. Software must clear this bit before the buffer can be used again.

30 Wrap—marks last descriptor in transmit buffer descriptor list. This can be set for any buffer within the frame.

29 Retry limit exceeded, transmit error detected

28
Transmit underrun—occurs when the start of packet data has been written into the FIFO and either HRESP is not OK, or

the transmit data could not be fetched in time, or when buffers are exhausted.

27

Transmit frame corruption due to AHB error—set if an error occurs while midway through reading transmit frame from the

AHB, including HRESP errors and buffers exhausted mid frame (if the buffers run out during transmission of a frame then

transmission stops, FCS shall be bad and GTXER asserted).

26 Late collision, transmit error detected.

25:23 Reserved

22:20

Transmit IP/TCP/UDP checksum generation offload errors:

000: No Error.

001: The Packet was identified as a VLAN type, but the header was not fully complete, or had an error in it.

010: The Packet was identified as a SNAP type, but the header was not fully complete, or had an error in it.

011: The Packet was not of an IP type, or the IP packet was invalidly short, or the IP was not of type IPv4/IPv6.

100: The Packet was not identified as VLAN, SNAP or IP.

101: Non supported packet fragmentation occurred. For IPv4 packets, the IP checksum was generated and inserted.

110: Packet type detected was not TCP or UDP. TCP/UDP checksum was therefore not generated. For IPv4 packets, the

IP checksum was generated and inserted.

111: A premature end of packet was detected and the TCP/UDP checksum could not be generated.

19:17 Reserved

16

No CRC to be appended by MAC. When set, this implies that the data in the buffers already contains a valid CRC, hence

no CRC or padding is to be appended to the current frame by the MAC.

This control bit must be set for the first buffer in a frame and will be ignored for the subsequent buffers of a frame.

Note that this bit must be clear when using the transmit IP/TCP/UDP checksum generation offload, otherwise checksum

generation and substitution will not occur.

15 Last buffer, when set this bit will indicate the last buffer in the current frame has been reached.

14 Reserved

13:0 Length of buffer

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1190

When there is enough space and enough data to be transferred, the programmed fixed length bursts will be used.

If there is not enough data or space available, for example when at the beginning or the end of a buffer, SINGLE

type accesses are used. Also SINGLE type accesses are used at 1024 byte boundaries, so that the 1 Kbyte

boundaries are not burst over as per AHB requirements.

The DMA will not terminate a fixed length burst early, unless an error condition occurs on the AHB or if receive or

transmit are disabled in the Network Control register.

42.6.4 MAC Transmit Block

The MAC transmitter can operate in either half duplex or full duplex mode and transmits frames in accordance with

the Ethernet IEEE 802.3 standard. In half duplex mode, the CSMA/CD protocol of the IEEE 802.3 specification is

followed.

A small input buffer receives data through the FIFO interface which will extract data in 32-bit form. All subsequent

processing prior to the final output is performed in bytes.

Transmit data can be output using the MII interface.

Frame assembly starts by adding preamble and the start frame delimiter. Data is taken from the transmit FIFO

interface a word at a time.

If necessary, padding is added to take the frame length to 60 bytes. CRC is calculated using an order 32-bit

polynomial. This is inverted and appended to the end of the frame taking the frame length to a minimum of 64

bytes. If the no CRC bit is set in the second word of the last buffer descriptor of a transmit frame, neither pad nor

CRC are appended. The no CRC bit can also be set through the FIFO interface.

In full duplex mode (at all data rates), frames are transmitted immediately. Back to back frames are transmitted at

least 96 bit times apart to guarantee the interframe gap.

In half duplex mode, the transmitter checks carrier sense. If asserted, the transmitter waits for the signal to

become inactive, and then starts transmission after the interframe gap of 96 bit times. If the collision signal is

asserted during transmission, the transmitter will transmit a jam sequence of 32 bits taken from the data register

and then retry transmission after the back off time has elapsed. If the collision occurs during either the preamble or

Start Frame Delimiter (SFD), then these fields will be completed prior to generation of the jam sequence.

The back off time is based on an XOR of the 10 least significant bits of the data coming from the transmit FIFO

interface and a 10-bit pseudo random number generator. The number of bits used depends on the number of

collisions seen. After the first collision 1 bit is used, then the second 2 bits and so on up to the maximum of 10 bits.

All 10 bits are used above ten collisions. An error will be indicated and no further attempts will be made if 16

consecutive attempts cause collision. This operation is compliant with the description in Clause 4.2.3.2.5 of the

IEEE 802.3 standard which refers to the truncated binary exponential back off algorithm.

In 10/100 mode, both collisions and late collisions are treated identically, and back off and retry will be performed

up to 16 times. This condition is reported in the transmit buffer descriptor word 1 (late collision, bit 26) and also in

the Transmit Status register (late collision, bit 7). An interrupt can also be generated (if enabled) when this

exception occurs, and bit 5 in the Interrupt Status register will be set.

In all modes of operation, if the transmit DMA underruns, a bad CRC is automatically appended using the same

mechanism as jam insertion and the GTXER signal is asserted. For a properly configured system this should never

happen.

By setting when bit 28 is set in the Network Configuration register, the Inter Packet Gap (IPG) may be stretched

beyond 96 bits depending on the length of the previously transmitted frame and the value written to the IPG

Stretch register (GMAC_IPGS). The least significant 8 bits of the IPG Stretch register multiply the previous frame

length (including preamble). The next significant 8 bits (+1 so as not to get a divide by zero) divide the frame length

to generate the IPG. IPG stretch only works in full duplex mode and when bit 28 is set in the Network Configuration

register. The IPG Stretch register cannot be used to shrink the IPG below 96 bits.

1191SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

If the back pressure bit is set in the Network Control register, or if the HDFC configuration bit is set in the

GMAC_UR register (10M or 100M half duplex mode), the transmit block transmits 64 bits of data, which can

consist of 16 nibbles of 1011 or in bit rate mode 64 1s, whenever it sees an incoming frame to force a collision.

This provides a way of implementing flow control in half duplex mode.

42.6.5 MAC Receive Block

All processing within the MAC receive block is implemented using a 16-bit data path. The MAC receive block

checks for valid preamble, FCS, alignment and length, presents received frames to the FIFO interface and stores

the frame destination address for use by the address checking block.

If, during the frame reception, the frame is found to be too long, a bad frame indication is sent to the FIFO

interface. The receiver logic ceases to send data to memory as soon as this condition occurs.

At end of frame reception the receive block indicates to the DMA block whether the frame is good or bad. The DMA

block will recover the current receive buffer if the frame was bad.

Ethernet frames are normally stored in DMA memory complete with the FCS. Setting the FCS remove bit in the

network configuration (bit 17) causes frames to be stored without their corresponding FCS. The reported frame

length field is reduced by four bytes to reflect this operation.

The receive block signals to the register block to increment the alignment, CRC (FCS), short frame, long frame,

jabber or receive symbol errors when any of these exception conditions occur.

If bit 26 is set in the network configuration, CRC errors will be ignored and CRC errored frames will not be

discarded, though the Frame Check Sequence Errors statistic register will still be incremented. Additionally, if not

enabled for jumbo frames mode, then bit[13] of the receiver descriptor word 1 will be updated to indicate the FCS

validity for the particular frame. This is useful for applications such as EtherCAT whereby individual frames with

FCS errors must be identified.

Received frames can be checked for length field error by setting the length field error frame discard bit of the

Network Configuration register (bit-16). When this bit is set, the receiver compares a frame's measured length with

the length field (bytes 13 and 14) extracted from the frame. The frame is discarded if the measured length is

shorter. This checking procedure is for received frames between 64 bytes and 1518 bytes in length.

Frames where the length field is greater than or equal to 0x0600 hex will not be checked.

42.6.6 Checksum Offload for IP, TCP and UDP

The GMAC can be programmed to perform IP, TCP and UDP checksum offloading in both receive and transmit

directions, which is enabled by setting bit 24 in the Network Configuration register for receive.

IPv4 packets contain a 16-bit checksum field, which is the 16-bit 1’s complement of the 1’s complement sum of all

16-bit words in the header. TCP and UDP packets contain a 16-bit checksum field, which is the 16-bit 1’s

complement of the 1’s complement sum of all 16-bit words in the header, the data and a conceptual IP pseudo

header.

To calculate these checksums in software requires each byte of the packet to be processed. For TCP and UDP

this can use a large amount of processing power. Offloading the checksum calculation to hardware can result in

significant performance improvements.

For IP, TCP or UDP checksum offload to be useful, the operating system containing the protocol stack must be

aware that this offload is available so that it can make use of the fact that the hardware can either generate or

verify the checksum.

42.6.6.1 Receiver Checksum Offload

When receive checksum offloading is enabled in the GMAC, the IPv4 header checksum is checked as per RFC

791, where the packet meets the following criteria:

 If present, the VLAN header must be four octets long and the CFI bit must not be set.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1192

 Encapsulation must be RFC 894 Ethernet Type Encoding or RFC 1042 SNAP Encoding.

 IPv4 packet

 IP header is of a valid length

The GMAC also checks the TCP checksum as per RFC 793, or the UDP checksum as per RFC 768, if the

following criteria are met:

 IPv4 or IPv6 packet

 Good IP header checksum (if IPv4)

 No IP fragmentation

 TCP or UDP packet

When an IP, TCP or UDP frame is received, the receive buffer descriptor gives an indication if the GMAC was able

to verify the checksums. There is also an indication if the frame had SNAP encapsulation. These indication bits will

replace the type ID match indication bits when the receive checksum offload is enabled. For details of these

indication bits refer to Table 42-4 “Receive Buffer Descriptor Entry”.

42.6.7 MAC Filtering Block

The filter block determines which frames should be written to the FIFO interface and on to the DMA.

Whether a frame is passed depends on what is enabled in the Network Configuration register, the state of the

external matching pins, the contents of the specific address, type and Hash registers and the frame's destination

address and type field.

If bit 25 of the Network Configuration register is not set, a frame will not be copied to memory if the GMAC is

transmitting in half duplex mode at the time a destination address is received.

Ethernet frames are transmitted a byte at a time, least significant bit first. The first six bytes (48 bits) of an Ethernet

frame make up the destination address. The first bit of the destination address, which is the LSB of the first byte of

the frame, is the group or individual bit. This is one for multicast addresses and zero for unicast. The all ones

address is the broadcast address and a special case of multicast.

The GMAC supports recognition of four specific addresses. Each specific address requires two registers, Specific

Address Bottom register and Specific Address Top register. Specific Address Bottom register stores the first four

bytes of the destination address and Specific Address Top register contains the last two bytes. The addresses

stored can be specific, group, local or universal.

The destination address of received frames is compared against the data stored in the Specific Address registers

once they have been activated. The addresses are deactivated at reset or when their corresponding Specific

Address Bottom register is written. They are activated when Specific Address Top register is written. If a receive

frame address matches an active address, the frame is written to the FIFO interface and on to DMA memory.

Frames may be filtered using the type ID field for matching. Four type ID registers exist in the register address

space and each can be enabled for matching by writing a one to the MSB (bit 31) of the respective register. When

a frame is received, the matching is implemented as an OR function of the various types of match.

The contents of each type ID register (when enabled) are compared against the length/type ID of the frame being

received (e.g., bytes 13 and 14 in non-VLAN and non-SNAP encapsulated frames) and copied to memory if a

match is found. The encoded type ID match bits (Word 0, Bit 22 and Bit 23) in the receive buffer descriptor status

are set indicating which type ID register generated the match, if the receive checksum offload is disabled.

The reset state of the type ID registers is zero, hence each is initially disabled.

1193SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The following example illustrates the use of the address and type ID match registers for a MAC address of

21:43:65:87:A9:CB:

Note: 1. Contains the address of the transmitting device

The sequence above shows the beginning of an Ethernet frame. Byte order of transmission is from top to bottom

as shown. For a successful match to specific address 1, the following address matching registers must be set up:

Specific Address 1 Bottom register (GMAC_SAB1) (Address 0x088) 0x87654321

Specific Address 1 Top register (GMAC_SAT1) (Address 0x08C) 0x0000CBA9

For a successful match to the type ID, the following Type ID Match 1 register must be set up:

Type ID Match 1 register (GMAC_TIDM1) (Address 0x0A8) 0x80004321

42.6.8 Broadcast Address

Frames with the broadcast address of 0xFFFFFFFFFFFF are stored to memory only if the 'no broadcast' bit in the

Network Configuration register is set to zero.

42.6.9 Hash Addressing

The hash address register is 64 bits long and takes up two locations in the memory map. The least significant bits

are stored in Hash Register Bottom and the most significant bits in Hash Register Top.

The unicast hash enable and the multicast hash enable bits in the Network Configuration register enable the

reception of hash matched frames. The destination address is reduced to a 6-bit index into the 64-bit Hash register

using the following hash function: The hash function is an XOR of every sixth bit of the destination address.

hash_index[05] = da[05] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^
da[47]
hash_index[04] = da[04] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^
da[46]
hash_index[03] = da[03] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^
da[45]

Preamble 55

SFD D5

DA (Octet 0 - LSB) 21

DA (Octet 1) 43

DA (Octet 2) 65

DA (Octet 3) 87

DA (Octet 4) A9

DA (Octet 5 - MSB) CB

SA (LSB) 00(1)

SA 00(1)

SA 00(1)

SA 00(1)

SA 00(1)

SA (MSB) 00(1)

Type ID (MSB) 43

Type ID (LSB) 21

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1194

hash_index[02] = da[02] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^
da[44]
hash_index[01] = da[01] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^
da[43]
hash_index[00] = da[00] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^
da[42]

da[0]

represents the least significant bit of the first byte received, that is, the multicast/unicast indicator, and da[47]

represents the most significant bit of the last byte received.

If the hash index points to a bit that is set in the Hash register then the frame will be matched according to whether

the frame is multicast or unicast.

A multicast match will be signalled if the multicast hash enable bit is set, da[0] is logic 1 and the hash index

points to a bit set in the Hash register.

A unicast match will be signalled if the unicast hash enable bit is set, da[0] is logic 0 and the hash index points to

a bit set in the Hash register.

To receive all multicast frames, the Hash register should be set with all ones and the multicast hash enable bit

should be set in the Network Configuration register.

42.6.10 Copy all Frames (Promiscuous Mode)

If the Copy All Frames bit is set in the Network Configuration register then all frames (except those that are too

long, too short, have FCS errors or have GRXER asserted during reception) will be copied to memory. Frames

with FCS errors will be copied if bit 26 is set in the Network Configuration register.

42.6.11 Disable Copy of Pause Frames

Pause frames can be prevented from being written to memory by setting the disable copying of pause frames

control bit 23 in the Network Configuration register. When set, pause frames are not copied to memory regardless

of the Copy All Frames bit, whether a hash match is found, a type ID match is identified or if a destination address

match is found.

42.6.12 VLAN Support

The following table describes an Ethernet encoded 802.1Q VLAN tag.

The VLAN tag is inserted at the 13th byte of the frame adding an extra four bytes to the frame. To support these

extra four bytes, the GMAC can accept frame lengths up to 1536 bytes by setting bit 8 in the Network

Configuration register.

If the VID (VLAN identifier) is null (0x000) this indicates a priority-tagged frame.

The following bits in the receive buffer descriptor status word give information about VLAN tagged frames:-

 Bit 21 set if receive frame is VLAN tagged (i.e., type ID of 0x8100).

 Bit 20 set if receive frame is priority tagged (i.e., type ID of 0x8100 and null VID). (If bit 20 is set, bit 21 will be

set also.)

 Bit 19, 18 and 17 set to priority if bit 21 is set.

 Bit 16 set to CFI if bit 21 is set.

Table 42-6. 802.1Q VLAN Tag

TPID (Tag Protocol Identifier) 16 bits TCI (Tag Control Information) 16 bits

0x8100 First 3 bits priority, then CFI bit, last 12 bits VID

1195SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The GMAC can be configured to reject all frames except VLAN tagged frames by setting the discard non-VLAN

frames bit in the Network Configuration register.

42.6.13 IEEE 1588 Support

IEEE 1588 is a standard for precision time synchronization in local area networks. It works with the exchange of

special Precision Time Protocol (PTP) frames. The PTP messages can be transported over IEEE 802.3/Ethernet,

over Internet Protocol Version 4 or over Internet Protocol Version 6 as described in the annex of IEEE P1588.D2.1.

The GMAC indicates the message time-stamp point (asserted on the start packet delimiter and de-asserted at end

of frame) for all frames and the passage of PTP event frames (asserted when a PTP event frame is detected and

de-asserted at end of frame).

IEEE 802.1AS is a subset of IEEE 1588. One difference is that IEEE 802.1AS uses the Ethernet multicast address

0180C200000E for sync frame recognition whereas IEEE 1588 does not. GMAC is designed to recognize sync

frames with both IEEE 802.1AS and IEEE 1588 addresses and so can support both 1588 and 802.1AS frame

recognition simultaneously.

Synchronization between master and slave clocks is a two stage process.

First, the offset between the master and slave clocks is corrected by the master sending a sync frame to the slave

with a follow up frame containing the exact time the sync frame was sent. Hardware assist modules at the master

and slave side detect exactly when the sync frame was sent by the master and received by the slave. The slave

then corrects its clock to match the master clock.

Second, the transmission delay between the master and slave is corrected. The slave sends a delay request frame

to the master which sends a delay response frame in reply. Hardware assist modules at the master and slave side

detect exactly when the delay request frame was sent by the slave and received by the master. The slave will now

have enough information to adjust its clock to account for delay. For example, if the slave was assuming zero

delay, the actual delay will be half the difference between the transmit and receive time of the delay request frame

(assuming equal transmit and receive times) because the slave clock will be lagging the master clock by the delay

time already.

The time-stamp is taken when the message time-stamp point passes the clock time-stamp point. This can

generate an interrupt if enabled (GMAC_IER). However, MAC Filtering configuration is needed to actually ‘copy’

the message to memory. For Ethernet, the message time-stamp point is the SFD and the clock time-stamp point is

the MII interface. (The IEEE 1588 specification refers to sync and delay_req messages as event messages as

these require time-stamping. These events are captured in the registers GMAC_EFTx and GMAC_EFRx,

respectively. Follow up, delay response and management messages do not require time-stamping and are

referred to as general messages.)

1588 version 2 defines two additional PTP event messages. These are the peer delay request (Pdelay_Req) and

peer delay response (Pdelay_Resp) messages. These events are captured in the registers GMAC_PEFTx and

GMAC_PEFRx, respectively. These messages are used to calculate the delay on a link. Nodes at both ends of a

link send both types of frames (regardless of whether they contain a master or slave clock). The Pdelay_Resp

message contains the time at which a Pdelay_Req was received and is itself an event message. The time at which

a Pdelay_Resp message is received is returned in a Pdelay_Resp_Follow_Up message.

1588 version 2 introduces transparent clocks of which there are two kinds, peer-to-peer (P2P) and end-to-end

(E2E). Transparent clocks measure the transit time of event messages through a bridge and amend a correction

field within the message to allow for the transit time. P2P transparent clocks additionally correct for the delay in the

receive path of the link using the information gathered from the peer delay frames. With P2P transparent clocks

delay_req messages are not used to measure link delay. This simplifies the protocol and makes larger systems

more stable.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1196

The GMAC recognizes four different encapsulations for PTP event messages:

1. 1588 version 1 (UDP/IPv4 multicast)

2. 1588 version 2 (UDP/IPv4 multicast)

3. 1588 version 2 (UDP/IPv6 multicast)

4. 1588 version 2 (Ethernet multicast)

Table 42-7. Example of Sync Frame in 1588 Version 1 Format

Frame Segment Value

Preamble/SFD 55555555555555D5

DA (Octets 0–5) —

SA (Octets 6–11) —

Type (Octets 12–13) 0800

IP stuff (Octets 14–22) —

UDP (Octet 23) 11

IP stuff (Octets 24–29) —

IP DA (Octets 30–32) E00001

IP DA (Octet 33) 81 or 82 or 83 or 84

Source IP port (Octets 34–35) —

Dest IP port (Octets 36–37) 013F

Other stuff (Octets 38–42) —

Version PTP (Octet 43) 01

Other stuff (Octets 44–73) —

Control (Octet 74) 00

Other stuff (Octets 75–168) —

Table 42-8. Example of Delay Request Frame in 1588 Version 1 Format

Frame Segment Value

Preamble/SFD 55555555555555D5

DA (Octets 0–5) —

SA (Octets 6–11) —

Type (Octets 12–13) 0800

IP stuff (Octets 14–22) —

UDP (Octet 23) 11

IP stuff (Octets 24–29) —

IP DA (Octets 30–32) E00001

IP DA (Octet 33) 81 or 82 or 83 or 84

Source IP port (Octets 34–35) —

Dest IP port (Octets 36–37) 013F

Other stuff (Octets 38–42) —

1197SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

For 1588 version 1 messages, sync and delay request frames are indicated by the GMAC if the frame type field

indicates TCP/IP, UDP protocol is indicated, the destination IP address is 224.0.1.129/130/131 or 132, the

destination UDP port is 319 and the control field is correct.

The control field is 0x00 for sync frames and 0x01 for delay request frames.

For 1588 version 2 messages, the type of frame is determined by looking at the message type field in the first byte

of the PTP frame. Whether a frame is version 1 or version 2 can be determined by looking at the version PTP field

in the second byte of both version 1 and version 2 PTP frames.

In version 2 messages sync frames have a message type value of 0x0, delay_req have 0x1, Pdelay_Req have 0x2

and Pdelay_Resp have 0x3.

Version PTP (Octet 43) 01

Other stuff (Octets 44–73) —

Control (Octet 74) 01

Other stuff (Octets 75–168) —

Table 42-9. Example of Sync Frame in 1588 Version 2 (UDP/IPv4) Format

Frame Segment Value

Preamble/SFD 55555555555555D5

DA (Octets 0–5) —

SA (Octets 6–11) —

Type (Octets 12–13) 0800

IP stuff (Octets 14–22) —

UDP (Octet 23) 11

IP stuff (Octets 24–29) —

IP DA (Octets 30–33) E0000181

Source IP port (Octets 34–35) —

Dest IP port (Octets 36–37) 013F

Other stuff (Octets 38–41) —

Message type (Octet 42) 00

Version PTP (Octet 43) 02

Table 42-10. Example of Pdelay_Req Frame in 1588 Version 2 (UDP/IPv4) Format

Frame Segment Value

Preamble/SFD 55555555555555D5

DA (Octets 0–5) —

SA (Octets 6–11) —

Type (Octets 12–13) 0800

IP stuff (Octets 14–22) —

UDP (Octet 23) 11

Table 42-8. Example of Delay Request Frame in 1588 Version 1 Format (Continued)

Frame Segment Value

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1198

IP stuff (Octets 24–29) —

IP DA (Octets 30–33) E000006B

Source IP port (Octets 34–35) —

Dest IP port (Octets 36–37) 013F

Other stuff (Octets 38–41) —

Message type (Octet 42) 02

Version PTP (Octet 43) 02

Table 42-11. Example of Sync Frame in 1588 Version 2 (UDP/IPv6) Format

Frame Segment Value

Preamble/SFD 55555555555555D5

DA (Octets 0–5) —

SA (Octets 6–11) —

Type (Octets 12–13) 86dd

IP stuff (Octets 14–19) —

UDP (Octet 20) 11

IP stuff (Octets 21–37) —

IP DA (Octets 38–53) FF0X00000000018

Source IP port (Octets 54–55) —

Dest IP port (Octets 56–57) 013F

Other stuff (Octets 58–61) —

Message type (Octet 62) 00

Other stuff (Octets 63–93) —

Version PTP (Octet 94) 02

Table 42-12. Example of Pdelay_Resp Frame in 1588 Version 2 (UDP/IPv6) Format

Frame Segment Value

Preamble/SFD 55555555555555D5

DA (Octets 0–5) —

SA (Octets 6–11) —

Type (Octets 12–13) 86dd

IP stuff (Octets 14–19) —

UDP (Octet 20) 11

IP stuff (Octets 21–37) —

IP DA (Octets 38–53) FF0200000000006B

Source IP port (Octets 54–55) —

Table 42-10. Example of Pdelay_Req Frame in 1588 Version 2 (UDP/IPv4) Format (Continued)

Frame Segment Value

1199SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

For the multicast address 011B19000000 sync and delay request frames are recognized depending on the

message type field, 00 for sync and 01 for delay request.

Pdelay request frames need a special multicast address so they can pass through ports blocked by the spanning

tree protocol. For the multicast address 0180C200000E sync, Pdelay_Req and Pdelay_Resp frames are

recognized depending on the message type field, 00 for sync, 02 for pdelay request and 03 for pdelay response.

42.6.14 Time Stamp Unit

The TSU consists of a timer and registers to capture the time at which PTP event frames cross the message

timestamp point. An interrupt is issued when a capture register is updated.

The timer is implemented as a 62-bit register with the upper 32 bits counting seconds and the lower 30 bits

counting nanoseconds. The lower 30 bits roll over when they have counted to one second. An interrupt is

generated when the seconds increment. The timer value can be read, written and adjusted through the APB

interface.

The amount by which the timer increments each clock cycle is controlled by the timer increment registers

(GMAC_TI). Bits 7:0 are the default increment value in nanoseconds and an additional 16 bits of sub-nanosecond

resolution are available using the Timer Increment Sub-nanoseconds register (GMAC_TISUBN). If the rest of the

Dest IP port (Octets 56–57) 013F

Other stuff (Octets 58–61) —

Message type (Octet 62) 03

Other stuff (Octets 63–93) —

Version PTP (Octet 94) 02

Table 42-13. Example of Sync Frame in 1588 Version 2 (Ethernet Multicast) Format

Frame Segment Value

Preamble/SFD 55555555555555D5

DA (Octets 0–5) 011B19000000

SA (Octets 6–11) —

Type (Octets 12–13) 88F7

Message type (Octet 14) 00

Version PTP (Octet 15) 02

Table 42-14. Example of Pdelay_Req Frame in 1588 Version 2 (Ethernet Multicast) Format

Frame Segment Value

Preamble/SFD 55555555555555D5

DA (Octets 0–5) 0180C200000E

SA (Octets 6–11) —

Type (Octets 12–13) 88F7

Message type (Octet 14) 00

Version PTP (Octet 15) 02

Table 42-12. Example of Pdelay_Resp Frame in 1588 Version 2 (UDP/IPv6) Format (Continued)

Frame Segment Value

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1200

register is written with zero, the timer increments by the value in [7:0], plus the value of GMAC_TISUBN, each

clock cycle.

The GMAC_TISUBN register allows a resolution of approximately 15 femtoseconds.

Bits 15:8 of the increment register are the alternative increment value in nanoseconds and bits 23:16 are the

number of increments after which the alternative increment value is used. If 23:16 are zero then the alternative

increment value will never be used.

Taking the example of 10.2 MHz, there are 102 cycles every ten microseconds or 51 every five microseconds. So

a timer with a 10.2 MHz clock source is constructed by incrementing by 98 ns for fifty cycles and then incrementing

by 100 ns (98 × 50 + 100 = 5000). This is programmed by setting the 1588 Timer Increment register to

0x00326462.

For a 49.8 MHz clock source it would be 20 ns for 248 cycles followed by an increment of 40 ns (20 × 248 + 40 =

5000) programmed as 0x00F82814.

Having eight bits for the “number of increments” field allows frequencies up to 50 MHz to be supported with 200

kHz resolution.

Without the alternative increment field the period of the clock would be limited to an integer number of

nanoseconds, resulting in supported clock frequencies of 8, 10, 20, 25, 40, 50, 100, 125, 200 and 250 MHz.

There are six additional 62-bit registers that capture the time at which PTP event frames are transmitted and

received. An interrupt is issued when these registers are updated. The TSU timer count value can be compared to

a programmable comparison value. For the comparison, the 32 bits of the seconds value and the upper 22 bits of

the nanoseconds value are used. An interrupt can also be generated (if enabled) when the TSU timer count value

and comparison value are equal, mapped to bit 29 of the Interrupt Status register.

42.6.15 MAC 802.3 Pause Frame Support

Note: See Clause 31, and Annex 31A and 31B of the IEEE standard 802.3 for a full description of MAC 802.3 pause

operation.

The following table shows the start of a MAC 802.3 pause frame.

The GMAC supports both hardware controlled pause of the transmitter, upon reception of a pause frame, and

hardware generated pause frame transmission.

42.6.15.1 802.3 Pause Frame Reception

Bit 13 of the Network Configuration register is the pause enable control for reception. If this bit is set, transmission

pauses if a non zero pause quantum frame is received.

If a valid pause frame is received, then the Pause Time register is updated with the new frame's pause time,

regardless of whether a previous pause frame is active or not. An interrupt (either bit 12 or bit 13 of the Interrupt

Status register) is triggered when a pause frame is received, but only if the interrupt has been enabled (bit 12 and

bit 13 of the Interrupt Mask register). Pause frames received with non zero quantum are indicated through the

interrupt bit 12 of the Interrupt Status register. Pause frames received with zero quantum are indicated on bit 13 of

the Interrupt Status register.

Once the Pause Time register is loaded and the frame currently being transmitted has been sent, no new frames

are transmitted until the pause time reaches zero. The loading of a new pause time, and hence the pausing of

transmission, only occurs when the GMAC is configured for full duplex operation. If the GMAC is configured for

Table 42-15. Start of an 802.3 Pause Frame

Address
Type

(MAC Control Frame)

Pause

Destination Source Opcode Time

0x0180C2000001 6 bytes 0x8808 0x0001 2 bytes

1201SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

half duplex there will be no transmission pause, but the pause frame received interrupt will still be triggered. A valid

pause frame is defined as having a destination address that matches either the address stored in Specific Address

1 register or if it matches the reserved address of 0x0180C2000001. It must also have the MAC control frame type

ID of 0x8808 and have the pause opcode of 0x0001.

Pause frames that have frame check sequence (FCS) or other errors will be treated as invalid and will be

discarded. 802.3 Pause frames that are received after Priority-based Flow Control (PFC) has been negotiated will

also be discarded. Valid pause frames received will increment the Pause Frames Received statistic register.

The Pause Time register decrements every 512 bit times once transmission has stopped. For test purposes, the

retry test bit can be set (bit 12 in the Network Configuration register) which causes the Pause Time register to

decrement every GTXCK cycle once transmission has stopped.

The interrupt (bit 13 in the Interrupt Status register) is asserted whenever the Pause Time register decrements to

zero (assuming it has been enabled by bit 13 in the Interrupt Mask register). This interrupt is also set when a zero

quantum pause frame is received.

42.6.15.2 802.3 Pause Frame Transmission

Automatic transmission of pause frames is supported through the transmit pause frame bits of the Network Control

register. If either bit 11 or bit 12 of the Network Control register is written with logic 1, an 802.3 pause frame will be

transmitted, providing full duplex is selected in the Network Configuration register and the transmit block is

enabled in the Network Control register.

Pause frame transmission will happen immediately if transmit is inactive or if transmit is active between the current

frame and the next frame due to be transmitted.

Transmitted pause frames comprise the following:

 A destination address of 01-80-C2-00-00-01

 A source address taken from Specific Address 1 register

 A type ID of 88-08 (MAC control frame)

 A pause opcode of 00-01

 A Pause Quantum register

 Fill of 00 to take the frame to minimum frame length

 Valid FCS

The pause quantum used in the generated frame will depend on the trigger source for the frame as follows:

 If bit 11 is written with a one, the pause quantum will be taken from the Transmit Pause Quantum register.

The Transmit Pause Quantum register resets to a value of 0xFFFF giving maximum pause quantum as

default.

 If bit 12 is written with a one, the pause quantum will be zero.

After transmission, a pause frame transmitted interrupt will be generated (bit 14 of the Interrupt Status register).

Pause frames can also be transmitted by the MAC using normal frame transmission methods.

42.6.16 MAC PFC Priority-based Pause Frame Support

Note: Refer to the 802.1Qbb standard for a full description of priority-based pause operation.

The following table shows the start of a Priority-based Flow Control (PFC) pause frame.

Table 42-16. Start of a PFC Pause Frame

Address
Type

(Mac Control Frame) Pause Opcode Priority Enable Vector Pause TimeDestination Source

0x0180C2000001 6 bytes 0x8808 0x1001 2 bytes 8 × 2 bytes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1202

The GMAC supports PFC priority-based pause transmission and reception. Before PFC pause frames can be

received, bit 16 of the Network Control register must be set.

42.6.16.1 PFC Pause Frame Reception

The ability to receive and decode priority-based pause frames is enabled by setting bit 16 of the Network Control

register. When this bit is set, the GMAC will match either classic 802.3 pause frames or PFC priority-based pause

frames. Once a priority-based pause frame has been received and matched, then from that moment on the GMAC

will only match on priority-based pause frames (this is an 802.1Qbb requirement, known as PFC negotiation).

Once priority-based pause has been negotiated, any received 802.3x format pause frames will not be acted upon.

If a valid priority-based pause frame is received then the GMAC will decode the frame and determine which, if any,

of the eight priorities require to be paused. Up to eight Pause Time registers are then updated with the eight pause

times extracted from the frame regardless of whether a previous pause operation is active or not. An interrupt

(either bit 12 or bit 13 of the Interrupt Status register) is triggered when a pause frame is received, but only if the

interrupt has been enabled (bit 12 and bit 13 of the Interrupt Mask register). Pause frames received with non zero

quantum are indicated through the interrupt bit 12 of the Interrupt Status register. Pause frames received with zero

quantum are indicated on bit 13 of the Interrupt Status register. The loading of a new pause time only occurs when

the GMAC is configured for full duplex operation. If the GMAC is configured for half duplex, the pause time

counters will not be loaded, but the pause frame received interrupt will still be triggered. A valid pause frame is

defined as having a destination address that matches either the address stored in Specific Address 1 register or if

it matches the reserved address of 0x0180C2000001. It must also have the MAC control frame type ID of 0x8808

and have the pause opcode of 0x0101.

Pause frames that have frame check sequence (FCS) or other errors will be treated as invalid and will be

discarded. Valid pause frames received will increment the Pause Frames Received Statistic register.

The Pause Time registers decrement every 512 bit times immediately following the PFC frame reception. For test

purposes, the retry test bit can be set (bit 12 in the Network Configuration register) which causes the Pause Time

register to decrement every GRXCK cycle once transmission has stopped.

The interrupt (bit 13 in the Interrupt Status register) is asserted whenever the Pause Time register decrements to

zero (assuming it has been enabled by bit 13 in the Interrupt Mask register). This interrupt is also set when a zero

quantum pause frame is received.

42.6.16.2 PFC Pause Frame Transmission

Automatic transmission of pause frames is supported through the transmit priority-based pause frame bit of the

Network Control register. If bit 17 of the Network Control register is written with logic 1, a PFC pause frame will be

transmitted providing full duplex is selected in the Network Configuration register and the transmit block is enabled

in the Network Control register. When bit 17 of the Network Control register is set, the fields of the priority-based

pause frame will be built using the values stored in the Transmit PFC Pause register.

Pause frame transmission will happen immediately if transmit is inactive or if transmit is active between the current

frame and the next frame due to be transmitted.

Transmitted pause frames comprise the following:

 A destination address of 01-80-C2-00-00-01

 A source address taken from Specific Address 1 register

 A type ID of 88-08 (MAC control frame)

 A pause opcode of 01-01

 A priority enable vector taken from Transmit PFC Pause register

 8 Pause Quantum registers

 Fill of 00 to take the frame to minimum frame length

 Valid FCS

1203SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The Pause Quantum registers used in the generated frame will depend on the trigger source for the frame as

follows:

 If bit 17 of the Network Control register is written with a one, then the priority enable vector of the priority-

based pause frame will be set equal to the value stored in the Transmit PFC Pause register [7:0]. For each

entry equal to zero in the Transmit PFC Pause register [15:8], the pause quantum field of the pause frame

associated with that entry will be taken from the Transmit Pause Quantum register. For each entry equal to

one in the Transmit PFC Pause register [15:8], the pause quantum associated with that entry will be zero.

 The Transmit Pause Quantum register resets to a value of 0xFFFF giving maximum pause quantum as

default.

After transmission, a pause frame transmitted interrupt will be generated (bit 14 of the Interrupt Status register).

PFC Pause frames can also be transmitted by the MAC using normal frame transmission methods.

42.6.17 PHY Interface

Different PHY interfaces are supported by the Ethernet MAC:

 MII

The MII interface is provided for 10/100 operation and uses txd[3:0] and rxd[3:0].

42.6.18 10/100 Operation

The 10/100 Mbps speed bit in the Network Configuration register is used to select between 10 Mbps and 100

Mbps.

42.6.19 Jumbo Frames

The jumbo frames enable bit in the Network Configuration register allows the GMAC, in its default configuration, to

receive jumbo frames up to 10240 bytes in size. This operation does not form part of the IEEE 802.3 specification

and is normally disabled. When jumbo frames are enabled, frames received with a frame size greater than 10240

bytes are discarded.

42.7 Programming Interface

42.7.1 Initialization

42.7.1.1 Configuration

Initialization of the GMAC configuration (e.g., loop back mode, frequency ratios) must be done while the transmit

and receive circuits are disabled. See the description of the Network Control register and Network Configuration

register earlier in this document.

To change loop back mode, the following sequence of operations must be followed:

1. Write to Network Control register to disable transmit and receive circuits.

2. Write to Network Control register to change loop back mode.

3. Write to Network Control register to re-enable transmit or receive circuits.

Note: These writes to the Network Control register cannot be combined in any way.

42.7.1.2 Receive Buffer List

Receive data is written to areas of data (i.e., buffers) in system memory. These buffers are listed in another data

structure that also resides in main memory. This data structure (receive buffer queue) is a sequence of descriptor

entries as defined in Table 42-4 “Receive Buffer Descriptor Entry”.

 The Receive Buffer Queue Pointer register points to this data structure.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1204

Figure 42-2. Receive Buffer List

To create the list of buffers:

1. Allocate a number (N) of buffers of X bytes in system memory, where X is the DMA buffer length pro-
grammed in the DMA Configuration register.

2. Allocate an area 8N bytes for the receive buffer descriptor list in system memory and create N entries in this

list. Mark all entries in this list as owned by GMAC, i.e., bit 0 of word 0 set to 0.

3. Mark the last descriptor in the queue with the wrap bit (bit 1 in word 0 set to 1).

4. Write address of receive buffer descriptor list and control information to GMAC register receive buffer queue

pointer

5. The receive circuits can then be enabled by writing to the address recognition registers and the Network

Control register.

Note: The queue pointers must be initialized and point to USED descriptors for all queues including those not intended for

use.

42.7.1.3 Transmit Buffer List

Transmit data is read from areas of data (the buffers) in system memory. These buffers are listed in another data

structure that also resides in main memory. This data structure (Transmit Buffer Queue) is a sequence of

descriptor entries as defined in Table 42-5 “Transmit Buffer Descriptor Entry”.

The Transmit Buffer Queue Pointer register points to this data structure.

To create this list of buffers:

1. Allocate a number (N) of buffers of between 1 and 2047 bytes of data to be transmitted in system mem-
ory. Up to 128 buffers per frame are allowed.

2. Allocate an area 8N bytes for the transmit buffer descriptor list in system memory and create N entries in this

list. Mark all entries in this list as owned by GMAC, i.e., bit 31 of word 1 set to 0.

3. Mark the last descriptor in the queue with the wrap bit (bit 30 in word 1 set to 1).

4. Write address of transmit buffer descriptor list and control information to GMAC register transmit buffer

queue pointer.

5. The transmit circuits can then be enabled by writing to the Network Control register.

Note: The queue pointers must be initialized and point to USED descriptors for all queues including those not intended for

use.

Receive Buffer Queue Pointer

(MAC Register)

Receive Buffer 0

Receive Buffer 1

Receive Buffer N

Receive Buffer Descriptor List

(In memory)
(In memory)

1205SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.7.1.4 Address Matching

The GMAC Hash register pair and the four Specific Address register pairs must be written with the required values.

Each register pair comprises of a bottom register and top register, with the bottom register being written first. The

address matching is disabled for a particular register pair after the bottom register has been written and re-enabled

when the top register is written. Each register pair may be written at any time, regardless of whether the receive

circuits are enabled or disabled.

As an example, to set Specific Address 1 register to recognize destination address 21:43:65:87:A9:CB, the

following values are written to Specific Address 1 Bottom register and Specific Address 1 Top register:

 Specific Address 1 Bottom register bits 31:0 (0x98): 0x8765_4321.

 Specific Address 1 Top register bits 31:0 (0x9C): 0x0000_CBA9.

42.7.1.5 PHY Maintenance

The PHY Maintenance register is implemented as a shift register. Writing to the register starts a shift operation

which is signalled as complete when bit two is set in the Network Status register (about 2000 MCK cycles later

when bits 18:16 are set to 010 in the Network Configuration register). An interrupt is generated as this bit is set.

During this time, the MSB of the register is output on the MDIO pin and the LSB updated from the MDIO pin with

each Management Data Clock (MDC) cycle. This causes the transmission of a PHY management frame on MDIO.

See section 22.2.4.5 of the IEEE 802.3 standard.

Reading during the shift operation will return the current contents of the shift register. At the end of the

management operation the bits will have shifted back to their original locations. For a read operation the data bits

are updated with data read from the PHY. It is important to write the correct values to the register to ensure a valid

PHY management frame is produced.

The Management Data Clock (MDC) should not toggle faster than 2.5 MHz (minimum period of 400 ns), as defined

by the IEEE 802.3 standard. MDC is generated by dividing down MCK. Three bits in the Network Configuration

register determine by how much MCK should be divided to produce MDC.

42.7.1.6 Interrupts

There are 18 interrupt conditions that are detected within the GMAC. The conditions are ORed to make a single

interrupt. Depending on the overall system design this may be passed through a further level of interrupt collection

(interrupt controller). On receipt of the interrupt signal, the CPU enters the interrupt handler. Refer to the device

interrupt controller documentation to identify that it is the GMAC that is generating the interrupt. To ascertain which

interrupt, read the Interrupt Status register. Note that in the default configuration this register will clear itself after

being read, though this may be configured to be write-one-to-clear if desired.

At reset all interrupts are disabled. To enable an interrupt, write to Interrupt Enable register with the pertinent

interrupt bit set to 1. To disable an interrupt, write to Interrupt Disable register with the pertinent interrupt bit set to

1. To check whether an interrupt is enabled or disabled, read Interrupt Mask register. If the bit is set to 1, the

interrupt is disabled.

42.7.1.7 Transmitting Frames

The procedure to set up a frame for transmission is the following:

1. Enable transmit in the Network Control register.

2. Allocate an area of system memory for transmit data. This does not have to be contiguous, varying byte

lengths can be used if they conclude on byte borders.

3. Set-up the transmit buffer list by writing buffer addresses to word zero of the transmit buffer descriptor

entries and control and length to word one.

4. Write data for transmission into the buffers pointed to by the descriptors.

5. Write the address of the first buffer descriptor to transmit buffer descriptor queue pointer.

6. Enable appropriate interrupts.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1206

7. Write to the transmit start bit (TSTART) in the Network Control register.

42.7.1.8 Receiving Frames

When a frame is received and the receive circuits are enabled, the GMAC checks the address and, in the following

cases, the frame is written to system memory:

 If it matches one of the four Specific Address registers.

 If it matches one of the four Type ID registers.

 If it matches the hash address function.

 If it is a broadcast address (0xFFFFFFFFFFFF) and broadcasts are allowed.

 If the GMAC is configured to “copy all frames”.

The register receive buffer queue pointer points to the next entry in the receive buffer descriptor list and the GMAC

uses this as the address in system memory to write the frame to.

Once the frame has been completely and successfully received and written to system memory, the GMAC then

updates the receive buffer descriptor entry (see Table 42-4 “Receive Buffer Descriptor Entry”) with the reason for

the address match and marks the area as being owned by software. Once this is complete, a receive complete

interrupt is set. Software is then responsible for copying the data to the application area and releasing the buffer

(by writing the ownership bit back to 0).

If the GMAC is unable to write the data at a rate to match the incoming frame, then a receive overrun interrupt is

set. If there is no receive buffer available, i.e., the next buffer is still owned by software, a receive buffer not

available interrupt is set.

1207SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8 Ethernet MAC (GMAC) User Interface

Table 42-17. Register Mapping

Offset(1) (2) Register Name Access Reset

0x000 Network Control Register GMAC_NCR Read/Write 0x0000_0000

0x004 Network Configuration Register GMAC_NCFGR Read/Write 0x0008_0000

0x008 Network Status Register GMAC_NSR Read-only 0b01x0

0x00C User Register GMAC_UR Read/Write 0x0000_0000

0x010 DMA Configuration Register GMAC_DCFGR Read/Write 0x0002_0004

0x014 Transmit Status Register GMAC_TSR Read/Write 0x0000_0000

0x018 Receive Buffer Queue Base Address Register GMAC_RBQB Read/Write 0x0000_0000

0x01C Transmit Buffer Queue Base Address Register GMAC_TBQB Read/Write 0x0000_0000

0x020 Receive Status Register GMAC_RSR Read/Write 0x0000_0000

0x024 Interrupt Status Register GMAC_ISR Read-only 0x0000_0000

0x028 Interrupt Enable Register GMAC_IER Write-only –

0x02C Interrupt Disable Register GMAC_IDR Write-only –

0x030 Interrupt Mask Register GMAC_IMR Read/Write 0x07FF_FFFF

0x034 PHY Maintenance Register GMAC_MAN Read/Write 0x0000_0000

0x038 Received Pause Quantum Register GMAC_RPQ Read-only 0x0000_0000

0x03C Transmit Pause Quantum Register GMAC_TPQ Read/Write 0x0000_FFFF

0x040–0x07C Reserved – – –

0x080 Hash Register Bottom GMAC_HRB Read/Write 0x0000_0000

0x084 Hash Register Top GMAC_HRT Read/Write 0x0000_0000

0x088 Specific Address 1 Bottom Register GMAC_SAB1 Read/Write 0x0000_0000

0x08C Specific Address 1 Top Register GMAC_SAT1 Read/Write 0x0000_0000

0x090 Specific Address 2 Bottom Register GMAC_SAB2 Read/Write 0x0000_0000

0x094 Specific Address 2 Top Register GMAC_SAT2 Read/Write 0x0000_0000

0x098 Specific Address 3 Bottom Register GMAC_SAB3 Read/Write 0x0000_0000

0x09C Specific Address 3 Top Register GMAC_SAT3 Read/Write 0x0000_0000

0x0A0 Specific Address 4 Bottom Register GMAC_SAB4 Read/Write 0x0000_0000

0x0A4 Specific Address 4 Top Register GMAC_SAT4 Read/Write 0x0000_0000

0x0A8 Type ID Match 1 Register GMAC_TIDM1 Read/Write 0x0000_0000

0x0AC Type ID Match 2 Register GMAC_TIDM2 Read/Write 0x0000_0000

0x0B0 Type ID Match 3 Register GMAC_TIDM3 Read/Write 0x0000_0000

0x0B4 Type ID Match 4 Register GMAC_TIDM4 Read/Write 0x0000_0000

0x0B8 Reserved – – –

0x0BC IPG Stretch Register GMAC_IPGS Read/Write 0x0000_0000

0x0C0 Stacked VLAN Register GMAC_SVLAN Read/Write 0x0000_0000

0x0C4 Transmit PFC Pause Register GMAC_TPFCP Read/Write 0x0000_0000

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1208

Notes: 1. If an offset is not listed in the Register Mapping, it must be considered as ‘reserved’.

2. Some register groups are not continuous in memory.

0x0C8 Specific Address 1 Mask Bottom Register GMAC_SAMB1 Read/Write 0x0000_0000

0x0CC Specific Address 1 Mask Top Register GMAC_SAMT1 Read/Write 0x0000_0000

0x0D0–0x0E4 Reserved – – –

0x0E8–0x0FC Reserved – – –

0x100–0x1B0 Reserved – – –

0x1B4–0x1CC Reserved – – –

0x1D0 1588 Timer Seconds Low Register GMAC_TSL Read/Write 0x0000_0000

0x1D4 1588 Timer Nanoseconds Register GMAC_TN Read/Write 0x0000_0000

0x1D8 1588 Timer Adjust Register GMAC_TA Write-only –

0x1DC 1588 Timer Increment Register GMAC_TI Read/Write 0x0000_0000

0x1E0
PTP Event Frame Transmitted Seconds Low

Register
GMAC_EFTSL Read-only 0x0000_0000

0x1E4
PTP Event Frame Transmitted Nanoseconds

Register
GMAC_EFTN Read-only 0x0000_0000

0x1E8 PTP Event Frame Received Seconds Low Register GMAC_EFRSL Read-only 0x0000_0000

0x1EC PTP Event Frame Received Nanoseconds Register GMAC_EFRN Read-only 0x0000_0000

0x1F0
PTP Peer Event Frame Transmitted Seconds Low

Register
GMAC_PEFTSL Read-only 0x0000_0000

0x1F4
PTP Peer Event Frame Transmitted Nanoseconds

Register
GMAC_PEFTN Read-only 0x0000_0000

0x1F8
PTP Peer Event Frame Received Seconds Low

Register
GMAC_PEFRSL Read-only 0x0000_0000

0x1FC
PTP Peer Event Frame Received Nanoseconds

Register
GMAC_PEFRN Read-only 0x0000_0000

0x200–0x7FC Reserved – – –

Table 42-17. Register Mapping (Continued)

Offset(1) (2) Register Name Access Reset

1209SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.1 GMAC Network Control Register

Name: GMAC_NCR

Address: 0x40034000

Access: Read/Write

• LBL: Loop Back Local

Connects GTX to GRX, GTXEN to GRXDV and forces full duplex mode. GRXCK and GTXCK may malfunction as the

GMAC is switched into and out of internal loop back. It is important that receive and transmit circuits have already been dis-

abled when making the switch into and out of internal loop back.

• RXEN: Receive Enable

When set, RXEN enables the GMAC to receive data. When reset frame reception stops immediately and the receive pipe-

line will be cleared. The Receive Queue Pointer Register is unaffected.

• TXEN: Transmit Enable

When set, TXEN enables the GMAC transmitter to send data. When reset transmission will stop immediately, the transmit

pipeline and control registers will be cleared and the Transmit Queue Pointer Register will reset to point to the start of the

transmit descriptor list.

• MPE: Management Port Enable

Set to one to enable the management port. When zero, forces MDIO to high impedance state and MDC low.

• BP: Back pressure

If set in 10M or 100M half duplex mode, forces collisions on all received frames.

• TSTART: Start Transmission

Writing one to this bit starts transmission.

• THALT: Transmit Halt

Writing one to this bit halts transmission as soon as any ongoing frame transmission ends.

• TXPF: Transmit Pause Frame

Writing one to this bit causes a pause frame to be transmitted.

• TXZQPF: Transmit Zero Quantum Pause Frame

Writing one to this bit causes a pause frame with zero quantum to be transmitted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – FNP TXPBPF ENPBPR

15 14 13 12 11 10 9 8

SRTSM – – TXZQPF TXPF THALT TSTART BP

7 6 5 4 3 2 1 0

– – – MPE TXEN RXEN LBL –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1210

• SRTSM: Store Receive Time Stamp to Memory

0: Normal operation.

1: Causes the CRC of every received frame to be replaced with the value of the nanoseconds field of the 1588 timer that

was captured as the receive frame passed the message time stamp point.

• ENPBPR: Enable PFC Priority-based Pause Reception

Enables PFC Priority Based Pause Reception capabilities. Setting this bit enables PFC negotiation and recognition of pri-

ority-based pause frames.

• TXPBPF: Transmit PFC Priority-based Pause Frame

Takes the values stored in the Transmit PFC Pause Register.

• FNP: Flush Next Packet

Flush the next packet from the external RX DPRAM. Writing one to this bit will only have an effect if the DMA is not cur-

rently writing a packet already stored in the DPRAM to memory.

1211SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.2 GMAC Network Configuration Register

Name: GMAC_NCFGR

Address: 0x40034004

Access: Read/Write

• SPD: Speed

Set to logic one to indicate 100 Mbps operation, logic zero for 10 Mbps.

• FD: Full Duplex

If set to logic one, the transmit block ignores the state of collision and carrier sense and allows receive while transmitting.

• DNVLAN: Discard Non-VLAN FRAMES

When set only VLAN tagged frames will be passed to the address matching logic.

• JFRAME: Jumbo Frame Size

Set to one to enable jumbo frames up to 10240 bytes to be accepted. The default length is 10240 bytes.

• CAF: Copy All Frames

When set to logic one, all valid frames will be accepted.

• NBC: No Broadcast

When set to logic one, frames addressed to the broadcast address of all ones will not be accepted.

• MTIHEN: Multicast Hash Enable

When set, multicast frames will be accepted when the 6-bit hash function of the destination address points to a bit that is

set in the Hash Register.

• UNIHEN: Unicast Hash Enable

When set, unicast frames will be accepted when the 6-bit hash function of the destination address points to a bit that is set

in the Hash Register.

• MAXFS: 1536 Maximum Frame Size

Setting this bit means the GMAC will accept frames up to 1536 bytes in length. Normally the GMAC would reject any frame

above 1518 bytes.

31 30 29 28 27 26 25 24

– IRXER RXBP IPGSEN – IRXFCS EFRHD RXCOEN

23 22 21 20 19 18 17 16

DCPF DBW CLK RFCS LFERD

15 14 13 12 11 10 9 8

RXBUFO PEN RTY – – – MAXFS

7 6 5 4 3 2 1 0

UNIHEN MTI HEN NBC CAF JFRAME DNVLAN FD SPD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1212

• RTY: Retry Test

Must be set to zero for normal operation. If set to one the backoff between collisions will always be one slot time. Setting

this bit to one helps test the too many retries condition. Also used in the pause frame tests to reduce the pause counter's

decrement time from 512 bit times, to every GRXCK cycle.

• PEN: Pause Enable

When set, transmission will pause if a non-zero 802.3 classic pause frame is received and PFC has not been negotiated.

• RXBUFO: Receive Buffer Offset

Indicates the number of bytes by which the received data is offset from the start of the receive buffer

• LFERD: Length Field Error Frame Discard

Setting this bit causes frames with a measured length shorter than the extracted length field (as indicated by bytes 13 and

14 in a non-VLAN tagged frame) to be discarded. This only applies to frames with a length field less than 0x0600.

• RFCS: Remove FCS

Setting this bit will cause received frames to be written to memory without their frame check sequence (last 4 bytes). The

frame length indicated will be reduced by four bytes in this mode.

• CLK: MDC CLock Division

Set according to MCK speed. These three bits determine the number MCK will be divided by to generate Management

Data Clock (MDC). For conformance with the 802.3 specification, MDC must not exceed 2.5 MHz (MDC is only active dur-

ing MDIO read and write operations).

• DBW: Data Bus Width

Should always be written to ‘0’.

• DCPF: Disable Copy of Pause Frames

Set to one to prevent valid pause frames being copied to memory. When set, pause frames are not copied to memory

regardless of the state of the Copy All Frames bit, whether a hash match is found or whether a type ID match is identified.

If a destination address match is found, the pause frame will be copied to memory. Note that valid pause frames received

will still increment pause statistics and pause the transmission of frames as required.

• RXCOEN: Receive Checksum Offload Enable

When set, the receive checksum engine is enabled. Frames with bad IP, TCP or UDP checksums are discarded.

• EFRHD: Enable Frames Received in Half Duplex

Enable frames to be received in half-duplex mode while transmitting.

Value Name Description

0 MCK_8 MCK divided by 8 (MCK up to 20 MHz)

1 MCK_16 MCK divided by 16 (MCK up to 40 MHz)

2 MCK_32 MCK divided by 32 (MCK up to 80 MHz)

3 MCK_48 MCK divided by 48 (MCK up to 120 MHz)

4 MCK_64 MCK divided by 64 (MCK up to 160 MHz)

5 MCK_96 MCK divided by 96 (MCK up to 240 MHz)

1213SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• IRXFCS: Ignore RX FCS

When set, frames with FCS/CRC errors will not be rejected. FCS error statistics will still be collected for frames with bad

FCS and FCS status will be recorded in frame’s DMA descriptor. For normal operation this bit must be set to zero.

• IPGSEN: IP Stretch Enable

When set, the transmit IPG can be increased above 96 bit times depending on the previous frame length using the IPG

Stretch Register.

• RXBP: Receive Bad Preamble

When set, frames with non-standard preamble are not rejected.

• IRXER: Ignore IPG GRXER

When set, GRXER has no effect on the GMAC's operation when GRXDV is low.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1214

42.8.3 GMAC Network Status Register

Name: GMAC_NSR

Address: 0x40034008

Access: Read-only

• MDIO: MDIO Input Status

Returns status of the MDIO pin.

• IDLE: PHY Management Logic Idle

The PHY management logic is idle (i.e., has completed).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – IDLE MDIO –

1215SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.4 GMAC User Register

Name: GMAC_UR

Address: 0x4003400C

Access: Read/Write

• MII: MII Mode

This bit must be set to 1.

Warning: The default value of this bit is 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – MII

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1216

42.8.5 GMAC DMA Configuration Register

Name: GMAC_DCFGR

Address: 0x40034010

Access: Read/Write

• FBLDO: Fixed Burst Length for DMA Data Operations:

Selects the burst length to attempt to use on the AHB when transferring frame data. Not used for DMA management oper-

ations and only used where space and data size allow. Otherwise SINGLE type AHB transfers are used.

Upper bits become non-writable if the configured DMA TX and RX FIFO sizes are smaller than required to support the

selected burst size.

One-hot priority encoding enforced automatically on register writes as follows, where ‘x’ represents don’t care:

• ESMA: Endian Swap Mode Enable for Management Descriptor Accesses

When set, selects swapped endianism for AHB transfers. When clear, selects little endian mode.

• ESPA: Endian Swap Mode Enable for Packet Data Accesses

When set, selects swapped endianism for AHB transfers. When clear, selects little endian mode.

• DRBS: DMA Receive Buffer Size

DMA receive buffer size in AHB system memory. The value defined by these bits determines the size of buffer to use in

main AHB system memory when writing received data.

The value is defined in multiples of 64 bytes, thus a value of 0x01 corresponds to buffers of 64 bytes, 0x02 corresponds to

128 bytes etc. For example:

– 0x02: 128 bytes

– 0x18: 1536 bytes (1 × max length frame/buffer)

– 0xA0: 10240 bytes (1 × 10K jumbo frame/buffer)

Note that this value should never be written as zero.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

DRBS

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

ESPA ESMA – FBLDO

Value Name Description

0 – Reserved

1 SINGLE 00001: Always use SINGLE AHB bursts

2 – Reserved

4 INCR4 001xx: Attempt to use INCR4 AHB bursts (Default)

8 INCR8 01xxx: Attempt to use INCR8 AHB bursts

16 INCR16 1xxxx: Attempt to use INCR16 AHB bursts

1217SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.6 GMAC Transmit Status Register

Name: GMAC_TSR

Address: 0x40034014

Access: Read/Write

• UBR: Used Bit Read

Set when a transmit buffer descriptor is read with its used bit set. Writing a one clears this bit.

• COL: Collision Occurred

Set by the assertion of collision. Writing a one clears this bit. When operating in 10/100 mode, this status indicates either a

collision or a late collision.

• RLE: Retry Limit Exceeded

Writing a one clears this bit.

• TXGO: Transmit Go

Transmit go, if high transmit is active. When using the DMA interface this bit represents the TXGO variable as specified in

the transmit buffer description.

• TFC: Transmit Frame Corruption Due to AHB Error

Transmit frame corruption due to AHB error. Set if an error occurs while midway through reading transmit frame from the

AHB, including HRESP errors and buffers exhausted mid frame (if the buffers run out during transmission of a frame then

transmission stops, FCS shall be bad and GTXER asserted).

Writing a one clears this bit.

• TXCOMP: Transmit Complete

Set when a frame has been transmitted. Writing a one clears this bit.

• UND: Transmit Underrun

This bit is set if the transmitter was forced to terminate a frame that it had already began transmitting due to further data

being unavailable.

This bit is set if a transmitter status write back has not completed when another status write back is attempted.

When using the DMA interface configured for internal FIFO mode, this bit is also set when the transmit DMA has written the

SOP data into the FIFO and either the AHB bus was not granted in time for further data, or because an AHB not OK

response was returned, or because a used bit was read.

Writing a one clears this bit.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – HRESP

7 6 5 4 3 2 1 0

– UND TXCOMP TFC TXGO RLE COL UBR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1218

• HRESP: HRESP Not OK

Set when the DMA block sees HRESP not OK. Writing a one clears this bit.

1219SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.7 GMAC Receive Buffer Queue Base Address Register

Name: GMAC_RBQB

Address: 0x40034018

Access: Read/Write

This register holds the start address of the receive buffer queue (receive buffers descriptor list). The receive buffer queue

base address must be initialized before receive is enabled through bit 2 of the Network Control Register. Once reception is

enabled, any write to the Receive Buffer Queue Base Address Register is ignored. Reading this register returns the loca-

tion of the descriptor currently being accessed. This value increments as buffers are used. Software should not use this

register for determining where to remove received frames from the queue as it constantly changes as new frames are

received. Software should instead work its way through the buffer descriptor queue checking the “used” bits.

In terms of AMBA AHB operation, the descriptors are read from memory using a single 32-bit AHB access. The descriptors

should be aligned at 32-bit boundaries and the descriptors are written to using two individual non sequential accesses.

• ADDR: Receive Buffer Queue Base Address

Written with the address of the start of the receive queue.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1220

42.8.8 GMAC Transmit Buffer Queue Base Address Register

Name: GMAC_TBQB

Address: 0x4003401C

Access: Read/Write

This register holds the start address of the transmit buffer queue (transmit buffers descriptor list). The Transmit Buffer

Queue Base Address Register must be initialized before transmit is started through bit 9 of the Network Control Register.

Once transmission has started, any write to the Transmit Buffer Queue Base Address Register is illegal and therefore

ignored.

Note that due to clock boundary synchronization, it takes a maximum of four MCK cycles from the writing of the transmit

start bit before the transmitter is active. Writing to the Transmit Buffer Queue Base Address Register during this time may

produce unpredictable results.

Reading this register returns the location of the descriptor currently being accessed. Since the DMA handles two frames at

once, this may not necessarily be pointing to the current frame being transmitted.

In terms of AMBA AHB operation, the descriptors are written to memory using a single 32-bit AHB access. The descriptors

should be aligned at 32-bit boundaries and the descriptors are read from memory using two individual non sequential

accesses.

• ADDR: Transmit Buffer Queue Base Address

Written with the address of the start of the transmit queue.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR – –

1221SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.9 GMAC Receive Status Register

Name: GMAC_RSR

Address: 0x40034020

Access: Read/Write

This register, when read, provides receive status details. Once read, individual bits may be cleared by writing a one to

them. It is not possible to set a bit to 1 by writing to the register.

• BNA: Buffer Not Available

An attempt was made to get a new buffer and the pointer indicated that it was owned by the processor. The DMA will re-

read the pointer each time an end of frame is received until a valid pointer is found. This bit is set following each descriptor

read attempt that fails, even if consecutive pointers are unsuccessful and software has in the mean time cleared the status

flag. Writing a one clears this bit.

• REC: Frame Received

One or more frames have been received and placed in memory. Writing a one clears this bit.

• RXOVR: Receive Overrun

This bit is set if RX FIFO is not able to store the receive frame due to a FIFO overflow, or if the receive status was not taken

at the end of the frame. The buffer will be recovered if an overrun occurs. Writing a one clears this bit.

• HNO: HRESP Not OK

Set when the DMA block sees HRESP not OK. Writing a one clears this bit.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – HNO RXOVR REC BNA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1222

42.8.10 GMAC Interrupt Status Register

Name: GMAC_ISR

Address: 0x40034024

Access: Read-only

This register indicates the source of the interrupt. In order that the bits of this register read 1, the corresponding interrupt

source must be enabled in the mask register. If any bit is set in this register, the GMAC interrupt signal will be asserted in

the system.

• MFS: Management Frame Sent

The PHY Maintenance Register has completed its operation. Cleared on read.

• RCOMP: Receive Complete

A frame has been stored in memory. Cleared on read.

• RXUBR: RX Used Bit Read

Set when a receive buffer descriptor is read with its used bit set. Cleared on read.

• TXUBR: TX Used Bit Read

Set when a transmit buffer descriptor is read with its used bit set. Cleared on read.

• TUR: Transmit Underrun

This interrupt is set if the transmitter was forced to terminate a frame that it has already began transmitting due to further

data being unavailable.

This interrupt is set if a transmitter status write back has not completed when another status write back is attempted.

This interrupt is also set when the transmit DMA has written the SOP data into the FIFO and either the AHB bus was not

granted in time for further data, or because an AHB not OK response was returned, or because the used bit was read.

• RLEX: Retry Limit Exceeded

Transmit error. Cleared on read.

• TFC: Transmit Frame Corruption Due to AHB Error

Transmit frame corruption due to AHB error. Set if an error occurs while midway through reading transmit frame from the

AHB, including HRESP errors and buffers exhausted mid frame.

• TCOMP: Transmit Complete

Set when a frame has been transmitted. Cleared on read.

31 30 29 28 27 26 25 24

– – – WOL – SRI PDRSFT PDRQFT

23 22 21 20 19 18 17 16

PDRSFR PDRQFR SFT DRQFT SFR DRQFR – –

15 14 13 12 11 10 9 8

– PFTR PTZ PFNZ HRESP ROVR – –

7 6 5 4 3 2 1 0

TCOMP TFC RLEX TUR TXUBR RXUBR RCOMP MFS

1223SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• ROVR: Receive Overrun

Set when the receive overrun status bit is set. Cleared on read.

• HRESP: HRESP Not OK

Set when the DMA block sees HRESP not OK. Cleared on read.

• PFNZ: Pause Frame with Non-zero Pause Quantum Received

Indicates a valid pause has been received that has a non-zero pause quantum field. Cleared on read.

• PTZ: Pause Time Zero

Set when either the Pause Time register at address 0x38 decrements to zero, or when a valid pause frame is received with

a zero pause quantum field. Cleared on read.

• PFTR: Pause Frame Transmitted

Indicates a pause frame has been successfully transmitted after being initiated from the Network Control register. Cleared

on read.

• DRQFR: PTP Delay Request Frame Received

Indicates a PTP delay_req frame has been received. Cleared on read.

• SFR: PTP Sync Frame Received

Indicates a PTP sync frame has been received. Cleared on read.

• DRQFT: PTP Delay Request Frame Transmitted

Indicates a PTP delay_req frame has been transmitted. Cleared on read.

• SFT: PTP Sync Frame Transmitted

Indicates a PTP sync frame has been transmitted. Cleared on read.

• PDRQFR: PDelay Request Frame Received

Indicates a PTP pdelay_req frame has been received. Cleared on read.

• PDRSFR: PDelay Response Frame Received

Indicates a PTP pdelay_resp frame has been received. Cleared on read.

• PDRQFT: PDelay Request Frame Transmitted

Indicates a PTP pdelay_req frame has been transmitted. Cleared on read.

• PDRSFT: PDelay Response Frame Transmitted

Indicates a PTP pdelay_resp frame has been transmitted. Cleared on read.

• SRI: TSU Seconds Register Increment

Indicates the register has incremented. Cleared on read.

• WOL: Wake On LAN

WOL interrupt. Indicates a WOL event has been received.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1224

42.8.11 GMAC Interrupt Enable Register

Name: GMAC_IER

Address: 0x40034028

Access: Write-only

This register is write-only and when read will return zero.

The following values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• MFS: Management Frame Sent

• RCOMP: Receive Complete

• RXUBR: RX Used Bit Read

• TXUBR: TX Used Bit Read

• TUR: Transmit Underrun

• RLEX: Retry Limit Exceeded or Late Collision

• TFC: Transmit Frame Corruption Due to AHB Error

• TCOMP: Transmit Complete

• ROVR: Receive Overrun

• HRESP: HRESP Not OK

• PFNZ: Pause Frame with Non-zero Pause Quantum Received

• PTZ: Pause Time Zero

• PFTR: Pause Frame Transmitted

• EXINT: External Interrupt

• DRQFR: PTP Delay Request Frame Received

31 30 29 28 27 26 25 24

– – – WOL – SRI PDRSFT PDRQFT

23 22 21 20 19 18 17 16

PDRSFR PDRQFR SFT DRQFT SFR DRQFR – –

15 14 13 12 11 10 9 8

EXINT PFTR PTZ PFNZ HRESP ROVR – –

7 6 5 4 3 2 1 0

TCOMP TFC RLEX TUR TXUBR RXUBR RCOMP MFS

1225SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• SFR: PTP Sync Frame Received

• DRQFT: PTP Delay Request Frame Transmitted

• SFT: PTP Sync Frame Transmitted

• PDRQFR: PDelay Request Frame Received

• PDRSFR: PDelay Response Frame Received

• PDRQFT: PDelay Request Frame Transmitted

• PDRSFT: PDelay Response Frame Transmitted

• SRI: TSU Seconds Register Increment

• WOL: Wake On LAN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1226

42.8.12 GMAC Interrupt Disable Register

Name: GMAC_IDR

Address: 0x4003402C

Access: Write-only

This register is write-only and when read will return zero.

The following values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• MFS: Management Frame Sent

• RCOMP: Receive Complete

• RXUBR: RX Used Bit Read

• TXUBR: TX Used Bit Read

• TUR: Transmit Underrun

• RLEX: Retry Limit Exceeded or Late Collision

• TFC: Transmit Frame Corruption Due to AHB Error

• TCOMP: Transmit Complete

• ROVR: Receive Overrun

• HRESP: HRESP Not OK

• PFNZ: Pause Frame with Non-zero Pause Quantum Received

• PTZ: Pause Time Zero

• PFTR: Pause Frame Transmitted

• EXINT: External Interrupt

• DRQFR: PTP Delay Request Frame Received

31 30 29 28 27 26 25 24

– – – WOL – SRI PDRSFT PDRQFT

23 22 21 20 19 18 17 16

PDRSFR PDRQFR SFT DRQFT SFR DRQFR – –

15 14 13 12 11 10 9 8

EXINT PFTR PTZ PFNZ HRESP ROVR – –

7 6 5 4 3 2 1 0

TCOMP TFC RLEX TUR TXUBR RXUBR RCOMP MFS

1227SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• SFR: PTP Sync Frame Received

• DRQFT: PTP Delay Request Frame Transmitted

• SFT: PTP Sync Frame Transmitted

• PDRQFR: PDelay Request Frame Received

• PDRSFR: PDelay Response Frame Received

• PDRQFT: PDelay Request Frame Transmitted

• PDRSFT: PDelay Response Frame Transmitted

• SRI: TSU Seconds Register Increment

• WOL: Wake On LAN

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1228

42.8.13 GMAC Interrupt Mask Register

Name: GMAC_IMR

Address: 0x40034030

Access: Read/Write

The Interrupt Mask Register is a read-only register indicating which interrupts are masked. All bits are set at reset and can

be reset individually by writing to the Interrupt Enable Register or set individually by writing to the Interrupt Disable Regis-

ter. Having separate address locations for enable and disable saves the need for performing a read modify write when

updating the Interrupt Mask Register.

For test purposes there is a write-only function to this register that allows the bits in the Interrupt Status Register to be set

or cleared, regardless of the state of the mask register. A write to this register directly affects the state of the corresponding

bit in the Interrupt Status Register, causing an interrupt to be generated if a 1 is written.

The following values are valid for all listed bit names of this register when read:

0: The corresponding interrupt is enabled.

1: The corresponding interrupt is not enabled.

• MFS: Management Frame Sent

• RCOMP: Receive Complete

• RXUBR: RX Used Bit Read

• TXUBR: TX Used Bit Read

• TUR: Transmit Underrun

• RLEX: Retry Limit Exceeded

• TFC: Transmit Frame Corruption Due to AHB Error

• TCOMP: Transmit Complete

• ROVR: Receive Overrun

• HRESP: HRESP Not OK

• PFNZ: Pause Frame with Non-zero Pause Quantum Received

• PTZ: Pause Time Zero

31 30 29 28 27 26 25 24

– – – – – – PDRSFT PDRQFT

23 22 21 20 19 18 17 16

PDRSFR PDRQFR SFT DRQFT SFR DRQFR – –

15 14 13 12 11 10 9 8

EXINT PFTR PTZ PFNZ HRESP ROVR – –

7 6 5 4 3 2 1 0

TCOMP TFC RLEX TUR TXUBR RXUBR RCOMP MFS

1229SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• PFTR: Pause Frame Transmitted

• EXINT: External Interrupt

• DRQFR: PTP Delay Request Frame Received

• SFR: PTP Sync Frame Received

• DRQFT: PTP Delay Request Frame Transmitted

• SFT: PTP Sync Frame Transmitted

• PDRQFR: PDelay Request Frame Received

• PDRSFR: PDelay Response Frame Received

• PDRQFT: PDelay Request Frame Transmitted

• PDRSFT: PDelay Response Frame Transmitted

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1230

42.8.14 GMAC PHY Maintenance Register

Name: GMAC_MAN

Address: 0x40034034

Access: Read/Write

The PHY Maintenance Register is implemented as a shift register. Writing to the register starts a shift operation which is

signalled as complete when bit 2 is set in the Network Status Register. It takes about 2000 MCK cycles to complete, when

MDC is set for MCK divide by 32 in the Network Configuration Register. An interrupt is generated upon completion.

During this time, the MSB of the register is output on the MDIO pin and the LSB updated from the MDIO pin with each MDC

cycle. This causes transmission of a PHY management frame on MDIO. See Section 22.2.4.5 of the IEEE 802.3 standard.

Reading during the shift operation returns the current contents of the shift register. At the end of management operation,

the bits will have shifted back to their original locations. For a read operation, the data bits are updated with data read from

the PHY. It is important to write the correct values to the register to ensure a valid PHY management frame is produced.

The MDIO interface can read IEEE 802.3 clause 45 PHYs as well as clause 22 PHYs. To read clause 45 PHYs, bit 30

should be written with a 0 rather than a 1. To write clause 45 PHYs, bits 31:28 should be written as 0x0001. See Table 42-

18.

For a description of MDC generation, see Section 42.8.2 ”GMAC Network Configuration Register”.

• DATA: PHY Data

For a write operation this field is written with the data to be written to the PHY. After a read operation this field contains the

data read from the PHY.

• WTN: Write Ten

Must be written to 10.

31 30 29 28 27 26 25 24

WZO CLTTO OP PHYA

23 22 21 20 19 18 17 16

PHYA REGA WTN

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

Table 42-18. Clause 22/Clause 45 PHYs Read/Write Access Configuration (GMAC_MAN Bits 31:28)

PHY Access

Bit Value

WZO CLTTO OP[1] OP[0]

Clause 22
Read 0 1 1 0

Write 0 1 0 1

Clause 45

Read 0 0 1 1

Write 0 0 0 1

Read + Address 0 0 1 0

1231SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• REGA: Register Address

Specifies the register in the PHY to access.

• PHYA: PHY Address

• OP: Operation

01: Write

10: Read

• CLTTO: Clause 22 Operation

0: Clause 45 operation

1: Clause 22 operation

• WZO: Write ZERO

Must be written with 0.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1232

42.8.15 GMAC Receive Pause Quantum Register

Name: GMAC_RPQ

Address: 0x40034038

Access: Read-only

• RPQ: Received Pause Quantum

Stores the current value of the Receive Pause Quantum Register which is decremented every 512 bit times.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

RPQ

7 6 5 4 3 2 1 0

RPQ

1233SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.16 GMAC Transmit Pause Quantum Register

Name: GMAC_TPQ

Address: 0x4003403C

Access: Read/Write

• TPQ: Transmit Pause Quantum

Written with the pause quantum value for pause frame transmission.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TPQ

7 6 5 4 3 2 1 0

TPQ

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1234

42.8.17 GMAC Hash Register Bottom

Name: GMAC_HRB

Address: 0x40034080

Access: Read-only

The unicast hash enable (UNIHEN) and the multicast hash enable (MITIHEN) bits in the Network Configuration Register

(Section 42.8.2 ”GMAC Network Configuration Register”) enable the reception of hash matched frames. See Section

42.6.9 ”Hash Addressing”.

• ADDR: Hash Address

The first 32 bits of the Hash Address Register.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

1235SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.18 GMAC Hash Register Top

Name: GMAC_HRT

Address: 0x40034084

Access: Read-only

The unicast hash enable (UNIHEN) and the multicast hash enable (MITIHEN) bits in the GMAC Network Configuration

Register enable the reception of hash matched frames. See Section 42.6.9 ”Hash Addressing”.

• ADDR: Hash Address

Bits 63 to 32 of the Hash Address Register.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1236

42.8.19 GMAC Specific Address 1 Bottom Register

Name: GMAC_SAB1

Address: 0x40034088

Access: Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific

Address Register Bottom is written. They are activated when Specific Address Register Top is written.

• ADDR: Specific Address 1

Least significant 32 bits of the destination address, that is, bits 31:0. Bit zero indicates whether the address is multicast or

unicast and corresponds to the least significant bit of the first byte received.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

1237SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.20 GMAC Specific Address 1 Top Register

Name: GMAC_SAT1

Address: 0x4003408C

Access: Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific

Address Register Bottom is written. They are activated when Specific Address Register Top is written.

• ADDR: Specific Address 1

The most significant bits of the destination address, that is, bits 47:32.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1238

42.8.21 GMAC Specific Address 2 Bottom Register

Name: GMAC_SAB2

Address: 0x40034090

Access: Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific

Address Register Bottom is written. They are activated when Specific Address Register Top is written.

• ADDR: Specific Address 2

Least significant 32 bits of the destination address, that is, bits 31:0. Bit zero indicates whether the address is multicast or

unicast and corresponds to the least significant bit of the first byte received.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

1239SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.22 GMAC Specific Address 2 Top Register

Name: GMAC_SAT2

Address: 0x40034094

Access: Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific

Address Register Bottom is written. They are activated when Specific Address Register Top is written.

• ADDR: Specific Address 2

The most significant bits of the destination address, that is, bits 47:32.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1240

42.8.23 GMAC Specific Address 3 Bottom Register

Name: GMAC_SAB3

Address: 0x40034098

Access: Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific

Address Register Bottom is written. They are activated when Specific Address Register Top is written.

• ADDR: Specific Address 3

Least significant 32 bits of the destination address, that is, bits 31:0. Bit zero indicates whether the address is multicast or

unicast and corresponds to the least significant bit of the first byte received.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

1241SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.24 GMAC Specific Address 3 Top Register

Name: GMAC_SAT3

Address: 0x4003409C

Access: Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific

Address Register Bottom is written. They are activated when Specific Address Register Top is written.

• ADDR: Specific Address 3

The most significant bits of the destination address, that is, bits 47:32.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1242

42.8.25 GMAC Specific Address 4 Bottom Register

Name: GMAC_SAB4

Address: 0x400340A0

Access: Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific

Address Register Bottom is written. They are activated when Specific Address Register Top is written.

• ADDR: Specific Address 4

Least significant 32 bits of the destination address, that is, bits 31:0. Bit zero indicates whether the address is multicast or

unicast and corresponds to the least significant bit of the first byte received.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

1243SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.26 GMAC Specific Address 4 Top Register

Name: GMAC_SAT4

Address: 0x400340A4

Access: Read/Write

The addresses stored in the Specific Address Registers are deactivated at reset or when their corresponding Specific

Address Register Bottom is written. They are activated when Specific Address Register Top is written.

• ADDR: Specific Address 4

The most significant bits of the destination address, that is, bits 47:32.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1244

42.8.27 GMAC Type ID Match 1 Register

Name: GMAC_TIDM1

Address: 0x400340A8

Access: Read/Write

• TID: Type ID Match 1

For use in comparisons with received frames type ID/length frames.

• ENID1: Enable Copying of TID Matched Frames

0: TID is not part of the comparison match.

1: TID is processed for the comparison match.

31 30 29 28 27 26 25 24

ENID1 – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TID

7 6 5 4 3 2 1 0

TID

1245SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.28 GMAC Type ID Match 2 Register

Name: GMAC_TIDM2

Address: 0x400340AC

Access: Read/Write

• TID: Type ID Match 2

For use in comparisons with received frames type ID/length frames.

• ENID2: Enable Copying of TID Matched Frames

0: TID is not part of the comparison match.

1: TID is processed for the comparison match.

31 30 29 28 27 26 25 24

ENID2 – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TID

7 6 5 4 3 2 1 0

TID

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1246

42.8.29 GMAC Type ID Match 3 Register

Name: GMAC_TIDM3

Address: 0x400340B0

Access: Read/Write

• TID: Type ID Match 3

For use in comparisons with received frames type ID/length frames.

• ENID3: Enable Copying of TID Matched Frames

0: TID is not part of the comparison match.

1: TID is processed for the comparison match.

31 30 29 28 27 26 25 24

ENID3 – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TID

7 6 5 4 3 2 1 0

TID

1247SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.30 GMAC Type ID Match 4 Register

Name: GMAC_TIDM4

Address: 0x400340B4

Access: Read/Write

• TID: Type ID Match 4

For use in comparisons with received frames type ID/length frames.

• ENID4: Enable Copying of TID Matched Frames

0: TID is not part of the comparison match.

1: TID is processed for the comparison match.

31 30 29 28 27 26 25 24

ENID4 – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

TID

7 6 5 4 3 2 1 0

TID

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1248

42.8.31 GMAC IPG Stretch Register

Name: GMAC_IPGS

Address: 0x400340BC

Access: Read/Write

• FL: Frame Length

Bits 7:0 are multiplied with the previously transmitted frame length (including preamble). Bits 15:8 +1 divide the frame

length. If the resulting number is greater than 96 and bit 28 is set in the Network Configuration Register then the resulting

number is used for the transmit inter-packet-gap. 1 is added to bits 15:8 to prevent a divide by zero. See Section 42.6.4

”MAC Transmit Block”.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

FL

7 6 5 4 3 2 1 0

FL

1249SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.32 GMAC Stacked VLAN Register

Name: GMAC_SVLAN

Address: 0x400340C0

Access: Read/Write

• VLAN_TYPE: User Defined VLAN_TYPE Field

User defined VLAN_TYPE field. When Stacked VLAN is enabled, the first VLAN tag in a received frame will only be

accepted if the VLAN type field is equal to this user defined VLAN_TYPE, OR equal to the standard VLAN type (0x8100).

Note that the second VLAN tag of a Stacked VLAN packet will only be matched correctly if its VLAN_TYPE field equals

0x8100.

• ESVLAN: Enable Stacked VLAN Processing Mode

0: Disable the stacked VLAN processing mode

1: Enable the stacked VLAN processing mode

31 30 29 28 27 26 25 24

ESVLAN – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

VLAN_TYPE

7 6 5 4 3 2 1 0

VLAN_TYPE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1250

42.8.33 GMAC Transmit PFC Pause Register

Name: GMAC_TPFCP

Address: 0x400340C4

Access: Read/Write

• PEV: Priority Enable Vector

If bit 17 of the Network Control Register is written with a one then the priority enable vector of the PFC priority based pause

frame will be set equal to the value stored in this register [7:0].

• PQ: Pause Quantum

If bit 17 of the Network Control Register is written with a one then for each entry equal to zero in the Transmit PFC Pause

Register[15:8], the PFC pause frame's pause quantum field associated with that entry will be taken from the Transmit

Pause Quantum Register. For each entry equal to one in the Transmit PFC Pause Register [15:8], the pause quantum

associated with that entry will be zero.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

PQ

7 6 5 4 3 2 1 0

PEV

1251SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.34 GMAC Specific Address 1 Mask Bottom Register

Name: GMAC_SAMB1

Address: 0x400340C8

Access: Read/Write

• ADDR: Specific Address 1 Mask

Setting a bit to one masks the corresponding bit in the Specific Address 1 Register.

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1252

42.8.35 GMAC Specific Address Mask 1 Top Register

Name: GMAC_SAMT1

Address: 0x400340CC

Access: Read/Write

• ADDR: Specific Address 1 Mask

Setting a bit to one masks the corresponding bit in the Specific Address 1 Register.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR

1253SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.36 GMAC 1588 Timer Seconds Low Register

Name: GMAC_TSL

Address: 0x400341D0

Access: Read/Write

• TCS: Timer Count in Seconds

This register is writable. It increments by one when the 1588 nanoseconds counter counts to one second. It may also be

incremented when the Timer Adjust Register is written.

31 30 29 28 27 26 25 24

TCS

23 22 21 20 19 18 17 16

TCS

15 14 13 12 11 10 9 8

TCS

7 6 5 4 3 2 1 0

TCS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1254

42.8.37 GMAC 1588 Timer Nanoseconds Register

Name: GMAC_TN

Address: 0x400341D4

Access: Read/Write

• TNS: Timer Count in Nanoseconds

This register is writable. It can also be adjusted by writes to the 1588 Timer Adjust Register. It increments by the value of

the 1588 Timer Increment Register each clock cycle.

31 30 29 28 27 26 25 24

– – TNS

23 22 21 20 19 18 17 16

TNS

15 14 13 12 11 10 9 8

TNS

7 6 5 4 3 2 1 0

TNS

1255SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.38 GMAC 1588 Timer Adjust Register

Name: GMAC_TA

Address: 0x400341D8

Access: Write-only

• ITDT: Increment/Decrement

The number of nanoseconds to increment or decrement the 1588 Timer Nanoseconds Register. If necessary, the 1588

Seconds Register will be incremented or decremented.

• ADJ: Adjust 1588 Timer

Write as one to subtract from the 1588 timer. Write as zero to add to it.

31 30 29 28 27 26 25 24

ADJ – ITDT

23 22 21 20 19 18 17 16

ITDT

15 14 13 12 11 10 9 8

ITDT

7 6 5 4 3 2 1 0

ITDT

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1256

42.8.39 GMAC 1588 Timer Increment Register

Name: GMAC_TI

Address: 0x400341DC

Access: Read/Write

• CNS: Count Nanoseconds

A count of nanoseconds by which the 1588 Timer Nanoseconds Register will be incremented each clock cycle.

• ACNS: Alternative Count Nanoseconds

Alternative count of nanoseconds by which the 1588 Timer Nanoseconds Register will be incremented each clock cycle.

• NIT: Number of Increments

The number of increments after which the alternative increment is used.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

NIT

15 14 13 12 11 10 9 8

ACNS

7 6 5 4 3 2 1 0

CNS

1257SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.40 GMAC PTP Event Frame Transmitted Seconds Low Register

Name: GMAC_EFTSL

Address: 0x400341E0

Access: Read-only

• RUD: Register Update

The register is updated with the value that the 1588 Timer Seconds Register holds when the SFD of a PTP transmit pri-

mary event crosses the MII interface. An interrupt is issued when the register is updated.

31 30 29 28 27 26 25 24

RUD

23 22 21 20 19 18 17 16

RUD

15 14 13 12 11 10 9 8

RUD

7 6 5 4 3 2 1 0

RUD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1258

42.8.41 GMAC PTP Event Frame Transmitted Nanoseconds Register

Name: GMAC_EFTN

Address: 0x400341E4

Access: Read-only

• RUD: Register Update

The register is updated with the value that the 1588 Timer Nanoseconds Register holds when the SFD of a PTP transmit

primary event crosses the MII interface. An interrupt is issued when the register is updated.

31 30 29 28 27 26 25 24

– – RUD

23 22 21 20 19 18 17 16

RUD

15 14 13 12 11 10 9 8

RUD

7 6 5 4 3 2 1 0

RUD

1259SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.42 GMAC PTP Event Frame Received Seconds Low Register

Name: GMAC_EFRSL

Address: 0x400341E8

Access: Read-only

• RUD: Register Update

The register is updated with the value that the 1588 Timer Seconds Register holds when the SFD of a PTP receive primary

event crosses the MII interface. An interrupt is issued when the register is updated.

31 30 29 28 27 26 25 24

RUD

23 22 21 20 19 18 17 16

RUD

15 14 13 12 11 10 9 8

RUD

7 6 5 4 3 2 1 0

RUD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1260

42.8.43 GMAC PTP Event Frame Received Nanoseconds Register

Name: GMAC_EFRN

Address: 0x400341EC

Access: Read-only

• RUD: Register Update

The register is updated with the value that the 1588 Timer Nanoseconds Register holds when the SFD of a PTP receive

primary event crosses the MII interface. An interrupt is issued when the register is updated.

31 30 29 28 27 26 25 24

– – RUD

23 22 21 20 19 18 17 16

RUD

15 14 13 12 11 10 9 8

RUD

7 6 5 4 3 2 1 0

RUD

1261SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.44 GMAC PTP Peer Event Frame Transmitted Seconds Low Register

Name: GMAC_PEFTSL

Address: 0x400341F0

Access: Read-only

• RUD: Register Update

The register is updated with the value that the 1588 Timer Seconds Register holds when the SFD of a PTP transmit peer

event crosses the MII interface. An interrupt is issued when the register is updated.

31 30 29 28 27 26 25 24

RUD

23 22 21 20 19 18 17 16

RUD

15 14 13 12 11 10 9 8

RUD

7 6 5 4 3 2 1 0

RUD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1262

42.8.45 GMAC PTP Peer Event Frame Transmitted Nanoseconds Register

Name: GMAC_PEFTN

Address: 0x400341F4

Access: Read-only

• RUD: Register Update

The register is updated with the value that the 1588 Timer Nanoseconds Register holds when the SFD of a PTP transmit

peer event crosses the MII interface. An interrupt is issued when the register is updated.

31 30 29 28 27 26 25 24

– – RUD

23 22 21 20 19 18 17 16

RUD

15 14 13 12 11 10 9 8

RUD

7 6 5 4 3 2 1 0

RUD

1263SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

42.8.46 GMAC PTP Peer Event Frame Received Seconds Low Register

Name: GMAC_PEFRSL

Address: 0x400341F8

Access: Read-only

• RUD: Register Update

The register is updated with the value that the 1588 Timer Seconds Register holds when the SFD of a PTP receive primary

event crosses the MII interface. An interrupt is issued when the register is updated.

31 30 29 28 27 26 25 24

RUD

23 22 21 20 19 18 17 16

RUD

15 14 13 12 11 10 9 8

RUD

7 6 5 4 3 2 1 0

RUD

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1264

42.8.47 GMAC PTP Peer Event Frame Received Nanoseconds Register

Name: GMAC_PEFRN

Address: 0x400341FC

Access: Read-only

• RUD: Register Update

The register is updated with the value that the 1588 Timer Nanoseconds Register holds when the SFD of a PTP receive

primary event crosses the MII interface. An interrupt is issued when the register is updated.

31 30 29 28 27 26 25 24

– – RUD

23 22 21 20 19 18 17 16

RUD

15 14 13 12 11 10 9 8

RUD

7 6 5 4 3 2 1 0

RUD

1265SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43. Analog Front-End Controller (AFEC)

43.1 Description

The Analog Front-End Controller (AFEC) is based on an Analog Front-End cell (AFE) integrating a 12-bit Analog-

to-Digital Converter (ADC), a Programmable Gain Amplifier (PGA), a Digital-to-Analog Converter (DAC) and a 16-

to-1 analog multiplexer, making possible the analog-to-digital conversions of 16 analog lines. The conversions

extend from 0V to ADVREF. The AFEC supports an 10-bit or 12-bit resolution mode which can be extended up to

a 16-bit resolution by digital averaging.

Conversion results are reported in a common register for all channels, as well as in a channel-dedicated register.

Software trigger, external trigger on rising edge of the AFE_ADTRG pin or internal triggers from Timer Counter

output(s) are configurable.

The comparison circuitry allows automatic detection of values below a threshold, higher than a threshold, in a

given range or outside the range. Thresholds and ranges are fully configurable.

The AFEC internal fault output is directly connected to PWM Fault input. This input can be asserted by means of

comparison circuitry in order to immediately put the PWM outputs in a safe state (pure combinational path).

The AFEC also integrates a Sleep mode and a conversion sequencer and connects with a PDC channel. These

features reduce both power consumption and processor intervention.

The AFEC has a selectable single-ended or fully differential input and benefits from a 2-bit programmable gain. A

set of reference voltages is generated internally from a single external reference voltage node that may be equal to

the analog supply voltage. An external decoupling capacitance is required for noise filtering.

A digital error correction circuit based on the multi-bit redundant signed digit (RSD) algorithm is employed in order

to reduce INL and DNL errors.

Finally, the user can configure AFE timings, such as startup time and tracking time.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1266

43.2 Embedded Characteristics

 12-bit Resolution up to 16-bit Resolution by Digital Averaging

 Wide Range of Power Supply Operation

 Selectable Single-ended or Differential Input Voltage

 Programmable Gain for Maximum Full-Scale Input Range 0–VDD

 Programmable Offset Per Channel

 Integrated Multiplexer Offering Up to 16 Independent Analog Inputs

 Individual Enable and Disable of Each Channel

 Hardware or Software Trigger

̶ External trigger pin

̶ Timer counter outputs (corresponding TIOA trigger)

̶ PWM event line

 Drive of PWM Fault Input

 PDC Support

 Possibility of AFE Timings Configuration

 Two Sleep Modes and Conversion Sequencer

̶ Automatic wake-up on trigger and back to sleep mode after conversions of all enabled channels

̶ Possibility of customized channel sequence

 Standby Mode for Fast Wake-up Time Response

̶ Power-down capability

 Automatic Window Comparison of Converted Values

 Register Write Protection

1267SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.3 Block Diagram

Figure 43-1. Analog Front-End Controller Block Diagram

43.4 Signal Description

Note: 1. AFE_AD15 is not an actual pin but is connected to a temperature sensor.

Table 43-1. AFEC Signal Description

Pin Name Description

ADVREF Reference voltage

AFE_AD0—AFE_AD15(1) Analog input channels

AFE_ADTRG External trigger

AFE_ADTRG

VDDIO

ADVREF

GND

Trigger

Selection
Channel

Sequencer

Timer

Counter

Channels

User

Interface

Interrupt

Controller

Peripheral Bridge

APB

PDC

System Bus

Analog Inputs

Multiplexed

with I/O lines

AFE_AD0

PIO

Extra

Funct.

AFE Controller (AFEC)

AFE Analog Cell

CHx

12-bit DA

Converter
AOFFx

AFEC Interrupt

en.

Analog

 Mux

n->1

CHENx

S&H

Sample

and Hold

PGA

Prog. Gain

Amplifier

+
-

12-bit AD

Converter

Digital

Averaging

with OSR

GAINx

RES

AFE_AD1

AFE_ADn-1 Peripheral Clock
PMC

Bus Clock

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1268

43.5 Product Dependencies

43.5.1 I/O Lines

The digital input AFE_ADTRG is multiplexed with digital functions on the I/O line and the selection of AFE_ADTRG

is made using the PIO Controller.

The analog inputs AFE_ADx are multiplexed with digital functions on the I/O lines. AFE_ADx inputs are selected

as inputs of the AFEC when writing a one in the corresponding CHx bit of AFEC_CHER and the digital functions

are not selected.

43.5.2 Power Management

The AFEC is not continuously clocked. The programmer must first enable the AFEC peripheral clock in the Power

Management Controller (PMC) before using the AFEC. However, if the application does not require AFEC

operations, the peripheral clock can be stopped when not needed and restarted when necessary.

When the AFEC is in Sleep mode, the peripheral clock must always be enabled.

Table 43-2. I/O Lines

Instance Signal I/O Line Peripheral

AFEC0 AFE0_ADTRG PA8 B

AFEC0 AFE0_AD0 PA17 X1

AFEC0 AFE0_AD1 PA18 X1

AFEC0 AFE0_AD2/WKUP9 PA19 X1

AFEC0 AFE0_AD3/WKUP10 PA20 X1

AFEC0 AFE0_AD4/RTCOUT0 PB0 X1

AFEC0 AFE0_AD5/RTCOUT1 PB1 X1

AFEC0 AFE0_AD6 PC13 X1

AFEC0 AFE0_AD7 PC15 X1

AFEC0 AFE0_AD8 PC12 X1

AFEC0 AFE0_AD9 PC29 X1

AFEC0 AFE0_AD10 PC30 X1

AFEC0 AFE0_AD11 PC31 X1

AFEC0 AFE0_AD12 PC26 X1

AFEC0 AFE0_AD13 PC27 X1

AFEC0 AFE0_AD14 PC0 X1

AFEC1 AFE1_AD0/WKUP12 PB2 X1

AFEC1 AFE1_AD1 PB3 X1

AFEC1 AFE1_AD2 PA21 X1

AFEC1 AFE1_AD3 PA22 X1

AFEC1 AFE1_AD4 PC1 X1

AFEC1 AFE1_AD5 PC2 X1

AFEC1 AFE1_AD6 PC3 X1

AFEC1 AFE1_AD7 PC4 X1

1269SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.5.3 Interrupt Sources

The AFEC interrupt line is connected on one of the internal sources of the Interrupt Controller. Using the AFEC

interrupt requires the interrupt controller to be programmed first.

43.5.4 Temperature Sensor

The temperature sensor is connected to Channel 15 of the AFEC.

The temperature sensor provides an output voltage VT that is proportional to the absolute temperature (PTAT).

43.5.5 Timer Triggers

Timer Counters may or may not be used as hardware triggers depending on user requirements. Thus, some or all

of the timer counters may be unconnected.

43.5.6 PWM Event Line

PWM event lines may or may not be used as hardware triggers depending on user requirements.

43.5.7 Fault Output

The AFEC has the Fault output connected to the FAULT input of PWM. Refer to Section 43.6.15 “Fault Output” and
implementation of the PWM in the product.

43.5.8 Conversion Performances

For performance and electrical characteristics of the AFE, refer to the AFE Characteristics in the section “Electrical

Characteristics”.

Table 43-3. Peripheral IDs

Instance ID

AFEC0 30

AFEC1 31

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1270

43.6 Functional Description

43.6.1 Analog Front-End Conversion

The AFE uses the AFE clock to perform conversions. In order to guarantee a conversion with minimum error, after

any start of conversion, the AFEC waits a number of AFE clock cycles (called transfer time) before changing the

channel selection again (and so starts a new tracking operation).

AFE conversions are sequenced by two operating times: the tracking time and the conversion time.

 The tracking time represents the time between the channel selection change and the time for the controller

to start the AFEC. The AFEC allows a minimum tracking time of 15 AFE clock periods.

 The conversion time represents the time for the AFEC to convert the analog signal.

The AFE clock frequency is selected in the PRESCAL field of the AFEC_MR. The tracking phase starts during the

conversion of the previous channel. If the tracking time is longer than the conversion time of the12-bit AD

converter (tCONV), the tracking phase is extended to the end of the previous conversion.

The AFE clock frequency ranges from fperipheral clock/2 if PRESCAL is 0, and fperipheral clock/512 if PRESCAL is set to

255 (0xFF). PRESCAL must be programmed to provide the AFE clock frequency given in the section “Electrical

Characteristics”.

The AFE conversion time (tAFE_conv) is applicable for all modes and is calculated as follows:

When the averager is activated, the AFE conversion time is multiplied by the OSR value.

In Free Run mode, the sampling frequency (fS) is calculated as 1/tAFE_conv.

Figure 43-2. Sequence of AFE Conversions when Tracking Time > Conversion Time

tAFE_conv 21 tAFE Clock×=

AFE Clock

LCDR

AFEC_ON

Trigger event (Hard or Soft)

AFEC_SEL

DRDY

AFEC_Start

CH0 CH1

CH0

CH2

CH1

Transfer Period Transfer PeriodStart Up

Time

(and tracking of CH0)

Conversion

of CH0

Conversion

of CH1

Tracking of CH1 Tracking of CH2

Commands

from controller

to analog cell

1271SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 43-3. Sequence of AFE Conversions when Tracking Time < Conversion Time

43.6.2 Conversion Reference

The conversion is performed on a full range between 0V and the reference voltage carried on pin ADVREF.

Analog inputs between these voltages convert to values based on a linear conversion.

43.6.3 Conversion Resolution

The AFEC supports 10-bit or 12-bit native resolutions. The 10-bit selection is performed by setting the RES field in

the Extended Mode register (AFEC_EMR). By default, after a reset, the resolution is the highest and the DATA

field in the data registers is fully used. By setting the RES field, the AFEC switches to the lowest resolution and the

conversion results can be read in the lowest significant bits of the data registers. The highest bits of the DATA field

in the corresponding Channel Data register (AFEC_CDR) and of the LDATA field in the Last Converted Data

register (AFEC_LCDR) read 0. Writing two or more to the RES field in the Extended Mode register (AFEC_EMR)

automatically enables the Enhanced Resolution mode. For details on this mode, see Section 43.6.12.

Moreover, when a PDC channel is connected to the AFEC, a resolution lower than 16 bits sets the transfer request

size to 16 bits.

43.6.4 Conversion Results

When a conversion is completed, the resulting 12-bit digital value is stored in an internal register (one register for

each channel) that can be read by means of the Channel Data Register (AFEC_CDR) and the Last Converted

Data Register (AFEC_LCDR). By setting the bit TAG in the AFEC_EMR, the AFEC_LCDR presents the channel

number associated with the last converted data in the CHNB field.

The bits EOCx, where ‘x’ corresponds to the value programmed in the CSEL bit of AFEC_CSELR, and DRDY in

the Interrupt Status Register (AFEC_ISR) are set. In the case of a connected PDC channel, DRDY rising triggers a

data transfer request. In any case, either EOCx or DRDY can trigger an interrupt.

AFE Clock

LCDR

AFEC_ON

Trigger event (Hard or Soft)

AFEC_SEL

DRDY

AFEC_Start

CH0 CH1

CH0

CH2

CH1

CH3

CH2

Transfer Period Transfer Period Transfer PeriodStart Up

Time

&

Tracking

of CH0

Conversion

of CH0

&

Tracking

of CH1

Conversion

of CH1

&

Tracking

of CH2

Conversion

of CH2

&

Tracking

of CH3

Read the

AFEC_LCDR

Commands

from controller

to analog cell

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1272

Reading the AFEC_CDR clears the EOCx bit. Reading AFEC_LCDR clears the DRDY bit and the EOCx bit

corresponding to the last converted channel.

Figure 43-4. EOCx and DRDY Flag Behavior

If AFEC_CDR is not read before further incoming data is converted, the corresponding OVREx flag is set in the

Overrun Status Register (AFEC_OVER).

New data converted when DRDY is high sets the GOVRE bit in AFEC_ISR.

The OVREx flag is automatically cleared when AFEC_OVER is read, and the GOVRE flag is automatically cleared

when AFEC_ISR is read.

Read the AFEC_CDR

with ADC_CSELR.CSEL = x

EOCx

DRDY

Read the AFEC_LCDR

CHx

(AFEC_CHSR)

(AFEC_ISR1)

(AFEC_ISR1)

Write the AFEC_CR

 with START = 1
Write the AFEC_CR

 with START = 1

1273SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 43-5. EOCx, GOVRE and OVREx Flag Behavior

Warning: If the corresponding channel is disabled during a conversion, or if it is disabled and then reenabled during a con-

version, its associated data and its corresponding EOCx and GOVRE flags in AFEC_ISR and OVREx flags in

AFEC_OVER are unpredictable.

EOC0

GOVRE

CH0

(AFEC_CHSR)

(AFEC_ISR1)

(AFEC_ISR1)

Trigger event

EOC1

CH1

(AFEC_CHSR)

(AFEC_ISR1)

OVRE0

(AFEC_OVER)

Undefined Data Data A Data BAFEC_LCDR

Undefined Data Data AAFEC_CDR0

Undefined Data Data BAFEC_CDR1

Data C

Data C

Conversion C
Conversion A

DRDY

(AFEC_ISR1)

Read AFEC_CDR1

Read AFEC_CDR0

Conversion B

Read AFEC_OVER

Read AFEC_SR

OVRE1

(AFEC_OVER)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1274

43.6.5 Conversion Triggers

Conversions of the active analog channels are started with a software or hardware trigger. The software trigger is

provided by writing the Control Register (AFEC_CR) with the START bit at 1.

The hardware trigger can be one of the TIOA outputs of the Timer Counter channels, PWM Event line, or the

external trigger input of the AFEC (ADTRG). The hardware trigger is selected with the TRGSEL field in the

AFEC_MR. The selected hardware trigger is enabled with the TRGEN bit in the AFEC_MR.

The minimum time between two consecutive trigger events must be strictly greater than the duration time of the

longest conversion sequence according to configuration of registers AFEC_MR, AFEC_CHSR, AFEC_SEQ1R,

AFEC_SEQ2R.

If a hardware trigger is selected, the start of a conversion is triggered after a delay starting at each rising edge of

the selected signal. Due to asynchronous handling, the delay may vary in a range of two peripheral clock periods

to one AFE clock period.

Figure 43-6. Conversion Start with the Hardware Trigger

If one of the TIOA outputs is selected, the corresponding Timer Counter channel must be programmed in

Waveform mode.

Only one start command is necessary to initiate a conversion sequence on all the channels. The AFEC hardware

logic automatically performs the conversions on the active channels, then waits for a new request. The Channel

Enable (AFEC_CHER) and Channel Disable (AFEC_CHDR) registers permit the analog channels to be enabled or

disabled independently.

If the AFEC is used with a PDC, only the transfers of converted data from enabled channels are performed and the

resulting data buffers should be interpreted accordingly.

43.6.6 Sleep Mode and Conversion Sequencer

The AFEC Sleep mode maximizes power saving by automatically deactivating the AFE when it is not being used

for conversions. Sleep mode is selected by setting the SLEEP bit in AFEC_MR.

Sleep mode is managed by a conversion sequencer, which automatically processes the conversions of all

channels at lowest power consumption.

This mode can be used when the minimum period of time between two successive trigger events is greater than

the startup period of the AFEC. Refer to the AFE Characteristics in the section “Electrical Characteristics”.

When a start conversion request occurs, the AFE is automatically activated. As the analog cell requires a start-up

time, the logic waits during this lapse and starts the conversion on the enabled channels. When all conversions are

complete, the AFE is deactivated until the next trigger. Triggers occurring during the sequence are not taken into

account.

A fast wake-up mode is available in the AFEC_MR as a compromise between power-saving strategy and

responsiveness. Setting the FWUP bit enables the Fast Wake-up mode. In Fast Wake-up mode, the AFE is not

fully deactivated while no conversion is requested, thereby providing lower power savings but faster wake-up.

The conversion sequencer allows automatic processing with minimum processor intervention and optimized power

consumption. Conversion sequences are performed periodically using a Timer/Counter output or the PWM event

line.

trigger

start

delay

1275SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The PDC can automatically process the periodic acquisition of several samples without processor intervention.

The sequence can be customized by programming the Channel Sequence registers AFEC_SEQ1R and

AFEC_SEQ2R and setting the USEQ bit of the AFEC_MR. The user selects a specific order of channels and can

program up to 16 conversions by sequence. The user may create a personal sequence by writing channel

numbers in AFEC_SEQ1R and AFEC_SEQ2R. Channel numbers can be written in any order and repeated

several times. Only enabled USCHx fields are converted. Thus, to program a 15-conversion sequence, the user

disables AFEC_CHSR.CH15, thus disabling the field USCH15 of AFEC_SEQ2R.

Note: The reference voltage pins always remain connected in Normal mode as in Sleep mode.

43.6.7 Comparison Window

The AFEC features automatic comparison functions. It compares converted values to a low threshold, a high

threshold or both, depending on the value of the CMPMODE bit in AFEC_EMR. The comparison can be done on

all channels or only on the channel specified in the CMPSEL field of AFEC_EMR. To compare all channels, the

CMPALL bit in AFEC_EMR must be set.

Moreover, a filtering option can be set by writing the number of consecutive comparison errors needed to raise the

flag. This number can be written and read in the CMPFILTER field of the AFEC_EMR.

The flag can be read on the COMPE bit of the AFEC_ISR and can trigger an interrupt.

The high threshold and the low threshold can be read/written in the Compare Window Register (AFEC_CWR).

43.6.8 Differential Inputs

The AFE can be used either as a single-ended AFE (AFEC_DIFFR.DIFF = 0) or as a fully differential AFE

(AFEC_DIFFR.DIFF = 1). By default, after a reset, the AFE is in Single-ended mode.

If ANACH is set in AFEC_MR, the AFEC can apply a different mode on each channel. Otherwise the parameters of

CH0 are applied to all channels.

The same inputs are used in Single-ended or Differential mode.

Depending on the AFE mode, the analog multiplexer selects one or two inputs to map to a channel. Table 43-4

provides input mapping for both modes.

43.6.9 Input Gain and Offset

The AFE has a built-in programmable gain amplifier (PGA) and programmable offset per channel through a DAC.

The programmable gain amplifier can be set to gains of 1/2, 1, 2 and 4 and can be used for single-ended

applications or for fully differential applications.

If ANACH is set in AFEC_MR, the AFEC can apply different gain and offset on each channel. Otherwise the

parameters of CH0 are applied to all channels.

Table 43-4. Input Pins and Channel Number

Input Pins

Channel Number

Single-ended Mode Differential Mode

AFE_AD0 CH0
CH0

AFE_AD1 CH1

...

AFE_AD14 CH14
CH14

AFE_AD15 CH15

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1276

The gain is configured in the GAIN field of the Channel Gain Register (AFEC_CGR) as shown in Table 43-5.

The analog offset of the AFE is configured in the AOFF field in the Channel Offset Compensation register

(AFEC_COCR). The offset is only available in Single-ended mode. The field AOFF must be configured to 2048

(mid scale of the DAC) when there is no offset error to compensate.To compensate for an offset error of n LSB

(positive or negative), the field AOFF must be configured to 2048 + n.

Table 43-5. Gain of the Sample-and-Hold Unit

GAIN GAIN (DIFFx = 0) GAIN (DIFFx = 1)

0 1 0.5

1 1 1

2 2 2

3 4 2

1277SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 43-7. Analog Full Scale Ranges in Single-Ended/Differential Applications Versus Gain

VIN+

gain=0.5

gain=1

gain=2

gain=4

Single-ended

se0fd1 = 0

Fully Differential

se0fd1 = 1

same as

gain=1

same as

gain=2

0

V
ADVREF

(½)V
ADVREF

0

(¾)V
ADVREF

(¼)V
ADVREF

(½)V
ADVREF

V
ADVREF

0

(5/8)V
ADVREF

(3/8)V
ADVREF

(½)V
ADVREF

(¼)V
ADVREF

V
ADVREF

0

(5/8)V
ADVREF

(3/8)V
ADVREF

(½)V
ADVREF

(¼)V
ADVREF

(¾)V
ADVREF

(1/8)V
ADVREF

(00)

(01)

(10)

(11)

VIN+

VIN+ VIN+

VIN-

VIN+

VIN-

VIN+

VIN-

VIN+

VIN-

VIN+

V
ADVREF

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1278

43.6.10 AFE Timings

Each AFE has its own minimal startup time configured in the field STARTUP in AFEC_MR.

When the gain, offset or differential input parameters of the analog cell change between two channels, the analog

cell may need a specific settling time before starting the tracking phase. In this case, the controller waits during the

settling time defined in the AFEC_MR. If the bit ANACH in AFEC_MR is cleared, this time is unused.

Warning: No input buffer amplifier to isolate the source is included in the AFE. This must be taken into

consideration.

43.6.11 Temperature Sensor

The temperature sensor is internally connected to channel index 15.

The AFEC manages temperature measurement in several ways. The different methods of measurement depend

on the configuration bits TRGEN in the AFEC_MR and CH15 in AFEC_CHSR.

Temperature measurement can be triggered at the same rate as other channels by enabling the conversion

channel 15.

If the bit CH15 in AFEC_CHSR is enabled, the temperature sensor analog cell is switched on. If a user sequence

is used, the last converted channel of the sequence is always the temperature sensor channel.

The channel of the temperature sensor is periodically converted together with the other enabled channels and the

result is placed into AFEC_LCDR and an internal register (can be read in AFEC_CDR). Thus the temperature

conversion result is part of the Peripheral DMA Controller buffer. The temperature channel can be

enabled/disabled at anytime, but this may not be optimal for downstream processing.

A manual start can be performed only if TRGEN bit in AFEC_MR is disabled. When the START bit in AFEC_CR is

set, the temperature sensor channel conversion is scheduled together with the other enabled channels (if any).

The result of the conversion is placed in an internal register that can be read in the AFEC_CDR (AFEC_CSELR

must be programmed accordingly prior to reading AFEC_CDR) and the associated flag EOC15 is set in the

AFEC_ISR.

1279SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 43-8. Non-Optimized Temperature Conversion

The temperature factor has a slow variation rate and may be different from other conversion channels. As a result,

the AFEC allows a different way of triggering temperature measurement when the bit RTCT is set in the

AFEC_TEMPMR but the CH15 is cleared in the AFEC_CHSR.

In this configuration, the measurement is triggered every second by means of an internal trigger generated by the

RTC. This trigger is always enabled and independent of the triggers used for other channels. It is selected in the

TRGSEL field in AFEC_MR. In this mode of operation, the temperature sensor is only powered for a period of time

covering startup time and conversion time.

Base Address (BA)

BA + 0x02AFEC_CDR[TEMP]0

AFEC_CDR[0]0

AFEC_CDR[0]0 BA + 0x04

AFEC_CDR[0]0

AFEC_CDR[TEMP]0

AFEC_CDR[TEMP]0

BA + 0x06

BA + 0x08

BA + 0x0A

Assuming AFEC_CHSR[0] = 1 and AFEC_CHSR[TEMP] = 1

where TEMP is the index of the temperature sensor channel

trig.event1

DMA Buffer

Structure

trig.event2

DMA Transfer

trig.event3

Internal/External

Trigger event

AFEC_SEL C T C T T C TC

C: Classic AFE Conversion Sequence - T: Temperature Sensor Channel

C T

AFEC_CHSR[TEMP] = 1, AFEC_MR.TRGEN = 1 and AFEC_TEMPMR.RTCT = 0

AFEC_CDR[TEMP] T1 T2T0

AFEC_CDR[0]
C0 C1 C2 C3 C4 C5

T3 T4 T5

AFEC_LCDR C0 C1 C2 C3 C4T1 T2T0 T3 T4 T5

Every second, a conversion is scheduled for channel 15 but the result of the conversion is only uploaded to an

internal register read by means of AFEC_CDR, and not to AFEC_LCDR. Therefore, the temperature channel is

not part of the Peripheral DMA Controller buffer; only the enabled channel are kept in the buffer. The end of

conversion of the temperature channel is reported by means of the EOC15 flag in AFEC_ISR.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1280

Figure 43-9. Optimized Temperature Conversion Combined with Classical Conversions

If RTCT is set and TRGEN is cleared, then all channels are disabled (AFEC_CHSR = 0) and only channel 15 is

converted at a rate of one conversion per second.

This mode of operation, when combined with Sleep mode operation, provides a low-power mode for temperature

measurement assuming there is no other AFE conversion to schedule at a higher sampling rate or no other

channel to convert.

Figure 43-10. Temperature Conversion Only

Base Address (BA)

BA + 0x02

AFEC_CDR[0]0

BA + 0x04

AFEC_CDR[0]0

Assuming AFEC_CHSR[0] = 1 and AFEC_CHSR[TEMP] = 1

where TEMP is the index of the temperature sensor channel

trig.event1

DMA Buffer Structure
trig.event2

DMA Transfer

trig.event3

Internal/External

Trigger event

AFEC_SEL C T C C TC

C: Classic AFE Conversion Sequence - T: Temperature Sensor Channel

C

 AFEC_CHSR[TEMP] = 0, AFEC_MR.TRGEN = 1 and AFEC_TEMPMR.RTCT = 1

AFEC_CDR[0]0

Internal RTC

Trigger event

AFEC_CDR[TEMP] T1 T2T0

AFEC_CDR[0] &

AFEC_LCDR C0 C1 C2 C3 C4 C5

1 s

AFEC_SEL

 AFEC_CHSR = 0, AFE_MR.TRGEN = 0 and AFEC_TEMPMR.RTCT = 1

Internal RTC

Trigger event

1 s

Automatic “On”

Temp. sensor

T T

30 µs
on

off

AFEC_CDR[TEMP] T1 T2T0

AFEC_TEMPMR.RTCT = 1

1281SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

The TEMPCHG flag can be used to trigger an interrupt if there is an update/modification to be made in the system

resulting from a temperature change.

In any case, if temperature sensor measurement is configured, the temperature can be read at anytime in

AFEC_CDR (AFEC_CSELR must be programmed accordingly prior to reading AFEC_CDR) .

43.6.12 Enhanced Resolution Mode and Digital Averaging Function

The Enhanced Resolution mode is enabled when the field RES is set to 13-bit resolution or higher in AFEC_EMR.

In this mode, the AFEC trades conversion performance for accuracy by averaging multiple samples, thus providing

a digital low-pass filter function. The resolution mode selected determines the oversampling, which represents the

performance reduction factor.

To increase the accuracy by averaging multiple samples, some noise must be present in the input signal. The

noise level should be between one and two LSB peak-to-peak to get good averaging performance.

Table 43-6 summarizes the oversampling ratio depending on the resolution mode selected.

Free Run mode is not supported if Enhanced Resolution mode is used.

The selected oversampling ratio applies to all enabled channels except the temperature sensor channel if

triggered by an RTC event. See Section 43.6.11 “Temperature Sensor”.

The average result is valid into an internal register (read by means of the AFEC_CDR) only if EOCx (x

corresponding to the index of the channel) flag is set in AFEC_ISR and OVREx flag is cleared in the AFEC_OVER.

The average result is valid for all channels in the AFEC_LCDR only if DRDY is set and GOVRE is cleared in the

AFEC_ISR.

Note that the AFEC_CDR is not buffered. Therefore, when an averaging sequence is on- going, the value in this

register changes after each averaging sample. However, overrun flags in the AFEC_OVER rise as soon as the first

sample of an averaging sequence is received. Thus the previous averaged value is not read, even if the new

averaged value is not ready.

As a result, when an overrun flag rises in the AFEC_OVER, this indicates only that the previous unread data is

lost. It does not indicate that this data has been overwritten by the new averaged value, as the averaging

sequence concerning this channel can still be on-going.

The samples can be defined in different ways for the averaging function depending on the configuration of the

STM bit in AFEC_EMR and the USEQ bit in AFEC_MR.

When USEQ is cleared, there are two possible ways to generate the averaging through the trigger event. If the

STM bit is cleared in AFEC_EMR, every trigger event generates one sample for each enabled channel, as

described in Figure 43-11. Therefore, four trigger events are requested to get the result of averaging if RES = 2.

Moreover, it is possible to raise a flag only if there is predefined change in the temperature measurement. The

user can define a range of temperature or a threshold in AFEC_TEMPCWR and the mode of comparison in

AFEC_TEMPMR. These values define the way the TEMPCHG flag will be raised in AFEC_ISR.

Table 43-6. Resolution and Oversampling Ratio

Resolution Mode Oversampling Ratio

13-bit 4

14-bit 16

15-bit 64

16-bit 256

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1282

Figure 43-11. Digital Averaging Function Waveforms over Multiple Trigger Events

If the STM bit is set in AFEC_EMR and the USEQ bit is cleared in AFEC_MR, the sequence to be converted,

defined in the AFEC_CHSR, is automatically repeated n times, where n corresponds to the oversampling ratio

defined in the RES field in AFEC_EMR. As a result, only one trigger is required to get the result of the averaging

function as shown in Figure 43-12.

Internal/External

Trigger event

AFEC_SEL 0 1

AFEC_EMR.RES = 2, STM = 0, AFEC_CHSR[1:0] = 0x3 and AFEC_MR.USEQ = 0

CH0_0

AFEC_LCDR

0i1

0 1 0 1 0 1 0 1

0i2 0i3 CH0_1 0i1

CH1_0 1i1 1i2 1i3 CH1_1 1i1

EOC[0]

Read AFEC_CDR

CH1_1CH0_1

EOC[1]

Read AFEC_LCDR

DRDY

Note: 0i1,0i2,0i3, 1i1, 1i2, 1i3 are intermediate results and CH0/1_0/1 are final result of average function.

Read AFEC_CDR & AFEC_CSELR.CSEL = 0

Read AFEC_CDR & AFEC_CSELR.CSEL = 1

OVR[0]

CH1_0

Read AFEC_LCDR

Internal register

CDR[0]

Internal register

CDR[1]

1283SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 43-12. Digital Averaging Function Waveforms on a Single Trigger Event

When USEQ is set, the user can define the channel sequence to be converted by configuring AFEC_SEQxR and

AFEC_CHER so that channels are not interleaved during the averaging period. Under these conditions, a sample

is defined for each end of conversion as described in Figure 43-13.

Therefore, if the same channel is configured to be converted four times consecutively and RES = 2 in the

AFEC_EMR, the averaging result is placed in the corresponding channel internal data register (read by means of

the AFEC_CDR) and the AFEC_LCDR for each trigger event.

In this case, the AFE real sample rate remains the maximum AFE sample rate divided by 4.

When USEQ is set and the RES field enables the Enhanced Resolution mode, it is important to note that the user

sequence must be a sequence being an integer multiple of 4 (i.e., the number of the enabled channel in the

Channel Status register (AFEC_CHSR) must be an integer multiple of 4 and the AFEC_SEQxR must be a series

of 4 times the same channel index).

Internal/External

Trigger event

AFEC_SEL 0

AFEC_EMR.RES = 2, STM = 1, AFEC_CHSR[1:0] = 0x3 and AFEC_MR.USEQ = 0

internal register

CDR[1]

CH0_0

AFEC_LCDR

0i1

0

0i2 0i3 CH0_1

EOC[0]
Read AFEC_CDR & AFEC_CSELR.CSEL = 0

Read AFEC_CDR & AFEC_CSELR.CSEL = 1

CH1_1CH0_1

EOC[1]

Read AFEC_LCDR

DRDY

011 1 0 0

CH1_0 1i1 1i2 1i3 CH1_1

Note: 0i1, 0i2, 0i3, 1i1, 1i2, 1i3 are intermediate results and CH0/1_0/1 are final result of average function.

0 1 11

internal register

CDR[0]

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1284

Figure 43-13. Digital Averaging Function Waveforms on a Single Trigger Event, Non-interleaved

43.6.13 Automatic Calibration

The AFE features an automatic calibration (AUTOCALIB) mode for gain errors (calibration).

The calibration sequence performs an automatic calibration on all enabled channels. The gain settings of all

enabled channels must be set before starting the automatic calibration sequence. For each calibrated channel, the

corresponding OFFx bit in AFEC_CDOR must be set before launching the autocalibration sequence.

If the gain settings (AFEC_CGR) for a given channel are changed, the automatic calibration sequence must be

started again.

The calibration data on one or more enabled channels is stored in the internal AFE memory.

Then, when a new conversion is started on one or more enabled channels, the converted value in AFEC_LCDR or

internal data registers read by means of the AFEC_CDR is a calibrated value.

Automatic calibration is for settings, not for channels. Therefore, if a specific combination of gain and offset has

already been calibrated, and a new channel with the same settings is enabled after the initial calibration, there is

no need to restart a calibration. If different enabled channels have different gain and offset settings, the

corresponding channels must be enabled before starting the calibration.

If a software reset is performed (SWRST =1 in AFEC_CR) or after power up (or wake-up from Backup mode), the

calibration data in the AFE memory is lost.

Changing the AFEC running mode in the AFEC_MR does not affect the calibration data.

Internal/External

Trigger event

AFEC_SEL 0

AFEC_EMR.EMR = 2, STM = 1, AFEC_CHSR[7:0] = 0xFF and AFEC_MR.USEQ = 1

CH0_0

AFEC_LCDR

0i1

0 0

0i2 0i3 CH0_1

EOC[0]
Read AFEC_CDR & AFEC_CSELR.CSEL = 0

Read AFEC_CDR & AFEC_CSELR.CSEL = 1

CH1_1CH0_1

EOC[1]

Read AFEC_LCDR

DRDY

0 1 1 1 1 0 0 0 0

CH1_0 1i1 1i2 1i3 CH1_1

Note: 0i1, 0i2, 0i3, 1i1, 1i2, 1i3 are intermediate results and CH0/1_0/1 are final result of average function.

AFEC_SEQ1R = 0x1111_0000

internal register

CDR[0]

internal register

CDR[1]

The automatic calibration sequence can be started at any time by setting the AUTOCAL bit of the AFEC_CR. The

end of calibration sequence is given by the EOCAL bit in AFEC_ISR, and an interrupt is generated if the EOCAL

interrupt has been enabled (AFEC_IER).

If Free Run mode is to be used, then automatic calibration must be run before enabling the Free Run mode. In any

case, automatic calibration should not be started while Free Run mode is active.

1285SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Changing the AFE reference voltage (ADVREF pin) requires a new calibration sequence.

For calibration time, offset and gain error after calibration, refer to the AFE Characteristics in the section “Electrical

Characteristics”.

43.6.14 Buffer Structure

The PDC read channel is triggered each time a new data is stored in AFEC_LCDR. The same structure of data is

repeatedly stored in AFEC_LCDR each time a trigger event occurs. Depending on the user mode of operation

(AFEC_MR, AFEC_CHSR, AFEC_SEQ1R, AFEC_SEQ2R) the structure differs. When TAG is cleared, each data

transferred to PDC buffer is carried on a half-word (16-bit) and consists of the last converted data right-aligned.

When TAG is set, this data is carried on a word buffer (32-bit) and CHNB carries the channel number, thus

simplifying post-processing in the PDC buffer and ensuring the integrity of the PDC buffer.

43.6.15 Fault Output

The AFEC internal fault output is directly connected to PWM fault input. Fault output may be asserted depending

on the configuration of AFEC_EMR and AFEC_CWR and converted values. When the compare occurs, the AFEC

fault output generates a pulse of one peripheral clock cycle to the PWM fault input. This fault line can be enabled

or disabled within the PWM. If it is activated and asserted by the AFEC, the PWM outputs are immediately placed

in a safe state (pure combinational path). Note that the AFEC fault output connected to the PWM is not the

COMPE bit. Thus the Fault Mode (FMOD) within the PWM configuration must be FMOD = 1.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1286

43.6.16 Register Write Protection

To prevent any single software error from corrupting AFEC behavior, certain registers in the address space can be

write-protected by setting the WPEN bit in the AFEC Write Protection Mode Register (AFEC_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the AFEC Write Protection Status

Register (AFEC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been

attempted.

The WPVS flag is automatically cleared by reading the AFEC_WPSR.

The protected registers are:

 AFEC Mode Register

 AFEC Extended Mode Register

 AFEC Channel Sequence 1 Register

 AFEC Channel Sequence 2 Register

 AFEC Channel Enable Register

 AFEC Channel Disable Register

 AFEC Compare Window Register

 AFEC Channel Gain Register

 AFEC Channel Calibration DC Offset Register

 AFEC Channel Differential Register

 AFEC Channel Selection Register

 AFEC Channel Offset Compensation Register

 AFEC Temperature Sensor Mode Register

 AFEC Temperature Compare Window Register

 AFEC Analog Control Register

1287SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7 Analog Front-End Controller (AFEC) User Interface

Notes: 1. Any offset not listed in Table 43-7 must be considered as “reserved”.

Table 43-7. Register Mapping

Offset(1) Register Name Access Reset

0x00 AFEC Control Register AFEC_CR Write-only –

0x04 AFEC Mode Register AFEC_MR Read/Write 0x00000000

0x08 AFEC Extended Mode Register AFEC_EMR Read/Write 0x00000000

0x0C AFEC Channel Sequence 1 Register AFEC_SEQ1R Read/Write 0x00000000

0x10 AFEC Channel Sequence 2 Register AFEC_SEQ2R Read/Write 0x00000000

0x14 AFEC Channel Enable Register AFEC_CHER Write-only –

0x18 AFEC Channel Disable Register AFEC_CHDR Write-only –

0x1C AFEC Channel Status Register AFEC_CHSR Read-only 0x00000000

0x20 AFEC Last Converted Data Register AFEC_LCDR Read-only 0x00000000

0x24 AFEC Interrupt Enable Register AFEC_IER Write-only –

0x28 AFEC Interrupt Disable Register AFEC_IDR Write-only –

0x2C AFEC Interrupt Mask Register AFEC_IMR Read-only 0x00000000

0x30 AFEC Interrupt Status Register AFEC_ISR Read-only 0x00000000

0x34–0x40 Reserved – – –

0x44–0x48 Reserved – – –

0x4C AFEC Overrun Status Register AFEC_OVER Read-only 0x00000000

0x50 AFEC Compare Window Register AFEC_CWR Read/Write 0x00000000

0x54 AFEC Channel Gain Register AFEC_CGR Read/Write 0x00000000

0x5C AFEC Channel Calibration DC Offset Register AFEC_CDOR Read/Write 0x00000000

0x60 AFEC Channel Differential Register AFEC_DIFFR Read/Write 0x00000000

0x64 AFEC Channel Selection Register AFEC_CSELR Read/Write 0x00000000

0x68 AFEC Channel Data Register AFEC_CDR Read-only 0x00000000

0x6C AFEC Channel Offset Compensation Register AFEC_COCR Read/Write 0x00000000

0x70 AFEC Temperature Sensor Mode Register AFEC_TEMPMR Read/Write 0x00000000

0x74 AFEC Temperature Compare Window Register AFEC_TEMPCWR Read/Write 0x00000000

0x78–0x90 Reserved – – –

0x94 AFEC Analog Control Register AFEC_ACR Read/Write 0x00000100

0x98–0xAC Reserved – – –

0xB0–0xE0 Reserved – – –

0xE4 AFEC Write Protection Mode Register AFEC_WPMR Read/Write 0x00000000

0xE8 AFEC Write Protection Status Register AFEC_WPSR Read-only 0x00000000

0xEC–0xF8 Reserved – – –

 0xFC Reserved – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1288

43.7.1 AFEC Control Register

Name: AFEC_CR

Address: 0x400B0000 (0), 0x400B4000 (1)

Access: Write-only

• SWRST: Software Reset

0: No effect.

1: Resets the AFEC simulating a hardware reset.

• START: Start Conversion

0: No effect.

1: Begins Analog Front-End conversion.

• AUTOCAL: Automatic Calibration of AFE

0: No effect.

1: Launches an automatic calibration of the AFE on the next sequence.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – AUTOCAL – START SWRST

1289SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.2 AFEC Mode Register

Name: AFEC_MR

Address: 0x400B0004 (0), 0x400B4004 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• TRGEN: Trigger Enable

• TRGSEL: Trigger Selection

• SLEEP: Sleep Mode

• FWUP: Fast Wake-up

31 30 29 28 27 26 25 24

USEQ – TRANSFER TRACKTIM

23 22 21 20 19 18 17 16

ANACH – SETTLING STARTUP

15 14 13 12 11 10 9 8

PRESCAL

7 6 5 4 3 2 1 0

FREERUN FWUP SLEEP – TRGSEL TRGEN

Value Name Description

0 DIS Hardware triggers are disabled. Starting a conversion is only possible by software.

1 EN Hardware trigger selected by TRGSEL field is enabled.

Value Name Description

0 AFEC_TRIG0 ADTRG pin

1 AFEC_TRIG1 TIO Output of the Timer Counter Channel 0

2 AFEC_TRIG2 TIO Output of the Timer Counter Channel 1

3 AFEC_TRIG3 TIO Output of the Timer Counter Channel 2

4 AFEC_TRIG4 PWM Event Line 0

5 AFEC_TRIG5 PWM Event Line 1

6 AFEC_TRIG6 Reserved

7 – Reserved

Value Name Description

0 NORMAL Normal mode: The AFE and reference voltage circuitry are kept ON between conversions.

1 SLEEP Sleep mode: The AFE and reference voltage circuitry are OFF between conversions.

Value Name Description

0 OFF Normal Sleep mode: The sleep mode is defined by the SLEEP bit.

1 ON Fast wake-up Sleep mode: The voltage reference is ON between conversions and AFE is OFF.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1290

• FREERUN: Free Run Mode

• PRESCAL: Prescaler Rate Selection

PRESCAL = fperipheral clock/ (fAFE Clock × 2) - 1

• STARTUP: Start-up Time

• SETTLING: Analog Settling Time

• ANACH: Analog Change

• TRACKTIM: Tracking Time

Inherent tracking time is always 15 AFE clock cycles.

Value Name Description

0 OFF Normal mode

1 ON Free Run mode: Never wait for any trigger.

Value Name Description

0 SUT0 0 periods of AFE clock

1 SUT8 8 periods of AFE clock

2 SUT16 16 periods of AFE clock

3 SUT24 24 periods of AFE clock

4 SUT64 64 periods of AFE clock

5 SUT80 80 periods of AFE clock

6 SUT96 96 periods of AFE clock

7 SUT112 112 periods of AFE clock

8 SUT512 512 periods of AFE clock

9 SUT576 576 periods of AFE clock

10 SUT640 640 periods of AFE clock

11 SUT704 704 periods of AFE clock

12 SUT768 768 periods of AFE clock

13 SUT832 832 periods of AFE clock

14 SUT896 896 periods of AFE clock

15 SUT960 960 periods of AFE clock

Value Name Description

0 AST3 3 periods of AFE clock

1 AST5 5 periods of AFE clock

2 AST9 9 periods of AFE clock

3 AST17 17 periods of AFE clock

Value Name Description

0 NONE No analog change on channel switching: DIFF0, GAIN0 are used for all channels

1 ALLOWED Allows different analog settings for each channel. See AFEC_CGR.

1291SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• TRANSFER: Transfer Period

The TRANSFER field should be configured to 2 to guarantee the optimal transfer time.

• USEQ: User Sequence Enable

Value Name Description

0 NUM_ORDER Normal mode: The controller converts channels in a simple numeric order.

1 REG_ORDER
User Sequence mode: The sequence respects what is defined in AFEC_SEQ1R and

AFEC_SEQ1R.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1292

43.7.3 AFEC Extended Mode Register

Name: AFEC_EMR

Address: 0x400B0008 (0), 0x400B4008 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• CMPMODE: Comparison Mode

• CMPSEL: Comparison Selected Channel

If CMPALL = 0: CMPSEL indicates which channel has to be compared.

If CMPALL = 1: No effect.

• CMPALL: Compare All Channels

0: Only the channel indicated in CMPSEL field is compared.

1: All channels are compared.

• CMPFILTER: Compare Event Filtering

Number of consecutive compare events necessary to raise the flag = CMPFILTER+1.

When programmed to ‘0’, the flag rises as soon as an event occurs.

• RES: Resolution

31 30 29 28 27 26 25 24

– – – – – – STM TAG

23 22 21 20 19 18 17 16

– – – – – RES

15 14 13 12 11 10 9 8

– – CMPFILTER – – CMPALL –

7 6 5 4 3 2 1 0

CMPSEL – CMPMODE

Value Name Description

0 LOW Generates an event when the converted data is lower than the low threshold of the window.

1 HIGH Generates an event when the converted data is higher than the high threshold of the window.

2 IN Generates an event when the converted data is in the comparison window.

3 OUT Generates an event when the converted data is out of the comparison window.

Value Name Description

0 NO_AVERAGE 12-bit resolution, AFE sample rate is maximum (no averaging).

1 LOW_RES 10-bit resolution, AFE sample rate is maximum (no averaging).

2 OSR4 13-bit resolution, AFE sample rate divided by 4 (averaging).

3 OSR16 14-bit resolution, AFE sample rate divided by 16 (averaging).

4 OSR64 15-bit resolution, AFE sample rate divided by 64 (averaging).

5 OSR256 16-bit resolution, AFE sample rate divided by 256 (averaging).

1293SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

• TAG: TAG of the AFEC_LDCR

0: Clears CHNB in AFEC_LDCR.

1: Appends the channel number to the conversion result in AFEC_LDCR.

• STM: Single Trigger Mode

0: Multiple triggers are required to get an averaged result.

1: Only a single trigger is required to get an averaged value.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1294

43.7.4 AFEC Channel Sequence 1 Register

Name: AFEC_SEQ1R

Address: 0x400B000C (0), 0x400B400C (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• USCHx: User Sequence Number x

The sequence number x (USCHx) can be programmed by the Channel number CHy where y is the value written in this

field. The allowed range is 0 up to 15. So it is only possible to use the sequencer from CH0 to CH15.

This register activates only if AFEC_MR.USEQ bit is set.

Any USCHx field is taken into account only if the AFEC_CHSR.CHx bit is set, else any value written in USCHx does not

add the corresponding channel in the conversion sequence.

Configuring the same value in different fields leads to multiple samples of the same channel during the conversion

sequence. This can be done consecutively, or not, depending on user needs.

31 30 29 28 27 26 25 24

USCH7 USCH6

23 22 21 20 19 18 17 16

USCH5 USCH4

15 14 13 12 11 10 9 8

USCH3 USCH2

7 6 5 4 3 2 1 0

USCH1 USCH0

1295SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.5 AFEC Channel Sequence 2 Register

Name: AFEC_SEQ2R

Address: 0x400B0010 (0), 0x400B4010 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• USCHx: User Sequence Number x

The sequence number x (USCHx) can be programmed by the Channel number CHy where y is the value written in this

field. The allowed range is 0 up to 15. So it is only possible to use the sequencer from CH0 to CH15.

This register activates only if AFEC_MR.USEQ field is set.

Any USCHx field is taken into account only if the AFEC_CHSR.CHx bit is written to one, else any value written in USCHx

does not add the corresponding channel in the conversion sequence.

Configuring the same value in different fields leads to multiple samples of the same channel during the conversion

sequence. This can be done consecutively, or not, according to user needs.

31 30 29 28 27 26 25 24

USCH15 USCH14

23 22 21 20 19 18 17 16

USCH13 USCH12

15 14 13 12 11 10 9 8

USCH11 USCH10

7 6 5 4 3 2 1 0

USCH9 USCH8

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1296

43.7.6 AFEC Channel Enable Register

Name: AFEC_CHER

Address: 0x400B0014 (0), 0x400B4014 (1)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• CHx: Channel x Enable

0: No effect.

1: Enables the corresponding channel.

Note: If USEQ = 1 in the AFEC_MR, CHx corresponds to the xth channel of the sequence described in AFEC_SEQ1R, AFEC_SEQ2R.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8

7 6 5 4 3 2 1 0

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

1297SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.7 AFEC Channel Disable Register

Name: AFEC_CHDR

Address: 0x400B0018 (0), 0x400B4018 (1)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• CHx: Channel x Disable

0: No effect.

1: Disables the corresponding channel.

Warning: If the corresponding channel is disabled during a conversion or if it is disabled and then reenabled during a con-

version, its associated data and its corresponding EOCx and GOVRE flags in AFEC_ISR and OVREx flags in

AFEC_OVER are unpredictable.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8

7 6 5 4 3 2 1 0

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1298

43.7.8 AFEC Channel Status Register

Name: AFEC_CHSR

Address: 0x400B001C (0), 0x400B401C (1)

Access: Read-only

• CHx: Channel x Status

0: The corresponding channel is disabled.

1: The corresponding channel is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8

7 6 5 4 3 2 1 0

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

1299SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.9 AFEC Last Converted Data Register

Name: AFEC_LCDR

Address: 0x400B0020 (0), 0x400B4020 (1)

Access: Read-only

• LDATA: Last Data Converted

The AFE conversion data is placed into this register at the end of a conversion and remains until a new conversion is

completed.

• CHNB: Channel Number

Indicates the last converted channel when TAG is set in the AFEC_EMR. If TAG is cleared, CHNB = 0.

31 30 29 28 27 26 25 24

– – – – CHNB

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

LDATA

7 6 5 4 3 2 1 0

LDATA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1300

43.7.10 AFEC Interrupt Enable Register

Name: AFEC_IER

Address: 0x400B0024 (0), 0x400B4024 (1)

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Enables the corresponding interrupt.

• EOCx: End of Conversion Interrupt Enable x

• DRDY: Data Ready Interrupt Enable

• GOVRE: General Overrun Error Interrupt Enable

• COMPE: Comparison Event Interrupt Enable

• ENDRX: End of Receive Buffer Interrupt Enable

• RXBUFF: Receive Buffer Full Interrupt Enable

• TEMPCHG: Temperature Change Interrupt Enable

• EOCAL: End of Calibration Sequence Interrupt Enable

31 30 29 28 27 26 25 24

EOCAL TEMPCHG – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

EOC15 EOC14 EOC13 EOC12 EOC11 EOC10 EOC9 EOC8

7 6 5 4 3 2 1 0

EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

1301SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.11 AFEC Interrupt Disable Register

Name: AFEC_IDR

Address: 0x400B0028 (0), 0x400B4028 (1)

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect.

1: Disables the corresponding interrupt.

• EOCx: End of Conversion Interrupt Disable x

• DRDY: Data Ready Interrupt Disable

• GOVRE: General Overrun Error Interrupt Disable

• COMPE: Comparison Event Interrupt Disable

• ENDRX: End of Receive Buffer Interrupt Disable

• RXBUFF: Receive Buffer Full Interrupt Disable

• TEMPCHG: Temperature Change Interrupt Disable

• EOCAL: End of Calibration Sequence Interrupt Disable

31 30 29 28 27 26 25 24

EOCAL TEMPCHG – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

EOC15 EOC14 EOC13 EOC12 EOC11 EOC10 EOC9 EOC8

7 6 5 4 3 2 1 0

EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1302

43.7.12 AFEC Interrupt Mask Register

Name: AFEC_IMR

Address: 0x400B002C (0), 0x400B402C (1)

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

• EOCx: End of Conversion Interrupt Mask x

• DRDY: Data Ready Interrupt Mask

• GOVRE: General Overrun Error Interrupt Mask

• COMPE: Comparison Event Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

• TEMPCHG: Temperature Change Interrupt Mask

• EOCAL: End of Calibration Sequence Interrupt Mask

31 30 29 28 27 26 25 24

EOCAL TEMPCHG – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

EOC15 EOC14 EOC13 EOC12 EOC11 EOC10 EOC9 EOC8

7 6 5 4 3 2 1 0

EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

1303SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.13 AFEC Interrupt Status Register

Name: AFEC_ISR

Address: 0x400B0030 (0), 0x400B4030 (1)

Access: Read-only

• EOCx: End of Conversion x (cleared by reading AFEC_CDRx)

0: The corresponding analog channel is disabled, or the conversion is not finished. This flag is cleared when reading the

AFEC_CDR if the CSEL bit is programmed with ‘x’ in the AFEC_CSELR.

1: The corresponding analog channel is enabled and conversion is complete.

• TEMPCHG: Temperature Change (cleared on read)

• DRDY: Data Ready (cleared by reading AFEC_LCDR)

0: No data has been converted since the last read of AFEC_LCDR.

1: At least one data has been converted and is available in AFEC_LCDR.

• GOVRE: General Overrun Error (cleared by reading AFEC_ISR)

0: No general overrun error occurred since the last read of AFEC_ISR.

1: At least one general overrun error has occurred since the last read of AFEC_ISR.

• COMPE: Comparison Error (cleared by reading AFEC_ISR)

0: No comparison error since the last read of AFEC_ISR.

1: At least one comparison error has occurred since the last read of AFEC_ISR.

• ENDRX: End of RX Buffer (cleared by writing AFEC_RCR or AFEC_RNCR)

0: The Receive Counter Register has not reached 0 since the last write in AFEC_RCR(1) or AFEC_RNCR(1).

1: The Receive Counter Register has reached 0 since the last write in AFEC_RCR or AFEC_RNCR.

• RXBUFF: RX Buffer Full (cleared by writing AFEC_RCR or AFEC_RNCR)

0: AFEC_RCR or AFEC_RNCR has a value other than 0.

1: Both AFEC_RCR and AFEC_RNCR have a value of 0.

Note: 1. AFEC_RCR and AFEC_RNCR are PDC registers.

31 30 29 28 27 26 25 24

EOCAL TEMPCHG – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

EOC15 EOC14 EOC13 EOC12 EOC11 EOC10 EOC9 EOC8

7 6 5 4 3 2 1 0

EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0

0: There is no comparison match (defined in the AFEC_TEMPCMPR) since the last read of AFEC_ISR.

1: The temperature value reported on AFEC_CDR (AFEC_CSELR.CSEL = 15) has changed since the last read of

AFEC_ISR, according to what is defined in the Temperature Mode register (AFEC_TEMPMR) and the Temperature

Compare Window register (AFEC_TEMPCWR).

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1304

• EOCAL: End of Calibration Sequence (cleared on read)

0: Calibration sequence is on-going, or no calibration sequence has been requested.

1: Calibration sequence is complete.

1305SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.14 AFEC Overrun Status Register

Name: AFEC_OVER

Address: 0x400B004C (0), 0x400B404C (1)

Access: Read-only

• OVREx: Overrun Error x

0: No overrun error on the corresponding channel since the last read of AFEC_OVER.

1: There has been an overrun error on the corresponding channel since the last read of AFEC_OVER.

Note: An overrun error does not always mean that the unread data has been replaced by a new valid data. Refer to Section 43.6.12

“Enhanced Resolution Mode and Digital Averaging Function” for details.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

OVRE15 OVRE14 OVRE13 OVRE12 OVRE11 OVRE10 OVRE9 OVRE8

7 6 5 4 3 2 1 0

OVRE7 OVRE6 OVRE5 OVRE4 OVRE3 OVRE2 OVRE1 OVRE0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1306

43.7.15 AFEC Compare Window Register

Name: AFEC_CWR

Address: 0x400B0050 (0), 0x400B4050 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• LOWTHRES: Low Threshold

Low threshold associated to compare settings of AFEC_EMR. For comparisons lower than 16 bits and signed, the sign

should be extended up to the bit 15.

• HIGHTHRES: High Threshold

High threshold associated to compare settings of AFEC_EMR. For comparisons lower than 16 bits and signed, the sign

should be extended up to the bit 15.

31 30 29 28 27 26 25 24

HIGHTHRES

23 22 21 20 19 18 17 16

HIGHTHRES

15 14 13 12 11 10 9 8

LOWTHRES

7 6 5 4 3 2 1 0

LOWTHRES

1307SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.16 AFEC Channel Gain Register

Name: AFEC_CGR

Address: 0x400B0054 (0), 0x400B4054 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• GAINx: Gain for Channel x

Gain applied on input of Analog Front-End.

Note: 1. See Section 43.7.18 “AFEC Channel Differential Register” for the description of DIFFx.

31 30 29 28 27 26 25 24

GAIN15 GAIN14 GAIN13 GAIN12

23 22 21 20 19 18 17 16

GAIN11 GAIN10 GAIN9 GAIN8

15 14 13 12 11 10 9 8

GAIN7 GAIN6 GAIN5 GAIN4

7 6 5 4 3 2 1 0

GAIN3 GAIN2 GAIN1 GAIN0

GAINx

Gain Applied

DIFFx = 0(1) DIFFx = 1(1)

0 1 0.5

1 1 1

2 2 2

3 4 2

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1308

43.7.17 AFEC Channel Calibration DC Offset Register

Name: AFEC_CDOR

Address: 0x400B005C (0), 0x400B405C (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• OFFx: Offset for Channel x, used in Automatic Calibration Procedure

0: No offset.

1: Centers the analog signal on VADVREF/2 before the gain scaling. The applied offset is: (G-1)VADVREF/2

where:

G = applied gain (see AFEC_CGR)

Note: When a channel requires calibration, the corresponding OFF bit must be configured to ‘1’ prior to launch of the automatic

calibration.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

OFF15 OFF14 OFF13 OFF12 OFF11 OFF10 OFF9 OFF8

7 6 5 4 3 2 1 0

OFF7 OFF6 OFF5 OFF4 OFF3 OFF2 OFF1 OFF0

1309SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.18 AFEC Channel Differential Register

Name: AFEC_DIFFR

Address: 0x400B0060 (0), 0x400B4060 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• DIFFx: Differential inputs for channel x

0: Single-ended mode.

1: Fully-differential mode.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

DIFF15 DIFF14 DIFF13 DIFF12 DIFF11 DIFF10 DIFF9 DIFF8

7 6 5 4 3 2 1 0

DIFF7 DIFF6 DIFF5 DIFF4 DIFF3 DIFF2 DIFF1 DIFF0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1310

43.7.19 AFEC Channel Selection Register

Name: AFEC_CSELR

Address: 0x400B0064 (0), 0x400B4064 (1)

Access: Read/Write

• CSEL: Channel Selection

0–15: Selects the channel to be displayed in AFEC_CDR and AFEC_COCR. To be configured with the appropriate chan-

nel number.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – CSEL

1311SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.20 AFEC Channel Data Register

Name: AFEC_CDR

Address: 0x400B0068 (0), 0x400B4068 (1)

Access: Read-only

• DATA: Converted Data

Returns the AFE conversion data corresponding to channel CSEL (configured in the AFEC Channel Selection Register).

At the end of a conversion, the converted data is loaded into one of the 16 internal registers (one for each channel) and

remains in this internal register until a new conversion is completed on the same channel index. The AFEC_CDR together

with AFEC_CSELR allows to multiplex all the internal channel data registers.

The data carried on AFEC_CDR is valid only if AFEC_CHSR.CHx bit is set (where x = AFEC_CSELR.CSEL field value).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1312

43.7.21 AFEC Channel Offset Compensation Register

Name: AFEC_COCR

Address: 0x400B006C (0), 0x400B406C (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• AOFF: Analog Offset

Defines the analog offset to be used for channel CSEL (configured in the AFEC Channel Selection Register). This value is

used as an input value for the DAC included in the AFE.

Note: The field AOFF must be configured to 2048 (mid scale of the DAC) when there is no offset error to compensate.To compensate

for an offset error of n LSB (positive or negative), the field AOFF must be configured to 2048 + n.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – AOFF

7 6 5 4 3 2 1 0

AOFF

1313SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.22 AFEC Temperature Sensor Mode Register

Name: AFEC_TEMPMR

Address: 0x400B0070 (0), 0x400B4070 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• RTCT: Temperature Sensor RTC Trigger Mode

0: The temperature sensor measure is not triggered by RTC event.

1: The temperature sensor measure is triggered by RTC event (if TRGEN = 1).

• TEMPCMPMOD: Temperature Comparison Mode

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – TEMPCMPMOD – – – RTCT

Value Name Description

0 LOW Generates an event when the converted data is lower than the low threshold of the window.

1 HIGH Generates an event when the converted data is higher than the high threshold of the window.

2 IN Generates an event when the converted data is in the comparison window.

3 OUT Generates an event when the converted data is out of the comparison window.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1314

43.7.23 AFEC Temperature Compare Window Register

Name: AFEC_TEMPCWR

Address: 0x400B0074 (0), 0x400B4074 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• TLOWTHRES: Temperature Low Threshold

Low threshold associated to compare settings of the AFEC_TEMPMR. For comparisons less than 16 bits and signed, the

sign should be extended up to the bit 15.

• THIGHTHRES: Temperature High Threshold

High threshold associated to compare settings of the AFEC_TEMPMR. For comparisons less than 16 bits and signed, the

sign should be extended up to the bit 15.

31 30 29 28 27 26 25 24

THIGHTHRES

23 22 21 20 19 18 17 16

THIGHTHRES

15 14 13 12 11 10 9 8

TLOWTHRES

7 6 5 4 3 2 1 0

TLOWTHRES

1315SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.24 AFEC Analog Control Register

Name: AFEC_ACR

Address: 0x400B0094 (0), 0x400B4094 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the AFEC Write Protection Mode Register.

• IBCTL: AFE Bias Current Control

Adapts performance versus power consumption. (Refer the AFE Characteristics in the section “Electrical Characteristics”.)

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – IBCTL

7 6 5 4 3 2 1 0

– – – – – – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1316

43.7.25 AFEC Write Protection Mode Register

Name: AFEC_WPMR

Address: 0x400B00E4 (0), 0x400B40E4 (1)

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x414443 (“ADC” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x414443 (“ADC” in ASCII).

See Section 43.6.16 “Register Write Protection” for the list of registers which can be protected.

• WPKEY: Write Protect KEY

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x414443 PASSWD Writing any other value in this field aborts the write operation of the WPEN bit.

Always reads as 0.

1317SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

43.7.26 AFEC Write Protection Status Register

Name: AFEC_WPSR

Address: 0x400B00E8 (0), 0x400B40E8 (1)

Access: Read-only

• WPVS: Write Protect Violation Status

0: No Write Protect Violation has occurred since the last read of the AFEC_WPSR.

1: A Write Protect Violation has occurred since the last read of the AFEC_WPSR. If this violation is an unauthorized

attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protect Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

WPVSRC

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1318

44. Digital-to-Analog Converter Controller (DACC)

44.1 Description

The Digital-to-Analog Converter Controller (DACC) provides up to 2 analog outputs, making it possible for the

digital-to-analog conversion to drive up to 2 independent analog lines.

The DACC supports 12-bit resolution. Data to be converted are sent in a common register for all channels.

External triggers or free-running mode are configurable.

44.2 Embedded Characteristics

 Up to Two Independent Analog Outputs

 12-bit Resolution

 Individual Enable and Disable of Each Analog Channel

 Hardware Trigger

̶ External Trigger Pins

 PDC Support

 Internal FIFO

 Register Write Protection

1319SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

44.3 Block Diagram

Figure 44-1. DACC Block Diagram

44.4 Signal Description

44.5 Product Dependencies

44.5.1 Power Management

The user must first enable the DAC Controller Clock in the Power Management Controller (PMC) before using the
DACC.

The DACC becomes active as soon as a conversion is requested and at least one channel is enabled. The DACC

is automatically deactivated when no channels are enabled.

DAC0

Analog Cell (DAC)

DAC Controller (DACC)

Control

Logic
Interrupt

Controller

PDC

Peripheral Bridge
User

Interface

S
a

m
p

le
 &

 H
o

ld
 0

DATRG

DAC Core

S
a

m
p

le
 &

 H
o

ld
 1

DAC1

PMC
peripheral clock

Timer Counter (TC)

Trigger

Selection
DAC Clock

External triggers

Table 44-1. DACC Pin Description

Pin Name Description

DAC0–DAC1 Analog output channels

DATRG External triggers

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1320

For power-saving options, see Section 44.6.6 “DACC Timings”.

44.5.2 Interrupt Sources

The DACC interrupt line is connected to one of the internal sources of the interrupt controller. Using the DACC

interrupt requires the interrupt controller to be programmed first.

44.5.3 Conversion Performances

For performance and electrical characteristics of the DACC, see the product DC Characteristics section of the

datasheet.

Table 44-2. Peripheral IDs

Instance ID

DACC 32

1321SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

44.6 Functional Description

44.6.1 Digital-to-Analog Conversion

The DACC uses the peripheral clock divided by either two or four to perform conversions. This clock is named
DAC clock. If the peripheral clock frequency is above 100 MHz, the CLKDIV bit must be set in the DACC Mode

Register (DACC_MR). Once a conversion starts, the DACC takes 25 clock periods to provide the analog result on
the selected analog output.

44.6.2 Conversion Results

When a conversion is completed, the resulting analog value is available at the selected DACC channel output and

the EOC bit in the DACC Interrupt Status Register (DACC_ISR) is set.

Reading the DACC_ISR clears the EOC bit.

44.6.3 Conversion Triggers

In free-running mode, conversion starts as soon as at least one channel is enabled and data is written in the DACC

Conversion Data Register (DACC_CDR). 25 DAC clock periods later, the converted data is available at the

corresponding analog output as stated above.

In external trigger mode, the conversion waits for a rising edge on the selected trigger to begin.

Warning: Disabling the external trigger mode automatically sets the DACC in free-running mode.

44.6.4 Conversion FIFO

A four half-word FIFO is used to handle the data to be converted.

If the TXRDY flag in the DACC_ISR is active, the DACC is ready to accept conversion requests by writing data into

the DATA field in the DACC_CDR. Data which cannot be converted immediately is stored in the DACC FIFO.

When the FIFO is full or when the DACC is not ready to accept conversion requests, the TXRDY flag is inactive.

The WORD field of the DACC Mode Register (DACC_MR) allows the user to switch between half-word and word

transfers in order to write into the FIFO.

In half-word transfer mode, only the 16 LSBs of DACC_CDR data are processed. Bits DATA[15:0] are stored in the

FIFO. Bits DATA[11:0] are used as data. Bits DATA[15:12] are used for channel selection if the TAG field is set in

DACC_MR.

In word transfer mode, each time DACC_CDR is written, two data items are stored in the FIFO. The first data item

sampled for conversion is DATA[15:0] and the second is DATA[31:16]. Bits DATA[15:12] and DATA[31:28] are

used for channel selection if the TAG field is set in DACC_MR.

Warning: Writing in the DACC_CDR while the TXRDY flag is inactive will corrupt FIFO data.

44.6.5 Channel Selection

There are two ways to select the channel to perform data conversion.

 By default, the USER_SEL field of the DACC_MR is used. Data requests are converted to the channel

selected with the USER_SEL field.

 Alternatively, the tag mode can be used by setting the TAG field of the DACC_MR to 1. In this mode, the two

bits, DACC_CDR[13:12], which are otherwise unused, are employed to select the channel in the same way

as with the USER_SEL field. Finally, if the WORD field is set, the two bits, DACC_CDR[13:12] are used for

channel selection of the first data and the two bits, DACC_CDR[29:28] for channel selection of the second

data.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1322

44.6.6 DACC Timings

The DACC start-up time must be defined by the user in the STARTUP field of the DACC_MR.

A maximum speed mode is available by setting the MAXS bit in the DACC_MR. In this mode, the DACC no longer

waits to sample the end-of-cycle signal coming from the DACC block to start the next conversion. An internal

counter is used instead, thus gaining two peripheral clock periods between each consecutive conversion.

Warning: If the maximum speed mode is used, the EOC interrupt of the DACC_IER should not be used as it is two

peripheral clock periods late.

The accuracy of the analog voltage resulting from the data conversion process cannot be guaranteed due to

leakage. To ensure accuracy, the channel must be refreshed on a regular basis. A value is correctly refreshed if

the correct sampling period is selected (see DACC electrical characteristics) and the software or PDC is able to

sustain writing to DACC_CDR at the rate imposed by the trigger period.

Figure 44-2. Conversion Sequence

44.6.7 Register Write Protection

To prevent any single software error from corrupting DACC behavior, certain registers in the address space can be

write-protected by setting the WPEN bit in the DACC Write Protection Mode Register (DACC_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the DACC Write Protection Status

Register (DACC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been

attempted.

The WPVS bit is automatically cleared after reading the DACC_WPSR.

The following registers can be write-protected:

 DACC Mode Register

 DACC Channel Enable Register

 DACC Channel Disable Register

 DACC Analog Current Register

Peripheral clock

Write USER_SEL
field

Selected Channel

Write DACC_CDR

DAC Channel 0
Output

DAC Channel 1
Output

EOC

Read DACC_ISR

Select Channel 0

Channel 0 Channel 1

Data 0 Data 1 Data 2

Data 0 Data 1

Data 2

Select Channel 1

None

TXRDY CDR FIFO not full

1323SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

44.7 Digital-to-Analog Converter Controller (DACC) User Interface

Table 44-3. Register Mapping

Offset Register Name Access Reset

0x00 Control Register DACC_CR Write-only –

0x04 Mode Register DACC_MR Read/Write 0x00000000

0x08–0x0C Reserved – – –

0x10 Channel Enable Register DACC_CHER Write-only –

0x14 Channel Disable Register DACC_CHDR Write-only –

0x18 Channel Status Register DACC_CHSR Read-only 0x00000000

0x1C Reserved – – –

0x20 Conversion Data Register DACC_CDR Write-only –

0x24 Interrupt Enable Register DACC_IER Write-only –

0x28 Interrupt Disable Register DACC_IDR Write-only –

0x2C Interrupt Mask Register DACC_IMR Read-only 0x00000000

0x30 Interrupt Status Register DACC_ISR Read-only 0x00000000

0x34–0x90 Reserved – – –

0x94 Analog Current Register DACC_ACR Read/Write 0x00000000

0x98–0xE0 Reserved – – –

0xE4 Write Protection Mode Register DACC_WPMR Read/Write 0x00000000

0xE8 Write Protection Status Register DACC_WPSR Read-only 0x00000000

0xEC–0xFC Reserved – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1324

44.7.1 DACC Control Register

Name: DACC_CR

Address: 0x400B8000

Access: Write-only

• SWRST: Software Reset

0: No effect

1: Resets the DACC, simulating a hardware reset

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – SWRST

1325SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

44.7.2 DACC Mode Register

Name: DACC_MR

Address: 0x400B8004

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the DACC Write Protection Mode Register.

• TRGEN: Trigger Enable

• TRGSEL: Trigger Selection

• WORD: Word Transfer

• ONE: Must Be Set to 1

Bit 8 must always be set to 1 when programming the DACC_MR

• USER_SEL: User Channel Selection

31 30 29 28 27 26 25 24

– – STARTUP

23 22 21 20 19 18 17 16

– CLKDIV MAXS TAG – – USER_SEL

15 14 13 12 11 10 9 8

– – – – – – – ONE

7 6 5 4 3 2 1 0

– – – WORD TRGSEL TRGEN

Value Name Description

0 DIS External trigger mode disabled. DACC in free-running mode.

1 EN External trigger mode enabled.

Value Name Description

0 TRGSEL0 External trigger

1 TRGSEL1 TIO Output of the Timer Counter Channel 0

2 TRGSEL2 TIO Output of the Timer Counter Channel 1

3 TRGSEL3 TIO Output of the Timer Counter Channel 2

4 TRGSEL4 PWM Event Line 0

5 TRGSEL5 PWM Event Line 1

6 TRGSEL6 Reserved

Value Name Description

0 HALF Half-word transfer

1 WORD Word transfer

Value Name Description

0 CHANNEL0 Channel 0

1 CHANNEL1 Channel 1

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1326

• TAG: Tag Selection Mode

• MAXS: Maximum Speed Mode

• CLKDIV: Clock Divider

• STARTUP: Startup Time Selection

Value Name Description

0 DIS Tag selection mode disabled. Using USER_SEL to select the channel for the conversion.

1 EN Tag selection mode enabled

Value Name Description

0 NORMAL Normal mode

1 MAXIMUM Maximum speed mode enabled

Value Name Description

0 DIV_2 DAC clock is peripheral clock divided by 2

1 DIV_4
DAC clock is peripheral clock divided by 4 (to be used when peripheral clock frequency is above

100 MHz)

Value Name Description

0 0 0 periods of peripheral clock

1 8 8 periods of peripheral clock

2 16 16 periods of peripheral clock

3 24 24 periods of peripheral clock

4 64 64 periods of peripheral clock

5 80 80 periods of peripheral clock

6 96 96 periods of peripheral clock

7 112 112 periods of peripheral clock

8 512 512 periods of peripheral clock

9 576 576 periods of peripheral clock

10 640 640 periods of peripheral clock

11 704 704 periods of peripheral clock

12 768 768 periods of peripheral clock

13 832 832 periods of peripheral clock

14 896 896 periods of peripheral clock

15 960 960 periods of peripheral clock

16 1024 1024 periods of peripheral clock

17 1088 1088 periods of peripheral clock

18 1152 1152 periods of peripheral clock

19 1216 1216 periods of peripheral clock

20 1280 1280 periods of peripheral clock

21 1344 1344 periods of peripheral clock

22 1408 1408 periods of peripheral clock

1327SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

23 1472 1472 periods of peripheral clock

24 1536 1536 periods of peripheral clock

25 1600 1600 periods of peripheral clock

26 1664 1664 periods of peripheral clock

27 1728 1728 periods of peripheral clock

28 1792 1792 periods of peripheral clock

29 1856 1856 periods of peripheral clock

30 1920 1920 periods of peripheral clock

31 1984 1984 periods of peripheral clock

32 2048 2048 periods of peripheral clock

33 2112 2112 periods of peripheral clock

34 2176 2176 periods of peripheral clock

35 2240 2240 periods of peripheral clock

36 2304 2304 periods of peripheral clock

37 2368 2368 periods of peripheral clock

38 2432 2432 periods of peripheral clock

39 2496 2496 periods of peripheral clock

40 2560 2560 periods of peripheral clock

41 2624 2624 periods of peripheral clock

42 2688 2688 periods of peripheral clock

43 2752 2752 periods of peripheral clock

44 2816 2816 periods of peripheral clock

45 2880 2880 periods of peripheral clock

46 2944 2944 periods of peripheral clock

47 3008 3008 periods of peripheral clock

48 3072 3072 periods of peripheral clock

49 3136 3136 periods of peripheral clock

50 3200 3200 periods of peripheral clock

51 3264 3264 periods of peripheral clock

52 3328 3328 periods of peripheral clock

53 3392 3392 periods of peripheral clock

54 3456 3456 periods of peripheral clock

55 3520 3520 periods of peripheral clock

56 3584 3584 periods of peripheral clock

57 3648 3648 periods of peripheral clock

58 3712 3712 periods of peripheral clock

59 3776 3776 periods of peripheral clock

60 3840 3840 periods of peripheral clock

Value Name Description

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1328

Note: Refer to the DAC electrical characteristics section in the datasheet for start-up time value.

61 3904 3904 periods of peripheral clock

62 3968 3968 periods of peripheral clock

63 4032 4032 periods of peripheral clock

Value Name Description

1329SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

44.7.3 DACC Channel Enable Register

Name: DACC_CHER

Address: 0x400B8010

Access: Write-only

This register can only be written if the WPEN bit is cleared in the DACC Write Protection Mode Register.

• CHx: Channel x Enable

0: No effect

1: Enables the corresponding channel

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – CH1 CH0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1330

44.7.4 DACC Channel Disable Register

Name: DACC_CHDR

Address: 0x400B8014

Access: Write-only

This register can only be written if the WPEN bit is cleared in the DACC Write Protection Mode Register.

• CHx: Channel x Disable

0: No effect

1: Disables the corresponding channel

Warning: If the corresponding channel is disabled during a conversion, or disabled then re-enabled during a conversion,

the associated analog value and the corresponding EOC flags in the DACC_ISR are unpredictable.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – CH1 CH0

1331SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

44.7.5 DACC Channel Status Register

Name: DACC_CHSR

Address: 0x400B8018

Access: Read-only

• CHx: Channel x Status

0: Corresponding channel is disabled

1: Corresponding channel is enabled

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – CH1 CH0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1332

44.7.6 DACC Conversion Data Register

Name: DACC_CDR

Address: 0x400B8020

Access: Write-only

• DATA: Data to Convert

When the WORD bit in DACC_MR is cleared, only DATA[15:0] is used; else DATA[31:0] is used to write two data to be

converted.

31 30 29 28 27 26 25 24

DATA

23 22 21 20 19 18 17 16

DATA

15 14 13 12 11 10 9 8

DATA

7 6 5 4 3 2 1 0

DATA

1333SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

44.7.7 DACC Interrupt Enable Register

Name: DACC_IER

Address: 0x400B8024

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Enables the corresponding interrupt

• TXRDY: Transmit Ready Interrupt Enable

• EOC: End of Conversion Interrupt Enable

• ENDTX: End of Transmit Buffer Interrupt Enable

• TXBUFE: Transmit Buffer Empty Interrupt Enable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – TXBUFE ENDTX EOC TXRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1334

44.7.8 DACC Interrupt Disable Register

Name: DACC_IDR

Address: 0x400B8028

Access: Write-only

The following configuration values are valid for all listed bit names of this register:

0: No effect

1: Disables the corresponding interrupt

• TXRDY: Transmit Ready Interrupt Disable.

• EOC: End of Conversion Interrupt Disable

• ENDTX: End of Transmit Buffer Interrupt Disable

• TXBUFE: Transmit Buffer Empty Interrupt Disable

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – TXBUFE ENDTX EOC TXRDY

1335SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

44.7.9 DACC Interrupt Mask Register

Name: DACC_IMR

Address: 0x400B802C

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: Corresponding interrupt is not enabled

1: Corresponding interrupt is enabled

• TXRDY: Transmit Ready Interrupt Mask

• EOC: End of Conversion Interrupt Mask

• ENDTX: End of Transmit Buffer Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – TXBUFE ENDTX EOC TXRDY

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1336

44.7.10 DACC Interrupt Status Register

Name: DACC_ISR

Address: 0x400B8030

Access: Read-only

• TXRDY: Transmit Ready Interrupt Flag

0: DACC is not ready to accept new conversion requests.

1: DACC is ready to accept new conversion requests.

• EOC: End of Conversion Interrupt Flag

0: No conversion has been performed since the last DACC_ISR read.

1: At least one conversion has been performed since the last DACC_ISR read.

• ENDTX: End of DMA Interrupt Flag

0: The Transmit Counter register has not reached 0 since the last write in DACC_TCR or DACC_TNCR.

1: The Transmit Counter register has reached 0 since the last write in DACC _TCR or DACC_TNCR.

• TXBUFE: Transmit Buffer Empty

0: The Transmit Counter register has not reached 0 since the last write in DACC_TCR or DACC_TNCR.

1: The Transmit Counter register has reached 0 since the last write in DACC _TCR or DACC_TNCR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – TXBUFE ENDTX EOC TXRDY

1337SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

44.7.11 DACC Analog Current Register

Name: DACC_ACR

Address: 0x400B8094

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the DACC Write Protection Mode Register.

• IBCTLCHx: Analog Output Current Control

Used to modify the slew rate of the analog output (See the product Electrical Characteristics section for further details.)

• IBCTLDACCORE: Bias Current Control for DAC Core

Used to modify performance versus power consumption (See the product Electrical Characteristics section for further

details.)

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – IBCTLDACCORE

7 6 5 4 3 2 1 0

– – – – IBCTLCH1 IBCTLCH0

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1338

44.7.12 DACC Write Protection Mode Register

Name: DACC_WPMR

Address: 0x400B80E4

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x444143 (“DAC” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x444143 (“DAC” in ASCII).

See Section 44.6.7 ”Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x444143 PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit.

Always reads as 0.

1339SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

44.7.13 DACC Write Protection Status Register

Name: DACC_WPSR

Address: 0x400B80E8

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of the DACC_WPSR.

1: A write protection violation has occurred since the last read of the DACC_WPSR. If this violation is an unauthorized

attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

WPVSRC

7 6 5 4 3 2 1 0

– – – – – – – WPVS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1340

45. Analog Comparator Controller (ACC)

45.1 Description

The Analog Comparator Controller (ACC) configures the analog comparator and generates an interrupt depending

on user settings. The analog comparator embeds two 8-to-1 multiplexers that generate two internal inputs. These

inputs are compared, resulting in a compare output. The hysteresis level, edge detection and polarity are

configurable.

The ACC also generates a compare event which can be used by the Pulse Width Modulator (PWM).

45.2 Embedded Characteristics

 Eight User Analog Inputs Selectable for Comparison

 Four Voltage References Selectable for Comparison: Temperature Sensor (TS), External Voltage

Reference, DAC0 and DAC1

 Interrupt Generation

 Compare Event Fault Generation for PWM

45.3 Block Diagram

Figure 45-1. Analog Comparator Controller Block Diagram

Mux

External

Analog

Data

Inputs

Mux

TS

DAC0

DAC1

+

-

inp

inn

Analog Comparator

on

bias

Regulator

AND

Peripheral

Clock

Synchro

and

Edge

Detect

Write Detect

and Mask Timer

INVSELMINUSSELPLUS ACEN EDGETYP SCOWrite

ACC_CR

ACC_MR/ACR

SELFS

SCO

PWM PMC

HYSTISEL

Interrupt Controller

FE

User Interface

AND

AND

CE

on

on

on

1)

External 1)

Analog

Data

Inputs

Peripheral Clock

AND

ACC_IMR.

CE

Digital

Controller

1341SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

45.4 Signal Description

45.5 Product Dependencies

45.5.1 I/O Lines

45.5.2 Power Management

The ACC is clocked through the Power Management Controller (PMC), thus the programmer must first configure

the PMC to enable the ACC clock.

Note that the voltage regulator must be activated to use the analog comparator.

45.5.3 Interrupt Sources

The ACC has an interrupt line connected to the Interrupt Controller (IC). In order to handle interrupts, the Interrupt

Controller must be programmed before configuring the ACC.

45.5.4 Fault Output

The ACC has the FAULT output connected to the FAULT input of PWM. Please refer to chapter Section 45.6.4

“Fault Mode” and the implementation of the PWM in the product.

45.6 Functional Description

45.6.1 Description

The Analog Comparator Controller (ACC) controls the analog comparator settings and performs post-processing

of the analog comparator output.

When the analog comparator settings are modified, the output of the analog cell may be invalid. The ACC masks

the output for the invalid period.

A comparison flag is triggered by an event on the output of the analog comparator and an interrupt is generated.

The event on the analog comparator output can be selected among falling edge, rising edge or any edge.

The ACC registers are listed in Table 45-3.

Table 45-1. ACC Signal Description

Pin Name Description Type

AFE0_AD[5:0]
External analog data inputs Input

AFE1_AD[1:0]

TS On-chip temperature sensor Input

ADVREF AFE and DAC voltage reference Input

DAC0, DAC1 On-chip DAC inputs Input

The analog input pins (AFE0_AD[5:0], AFE1_AD[1:0]) are multiplexed with digital functions (PIO) on the IO line.

By writing the SELMINUS and SELPLUS fields in the ACC Mode Register (ACC_MR), the associated IO lines are

set to Analog mode.

Table 45-2. Peripheral IDs

Instance ID

ACC 33

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1342

45.6.2 Analog Settings

The user can select the input hysteresis and configure two different options, characterized as follows:

 High-speed: shortest propagation delay/highest current consumption

 Low-power: longest propagation delay/lowest current consumption

45.6.3 Output Masking Period

As soon as the analog comparator settings change, the output is invalid for a duration depending on ISEL current.

A masking period is automatically triggered as soon as a write access is performed on the ACC_MR or ACC

Analog Control Register (ACC_ACR) (whatever the register data content).

When ISEL = 0, the mask period is 8 × tperipheral clock.

When ISEL = 1, the mask period is 128 × tperipheral clock.

The masking period is reported by reading a negative value (bit 31 set) on the ACC Interrupt Status Register

(ACC_ISR).

45.6.4 Fault Mode

In Fault mode, a comparison match event is communicated by the ACC fault output which is directly and internally

connected to a PWM fault input.

The source of the fault output can be configured as either a combinational value derived from the analog

comparator output or as the peripheral clock resynchronized value (Refer to Figure 45-1 “Analog Comparator

Controller Block Diagram”).

45.6.5 Register Write Protection

To prevent any single software error from corrupting ACC behavior, certain registers in the address space can be

write-protected by setting the WPEN bit in the ACC Write Protection Mode Register (ACC_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the ACC Write Protection Status

Register (ACC_WPSR) is set and the field WPVSRC indicates the register in which the write access has been

attempted.

The WPVS bit is automatically cleared after reading the ACC_WPSR register.

The following registers can be write-protected:

 ACC Mode Register

 ACC Analog Control Register

1343SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

45.7 Analog Comparator Controller (ACC) User Interface

Table 45-3. Register Mapping

Offset Register Name Access Reset

0x00 Control Register ACC_CR Write-only –

0x04 Mode Register ACC_MR Read/Write 0

0x08–0x20 Reserved – – –

0x24 Interrupt Enable Register ACC_IER Write-only –

0x28 Interrupt Disable Register ACC_IDR Write-only –

0x2C Interrupt Mask Register ACC_IMR Read-only 0

0x30 Interrupt Status Register ACC_ISR Read-only 0

0x34–0x90 Reserved – – –

0x94 Analog Control Register ACC_ACR Read/Write 0

0x98–0xE0 Reserved – – –

0xE4 Write Protection Mode Register ACC_WPMR Read/Write 0

0xE8 Write Protection Status Register ACC_WPSR Read-only 0

 0xEC–0xFC Reserved – – –

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1344

45.7.1 ACC Control Register

Name: ACC_CR

Address: 0x400BC000

Access: Write-only

• SWRST: Software Reset

0: No effect.

1: Resets the module.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – SWRST

1345SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

45.7.2 ACC Mode Register

Name: ACC_MR

Address: 0x400BC004

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the ACC Write Protection Mode Register.

• SELMINUS: Selection for Minus Comparator Input

0..7: Selects the input to apply on analog comparator SELMINUS comparison input.

• SELPLUS: Selection For Plus Comparator Input

0..7: Selects the input to apply on analog comparator SELPLUS comparison input.

• ACEN: Analog Comparator Enable

0 (DIS): Analog comparator disabled.

1 (EN): Analog comparator enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– FE SELFS INV – EDGETYP ACEN

7 6 5 4 3 2 1 0

– SELPLUS – SELMINUS

Value Name Description

0 TS Select TS

1 ADVREF Select ADVREF

2 DAC0 Select DAC0

3 DAC1 Select DAC1

4 AFE0_AD0 Select AFE0_AD0

5 AFE0_AD1 Select AFE0_AD1

6 AFE0_AD2 Select AFE0_AD2

7 AFE0_AD3 Select AFE0_AD3

Value Name Description

0 AFE0_AD0 Select AFE0_AD0

1 AFE0_AD1 Select AFE0_AD1

2 AFE0_AD2 Select AFE0_AD2

3 AFE0_AD3 Select AFE0_AD3

4 AFE0_AD4 Select AFE0_AD4

5 AFE0_AD5 Select AFE0_AD5

6 AFE1_AD0 Select AFE1_AD0

7 AFE1_AD1 Select AFE1_AD1

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1346

• EDGETYP: Edge Type

• INV: Invert Comparator Output

0 (DIS): Analog comparator output is directly processed.

1 (EN): Analog comparator output is inverted prior to being processed.

• SELFS: Selection Of Fault Source

0 (CE): The CE flag is used to drive the FAULT output.

1 (OUTPUT): The output of the analog comparator flag is used to drive the FAULT output.

• FE: Fault Enable

0 (DIS): The FAULT output is tied to 0.

1 (EN): The FAULT output is driven by the signal defined by SELFS.

Value Name Description

0 RISING Only rising edge of comparator output

1 FALLING Falling edge of comparator output

2 ANY Any edge of comparator output

1347SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

45.7.3 ACC Interrupt Enable Register

Name: ACC_IER

Address: 0x400BC024

Access: Write-only

• CE: Comparison Edge

0: No effect.

1: Enables the interrupt when the selected edge (defined by EDGETYP) occurs.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – CE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1348

45.7.4 ACC Interrupt Disable Register

Name: ACC_IDR

Address: 0x400BC028

Access: Write-only

• CE: Comparison Edge

0: No effect.

1: Disables the interrupt when the selected edge (defined by EDGETYP) occurs.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – CE

1349SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

45.7.5 ACC Interrupt Mask Register

Name: ACC_IMR

Address: 0x400BC02C

Access: Read-only

• CE: Comparison Edge

0: The interrupt is disabled.

1: The interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – CE

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1350

45.7.6 ACC Interrupt Status Register

Name: ACC_ISR

Address: 0x400BC030

Access: Read-only

• CE: Comparison Edge (cleared on read)

0: No edge occurred (defined by EDGETYP) on analog comparator output since the last read of ACC_ISR.

1: A selected edge (defined by EDGETYP) on analog comparator output occurred since the last read of ACC_ISR.

• SCO: Synchronized Comparator Output

Returns an image of the analog comparator output after being pre-processed (refer to Figure 45-1).

If INV = 0

SCO = 0 if inn > inp

SCO = 1 if inp > inn

If INV = 1

SCO = 1 if inn > inp

SCO = 0 if inp > inn

• MASK: Flag Mask

0: The CE flag and SCO value are valid.

1: The CE flag and SCO value are invalid.

31 30 29 28 27 26 25 24

MASK – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – SCO CE

1351SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

45.7.7 ACC Analog Control Register

Name: ACC_ACR

Address: 0x400BC094

Access: Read/Write

This register can only be written if the WPEN bit is cleared in ACC Write Protection Mode Register.

• ISEL: Current Selection

Refer to ACC electrical characteristics section.

0 (LOPW): Low-power option.

1 (HISP): High-speed option.

• HYST: Hysteresis Selection

0 to 3: Refer to ACC electrical characteristics section.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – HYST ISEL

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1352

45.7.8 ACC Write Protection Mode Register

Name: ACC_WPMR

Address: 0x400BC0E4

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x414343 (“ACC” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x414343 (“ACC” in ASCII).

See Section 45.6.5 “Register Write Protection” for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x414343 PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit.

Always reads as 0.

1353SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

45.7.9 ACC Write Protection Status Register

Name: ACC_WPSR

Address: 0x400BC0E8

Access: Read-only

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of ACC_WPSR.

1: A write protection violation (WPEN = 1) has occurred since the last read of ACC_WPSR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – WPVS

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1354

46. SAM4E Electrical Characteristics

46.1 Absolute Maximum Ratings

Table 46-1. Absolute Maximum Ratings*

Operating Temperature (Industrial)...................-40°C to +105°C *NOTICE: Stresses beyond those listed under “Absolute Maximum

Ratings” may cause permanent damage to the device.

This is a stress rating only and functional operation of the

device at these or other conditions beyond those indi-

cated in the operational sections of this specification is

not implied. Exposure to absolute maximum rating

conditions for extended periods may affect device

reliability.

Storage Temperature..-60°C to +150°C

Voltage on Input Pins

with Respect to Ground..-0.3V to +4.0V

Maximum Operating Voltage

(VDDCORE)...1.32V

Maximum Operating Voltage

(VDDIO)...4.0V

Total DC Output Current on all I/O lines

144-ball LFBGA...150 mA

144-lead LQFP..150 mA

100-ball TFBGA...150 mA

100-lead LQFP...150 mA

1355SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.2 DC Characteristics

The following characteristics are applicable to the operating temperature range TA = -40°C to 105°C, unless

otherwise specified.

Table 46-2. DC Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDCORE DC Supply Core — 1.08 1.20 1.32 V

VDDIO DC Supply I/Os (2) 1.62 3.3 3.6 V

VDDPLL

PLLA and Main

Oscillator Supply
— 1.08 — 1.32 V

VIL

Low-level

Input Voltage

PA0–PA31, PB0–PB14, PC0–PC31, PD0–PD31,

PE0–PE5, NRST
-0.3 —

MIN

[0.8V, 0.3 × VDDIO]
V

VIH

High-level Input

Voltage

PA0–PA31, PB0–PB14, PC0–PC31, PD0–PD31,

PE0–PE5, NRST

MIN

[2.0V, 0.7 × VDDIO]
— VDDIO +0.3V V

VOH High-level Output

Voltage

PA0–PA31, PB0–PB9, PB12–PB14, PC0–PC31,

PD0–PD31, PE0–PE5

IOL = IOL Max

VDDIO - 0.4V — —

V

VDDIO[3.0–3.60 V]

PB10–PB11
VDDIO - 0.15V — —

VOL

Low-level

Output

Voltage

PA0–PA31, PB0–PB9, PB12–PB14,

PC0–PC31, PD0–PD31, PE0–PE5

IOH = IOH Max

— — 0.4

V

VDDIO[3.0–3.60 V]

PB10–PB11
— — 0.15

Vhys

Hysteresis

Voltage

PA0–PA31, PB0–PB9, PB12–PB14, PC0–PC31

(Hysteresis mode enabled)
150 — — mV

IOH Source Current

VDDIO[1.62–3.60 V];

VOH = VDDIO - 0.4

PA14 (SPCK), PA29

(MCCK) pins
— — -4

mA

PA[5–8], PA[12–13],

PA[26–28], PA[30–31],

PB[8–9], PB[14], PD[0–1],

PD[3–17] pins

— — -4

PA[0–3] — — -2

NRST — — -2

Other pins(1) — — -2

VDDIO[3.0–3.60 V] PB[10–11] — — -30

IOL Sink Current

VDDIO[1.62–3.60 V];

VOL = 0.4V

PA14 (SPCK),

PA29 (MCCK) pins
— — 4

mA

PA[5–8], PA[12–13],

PA[26–28], PA[30–31],

PB[8–9], PB[14], PD[0–1],

PD[3–17] pins

— — 4

PA [0–3] — — 2

NRST — — 2

Other pins(1) — — 2

VDDIO[3.0–3.60 V] PB[10–11] — — 30

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1356

Notes: 1. PA[4], PA[9–11], PA[15–25], PB[0–7], PB[12–13], PC[0–31], PD[2], PD[18–31], PE[0–5]

2. Refer to Section 5.2.2 “VDDIO Versus VDDIN”

IIL Input Low
Pull-up OFF -1 — 1

µA
Pull-up ON 10 — 50

IIH Input High
Pull-down OFF -1 — 1

Pull-down ON 10 — 50

RPULLUP Pull-up Resistor
PA0–PA31, PB0–PB14, PC0–PC31, PD0–PD31,

PE0–PE5, NRST
70 100 130 kΩ

RPULLDOWN

Pull-down

Resistor

PA0–PA31, PB0–PB14, PC0–PC3, PD0–PD31,

PE0–PE51, NRST
70 100 130 kΩ

RODT

On-die Series

Termination

Resistor

PA4–PA31, PB0–PB9, PB12–PB14, PC0–PC31,

PD0–PD31, PE0–PE5
— 36 —

Ω

PA0–PA3 — 18 —

Table 46-2. DC Characteristics (Continued)

Symbol Parameter Conditions Min Typ Max Unit

1357SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Notes: 1. A 4.7 µF or higher ceramic capacitor must be connected between VDDIN and the closest GND pin of the device.

This large decoupling capacitor is mandatory to reduce startup current, improving transient response and noise rejection.

2. To ensure stability, an external 2.2 µF output capacitor, CDOUT must be connected between the VDDOUT and the closest

GND pin of the device. The ESR (Equivalent Series Resistance) of the capacitor must be in the range 0.1Ω to 10Ω.

Solid tantalum and multilayer ceramic capacitors are all suitable as output capacitor.

A 100 nF bypass capacitor between VDDOUT and the closest GND pin of the device helps decrease output noise and

improves the load transient response.

3. Defined as the current needed to charge external bypass/decoupling capacitor network.

4. See Section 5.2.2 “VDDIO Versus VDDIN”

Table 46-3. 1.2V Voltage Regulator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDIN DC Input Voltage Range (4) 1.6 3.3 3.6 V

VDDOUT DC Output Voltage
Normal Mode — 1.2 —

V
Standby Mode — 0 —

VO(accuracy) Output Voltage Accuracy ILOAD = 0.8 mA to 80 mA (after trimming) -4 — 4 %

ILOAD Maximum DC Output Current
VDDIN > 1.8V — — 120

mA
VDDIN ≤ 1.8V — — 70

ILOAD-START

Maximum Peak Current

during startup
(3) — — 400 mA

VDROPOUT Dropout Voltage
VDDIN = 1.6V

ILOAD = 70 mA
— 400 mV

VLINE Line Regulation
VDDIN from 2.7 to 3.6 V

ILOAD max
— 10 30 mV

VLINE-TR Transient Line Regulation

VDDIN from 2.7 to 3.6 V

ILOAD Max

tr = tf = 5 µs

CDOUT = 4.7 µF

— 50 150 mV

VLOAD Load Regulation
VDDIN ≥ 1.8 V

ILOAD = 10% to 90% max
— 25 60 mV

VLOAD-TR Transient Load Regulation

VDDIN 1.8 V

ILOAD = 10% to 90% max

tr = tf = 5 µs

CDOUT = 4.7 µF

— 45 210 mV

IQ Quiescent Current

Normal Mode, @ ILOAD = 0 mA — 5.5 —

µANormal Mode, @ ILOAD = 120 mA — 350 —

Standby Mode — 0.06 —

CDIN Input Decoupling Capacitor (1) — 4.7 — µF

CDOUT Output Decoupling Capacitor

(2) 1.85 2.2 5.9 µF

ESR 0.1 — 10 Ω

ton Turn on Time
CDOUT = 2.2 µF

VDDOUT reaches 1.2V (± 3%)
— 300 — µs

toff Turn off Time
CDOUT = 2.2 µF

VDDIN 1.8V
— — 9.5 ms

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1358

Note: 1. The product is guaranteed to be functional at VT-

Figure 46-1. Core Brownout Output Waveform

Table 46-4. Core Power Supply Brownout Detector Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VT- Supply Falling Threshold(1) — 0.98 1.0 1.04 V

Vhys Hysteresis Voltage — — — 110 mV

VT+ Supply Rising Threshold — 0.8 1.0 1.08 V

tRST Reset Period VDDIO rising from 0 to 1.2V ± 10% 90 — 320 µs

IDDON
Current Consumption on VDDCORE

Brownout Detector enabled — — 24 µA

IDDOFF Brownout Detector disabled — — 2 µA

IDD33ON
Current Consumption on VDDIO

Brownout Detector enabled — — 24 µA

IDD33OFF Brownout Detector disabled — — 2 µA

td- VT- Detection Propagation Time VDDCORE = VT+ to (VT- - 100mV) — 200 300 ns

tSTART Startup Time From disabled state to enabled state — — 300 µs

t

VDDCORE

VT-

VT+

BOD OUTPUT

t

td+td-

1359SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 46-2. VDDIO Supply Monitor

Table 46-5. VDDIO Supply Monitor

Symbol Parameter Conditions Min Typ Max Unit

VT Supply Monitor Threshold 16 selectable steps 1.6 — 3.4 V

VT(accuracy) Threshold Level Accuracy -40/+105°C -2.5 — +2.5 %

Vhys Hysteresis Voltage — 20 30 mV

IDDON
Current Consumption

Enabled — 23 40 µA

IDDOFF Disabled — 0.02 2 µA

tSTART Startup Time From disabled state to enabled state — — 300 µs

Table 46-6. Threshold Selection

Digital Code Threshold min (V) Threshold typ (V) Threshold max (V)

0000 1.56 1.6 1.64

0001 1.68 1.72 1.76

0010 1.79 1.84 1.89

0011 1.91 1.96 2.01

0100 2.03 2.08 2.13

0101 2.15 2.2 2.23

0110 2.26 2.32 2.38

0111 2.38 2.44 2.50

1000 2.50 2.56 2.62

1001 2.61 2.68 2.75

1010 2.73 2.8 2.87

1011 2.85 2.92 2.99

1100 2.96 3.04 3.12

1101 3.08 3.16 3.24

1110 3.20 3.28 3.36

1111 3.32 3.4 3.49

V
T

V
T + Vhys

VDDIO

Reset

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1360

Figure 46-3. Zero-Power-On Reset Characteristics

Table 46-7. Zero-Power-On Reset Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VT+ Threshold Voltage Rising At Startup 1.45 1.53 1.59 V

VT- ThreshoLd Voltage Falling — 1.35 1.45 1.55 V

tRST Reset Period — 100 340 580 µs

Table 46-8. DC Flash Characteristics

Symbol Parameter Conditions Typ Max Unit

ICC Active current

Random 128-bit Read:

Maximum Read Frequency onto VDDCORE = 1.2V @ 25°C 16 25 mA

Random 64-bit Read:

Maximum Read Frequency onto VDDCORE = 1.2V @ 25°C
10 18 mA

Program onto VDDCORE = 1.2V @ 25°C 3 5 mA

V
T-

V
T+

VDDIO

Reset

1361SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.3 Power Consumption

 Power consumption of the device depending on the different Low-Power mode Capabilities (Backup, Wait,

Sleep) and Active mode.

 Power consumption on power supply in different modes: Backup, Wait, Sleep and Active.

 Power consumption by peripheral: calculated as the difference in current measurement after having enabled

then disabled the corresponding clock.

 All power consumption values are based on characterization. Note that these values are not covered by test

limits in production.

46.3.1 Backup Mode Current Consumption

The backup mode configuration and measurements are defined as follows.

Figure 46-4. Measurement Setup

46.3.1.1 Configuration A: Embedded Slow Clock RC Oscillator Enabled

 Supply Monitor on VDDIO is disabled

 RTC is running

 RTT is enabled on 1Hz mode

 BOD is disabled

 One WKUPx enabled

 Current measurement on AMP1 (see Figure 46-4)

46.3.1.2 Configuration B: 32.768 kHz Crystal Oscillator Enabled

 Supply Monitor on VDDIO is disabled

 RTC is running

 RTT enabled on 1Hz mode

 BOD disabled

 One WKUPx enabled

 Current measurement on AMP1 (see Figure 46-4)

VDDIO

VDDOUT

VDDCORE

VDDIN

Voltage
Regulator

VDDPLL

3.3V

AMP1

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1362

46.3.2 Sleep and Wait Mode Current Consumption

The Wait mode and Sleep mode configuration and measurements are defined below.

Figure 46-5. Measurement Setup for Sleep Mode

46.3.2.1 Sleep Mode

 Core Clock OFF

 VDDIO = VDDIN = 3.3V

 Master Clock (MCK) running at various frequencies with PLLA or the fast RC oscillator

 Fast start-up through pins WKUP0–15

 Current measurement as shown in Figure 46-5

 All peripheral clocks deactivated

 TA = 25°C

Table 46-10 gives current consumption in typical conditions.

Table 46-9. Typical Power Consumption for Backup Mode Configuration A and B

BACKUP

Total Consumption

Typical value

Unit

@25°C @85°C @105°C

 Conditions

 (AMP1)

Configuration A

(AMP1)

Configuration B

(AMP1)

Configuration A

(AMP1)

Configuration A

VDDIO = 3.6V

VDDIO = 3.3V

VDDIO = 3.0V

VDDIO = 2.5V

VDDIO = 1.8V

2.0

1.7

1.5

1.3

1

1.9

1.6

1.5

1.2

0.9

7.2

6.9

6.2

5.5

4.6

15.4

12.0

11.2

9.8

8.3

µA

VDDIO

VDDOUT

VDDCORE

VDDIN

Voltage
Regulator

VDDPLL

3.3V

AMP1

AMP2

1363SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 46-6. Current Consumption in Sleep Mode (AMP1) versus Master Clock Ranges (refer to Table 46-10)

0.000

2.000

4.000

6.000

8.000

10.000

0 10 20 30 40 50 60 70 80 90 100 110 120

AMP1 -
VDDCORE

(mA)

Processor and Peripheral Clocks in MHz

Table 46-10. Sleep Mode Current Consumption versus Master Clock (MCK) Variation with PLLA

Core Clock/MCK (MHz)

VDDCORE Consumption

(AMP1)

Total Consumption

(AMP2) Unit

120 9.8 11.4

mA

100 8.2 9.5

84 7.1 9.4

64 5.5 7.2

48 4.2 5.5

32 3.0 4.7

24 2.3 3.5

Table 46-11. Sleep Mode Current Consumption versus Master Clock (MCK) Variation with Fast RC

Core Clock/MCK (MHz)

VDDCORE Consumption

(AMP1)

Total Consumption

(AMP2) Unit

12 1.11 1.14

mA

8 0.77 0.8

4 0.45 0.48

2 0.3 0.33

1 0.22 0.25

0.5 0.18 0.21

0.25 0.16 0.19

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1364

46.3.2.2 Wait Mode

Figure 46-7. Measurement Setup for Wait Mode

 VDDIO = VDDIN = 3.6V

 Core Clock and Master Clock stopped

 Current measurement as shown in the above figure

 All peripheral clocks deactivated

 BOD disabled

 RTT enabled

Table 46-12 gives current consumption in typical conditions.

Note: 1. Value from characterization, not tested in production.

46.3.3 Active Mode Power Consumption

The Active Mode configuration and measurements are defined as follows:

 VDDIO = VDDIN = 3.3V

 VDDCORE = 1.2V (internal voltage regulator used)

 TA = 25°C

 Application running from Flash Memory with 128-bit access mode

 All peripheral clocks are deactivated.

 Master Clock (MCK) running at various frequencies with PLLA or the fast RC oscillator

 Current measurement on AMP1 (VDDCORE) and total current on AMP2

Table 46-12. Typical Current Consumption in Wait Mode (1)

Conditions

Typical Value

Unit

@25°C @85°C @105°C

VDDOUT

Consumption

(AMP1)

Total

Consumption

(AMP2)

Total

Consumption

(AMP2)

Total

Consumption

(AMP2)

See Figure 46-7 on page 1364

There is no activity on the I/Os of the

device; Flash in Standby mode.

43 56 550 1200

µASee Figure 46-7 on page 1364

There is no activity on the I/Os of the

device; Flash in Deep Power Down

Mode.

39 47 496 980

VDDIO

VDDOUT

VDDCORE

VDDIN

Voltage

Regulator

VDDPLL

3.6V

AMP1

AMP2

1365SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 46-8. Active Mode Measurement Setup

Table 46-13 on page 1365 and Figure 46-14 on page 1366 give the Active Mode Current Consumption in typical

conditions.

 VDDCORE at 1.2V

 TA = 25°C

46.3.3.1 SAM4E Active Power Consumption

Note: 1. Flash Wait State (FWS) in EEFC_FMR is adjusted depending on core frequency.

VDDIO

VDDOUT

VDDCORE

VDDIN

Voltage
Regulator

VDDPLL

3.3V

AMP1

AMP2

Table 46-13. Active Power Consumption with VDDCORE @ 1.2V running from Embedded Memory (IDDCORE - AMP1)

Core Clock (MHz)

Core Mark

Unit

Cache Enable (CE) Cache Disable (CD)

SRAM

128-bit Flash

access(1)
64-bit Flash

access(1)
128-bit Flash

access(1)
64-bit Flash

access(1)

120 21.1 21.0 25.5 19.0 17.9

mA

100 18.1 18.1 22.5 17.2 15.0

84 15.5 15.5 20.0 16.1 12.86

64 11.9 11.9 16.4 13.6 9.9

48 9.0 9.0 12.7 11.7 7.5

32 6.2 6.2 9.1 8.9 5.2

24 4.6 4.6 7 6.8 3.9

12 2.5 2.4 4.1 3.8 2.2

8 1.9 1.8 2.9 2.8 1.6

4 1.2 1.1 1.7 1.7 1.0

2 0.81 0.79 1 1 0.75

1 0.46 0.46 0.6 0.6 0.44

0.5 0.38 0.38 0.47 0.44 0.36

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1366

Figure 46-9. Active Power Consumption with VDDCORE @ 1.2V

 VDDCORE at 1.2V

 TA = 25°C

46.3.3.2 SAM4E Active Total Power Consumption

Note: 1. Flash Wait State (FWS) in EEFC_FMR adjusted depending on Core Frequency

0.0

5.0

10.0

15.0

20.0

25.0

0 20 40 60 80 100 120

Flash128 (CD) mA

Flash64 (CE) mA

Flash128 (CE) mA

Flash64 (CD) mA

SRAM mA

Table 46-14. Active Total Power Consumption with VDDCORE @ 1.2V running from Embedded Memory (IDDIO + IDDIN - AMP2)

Core Clock (MHz)

CoreMark

Unit

Cache Enable (CE) Cache Disable (CD)

SRAM

128-bit Flash

Access(1)
64-bit Flash

Access(1)
128-bit Flash

Access(1)
64-bit Flash

Access(1)

120 22.6 22.6 29.2 22.3 19.5

mA

100 19.5 19.5 25.7 20.2 16.4

84 17.7 17.8 24.0 19.9 15.1

64 13.6 13.6 19.7 16.7 11.5

48 10.3 10.3 14.7 14.4 8.7

32 7.9 7.9 12.1 11.9 6.8

24 5.8 5.8 9.3 9.2 5.2

12 3.8 3.6 6.3 6.2 3.4

8 3.5 3.4 5.5 5.6 3.3

4 2.8 2.7 4.1 4.4 2.7

2 2.5 2.4 3.6 3.7 2.4

1 1.5 1.5 1.9 2.1 1.5

0.5 1.4 1.4 1.6 1.7 1.4

1367SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 46-10. Active Total Power Consumption with VDDCORE @ 1.2V

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140

CE 128-bit Flash access

CE 64-bit Flash access(1)

CD 128-bit Flash access

CD 64-bit Flash access

SRAM

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1368

46.3.4 Peripheral Power Consumption in Active Mode

Table 46-15. Power Consumption on VDDCORE (VDDIO = 3.3V, VDDCORE = 1.08V, TA = 25°C)

Peripheral Consumption (Typ) Unit

PIO Controller A (PIOA) 5.23

µA/MHz

PIO Controller B (PIOB) 1.44

PIO Controller C (PIOC) 4.02

PIO Controller D (PIOD) 3.17

PIO Controller E (PIOE) 0.86

UART 4.50

USART 6.5

PWM 11.00

TWI 4.70

SPI 4.42

Timer Counter (TCx) 3.7

AFEC 5.15

DACC 3.0

ACC 0.28

HSMCI 6.43

CAN 6.5

SMC 2.77

UDP 5.11

GMAC 44.2

AES 2.39

DMAC 7.21

1369SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.4 Oscillator Characteristics

46.4.1 32 kHz RC Oscillator Characteristics

46.4.2 4/8/12 MHz RC Oscillators Characteristics

Notes: 1. Frequency range can be configured in the Supply Controller Registers

2. Not trimmed from factory

3. After Trimming from factory

The 4/8/12 MHz Fast RC oscillator is calibrated in production. This calibration can be read through the Get CALIB

Bit command (see the EEFC section) and the frequency can be trimmed by software through the PMC.

Table 46-16. 32 kHz RC Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fOSC RC Oscillator Frequency — 20 32 44 kHz

— Frequency Supply Dependency — -3 — 3 %/V

— Frequency Temperature Dependency
Over temperature range (-40 to 105 °C) versus

TA 25°C
-7 — 7 %

Duty Duty Cycle — 45 50 55 %

tSTART Startup Time — — — 100 µs

IDDON Current Consumption

After startup time

TA range = -40 to 105 °C

Typical consumption at 2.2V supply and TA 25°C

— 540 860 nA

Table 46-17. 4/8/12 MHz RC Oscillators Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fOSC RC Oscillator Frequency Range (1) 4 — 12 MHz

ACC4 4 MHz Total Accuracy
-40°C < TA < +105°C

4 MHz output selected (1)(2) — — ±30 %

ACC8 8 MHz Total Accuracy

-40°C < TA < +105°C

8 MHz output selected (1)(2) — — ±30

%
-40°C < TA < +105°C

8 MHz output selected (1)(3) — — ±5

ACC12 12 MHz Total Accuracy

-40°C < TA < +105°C

12 MHz output selected (1)(2) — — ±30

%
-40°C < TA < +105°C

12 MHz output selected (1)(3) — — ±5

— Frequency deviation versus trimming code
8 MHz

12 MHz

—

—

47

64

—

—
kHz/trimming code

Duty Duty Cycle — 45 50 55 %

tSTART Startup Time — — — 10 µs

IDDON Active Current Consumption(2)

4 MHz

8 MHz

12 MHz

—

—

—

50

65

82

75

95

118

µA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1370

46.4.3 32.768 kHz Crystal Oscillator Characteristics

Note: 1. RS is the series resistor.

Figure 46-11. 32.768 kHz Crystal Oscillator Schematics

CLEXT = 2 × (Ccrystal - Cpara - CPCB)

where:

CPCB is the capacitance of the printed circuit board (PCB) track layout from the crystal to the SAM4 pin.

46.4.4 32.768 kHz Crystal Characteristics

Table 46-18. 32.768 kHz Crystal Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fOSC Operating Frequency Normal mode with crystal — — 32.768 kHz

Vrip(VDDIO) Supply Ripple Voltage (on VDDIO) RMS value, 10 kHz to 10 MHz — — 30 mV

— Duty Cycle — 40 50 60 %

tSTART Startup Time

RS < 50 kΩ (1)
Ccrystal = 12.5 pF

Ccrystal = 6 pF

—

—

—

—

900

300
ms

RS < 100 kΩ (1)
Ccrystal = 12.5 pF

Ccrystal = 6 pF

—

—

—

—

1200

500

IDDON Current Consumption

RS < 50 kΩ (1)
Ccrystal = 12.5 pF

Ccrystal = 6 pF

—

—

550

380

1150

980
nA

RS < 100 kΩ (1)
Ccrystal = 12.5 pF

Ccrystal = 6 pF

—

—

820

530

1600

1350

PON Drive Level — — — 0.1 µW

Rf Internal Resistor Between XIN32 and XOUT32 — 10 — MΩ

Ccrystal Allowed Crystal Capacitance Load From crystal specification 6 — 12.5 pF

Cpara Internal Parasitic Capacitance — 0.6 0.7 0.8 pF

XIN32 XOUT32

CLEXT
Ccrystal CLEXT

SAM4

Table 46-19. Crystal Characteristics

Symbol Parameter Conditions Min Typ Max Unit

ESR Equivalent Series Resistor (RS) Crystal @ 32.768 kHz — 50 100 kΩ

Cm Motional Capacitance Crystal @ 32.768 kHz 0.6 — 3 fF

CSHUNT Shunt Capacitance Crystal @ 32.768 kHz 0.6 — 2 pF

1371SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.4.5 3 to 20 MHz Crystal Oscillator Characteristics

Notes: 1. RS is the series resistor

2. RS = 100–200 Ω; CSHUNT = 2.0–2.5 pF; Cm = 2–1.5 fF (typ, worst case) using 1 kΩ serial resistor on XOUT.

3. RS = 50–100 Ω; CSHUNT = 2.0–2.5 pF; Cm = 4–3 fF (typ, worst case).

4. RS = 25–50 Ω; CSHUNT = 2.5–3.0 pF; Cm = 7–5 fF (typ, worst case).

5. RS = 20–50 Ω; CSHUNT = 3.2–4.0 pF; Cm = 10–8 fF (typ, worst case).

Figure 46-12. 3 to 20 MHz Crystal Oscillator Schematics

CLEXT = 2 × (Ccrystal - CLOAD - CPCB)

where:

 CPCB is the capacitance of the printed circuit board (PCB) track layout from the crystal to the SAM4 pin.

Table 46-20. 3 to 20 MHz Crystal Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fOSC Operating Frequency Normal mode with crystal 3 16 20 MHz

Vrip(VDDPLL) Supply Ripple Voltage (on VDDPLL) RMS value, 10 kHz to 10 MHz — — 30 mV

— Duty Cycle — 40 50 60 %

tSTART Startup Time

3 MHz, CSHUNT = 3 pF

8 MHz, CSHUNT = 7 pF

16 MHz, CSHUNT = 7 pF with Cm = 8 fF

16 MHz, CSHUNT = 7 pF with Cm = 1.6 fF

20 MHz, CSHUNT = 7 pF

—

—

—

—

—

—

—

—

—

—

14.5

4

1.4

2.5

1

ms

IDDON Current consumption (on VDDIO)

3 MHz(2)

8 MHz(3)

16 MHz(4)

20 MHz(5)

—

—

—

—

230

300

390

450

350

400

470

560

µA

PON Drive level

3 MHz

8 MHz

16 MHz, 20 MHz

—

—

—

—

—

—

15

30

50

µW

Rf Internal Resistance Between XIN and XOUT — 0.5 — MΩ

Ccrystal Allowed Crystal Capacitance Load From crystal specification 12.5 — 17.5 pF

CLOAD Internal Equivalent Load Capacitance
Integrated Load Capacitance

(XIN and XOUT in series)
7.5 9.5 10.5 pF

XIN XOUT

CLEXT

CLOAD

CLEXT
Ccrystal

SAM4

R = 1K if crystal frequency is lower than 8 MHz

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1372

46.4.6 3 to 20 MHz Crystal Characteristics

46.4.7 3 to 20 MHz XIN Clock Input Characteristics in Bypass Mode

Note: 1. These characteristics apply only when the 3–20 MHz crystal oscillator is in Bypass mode.

Figure 46-13. XIN Clock Timing

Table 46-21. Crystal Characteristics

Symbol Parameter Conditions Min Typ Max Unit

ESR Equivalent Series Resistor (RS)

Fundamental @ 3 MHz

Fundamental @ 8 MHz

Fundamental @ 12 MHz

Fundamental @ 16 MHz

Fundamental @ 20 MHz

—

—

—

—

—

—

—

—

—

—

200

100

80

80

50

Ω

Cm Motional Capacitance — — — 8 fF

CSHUNT Shunt Capacitance — — — 7 pF

Table 46-22. XIN Clock Electrical Characteristics (In Bypass Mode)

Symbol Parameter Conditions Min Typ Max Unit

1/(tCPXIN) XIN Clock Frequency (1) — — 50 MHz

tCPXIN XIN Clock Period (1) 20 — — ns

tCHXIN XIN Clock High Half-period (1) 8 — — ns

tCLXIN XIN Clock Low Half-period (1) 8 — — ns

tCLCH Rise Time (1) 2.2 — — ns

tCHCL Fall Time (1) 2.2 — — ns

VXIN_IL VXIN Low-level Input Voltage (1) -0.3 —
MIN

[0.8V, 0.3 × VDDIO]
V

VXIN_IH VXIN High-level Input Voltage (1) MIN

[2.0V, 0.7 × VDDIO]
— VDDIO + 0.3V V

Cpara(standby)

Internal Parasitic Capacitance

During Standby
(1) — 5.5 6.3 pF

Rpara(standby)

Internal Parasitic Resistance

During Standby
(1) — 300 — Ω

tCPXIN

tCLXIN

tCHXIN

tCLCH tCHCL

VXIN_IL

VXIN_IH

1373SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.4.8 Crystal Oscillator Design Considerations Information

46.4.8.1 Choosing a Crystal

When choosing a crystal for the 32.768 kHz Slow Clock Oscillator or for the 3–20 MHz oscillator, several

parameters must be taken into account. Important parameters between crystal and SAM4E specifications are as

follows:

 Load Capacitance

Ccrystal is the equivalent capacitor value the oscillator must “show” to the crystal in order to oscillate at the

target frequency. The crystal must be chosen according to the internal load capacitance (CLOAD) of the on-

chip oscillator. Having a mismatch for the load capacitance will result in a frequency drift.

 Drive Level

Crystal Drive Level ≥ Oscillator Drive Level. Having a crystal drive level number lower than the oscillator

specification may damage the crystal.

 Equivalent Series Resistor (ESR)

Crystal ESR ≤ Oscillator ESR Max. Having a crystal with ESR value higher than the oscillator may cause the

oscillator to not start.

 Shunt Capacitance

Max. Crystal Shunt Capacitance ≤ Oscillator Shunt Capacitance (CSHUNT). Having a crystal with ESR value

higher than the oscillator may cause the oscillator to not start.

46.4.8.2 Printed Circuit Board (PCB)

SAM4E oscillators are low-power oscillators requiring particular attention when designing PCB systems.

46.5 PLLA Characteristics

Table 46-23. Supply Voltage Phase Lock Loop Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDPLLR Supply Voltage Range 1.08 1.2 1.32 V

Vrip(VDDPLL) Allowable Voltage Ripple
RMS value 10 kHz to 10 MHz

RMS value > 10 MHz

—

—

—

—

20

10
mV

Table 46-24. PLLA Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fIN Input Frequency — 3 — 32 MHz

fOUT Output Frequency — 80 — 240 MHz

IPLL Current Consumption

Active mode @ 80 MHz @ 1.2V

Active mode @ 96 MHz @ 1.2V

Active mode @ 160 MHz @ 1.2V

Active Mode @ 240 MHz @ 1.2V

—

—

—

—

0.94

1.2

2.1

3.34

1.2

1.5

2.5

4

mA

ts Settling Time — — 60 150 µs

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1374

46.6 USB Transceiver Characteristics

46.6.1 Typical Connection

For typical connection please refer to Section 41. “USB Device Port (UDP)”.

46.6.2 USB Electrical Characteristics

46.6.3 Switching Characteristics

Table 46-25. USB Electrical Characteristics

Symbol Parameter Conditions Min Typ Max Unit

Input Levels

VIL Low Level — — — 0.8 V

VIH High Level — 2.0 — — V

VDI Differential Input Sensitivity |(D+) - (D-)| 0.2 — — V

VDICR Differential Input Common Mode Range — 0.8 — 2.5 V

Ci Transceiver capacitance Capacitance to ground on each line — — 9.18 pF

Ilkg Hi-Z State Data Line Leakage 0V < VI < 3.3V -10 — +10 µA

REXT

Recommended External USB Series

Resistor
In series with each USB pin with ±5% — 27 — Ω

Output Levels

VOL Low Level Output Measured with RL of 1.425 kΩ tied to 3.6V 0.0 — 0.3 V

VOH High Level Output Measured with RL of 14.25 kΩ tied to GND 2.8 — 3.6 V

VCRS Output Signal Crossover Voltage
Measure conditions described in Figure 46-

14 “USB Data Signal Rise and Fall Times”
1.3 — 2.0 V

Consumption

IVDDIO Current Consumption (on VDDIO) Transceiver enabled in input mode

DDP = 1 and DDM = 0

— 105 200 µA

IVDDCORE Current Consumption (on VDDCORE) — 80 150 µA

Pull-up Resistor

RPUI

Bus Pull-up Resistance on Upstream

Port (idle bus)
— 0.900 — 1.575 kΩ

RPUA

Bus Pull-up Resistance on Upstream

Port (upstream port receiving)
— 1.425 — 3.090 kΩ

Table 46-26. In Full Speed

Symbol Parameter Conditions Min Typ Max Unit

tr Transition Rise Time CLOAD = 50 pF 4 — 20 ns

tf Transition Fall Time CLOAD = 50 pF 4 — 20 ns

trfm Rise/Fall time Matching — 90 — 111.11 %

1375SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 46-14. USB Data Signal Rise and Fall Times

10% 10%

90%
VCRS

tr tf
Differential

Data Lines

Rise Time Fall Time

f
OSC

 = 6 MHz/750 kHz
REXT = 27 ohms

CLOAD
Buffer

(b)

(a)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1376

46.7 12-bit AFE (Analog Front End) Characteristics

Electrical data are in accordance with the following standard conditions unless otherwise specified:

 Operating temperature range from -40 to 105 °C

 Min and max data are defined as three times the standard deviation of the manufacturing process

Figure 46-15. 12-bit AFE (Analog Front End) Diagram

46.7.1 ADC Power Supply

Notes: 1. See Section “Low Voltage Supply”.

2. In Sleep mode the ADC core, sample and hold, and internal reference operational amplifier are off.

3. In Fast Wake-up mode, only the ADC core is off.

46.7.1.1 ADC Bias Current

All current consumption is performed when the field IBCTL in the AFEC Control Register (AFEC_ACR) is set to 01.

IBCTL controls the ADC biasing current, with the nominal setting IBCTL = 01.

IBCTL = 01 is the default configuration suitable for a sampling frequency of up to 1 MHz. If the sampling frequency

is below 500 kHz, IBCTL = 00 can also be used to reduce the current consumption.

S&H

+
-

ADC

12 bits
PGA

Sample and holdAnalog mux Prog gain

amplifier A/D Converter

DAC

12 bits

MUX

D/A Converter

Analog offset

cancelation

12b

12b

AFEx (x=[0;1])

ADVREF

Table 46-27. Analog Power Supply Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDIN Supply Voltage Range
Full operational 2.4 — 3.6

V
(1) 2 — 2.4

IVDDIN Analog Current Consumption

ADC Sleep Mode(2)

ADC Fast Wake-up Mode(3)

ADC Normal Mode

—

4

1.8

3.8

8

3

6

µA

mA

mA

IVDDcore Digital Current Consumption
ADC Sleep Mode (all off)(2)

ADC Normal Mode
—

—

0.2

0.1

0.4

µA

mA

Table 46-28. ADC Bias Current Adjustment

IBCTL = 00 IBCTL = 01 IBCTL = 10 IBCTL = 11

Typ-22% Typ Reserved Reserved

1377SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.7.2 External Reference Voltage

VADVREF is an external reference voltage applied on the pin ADVREF. The quality of the reference voltage VADVREF

is critical to the performance of the ADC. A DC variation of the reference voltage VADVREF is converted to a gain

error by the ADC. The noise generated by VADVREF is converted by the ADC to count noise.

Notes: 1. See Section “Low Voltage Supply”.

2. Over a bandwidth from 20 Hz to 20 MHz.

3. DIFF is Differential mode.

4. SE is Single-ended mode.

5. When the ADC is in Sleep mode, the ADVREF impedance has a minimum of 10 MΩ.

46.7.3 ADC Timings

Table 46-29. ADVREF Electrical Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VADVREF ADVREF Voltage Range
Full operational 2.4 — 3.6

V
(1) 2 — 2.4

Vn Input Voltage Noise(2)

Gain = 0.5, DIFF(3) mode — — 1100

µVrms
Gain = 1, SE(4) and DIFF(3) — — 550

Gain = 2, SE(4) and DIFF(3) — — 274

Gain = 4, SE(4) mode — — 137

RADVREF ADVREF Input DC Impedance ADC+DAC reference resistor bridge(5) 2.4 3 10 kΩ

IADVREF

ADVREF Current

(ADVREF + DAC Current)
ADVREF = 3V — 1 1.5 mA

Table 46-30. ADC Timing Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fADC Clock Frequency 1 20 22 MHz

tCP_ADC Clock Period 45 50 1000 ns

fS Sampling Frequency 0.05 1 1.1 MHz

tSTART ADC Startup time
Sleep mode to Normal mode — 16 32

µs
Fast Wake-up mode to Normal mode — 4 8

tCONV Conversion Time Number of ADC clock pulses to perform a conversion — 20 — tCP_ADC

tCAL Calibration time 200 — — ns

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1378

46.7.4 ADC Transfer Function

The first operation of the ADC is a sampling function relative to a common mode voltage. The common mode

voltage (VCM) is equal to VADVREF/2 when the bits OFFx = 1, in Differential and in Single-ended mode. When the

bits OFFx = 0, sampling is done versus VADVREF/4 for gain = 2, and VADVREF/8 for gain = 4, in Single-ended mode

only.

The code in AFEC_CDR is a 12-bit positive integer. The internal DAC is set for the code 2047.

46.7.4.1 Differential Mode

A differential input voltage VI = VI+ - VI- can be applied between two selected differential pins, e.g., AD0 and AD1.

The ideal code Ci is calculated by using the following formula and rounding the result to the nearest positive

integer.

Table 46-31 is a computation example for the above formula, where VADVREF = 3V.

46.7.4.2 Single-ended Mode

A single input voltage VI can be applied to selected pins, e.g., AD0 or AD1. The ideal code Ci is calculated by using

the following formula and rounding the result to the nearest positive integer.

The single-ended ideal code conversion formula for OFFx = 1 is:

Table 46-32 is a computation example for the above formula, where VADVREF = 3V.

The single-ended ideal code conversion formula for OFFx = 0 is:

Table 46-31. Input Voltage Values in Differential Mode

Ci Gain = 0.5 Gain = 1 Gain = 2

0 -3 -1.5 -0.75

2047 0 0 0

4095 3 1.5 0.75

Ci
4096

VADVREF

----------------------- VI× Gain 2047+×=

Table 46-32. Input Voltage Values in Single-ended Mode, OFFx = 1

Ci Gain = 1 Gain = 2 Gain = 4

0 0 0.75 1.125

2047 1.5 1.5 1.5

4095 3 2.25 1.875

Ci
4096

VADVREF

----------------------- VI

VADVREF

2
-----------------------–

 × Gain 2047+×=

Ci VI Gain
4096

VADVREF

----------------------- 1–××=

1379SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 46-33 is a computation example for the above formula, where VADVREF = 3V.

46.7.4.3 Example of LSB Computation

The LSB is relative to the analog scale VADVREF.

The term LSB expresses the quantization step in volts, also used for one ADC code variation.

 Single-ended (SE) (ex: VADVREF = 3.0V)

̶ Gain = 1, LSB = (3.0V / 4096) = 732 µV

̶ Gain = 2, LSB = (1.5V / 4096) = 366 µV

̶ Gain = 4, LSB = (750 mV / 4096) = 183 µV

 Differential (DIFF) (ex: VADVREF = 3.0V)

̶ Gain = 0.5, LSB = (6.0V / 4096) = 1465 µV

̶ Gain = 1, LSB = (3.0V / 4096) = 732 µV

̶ Gain = 2, LSB = (1.5V / 4096) = 366 µV

46.7.5 ADC Electrical Characteristics

The gain error depends on the gain value and the OFFx bit. The data are given with and without autocorrection at

TA 27°C. The data include the ADC performances as the PGA and ADC core cannot be separated. The

temperature and voltage dependency are given as separate parameters.

46.7.5.1 Gain and Offset Errors

For:

 a given gain error: EG (%)

 a given ideal code (Ci)

 a given offset error: EO (LSB)

the actual code (Ca) is calculated using the following formula:

Table 46-33. Input Voltage Values in Single-ended Mode, OFFx = 0

Ci Gain = 1 Gain = 2 Gain = 4

0 0 0 0

2047 1.5 0.75 0.375

4095 3 1.5 0.75

Table 46-34. Voltage and Temperature Dependencies

Symbol Parameter Conditions Min Typ Max Unit

αG Gain Temperature dependency -40 to 105 °C — — 5 ppm/°C

αGV Gain Supply dependency VDDIN — — 0.025 %/V

αO Offset Temperature dependency -40 to 105 °C — — 5 ppm/°C

αOV Offset Supply dependency VDDIN — — 0.025 %/V

Ca 1
EG

100
---------+

 Ci 2047–()× 2047 EO+ +=

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1380

Differential Mode

In differential mode, the offset is defined when the differential input voltage is zero.

Figure 46-16. Gain and Offset Errors in Differential Mode

where:

 FSe = (FSe+) - (FSe-) is for full-scale error, unit is LSB code

 Offset error EO is the offset error measured for VI = 0V

 Gain error EG = 100 × FSe / 4096, unit in %

The error values in Table 46-35 and Table 46-36 include the sample and hold error as well as the PGA gain error.

Table 46-35. Differential Gain Error EG

Gain Mode 0.5 1 2

Auto Correction No Yes No Yes No Yes

Average Gain Error (%) -0.107 0.005 0.444 0.112 0.713 0.005

Standard Deviation (%) 0.410 0.210 0.405 0.229 0.400 0.317

Gain Min Value (%) -1.338 -0.625 -0.771 -0.576 -0.488 -0.947

Gain Max Value (%) 1.123 0.635 1.660 0.801 1.914 0.957

Table 46-36. Differential Output Offset Error EO

Gain 0.5 1 2

Average Offset Error (LSB) -1.2 -1.2 -0.6

Standard Deviation (LSB) 0.3 0.4 0.4

Offset Min value (LSB) -2.1 -2.4 -1.8

Offset Max value (LSB) -0.3 0 0.6

V
I
 Differential

4095

ADVREF/2-ADVREF/2 0
0

ADC codes

FSe-

E
O
 = Offset error2047

FSe+

1381SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Single-ended Mode

Figure 46-17 illustrates the ADC output code relative to an input voltage VI between 0V (Ground) and VADVREF. The

ADC is configured in Single-ended mode by connecting internally the negative differential input to VADVREF/2. As

the ADC continues to work internally in Differential mode, the offset is measured at VADVREF/2.

Figure 46-17. Gain and Offset Errors in Single-ended Mode

where:

 FSe = (FSe+) - (FSe-) is for full-scale error, unit is LSB code

 Offset error EO is the offset error measured for VI = 0V

 Gain error EG = 100 × FSe / 4096, unit in %

The error values in Table 46-37 and Table 46-38 include the sample and hold error as well as the PGA gain error.

V
I
 Single-ended

4095

ADVREF/2 ADVREF0
0

ADC codes

FSe-

E
O
 = Offset error2047

FSe+

Table 46-37. Single-ended Gain Error

Offset Mode OFFx = 0 OFFx = 0 OFFx = 1 OFFx = 0 OFFx = 1

Gain Mode 1 2 2 4 4

AutoCorrection No Yes No Yes No Yes No Yes No Yes

Average Gain Error (%) 0.449 0.078 0.771 -0.010 0.781 0.117 1.069 -0.029 1.064 0.151

Standard Deviation (%) 0.420 0.200 0.430 0.313 0.425 0.327 0.420 0.415 0.415 0.371

Min Value (%) -0.811 -0.522 -0.518 -0.947 -0.493 -0.864 -0.190 -1.274 -0.181 -0.962

Max Value (%) 1.709 0.679 2.061 0.928 2.056 1.099 2.329 1.216 2.310 1.265

Table 46-38. Single-ended Output Offset Error

Offset Mode OFFx = 0 OFFx = 0 OFFx = 1 OFFx = 0 OFFx = 1

Gain 1 2 2 4 4

Average Offset Error (LSB) -5.7 -7.7 -10.3 -7.3 -18.7

Standard Deviation (LSB) 1.8 3.9 3.4 6 7

Min Value (LSB) -11.1 -19.4 -20.5 -25.3 -39.7

Max Value (LSB) -0.3 4 -0.1 10.7 2.3

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1382

46.7.5.2 ADC Electrical Performances

Single-ended Static Performances

Single-ended Dynamic Performances

Note: 1. ADC Clock (fADC) = 20 MHz, fS = 1 MHz, fIN = 127 kHz, Frequency band = [1 kHz, 500 kHz] - Nyquist conditions

fulfilled.

Differential Static Performances

Differential Dynamic Performances

Note: 1. ADC Clock (fADC) = 20 MHz,

fS = 1 MHz,

fIN = 127 kHz,

Frequency band = [1 kHz, 500 kHz]

Nyquist conditions fulfilled.

10-bit ADC Mode

In 10-bit mode, the ADC produces 12-bit output but the output data in AFEC_CDR is shifted two bits to the right,

removing the two LSBs of the 12-bit ADC.

The gain and offset have the same values as for 12-bit mode, with digital full-scale output code range reduced to

1024 (vs 4096).

The INL and DNL have the same values as for 12-bit mode.

The dynamic performances are the 12-bit mode values, reduced by 12 dB.

Table 46-39. Single-ended Static Electrical Characteristics

Symbol Parameter Conditions Min Typ Max Unit

INL ADC Integral Non-linearity — -2 ±1 2 LSB

DNL ADC Differential Non-linearity — -1 ±0.5 1 LSB

Table 46-40. Single-ended Dynamic Electrical Characteristics (1)

Symbol Parameter Conditions Min Typ Max Unit

SNR Signal to Noise Ratio (1) 56 64 72 dB

THD Total Harmonic Distortion (1) 66 74 — dB

SINAD Signal to Noise and Distortion (1) 55 62 — dB

ENOB Effective Number of Bits (1) 9 10.5 — bits

Table 46-41. Differential Static Electrical Characteristics

Symbol Parameter Conditions Min Typ Max Unit

INL Integral Non-linearity -2 ±1 2 LSB

DNL Differential Non-linearity -1 ±0.5 1 LSB

Table 46-42. Differential Dynamic Electrical Characteristics

Symbol Parameter Conditions Min Typ Max Unit

SNR Signal to Noise Ratio (1) 60 64 74 dB

THD Total Harmonic Distortion (1) 76 80 — dB

SINAD Signal to Noise and Distortion (1) 60 64 73 dB

ENOB Effective Number of Bits (1) 9.5 10.5 12 bits

1383SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Low Voltage Supply

The ADC operates in 10-bit mode or 12-bit mode. Working at low voltage (VDDIN or/and VADVREF) between 2 and

2.4V is subject to the following restrictions:

 The field IBCTL must be 00 to reduce the biasing of the ADC under low voltage. See Section 46.7.1.1 “ADC

Bias Current”.

 In 10-bit mode, the ADC clock should not exceed 5 MHz (max signal bandwidth is 250 kHz).

 In 12-bit mode, the ADC clock should not exceed 2 MHz (max signal bandwidth is 100 kHz).

46.7.5.3 ADC Channel Input Impedance

Figure 46-18. Input Channel Model

where:

 Zi is input impedance in single-ended or differential mode

 Ci = 1 to 8 pF ±20% depending on the gain value and mode (SE or DIFF); temperature dependency is

negligible

 RON is typical 2 kΩ and 8 kΩ max (worst case process and high temperature)

 RON is negligible regarding the value of Zi

The following formula is used to calculate input impedance:

where:

 fS is the sampling frequency of the ADC channel

 Typ values are used to compute ADC input impedance Zi

Table 46-43. Input Capacitance (CIN) Values

Gain Selection Single-ended Differential

0.5 – 2 pF

1 2 pF 4 pF

2 2 pF 8 pF

4 4 pF –

C
i

Z
i

R
ON

GND

Single-ended model

C
i

R
ON

Differential model

Z
i

R
ON

Zi

1

fS Ci×
----------------=

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1384

Track and Hold Time versus Source Output Impedance

Figure 46-19 shows a simplified acquisition path.

Figure 46-19. Simplified Acquisition Path

During the tracking phase, the ADC needs to track the input signal during the tracking time shown below:

tTRACK = 0.054 × ZSOURCE + 205

with tTRACK expressed in ns and ZSOURCE expressed in Ω.

The ADC already includes a tracking time of 15 tCP_ADC

Two cases must be considered:

 If the calculated tracking time (tTRACK) is lower than 15 tCP_ADC, then AFEC_MR.TRACKTIM can be set to 0.

 If the calculated tracking time (tTRACK) is higher than 15 tCP_ADC, then AFEC_MR.TRACKTIM must be set to

the correct value.

46.7.5.4 AFE DAC Offset Compensation

Table 46-44. Zi Input Impedance

fS (MHz) 1 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.007813

Ci = 2 pF

Zi (MΩ) 0.5 1 2 4 8 16 32 64

Ci = 4 pF

Zi (MΩ) 0.25 0.5 1 2 4 8 16 32

Ci = 8 pF

Zi (MΩ) 0.125 0.25 0.5 1 2 4 8 16

Sample & HoldMux.

Z
SOURCE

R
ON

C
i

ADC
Input

12-bit ADC

Table 46-45. AFE DAC Offset Compensation

Parameter Conditions Min Typ Max Unit

Resolution - N — — 12 — bits

INL Range [32 to 4063] -4 — +4 LSB

DNL — -2 — +2 LSB

LSB relative to VREFIN Scale LSB = VREFIN /2e12 — 732 — µV

1385SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.7.6 ADC Resolution with Averaging

46.7.6.1 Conditions @ 25°C with Gain = 1

 fADC = 20 MHz; fADC = 2 MHz for INL and DNL static measurement only

 fS = 1 MHz, ADC Sampling Frequency in Free Run Mode

 VADVREF = 3V

 Signal Amplitude: VADVREF/2, Signal Frequency < 100 Hz

 OSR: Number of Averaged Samples

 VDDIN = 2.4V

Table 46-46. ADC Resolution following Digital Averaging (Gain = 1)

Parameter Averaging

Resolution

RES (AFEC_EMR)

Over

Sampling

Ratio

Mode

(bits)

INL

(LSB)

DNL

(LSB)

SNR

(dB)

THD

(dB)

ENOB

(bits)

FS

(ksps)

Single-ended Mode

RES = 0 1 12 ±1 ±0.5 63.5 -83 10.2 1000

RES = 2 4 13 ±1 ±1 68.3 -84.5 11 250

RES = 3 16 14 +4 / -2 +3.2 / -1 73 -85.7 11.8 62.5

RES = 4 64 15 +6 / -3.5 — 76.8 -85.8 12.4 15.6

RES = 5 256 16 +15 / -8 — 82.7 -86.2 13.2 3.9

Differential Mode

RES = 0 1 12 ±1 ±0.5 64 -83 10.3 1000

RES = 2 4 13 ±1 ±1 69.2 -83.7 11.2 250

RES = 3 16 14 +3 / -1.5 +3 / -1 74.8 -84.5 12.1 62.5

RES = 4 64 15 +6 / -3.5 — 80.2 -84.5 12.8 15.6

RES = 5 256 16 +10 / -7 — 83.9 -84.9 13.2 3.9

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1386

46.7.6.2 Conditions @ 25°C with Gain = 4

 fADC = 20 MHz

 fS = 1 MHz, ADC Sampling Frequency in Free Run Mode

 VADVREF= 3V

 Signal Amplitude: VADVREF/2, Signal Frequency < 100 Hz

 OSR: Number of Averaged Samples

Table 46-47. ADC Resolution following Digital Averaging (Gain = 4)

Parameter Averaging

Resolution

RES (AFEC_EMR)

Over

Sampling

Ratio

Mode

(bits)

INL

(LSB)

DNL

(LSB)

SNR

(dB)

THD

(dB)

ENOB

(bits)

FS

(ksps)

Single-ended Mode

RES = 0 1 12 ±1 ±0.5 59 -81 9.5 1000

RES = 2 4 13 +1.7 / -1.3 +1.6 / -1 63.1 -82.9 10.2 250

RES = 3 16 14 +1.7 / -2.5 +2 / -1 67 -83.6 10.8 62.5

RES = 4 64 15 ±8 — 70.3 -84.5 11.4 15.6

RES = 5 256 16 ±12 — 74.8 -85.1 12.1 3.9

Differential Mode

RES = 0 1 12 ±1 ±0.5 62 -84.5 10 1000

RES = 2 4 13 ±1 ±1 67.7 -85.7 10.9 25

RES = 3 16 14 +4.1 / -1.6 +3.4 / -1 73.6 -86.8 11.9 6.25

RES = 4 64 15 ±3.5 — 78.7 -86.8 12.7 1.56

RES = 5 256 16 ±7.5 — 82.1 -86.8 13.1 0.39

1387SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.8 12-bit DAC Characteristics

External voltage reference for DAC is ADVREF. See the ADC voltage reference characteristics Table 46-29 on

page 1377.

Note: DAC Clock (fDAC) = 5 MHz, fS = 200 kHz, IBCTL = 01.

Table 46-48. Analog Power Supply Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDIN Analog Supply — 2.4 3.0 3.6 V

IVDDIN Current Consumption

Sleep Mode (Clock OFF) — — 3 µA

Fast Wake-up (Standby Mode, Clock on) — 2 3 mA

Normal Mode with 1 Output ON

(IBCTLDACCORE = 01, IBCTLCHx = 10)
— 4.3 5.6 mA

Normal Mode with 2 Outputs ON

(IBCTLDACCORE = 01, IBCTLCHx = 1 0)
— 5 6.5 mA

Table 46-49. Channel Conversion Time and DAC Clock

Symbol Parameter Conditions Min Typ Max Unit

fDAC Clock Frequency — 1 — 50 MHz

tCP_DAC Clock Period — 20 — 1000 ns

tREFRESH

Refresh Time Between

Conversions
— 20 — — µs

fS Sampling Frequency — 0.05 — 2 MHz

tSTART Startup time

From Sleep Mode to Normal Mode:

– Voltage Reference OFF

– DAC Core OFF

20 30 40

µs
From Fast Wake-Up to Normal Mode:

– Voltage Reference ON

– DAC Core OFF

2.5 3.75 5

tCONV Conversion Time — — — 25 tCP_DAC

Table 46-50. Static Performance Characteristics

Symbol Parameter Conditions Min Typ Max Unit

Resolution — — 12 — bit

INL Integral Non-linearity
2.4V < VDDIN < 2.7V -6 — +6

LSB
2.7V < VDDIN < 3.6V -2.5 ±1 +2.5

DNL Differential Non-linearity
2.4V < VDDIN < 2.7V

-2.5 ±1 +2.5 LSB
2.7V < VDDIN < 3.6V

EO Offset Error — -32 ±8 32 LSB

EG Gain Error — -32 ±2 32 LSB

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1388

Note: DAC Clock (fDAC) = 50 MHz, fS = 2 MHz, fIN = 241 kHz, IBCTL = 01, FFT using 1024 points or more, Frequency band =

[10 kHz, 1 MHz] - Nyquist conditions fulfilled.

Table 46-51. Dynamic Performance Characteristics

Symbol Parameter Conditions Min Typ Max Unit

SNR Signal to Noise Ratio
2.4V < VDDIN < 2.7V

2.7V < VDDIN < 3.6V

47

56

58

61

70

74
dB

THD Total Harmonic Distortion
2.4V < VDDIN < 2.7V

2.7V < VDDIN < 3.6V

—

—

-72

-76

-60

-68
dB

SINAD Signal to Noise and Distortion
2.4V < VDDIN < 2.7V

2.7V < VDDIN < 3.6V

47

56

58

61

—

—
dB

ENOB Effective Number of Bits
2.4V < VDDIN < 2.7V

2.7V < VDDIN < 3.6V

7.5

9

9

10

12

12
bits

Table 46-52. Analog Outputs

Symbol Parameter Conditions Min Typ Max Unit

VOR Voltage Range — (1/6) x VADVREF — (5/6) x VADVREF V

SR Slew Rate

Channel output current versus slew rate

(IBCTL for DAC0 or DAC1, noted

IBCTLCHx)

RLOAD = 10 kΩ/0 pF < CLOAD< 50 pF

IBCTLCHx = 00

IBCTLCHx = 01

IBCTLCHx = 10

IBCTLCHx = 11

—

—

—

—

2.7

5.3

8

10.7

—

—

—

—

V/µs

Output Channel

Current Consumption

No resistive load

IBCTLCHx = 00

IBCTLCHx = 01

IBCTLCHx = 10

IBCTLCHx = 11

—

—

—

—

0.23

0.45

0.67

0.89

—

—

—

—

mA

tsa Settling Time RLOAD = 10 kΩ/0 pF < CLOAD< 50 pF — — 0.5 µs

RLOAD Output Load Resistor 10 — — kΩ

CLOAD

Output Load

Capacitor
— 30 50 pF

1389SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.9 Analog Comparator Characteristics

46.10 Temperature Sensor

The temperature sensor is connected to channel 15 of the ADC.

The temperature sensor provides an output voltage (VO_TS) that is proportional to absolute temperature (PTAT).

VO_TS linearly varies with a temperature slope dVO_TS/dT = 4.7 mV/°C.

VO_TS equals 1.44V at TA 27°C, with a ±60 mV accuracy. The VO_TS slope versus temperature dVO_TS/dT = 4.7

mV/°C only shows a ±7% slight variation over process, mismatch and supply voltage.

The user needs to calibrate it (offset calibration) at ambient temperature to eliminate the VO_TS spread at ambient

temperature (±15%).

Notes: 1. The value of TS only (the value does not take into account the ADC offset/gain/errors).

2. The temperature accuracy takes into account the ADC offset error, gain error in single ended mode with Gain = 1.

Table 46-53. Analog Comparator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VR Voltage Range Analog Comparator is supplied by VDDIN 1.62 3.3 3.6 V

VIR Input Voltage Range — GND + 0.2 — VDDIN - 0.2 V

VIO Input Offset Voltage — — — 20 mV

IVDDIN Current Consumption (VDDIN)
Low-power option (ISEL = 0)

High-speed option (ISEL = 1)

—

—

—

—

25

170
µA

Vhys Hysteresis
HYST = 0x01 or 0x10

HYST = 0x11

—

—

15

30

50

90
mV

tsa Settling Time
Overdrive > 100 mV; Low-power option

Overdrive > 100 mV; High-speed option

—

—

—

—

1

0.1
µs

Table 46-54. Temperature Sensor Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VO_TS Output Voltage TA = 27° C(1) — 1.44 — V

VO_TS(accuracy) Output Voltage Accuracy TA = 27° C(1) -60 +60 mV

dVO_TS/dT
Temperature Sensitivity (Slope

Voltage vs Temperature
(1) — 4.7 — mV/°C

— Slope Accuracy Over temperature range -40 to 105 °C (1) -7 — +7 %

— Temperature Accuracy(2)

After offset calibration

over temperature range -40 to 105 °C
-6 — +6 °C

After offset calibration

over temperature range 0 to 80 °C
-5 — +5 °C

tSTART Startup Time (1) — 5 10 µs

IVDDCORE Current Consumption (1) 50 70 80 µA

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1390

46.11 AC Characteristics

46.11.1 Master Clock Characteristics

46.11.2 I/O Characteristics

Criteria used to define the maximum frequency of the I/Os:

 Output duty cycle (40%–60%)

 Minimum output swing: 100 mV to VDDIO - 100 mV

 Addition of rising and falling time inferior to 75% of the period

Notes: 1. Pin Group 1 = PA14, PA29

2. Pin Group 2 = PA[4], PA[9–11], PA[15–25], PB[0–7], PB[12–13], PC[0–31], PD[2], PD[18–31], PE[0–5]

3. Pin Group 3 = PA[5–8], PA[12–13], PA[26–28], PA[30–31], PB[8–9], PB[14], PD[0–1], PD[3–17]

4. Pin Group 4 = PA[0–3]

5. Pin Group 5 = PB[10–11]

Table 46-55. Master Clock Waveform Parameters

Symbol Parameter Conditions Min Max Unit

1/(tCPMCK) Master Clock Frequency
VDDCORE @ 1.20V — 120 MHz

VDDCORE @ 1.08V — 100 MHz

Table 46-56. I/O Characteristics

Symbol Parameter Conditions Min Max Unit

FreqMax1 Pin Group 1(1) Maximum output frequency
10 pF

VDDIO = 1.62V

— 70
MHz

30 pF — 45

PulseminH1 Pin Group 1(1) High Level Pulse Width
10 pF 7.2 —

ns
30 pF 11 —

PulseminL1 Pin Group 1(1) Low Level Pulse Width
10 pF 7.2 —

ns
30 pF 11 —

FreqMax2 Pin Group 2(2) Maximum output frequency
10 pF — 46

MHz
25 pF — 23

PulseminH2 Pin Group 2 (2) High Level Pulse Width
10 pF 11 —

ns
25 pF 21.8 —

PulseminL2 Pin Group 2(2) Low Level Pulse Width
10 pF 11 —

ns
25 pF 21.8 —

FreqMax3 Pin Group3(3) Maximum output frequency
10 pF — 70

MHz
25 pF — 35

PulseminH3 Pin Group 3(3) High Level Pulse Width
10 pF 7.2 —

ns
25 pF 14.2 —

PulseminL3 Pin Group 3(3) Low Level Pulse Width
10 pF 7.2 —

ns
25 pF 14.2 —

FreqMax4 Pin Group 4(4) Maximum output frequency
10 pF — 58

MHz
25 pF — 29

PulseminH4 Pin Group 4(4) High Level Pulse Width
10 pF 8.6 —

ns
25pF 17.2 —

PulseminL4 Pin Group 4(4) Low Level Pulse Width
10 pF 8.6 —

ns
25 pF 17.2 —

FreqMax5 Pin Group 5(5) Maximum output frequency 25 pF — 25 MHz

1391SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.11.3 SPI Characteristics

In Figure 46-21 “SPI Master Mode with (CPOL = NCPHA = 0) or (CPOL = NCPHA = 1)” and Figure 46-22 “SPI

Master Mode with (CPOL = 0 and NCPHA = 1) or (CPOL = 1 and NCPHA = 0)” below, the MOSI line shifting edge

is represented with a hold time = 0. However, it is important to note that for this device, the MISO line is sampled

prior to the MOSI line shifting edge. As shown in Figure 46-20 “MISO Capture in Master Mode”, the device

sampling point extends the propagation delay (tp) for slave and routing delays to more than half the SPI clock

period, whereas the common sampling point allows only less than half the SPI clock period.

As an example, an SPI Slave working in Mode 0 is safely driven if the SPI Master is configured in Mode 0.

Figure 46-20. MISO Capture in Master Mode

Figure 46-21. SPI Master Mode with (CPOL = NCPHA = 0) or (CPOL = NCPHA = 1)

MISO
(slave answer)

SPCK
(generated

 by the master)

MISO cannot be provided

before the edge

Bit N Bit N+1

0 < delay < SPI0 or SPI3

Bit N

Internal

shift register

Safe margin,

always >0

Common sampling point Device sampling point

tp

 Extended tp

SPCK

MISO

MOSI

SPI2

SPI0 SPI1

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1392

Figure 46-22. SPI Master Mode with (CPOL = 0 and NCPHA = 1) or (CPOL = 1 and NCPHA = 0)

Figure 46-23. SPI Slave Mode with (CPOL = 0 and NCPHA = 1) or (CPOL = 1 and NCPHA = 0)

Figure 46-24. SPI Slave Mode with (CPOL = NCPHA = 0) or (CPOL = NCPHA = 1)

SPCK

MISO

MOSI

SPI5

SPI3 SPI4

SPCK

MISO

MOSI

SPI6

SPI7 SPI8

NPCSS

SPI12
SPI13

SPCK

MISO

MOSI

SPI9

SPI10 SPI11

NPCS0

SPI14

SPI15

1393SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.11.3.1 Maximum SPI Frequency

The following formulas give the maximum SPI frequency in Master read and write modes and in Slave read and

write modes.

Master Write Mode

The SPI only sends data to a slave device such as an LCD, for example. The limit is given by SPI2 (or SPI5)

timing. Since it gives a maximum frequency above the maximum pad speed (see Section 46.11.2 “I/O

Characteristics”), the maximum SPI frequency is defined by the pin FreqMax value.

Master Read Mode

tvalid is the slave time response to output data after detecting an SPCK edge. For a non-volatile memory with

tvalid (or tV) = 12 ns Max, fSPCKMax = 43.4 MHz @ VDDIO = 3.3V.

Slave Read Mode

In slave mode, SPCK is the input clock for the SPI. The maximum SPCK frequency is given by setup and

hold timings SPI7/SPI8(or SPI10/SPI11). Since this gives a frequency well above the pad limit, the limit in

slave read mode is given by SPCK pad.

Slave Write Mode

For 3.3V I/O domain and SPI6, fSPCKMax = 21 MHz. tSETUP is the setup time from the master before sampling

data.

fSPCKMax
1

SPI0 or SPI3() tvalid+
---=

fSPCKMax
1

2x S(PI6max or SPI9max() tsetup)+
--=

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1394

46.11.3.2 SPI Timings

SPI timings are given for the following domains:

 3.3V domain: VDDIO from 2.85 to 3.6 V, maximum external capacitor = 40 pF

 1.8V domain: VDDIO from 1.65 to 1.95 V, maximum external capacitor = 20 pF

Table 46-57. SPI Timings

Symbol Parameter Conditions Min Max Unit

SPI0 MISO Setup time before SPCK rises (master)
3.3V domain 11.0 — ns

1.8V domain 12.5 — ns

SPI1 MISO Hold time after SPCK rises (master)
3.3V domain 0 — ns

1.8V domain 0 — ns

SPI2 SPCK rising to MOSI Delay (master)
3.3V domain -3.4 3.0 ns

1.8V domain -3.2 1.9 ns

SPI3 MISO Setup time before SPCK falls (master)
3.3V domain 18.0 — ns

1.8V domain 19.8 — ns

SPI4 MISO Hold time after SPCK falls (master)
3.3V domain 0 — ns

1.8V domain 0 — ns

SPI5 SPCK falling to MOSI Delay (master)
3.3V domain -6.4 -1.9 ns

1.8V domain -5.9 -2.6 ns

SPI6 SPCK falling to MISO Delay (slave)
3.3V domain 3.6 11.9 ns

1.8V domain 4.2 13.9 ns

SPI7 MOSI Setup time before SPCK rises (slave)
3.3V domain 0 — ns

1.8V domain 0 — ns

SPI8 MOSI Hold time after SPCK rises (slave)
3.3V domain 2.8 — ns

1.8V domain 2.3 — ns

SPI9 SPCK rising to MISO Delay (slave)
3.3V domain 3.8 12.1 ns

1.8V domain 4.2 13.6 ns

SPI10 MOSI Setup time before SPCK falls (slave)
3.3V domain 0 — ns

1.8V domain 0 — ns

SPI11 MOSI Hold time after SPCK falls (slave)
3.3V domain 2.4 — ns

1.8V domain 2.5 — ns

SPI12 NPCS setup to SPCK rising (slave)
3.3V domain 3.2 — ns

1.8V domain 3.3 — ns

SPI13 NPCS hold after SPCK falling (slave)
3.3V domain 0 — ns

1.8V domain 0 — ns

SPI14 NPCS setup to SPCK falling (slave)
3.3V domain 3.8 — ns

1.8V domain 3.3 — ns

SPI15 NPCS hold after SPCK falling (slave)
3.3V domain 0 — ns

1.8V domain 0 — ns

1395SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Note that in SPI master mode, the SAM4E does not sample the data (MISO) on the opposite edge where the data

clocks out (MOSI), but the same edge is used. See Figure 46-21 and Figure 46-22.

46.11.4 HSMCI Timings

The High Speed MultiMedia Card Interface (HSMCI) supports the MultiMedia Card (MMC) Specification V4.3, the

SD Memory Card Specification V2.0, the SDIO V2.0 specification and CE-ATA V1.1.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1396

46.11.5 SMC Timings

Timings are given in the following domains:

 1.8V domain: VDDIO from 1.65V to 1.95V, maximum external capacitor = 30 pF

 3.3V domain: VDDIO from 2.85V to 3.6V, maximum external capacitor = 50 pF

Timings are given assuming a capacitance load on data, control and address pads.

In the tables that follow, tCPMCK is MCK period.

46.11.5.1 Read Timings

Table 46-58. SMC Read Signals - NRD Controlled (READ_MODE = 1)

Symbol

VDDIO Supply 1.8V Domain 3.3V Domain 1.8V Domain 3.3V Domain

UnitParameter Min Max

NO HOLD Settings (NRD_HOLD = 0)

SMC1 Data Setup before NRD High 20.6 18.6 — — ns

SMC2 Data Hold after NRD High 0 0 — — ns

 HOLD Settings (NRD_HOLD ≠ 0)

SMC3 Data Setup before NRD High 15.9 14.1 — — ns

SMC4 Data Hold after NRD High 0 0 — — ns

 HOLD or NO HOLD Settings (NRD_HOLD ≠ 0, NRD_HOLD = 0)

SMC5 A0–A22 Valid before NRD High
(NRD_SETUP + NRD_PULSE)

× tCPMCK - 6.8
(NRD_SETUP +

NRD_PULSE) × tCPMCK - 6.5
— — ns

SMC6 NCS low before NRD High

(NRD_SETUP +

NRD_PULSE -

NCS_RD_SETUP) ×

tCPMCK - 4.6

(NRD_SETUP +

NRD_PULSE -

NCS_RD_SETUP) ×

tCPMCK - 5.1

— — ns

SMC7 NRD Pulse Width NRD_PULSE × tCPMCK - 7.5 NRD_PULSE × tCPMCK - 6.6 — — ns

Table 46-59. SMC Read Signals - NCS Controlled (READ_MODE = 0)

Symbol

VDDIO Supply 1.8V Domain 3.3V Domain 1.8V Domain 3.3V Domain

UnitParameter Min Max

NO HOLD Settings (NCS_RD_HOLD = 0)

SMC8 Data Setup before NCS High 21.8 19.4 — — ns

SMC9 Data Hold after NCS High 0 0 — — ns

 HOLD Settings (NCS_RD_HOLD ≠ 0)

SMC10 Data Setup before NCS High 17.1 14.9 — — ns

SMC11 Data Hold after NCS High 0 0 — — ns

 HOLD or NO HOLD Settings (NCS_RD_HOLD ≠ 0, NCS_RD_HOLD = 0)

SMC12 A0–A22 valid before NCS High

(NCS_RD_SETUP +

NCS_RD_PULSE) ×

tCPMCK - 6.9

(NCS_RD_SETUP +

NCS_RD_PULSE) ×

tCPMCK - 6.6

— — ns

SMC13 NRD low before NCS High

(NCS_RD_SETUP +

NCS_RD_PULSE -

NRD_SETUP) × tCPMCK - 5.8

(NCS_RD_SETUP +

NCS_RD_PULSE -

NRD_SETUP) × tCPMCK - 5.5

— — ns

1397SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.11.5.2 Write Timings

Notes: 1. Hold length = total cycle duration - setup duration - pulse duration. “hold length” is for “NCS_WR_HOLD length” or

“NWE_HOLD length”.

SMC14 NCS Pulse Width
NCS_RD_PULSE length ×

tCPMCK - 7.6

NCS_RD_PULSE length ×

tCPMCK - 6.7
— — ns

Table 46-60. SMC Write Signals - NWE Controlled (WRITE_MODE = 1)

Symbol

VDDIO Supply 1.8V Domain 3.3V Domain 1.8V Domain 3.3V Domain

UnitParameter Min Max

 HOLD or NO HOLD Settings (NWE_HOLD ≠ 0, NWE_HOLD = 0)

SMC15 Data Out Valid before NWE High
NWE_PULSE × tCPMCK -

6.2

NWE_PULSE × tCPMCK -

5.9
— — ns

SMC16 NWE Pulse Width
NWE_PULSE × tCPMCK -

7.0

NWE_PULSE × tCPMCK -

6.1
— — ns

SMC17 A0–A22 valid before NWE low
NWE_SETUP × tCPMCK -

6.6

NWE_SETUP × tCPMCK -

6.2
— — ns

SMC18 NCS low before NWE high

(NWE_SETUP -

NCS_RD_SETUP +

NWE_PULSE) × tCPMCK -

5.9

(NWE_SETUP -

NCS_RD_SETUP +

NWE_PULSE) × tCPMCK -

5.5

— — ns

HOLD Settings (NWE_HOLD ≠ 0)

SMC19

NWE High to Data OUT,

NBS0/A0 NBS1, NBS2/A1,

NBS3, A2–A25 change

NWE_HOLD × tCPMCK -

9.4

NWE_HOLD × tCPMCK -

7.6
— — ns

SMC20 NWE High to NCS Inactive (1)
(NWE_HOLD -

NCS_WR_HOLD) ×

tCPMCK - 6.0

(NWE_HOLD -

NCS_WR_HOLD) ×

tCPMCK - 5.6

— — ns

NO HOLD Settings (NWE_HOLD = 0)

SMC21

NWE High to Data OUT,

NBS0/A0 NBS1, NBS2/A1,

NBS3, A2–A25, NCS change(1)
3.3 3.2 — — ns

Table 46-61. SMC Write NCS Controlled (WRITE_MODE = 0)

Symbol

VDDIO Supply 1.8V Domain 3.3V Domain 1.8V Domain 3.3V Domain

UnitParameter Min Max

SMC22 Data Out Valid before NCS High
NCS_WR_PULSE ×

tCPMCK - 6.3

NCS_WR_PULSE ×

tCPMCK - 6.0
— — ns

SMC23 NCS Pulse Width
NCS_WR_PULSE ×

tCPMCK - 7.6

NCS_WR_PULSE ×

tCPMCK - 6.7
— — ns

SMC24 A0–A22 valid before NCS low
NCS_WR_SETUP ×

tCPMCK - 6.7

NCS_WR_SETUP ×

tCPMCK - 6.3
— — ns

Table 46-59. SMC Read Signals - NCS Controlled (READ_MODE = 0) (Continued)

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1398

Figure 46-25. SMC Timings - NCS Controlled Read and Write

SMC25 NWE low before NCS high
(NCS_WR_SETUP -

NWE_SETUP + NCS

pulse) × tCPMCK - 5.6

(NCS_WR_SETUP -

NWE_SETUP + NCS

pulse) × tCPMCK - 5.3

— — ns

SMC26
NCS High to Data Out, A0–A25,
change

NCS_WR_HOLD ×

tCPMCK - 10.6

NCS_WR_HOLD ×

tCPMCK - 9.0
— — ns

SMC27 NCS High to NWE Inactive
(NCS_WR_HOLD -

NWE_HOLD) × tCPMCK -

7.0

(NCS_WR_HOLD -

NWE_HOLD) × tCPMCK -

6.8

— — ns

Table 46-61. SMC Write NCS Controlled (WRITE_MODE = 0)

Symbol

VDDIO Supply 1.8V Domain 3.3V Domain 1.8V Domain 3.3V Domain

UnitParameter Min Max

NRD

NCS

DATA

NWE

NCS Controlled READ

with NO HOLD

NCS Controlled READ

with HOLD

NCS Controlled WRITE

SMC22 SMC26SMC10 SMC11

SMC12

SMC9SMC8

SMC14 SMC14 SMC23

SMC27

SMC26

A0–A23

SMC24

SMC25

SMC12

SMC13 SMC13

1399SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 46-26. SMC Timings - NRD Controlled Read and NWE Controlled Write

NRD

NCS

DATA

NWE

A0–A23

NRD Controlled READ

with NO HOLD

NWE Controlled WRITE

with NO HOLD

NRD Controlled READ

with HOLD

NWE Controlled WRITE

with HOLD

SMC1 SMC2 SMC15

SMC21

SMC3 SMC4 SMC15 SMC19

SMC20

SMC7

SMC21

SMC16

SMC7

SMC16

SMC19

SMC21

SMC17

SMC18

SMC5 SMC5

SMC6 SMC6

SMC17

SMC18

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1400

46.11.6 USART in SPI Mode Timings

Timings are given in the following domains:

 1.8V domain: VDDIO from 1.65 to 1.95 V, maximum external capacitor = 20 pF

 3.3V domain: VDDIO from 2.85 to 3.6 V, maximum external capacitor = 40 pF

Figure 46-27. USART SPI Master Mode

Figure 46-28. USART SPI Slave Mode (Mode 1 or 2)

NSS

SPI0

MSB LSB

SPI1

CPOL = 1

CPOL = 0

MISO

MOSI

SCK

SPI5

SPI2

SPI3

SPI4
SPI4

• MOSI line is driven by the output pin TXD

• MISO line drives the input pin RXD

• SCK line is driven by the output pin SCK

• NSS line is driven by the output pin RTS

SCK

MISO

MOSI

SPI6

SPI7 SPI8

NSS

SPI12
SPI13

• MOSI line drives the input pin RXD

• MISO line is driven by the output pin TXD

• SCK line drives the input pin SCK

• NSS line drives the input pin CTS

1401SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Figure 46-29. USART SPI Slave Mode (Mode 0 or 3)

SCK

MISO

MOSI

SPI9

SPI10 SPI11

NSS

SPI14

SPI15

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1402

46.11.6.1 USART SPI TImings

Table 46-62. USART SPI Timings

Symbol Parameter Conditions Min Max Unit

Master Mode

SPI0 SCK Period
1.8V domain

3.3V domain
MCK/6 — ns

SPI1 Input Data Setup Time
1.8V domain

3.3V domain

0.5 × MCK + 3.3

0.5 × MCK + 3.7
— ns

SPI2 Input Data Hold Time
1.8V domain

3.3V domain

1.5 × MCK + 0.8

1.5 × MCK + 1.1
— ns

SPI3 Chip Select Active to Serial Clock
1.8V domain

3.3V domain

1.5 × SPCK - 1.4

1.5 × SPCK - 1.9
— ns

SPI4 Output Data Setup Time
1.8V domain

3.3V domain

- 6.6

- 6.0

9.1

9.8
ns

SPI5 Serial Clock to Chip Select Inactive
1.8V domain

3.3V domain

1 × SPCK - 4.1

1 × SPCK - 4.6
— ns

Slave Mode

SPI6 SCK falling to MISO
1.8V domain

3.3V domain

3.9

3.2

17.1

15.1
ns

SPI7 MOSI Setup time before SCK rises
1.8V domain

3.3V domain

2 × MCK + 2.6

2 × MCK + 2.5
— ns

SPI8 MOSI Hold time after SCK rises
1.8V domain

3.3V domain

1.3

1.8
— ns

SPI9 SCK rising to MISO
1.8V domain

3.3V domain

3.9

3.3

17.2

15.8
ns

SPI10 MOSI Setup time before SCK falls
1.8V domain

3.3V domain

2 × MCK + 2.5

2 × MCK + 3.0
— ns

SPI11 MOSI Hold time after SCK falls
1.8V domain

3.3V domain

1.4

1.3
— ns

SPI12 NPCS0 setup to SCK rising
1.8V domain

3.3V domain

 2,.5 × MCK + 1.3

2.5 × MCK + 0.4
— ns

SPI13 NPCS0 hold after SCK falling
1.8V domain

3.3V domain

1.5 × MCK + 1.7

1.5 × MCK + 1.0
— ns

SPI14 NPCS0 setup to SCK falling
1.8V domain

3.3V domain

 2.5 × MCK + 1.2

2.5 × MCK + 0.9
— ns

SPI15 NPCS0 hold after SCK rising
1.8V domain

3.3V domain

1.5 × MCK + 1.6

1.5 × MCK + 1.5
— ns

1403SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.11.7 Two-wire Serial Interface Characteristics

Table 46-63 describes the requirements for devices connected to the Two-wire Serial Bus. For timing symbols refer to Fig-

ure 46-30.

Notes: 1. Required only for fTWCK > 100 kHz.

2. Cb = capacitance of one bus line in pF. Per I2C Standard, Cb Max = 400 pF

3. The TWCK low period is defined as follows: tLOW = ((CLDIV × 2CKDIV) + 4) × tMCK

4. The TWCK high period is defined as follows: tHIGH = ((CHDIV × 2CKDIV) + 4) × tMCK

5. tCPMCK = MCK bus period

Table 46-63. Two-wire Serial Bus Requirements

Symbol Parameter Conditions Min Max Unit

VIL Low-level input voltage — -0.3 0.3 × VDDIO V

VIH High-level input voltage — 0.7 × VDDIO VCC + 0.3 V

Vhys Hysteresis of Schmitt Trigger Inputs — 0.150 — V

VOL Low-level output voltage 3 mA sink current — 0.4 V

tr Rise Time for both TWD and TWCK 20 + 0.1Cb
(1)(2) 300 ns

tof Output Fall Time from VIHmin to VILmax

10 pF < Cb < 400 pF

Figure 46-30
20 + 0.1Cb

(1)(2) 250 ns

Ci
(1) Capacitance for each I/O Pin — — 10 pF

fTWCK TWCK Clock Frequency — 0 400 kHz

RP Value of Pull-up resistor
fTWCK ≤ 100 kHz

(VDDIO - 0.4V) ÷ 3mA
1000ns ÷ Cb Ω

fTWCK > 100 kHz 300ns ÷ Cb Ω

tLOW Low Period of the TWCK clock
fTWCK ≤ 100 kHz (3) — µs

fTWCK > 100 kHz (3) — µs

tHIGH High Period of the TWCK clock
fTWCK ≤ 100 kHz (4) — µs

fTWCK > 100 kHz (4) — µs

th(start) Hold Time (repeated) START Condition
fTWCK ≤ 100 kHz tHIGH — µs

fTWCK > 100 kHz tHIGH — µs

tsu(start)

Set-up time for a repeated START

condition

fTWCK ≤ 100 kHz tHIGH — µs

fTWCK > 100 kHz tHIGH — µs

th(data) Data hold time
fTWCK ≤ 100 kHz 0 3 × tCPMCK

(5) µs

fTWCK > 100 kHz 0 3 × tCPMCK
(5) µs

tsu(data) Data setup time
fTWCK ≤ 100 kHz tLOW - 3 × tCPMCK

(5) — ns

fTWCK > 100 kHz tLOW - 3 × tCPMCK
(5) — ns

tsu(stop) Setup time for STOP condition
fTWCK ≤ 100 kHz tHIGH — µs

fTWCK > 100 kHz tHIGH — µs

tBUF

Bus Free Time between a STOP and

START Condition

fTWCK ≤ 100 kHz tLOW — µs

fTWCK > 100 kHz tLOW — µs

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1404

Figure 46-30. Two-wire Serial Bus Timing

46.11.8 Ethernet MAC (GMAC) Characteristics

46.11.8.1 Timing Conditions

46.11.8.2 Timing Constraints

The Ethernet controller must be constrained so as to satisfy the standard timings given in Table 46-65 and Table

46-66, in MAX and STH corners.

Note: 1. For EMAC output signals, Min and Max access time are defined. The Min access time is the time between the GMDC falling

edge and the signal change. The Max access timing is the time between the GMDC falling edge and the signal stabilization.

Figure 46-31 illustrates Min and Max accesses for EMAC3.

Figure 46-31. Min and Max Access Time of EMAC Output Signals

tsu(start)

tLOW

tHIGH

tLOW

tfo

th(start) th(data) tsu(data)
tsu(stop)

tBUF

TWCK

TWD

tr

Table 46-64. Capacitance Load On Data, Clock Pads

Supply

Corner

MAX STH MIN

3.3V 20 pf 20 pf 0 pf

1.8V 20 pf 20 pf 0 pf

Table 46-65. EMAC Signals Relative to GMDC

Symbol Parameter Min (ns) Max (ns)

EMAC1 Setup for GMDIO from GMDC rising 10 —

EMAC2 Hold for GMDIO from GMDC rising 10 —

EMAC3 GMDIO toggling from GMDC falling 0 (1) 10 (1)

GMDC

GMDIO

EMAC3 maxEMAC1 EMAC2

EMAC4 EMAC5

EMAC3 min

1405SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.11.8.3 MII Mode

Table 46-66. EMAC MII Timings

Symbol Parameter Min (ns) Max (ns)

EMAC4 Setup for GCOL from GTXCK rising 10 —

EMAC5 Hold for GCOL from GTXCK rising 10 —

EMAC6 Setup for GCRS from GTXCK rising 10 —

EMAC7 Hold for GCRS from GTXCK rising 10 —

EMAC8 GTXER toggling from GTXCK rising 10 25

EMAC9 GTXEN toggling from GTXCK rising 10 25

EMAC10 GTX toggling from GTXCK rising 10 25

EMAC11 Setup for GRX from GRXCK 10 —

EMAC12 Hold for GRX from GRXCK 10 —

EMAC13 Setup for GRXER from GRXCK 10 —

EMAC14 Hold for GRXER from GRXCK 10 —

EMAC15 Setup for GRXDV from GRXCK 10 —

EMAC16 Hold for GRXDV from GRXCK 10 —

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1406

Figure 46-32. EMAC MII Mode Signals

GMDC

GMDIO

GCOL

GCRS

GTXCK

GTXER

GTXEN

GTX[3:0]

GRXCK

GRX[3:0]

GRXER

GRXDV

EMAC3EMAC1 EMAC2

EMAC4 EMAC5

EMAC6 EMAC7

EMAC8

EMAC9

EMAC10

EMAC11 EMAC12

EMAC13 EMAC14

EMAC15 EMAC16

1407SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

46.11.9 Embedded Flash Characteristics

The embedded flash is fully tested during production test. The flash contents are not set to a known state prior to

shipment. Therefore, the flash contents should be erased prior to programming an application.

The maximum operating frequency given in Table 46-67 is limited by the Embedded Flash access time when the

processor is fetching code out of it. The table provides the device maximum operating frequency defined by the

value of field FWS in the EEFC_FMR. This field defines the number of wait states required to access the

Embedded Flash Memory.

Table 46-67. Embedded Flash Wait State at 105°C

FWS Read Operations

Maximum Operating Frequency (MHz)

VDDCORE 1.08 V VDDCORE 1.2 V

VDDIO 1.62–3.6 V VDDIO 2.7–3.6 V VDDIO 1.62–3.6 V VDDIO 2.7–3.6 V

0 1 cycle 17 20 17 21

1 2 cycles 34 41 35 43

2 3 cycles 51 62 53 64

3 4 cycles 69 83 71 86

4 5 cycles 86 104 88 107

5 6 cycles 100 – 106 129

6 7 cycles – – 124 –

Table 46-68. AC Flash Characteristics

Parameter Conditions Min Typ Max Unit

Program Cycle Time

Write page mode – 1.5 3 ms

Erase page mode – 10 50 ms

Erase block mode (by 4 Kbytes) – 50 200 ms

Erase sector mode – 400 950 ms

Erase Pin Assertion Time Erase pin high 200 – – ms

Full Chip Erase
1 Mbyte

512 Kbytes

–

–

9

5.5

18

11
s

Data Retention Not Powered or Powered – 20 – years

Endurance Write/Erase cycles per page, block or sector @ 105°C 10k – – cycles

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1408

47. SAM4E Mechanical Characteristics

The SAM4E series devices are available in TFBGA100, LFBGA144, LQFP100, and LQFP144 packages.

47.1 100-ball TFBGA Package Drawing

Figure 47-1. 100-ball TFBGA Package Drawing

This package respects the recommendations of the NEMI User Group.

Table 47-1. Device and TFBGA Package Maximum Weight (Preliminary)

SAM4E 150 mg

Table 47-2. TFBGA Package Reference

JEDEC Drawing Reference MO-275-DDAC-2

JESD97 Classification e8

Table 47-3. TFBGA Package Characteristics

Moisture Sensitivity Level 3

1409SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

47.2 144-ball LFBGA Package Drawing

Figure 47-2. 144-ball LFBGA Package Drawing

This package respects the recommendations of the NEMI User Group.

Table 47-4. Device and LFBGA Package Maximum Weight (Preliminary)

SAM4E 200 mg

Table 47-5. LFBGA Package Reference

JEDEC Drawing Reference MS-275-EEAD-1

JESD97 Classification e8

Table 47-6. LFBGA Package Characteristics

Moisture Sensitivity Level 3

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1410

47.3 100-lead LQFP Package Drawing

Figure 47-3. 100-lead LQFP Package Drawing

This package respects the recommendations of the NEMI User Group.

Table 47-7. Device and LQFP Package Maximum Weight (Preliminary)

SAM4E 740 mg

Table 47-8. LQFP Package Reference

JEDEC Drawing Reference MS-026

JESD97 Classification e3

Table 47-9. LQFP Package Characteristics

Moisture Sensitivity Level 3

1411SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

47.4 144-lead LQFP Package Drawing

Figure 47-4. 144-lead LQFP Package Drawing

This package respects the recommendations of the NEMI User Group.

Table 47-10. Device and LQFP Package Maximum Weight (Preliminary)

SAM4E 900 mg

Table 47-11. LQFP Package Reference

JEDEC Drawing Reference MS-026-C

JESD97 Classification e3

Table 47-12. LQFP Package Characteristics

Moisture Sensitivity Level 3

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1412

47.5 Soldering Profile

Table 47-13 gives the recommended soldering profile from J-STD-020C.

Note: The package is certified to be backward compatible with Pb/Sn soldering profile.

A maximum of three reflow passes is allowed per component.

47.6 Packaging Resources

Land Pattern Definition.

Refer to the following IPC Standards:

 IPC-7351A and IPC-782 (Generic Requirements for Surface Mount Design and Land Pattern Standards)

http://landpatterns.ipc.org/default.asp

 Atmel Green and RoHS Policy and Package Material Declaration Datasheet available on www.atmel.com

Table 47-13. Soldering Profile

Profile Feature Green Package

Average Ramp-up Rate (217°C to Peak) 3°C/sec. max.

Preheat Temperature 175°C ±25°C 180 sec. max.

Temperature Maintained Above 217°C 60 sec. to 150 sec.

Time within 5°C of Actual Peak Temperature 20 sec. to 40 sec.

Peak Temperature Range 260°C

Ramp-down Rate 6°C/sec. max.

Time 25°C to Peak Temperature 8 min. max.

http://landpatterns.ipc.org/default.asp
http://www.atmel.com

1413SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

48. Marking

All devices are marked with the Atmel logo and the ordering code.

Additional marking is as follows:

where

 “YY”: manufactory year

 “WW”: manufactory week

 “V”: revision

 “XXXXXXXXX”: lot number

YYWW V
XXXXXXXXX ARM

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1414

49. Ordering Information

Table 49-1. Ordering Codes for SAM4E Devices

Ordering Code MRL

Flash

(Kbytes)

RAM

(Kbytes) Package Carrier Type

Operating

Temperature Range

ATSAM4E16EA-CU
A

1024

128

LFBGA144

Tray Industrial

(-40°C to 85°C)ATSAM4E16EA-CUR Reel

ATSAM4E16EB-CN
B

Tray Industrial

(-40°C to 105°C)ATSAM4E16EB-CNR Reel

ATSAM4E16EA-AU
A

LQFP144

Tray Industrial

(-40°C to 85°C)ATSAM4E16EA-AUR Reel

ATSAM4E16EA-AN
A

Tray

Industrial

(-40°C to 105°C)

ATSAM4E16EA-ANR Reel

ATSAM4E16EB-AN
B

Tray

ATSAM4E16EB-ANR Reel

ATSAM4E16CA-CU
A

TFBGA100

Tray Industrial

(-40°C to 85°C)ATSAM4E16CA-CUR Reel

ATSAM4E16CB-CN
B

Tray Industrial

(-40°C to 105°C)ATSAM4E16CB-CNR Reel

ATSAM4E16CA-AU
A

LQFP100

Tray Industrial

(-40°C to 85°C)ATSAM4E16CA-AUR Reel

ATSAM4E16CA-AN
A

Tray

Industrial

(-40°C to 105°C)

ATSAM4E16CA-ANR Reel

ATSAM4E16CB-AN
B

Tray

ATSAM4E16CB-ANR Reel

ATSAM4E8EA-CU
A

512

LFBGA144

Tray Industrial

(-40°C to 85°C)ATSAM4E8EA-CUR Reel

ATSAM4E8EB-CN
B

Tray Industrial

(-40°C to 105°C)ATSAM4E8EB-CNR Reel

ATSAM4E8EA-AU
A

LQFP144

Tray Industrial

(-40°C to 85°C)ATSAM4E8EA-AUR Reel

ATSAM4E8EA-AN
A

Tray

Industrial

(-40°C to 105°C)

ATSAM4E8EA-ANR Reel

ATSAM4E8EB-AN
B

Tray

ATSAM4E8EB-ANR Reel

ATSAM4E8CA-CU
A

TFBGA100

Tray Industrial

(-40°C to 85°C)ATSAM4E8CA-CUR Reel

ATSAM4E8CB-CN
B

Tray Industrial

(-40°C to 105°C)ATSAM4E8CB-CNR Reel

1415SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

ATSAM4E8CA-AU
A

512 128 LQFP100

Tray Industrial

(-40°C to 85°C)ATSAM4E8CA-AUR Reel

ATSAM4E8CA-AN
A

Tray

Industrial

(-40°C to 105°C)

ATSAM4E8CA-ANR Reel

ATSAM4E8CB-AN
B

Tray

ATSAM4E8CB-ANR Reel

Table 49-1. Ordering Codes for SAM4E Devices (Continued)

Ordering Code MRL

Flash

(Kbytes)

RAM

(Kbytes) Package Carrier Type

Operating

Temperature Range

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1416

50. Errata on SAM4E Devices

50.1 Errata SAM4E Rev. A Parts

The errata are applicable to the devices listed in the table below:

50.1.1 Watchdog

50.1.1.1 Watchdog Not Stopped in Wait Mode

When the Watchdog is enabled and the bit WAITMODE = 1 is used to enter Wait mode, the watchdog is not

halted. If the time spent in Wait mode is longer than the Watchdog time-out, the device will be reset if Watchdog

reset is enabled.

Problem Fix/Workaround

When entering Wait mode, the Wait For Event (WFE) instruction of the processor Cortex-M4 must be used with

the SLEEPDEEP bit of the System Control Register (SCB_SCR) of the Cortex-M = 0.

50.1.2 Brownout Detector

50.1.2.1 Unpredictable Behavior if BOD is Disabled, VDDCORE is Lost and VDDIO is Connected

In Active mode or in Wait mode, if the Brownout Detector is disabled (SUPC_MR.BODDIS = 1) and power is lost

on VDDCORE while VDDIO is powered, the device might not be properly reset and may behave unpredictably.

Problem Fix/Workaround

When the Brownout Detector is disabled in Active or in Wait mode, VDDCORE always needs to be powered.

50.1.3 Flash

50.1.3.1 Flash: Incorrect Flash Read May Occur Depending on VDDIO Voltage and Flash Wait State

Flash read issues leading to wrong instruction fetch or incorrect data read may occur under the following operating

conditions:

VDDIO < 2.4V and Flash wait state(1) ≥ 1

If the core clock frequency does not require the use of the Flash wait state (2) (FWS = 0 in EEFC_FMR), or if only

data reads are performed on the Flash (e.g., if the code is running out of SRAM), there are no constraints on

Table 50-1. Revision A parts

Chip Name Revision CHIPID_CIDR CHIPID_EXID

SAM4E16E A 0xA3CC_0CE0 0x0012_0200

SAM4E8E A 0xA3CC_0CE0 0x0012_0208

SAM4E16C A 0xA3CC_0CE0 0x0012_0201

SAM4E8C A 0xA3CC_0CE0 0x0012_0209

1417SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

VDDIO voltage. The usable voltage range for VDDIO is defined in Table 46-2 “DC Characteristics” in Section 46.

“SAM4E Electrical Characteristics”.

Notes: 1. Defined in FWS field in EEFC_FMR.
2. See “Embedded Flash Characteristics” in Section 46. “SAM4E Electrical Characteristics” for the maximum core

clock frequency at zero (0) wait state.

Problem Fix/Workaround

Two workarounds are available:

 Reduce the device speed to decrease the number of wait states to 0.

 Copy the code from Flash to SRAM at 0 wait states and then run the code out of SRAM.

50.1.4 Floating Point Unit (FPU)

50.1.4.1 FPU: IXC flag interrupt

The FPU exhibits six exceptions that are logically ORed and connected to the interrupt controller. If the IXC

(Inexact result) flag occurrence is frequent, this leads to a very high rate of interrupts which severely affects FPU

performance.

Problem Fix/Workaround

Disable the FPU Error interrupt. After each FPU operation, check whether an error occurred by polling the FPU

Status register (FPSCR).

50.2 Errata SAM4E Rev.B Parts

The errata are applicable to the devices listed in the table below:

Table 50-2. Revision B parts

Chip Name Revision CHIPID_CIDR CHIPID_EXID

SAM4E16E B 0xA3CC_0CE1 0x0012_0200

SAM4E8E B 0xA3CC_0CE1 0x0012_0208

SAM4E16C B 0xA3CC_0CE1 0x0012_0201

SAM4E8C B 0xA3CC_0CE1 0x0012_0209

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1418

50.2.1 Watchdog

50.2.1.1 Watchdog Not Stopped in Wait Mode

When the Watchdog is enabled and the bit WAITMODE = 1 is used to enter Wait mode, the watchdog is not

halted. If the time spent in Wait mode is longer than the Watchdog time-out, the device will be reset if Watchdog

reset is enabled.

Problem Fix/Workaround

When entering Wait mode, the Wait For Event (WFE) instruction of the processor Cortex-M4 must be used with

the SLEEPDEEP bit of the System Control Register (SCB_SCR) of the Cortex-M = 0.

50.2.2 Brownout Detector

50.2.2.1 Unpredictable Behavior if BOD is Disabled, VDDCORE is Lost and VDDIO is Connected

In Active mode or in Wait mode, if the Brownout Detector is disabled (SUPC_MR.BODDIS = 1) and power is lost

on VDDCORE while VDDIO is powered, the device might not be properly reset and may behave unpredictably.

Problem Fix/Workaround

When the Brownout Detector is disabled in Active or in Wait mode, VDDCORE always needs to be powered.

1419SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table of Contents

Description. 1

1. Features . 2

1.1 Configuration Summary. 4

2. Block Diagram . 5

3. Signal Description . 6

4. Package and Pinout . 11

4.1 100-ball TFBGA Package and Pinout . 11

4.2 144-ball LFBGA Package and Pinout . 12

4.3 100-lead LQFP Package and Pinout. 13

4.4 144-lead LQFP Package and Pinout. 14

5. Power Considerations . 15

5.1 Power Supplies . 15

5.2 Power-up Considerations . 15

5.3 Voltage Regulator . 16

5.4 Typical Powering Schematics . 16

5.5 Low-power Modes . 17

5.6 Wake-up Sources . 21

5.7 Fast Start-up . 21

6. Input/Output Lines . 22

6.1 General Purpose I/O Lines . 22

6.2 System I/O Lines . 23

7. Memories . 24

7.1 Product Mapping . 24

7.2 Embedded Memories . 25

7.3 External Memories . 29

7.4 Cortex-M Cache Controller (CMCC) . 29

8. Real-time Event Management . 30

8.1 Embedded Characteristics . 30

8.2 Real-time Event Mapping . 30

9. System Controller . 32

9.1 System Controller and Peripherals Mapping. 32

9.2 Power-on-Reset, Brownout and Supply Monitor . 32

10. Peripherals . 33

10.1 Peripheral Identifiers . 33

10.2 Peripheral Signal Multiplexing on I/O Lines. 35

11. Cortex-M4 processor . 42

11.1 Description . 42

11.2 Embedded Characteristics . 43

11.3 Block Diagram. 43

11.4 Cortex-M4 Models . 44

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1420

11.5 Power Management . 74

11.6 Cortex-M4 Instruction Set . 76

11.7 Cortex-M4 Core Peripherals . 218

11.8 Nested Vectored Interrupt Controller (NVIC). 219

11.9 System Control Block (SCB) . 229

11.10 System Timer (SysTick) . 256

11.11 Memory Protection Unit (MPU) . 262

11.12 Floating Point Unit (FPU) . 285

11.13 Glossary . 294

12. Debug and Test Features . 299

12.1 Description . 299

12.2 Embedded Characteristics . 299

12.3 Debug and Test Block Diagram . 299

12.4 Application Examples . 300

12.5 Debug and Test Pin Description . 301

12.6 Functional Description. 302

13. Reset Controller (RSTC) . 308

13.1 Description . 308

13.2 Embedded Characteristics . 308

13.3 Block Diagram. 308

13.4 Functional Description. 309

13.5 Reset Controller (RSTC) User Interface . 315

14. Real-time Timer (RTT) . 319

14.1 Description . 319

14.2 Embedded Characteristics . 319

14.3 Block Diagram. 319

14.4 Functional Description. 319

14.5 Real-time Timer (RTT) User Interface. 322

15. Real-time Clock (RTC) . 327

15.1 Description . 327

15.2 Embedded Characteristics . 327

15.3 Block Diagram. 327

15.4 Product Dependencies . 328

15.5 Functional Description. 328

15.6 Real-time Clock (RTC) User Interface . 336

16. Watchdog Timer (WDT) . 356

16.1 Description . 356

16.2 Embedded Characteristics . 356

16.3 Block Diagram. 357

16.4 Functional Description. 358

16.5 Watchdog Timer (WDT) User Interface. 360

17. Reinforced Safety Watchdog Timer (RSWDT) . 365

17.1 Description . 365

17.2 Embedded Characteristics . 365

17.3 Block Diagram. 366

17.4 Functional Description. 366

1421SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

17.5 Reinforced Safety Watchdog Timer (RSWDT) User Interface . 368

18. Supply Controller (SUPC) . 373

18.1 Description . 373

18.2 Embedded Characteristics . 373

18.3 Block Diagram. 374

18.4 Functional Description. 375

18.5 Supply Controller (SUPC) User Interface . 384

19. General Purpose Backup Registers (GPBR) . 394

19.1 Description . 394

19.2 Embedded Characteristics . 394

19.3 General Purpose Backup Registers (GPBR) User Interface. 395

20. Enhanced Embedded Flash Controller (EEFC) . 397

20.1 Description. 397

20.2 Embedded Characteristics . 397

20.3 Product Dependencies . 397

20.4 Functional Description. 397

20.5 Enhanced Embedded Flash Controller (EEFC) User Interface. 414

21. Fast Flash Programming Interface (FFPI) . 420

21.1 Description . 420

21.2 Embedded Characteristics . 420

21.3 Parallel Fast Flash Programming . 421

22. Cortex-M Cache Controller (CMCC) . 429

22.1 Description . 429

22.2 Embedded Characteristics . 429

22.3 Block Diagram. 429

22.4 Functional Description. 430

22.5 Cortex-M Cache Controller (CMCC) User Interface . 431

23. SAM-BA Boot Program for SAM4E Microcontrollers . 443

23.1 Description . 443

23.2 Embedded Characteristics . 443

23.3 Hardware and Software Constraints . 443

23.4 Flow Diagram . 444

23.5 Device Initialization . 444

23.6 SAM-BA Monitor . 445

24. Bus Matrix (MATRIX) . 449

24.1 Description . 449

24.2 Embedded Characteristics . 449

24.3 Memory Mapping. 451

24.4 Special Bus Granting Mechanism . 451

24.5 No Default Master . 451

24.6 Last Access Master . 452

24.7 Fixed Default Master . 452

24.8 Arbitration . 452

24.9 System I/O Configuration . 454

24.10 SMC NAND Flash Chip Select Configuration . 454

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1422

24.11 Write Protect Registers . 455

24.12 Bus Matrix (MATRIX) User Interface. 456

25. DMA Controller (DMAC) . 466

25.1 Description . 466

25.2 Embedded Characteristics . 466

25.3 DMA Controller Peripheral Connections . 467

25.4 Block Diagram. 468

25.5 Product Dependencies . 468

25.6 Functional Description. 469

25.7 DMAC Software Requirements . 484

25.8 DMA Controller (DMAC) User Interface . 485

26. Peripheral DMA Controller (PDC) . 508

26.1 Description . 508

26.2 Embedded Characteristics . 508

26.3 Block Diagram. 509

26.4 Functional Description. 510

26.5 Peripheral DMA Controller (PDC) User Interface . 512

27. Static Memory Controller (SMC) . 523

27.1 Description . 523

27.2 Embedded Characteristics . 523

27.3 I/O Lines Description . 524

27.4 Multiplexed Signals . 524

27.5 Product Dependencies . 524

27.6 External Memory Mapping . 526

27.7 Connection to External Devices . 526

27.8 Application Example . 529

27.9 Standard Read and Write Protocols . 531

27.10 Scrambling/Unscrambling Function. 539

27.11 Automatic Wait States . 540

27.12 Data Float Wait States . 544

27.13 External Wait . 548

27.14 Slow Clock Mode. 554

27.15 Asynchronous Page Mode . 556

27.16 Static Memory Controller (SMC) User Interface . 559

28. Clock Generator . 570

28.1 Description . 570

28.2 Embedded Characteristics . 570

28.3 Block Diagram. 571

28.4 Slow Clock. 572

28.5 Main Clock. 573

28.6 Divider and PLL Block . 577

29. Power Management Controller (PMC) . 579

29.1 Description . 579

29.2 Embedded Characteristics . 579

29.3 Block Diagram. 580

29.4 Master Clock Controller. 580

29.5 Processor Clock Controller . 581

1423SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

29.6 SysTick Clock . 581

29.7 USB Clock Controller . 581

29.8 Peripheral Clock Controller . 582

29.9 Free-Running Processor Clock . 582

29.10 Programmable Clock Output Controller . 582

29.11 Fast Startup. 582

29.12 Startup from Embedded Flash . 584

29.13 Main Clock Failure Detector . 584

29.14 32768 Hz Crystal Oscillator Frequency Monitor . 585

29.15 Programming Sequence . 586

29.16 Clock Switching Details . 588

29.17 Register Write Protection . 591

29.18 Power Management Controller (PMC) User Interface. 592

30. Advanced Encryption Standard (AES) . 622

30.1 Description . 622

30.2 Embedded Characteristics . 622

30.3 Product Dependencies . 622

30.4 Functional Description. 623

30.5 Advanced Encryption Standard (AES) User Interface. 630

31. Controller Area Network (CAN) . 643

31.1 Description . 643

31.2 Embedded Characteristics . 643

31.3 Block Diagram. 644

31.4 Application Block Diagram . 644

31.5 I/O Lines Description . 644

31.6 Product Dependencies . 645

31.7 CAN Controller Features . 645

31.8 Functional Description. 658

31.9 Controller Area Network (CAN) User Interface . 670

32. Chip Identifier (CHIPID) . 700

32.1 Description . 700

32.2 Embedded Characteristics . 700

32.3 Chip Identifier (CHIPID) User Interface . 700

33. Parallel Input/Output Controller (PIO) . 705

33.1 Description . 705

33.2 Embedded Characteristics . 706

33.3 Block Diagram. 707

33.4 Product Dependencies . 708

33.5 Functional Description. 709

33.6 Parallel Input/Output Controller (PIO) User Interface . 724

34. Serial Peripheral Interface (SPI) . 782

34.1 Description . 782

34.2 Embedded Characteristics . 782

34.3 Block Diagram. 783

34.4 Application Block Diagram . 783

34.5 Signal Description . 784

34.6 Product Dependencies . 784

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1424

34.7 Functional Description. 785

34.8 Serial Peripheral Interface (SPI) User Interface . 800

35. Two-wire Interface (TWI) . 815

35.1 Description . 815

35.2 Embedded Characteristics . 815

35.3 List of Abbreviations . 816

35.4 Block Diagram. 816

35.5 I/O Lines Description . 816

35.6 Product Dependencies . 817

35.7 Functional Description. 817

35.8 Two-wire Interface (TWI) User Interface . 843

36. Universal Asynchronous Receiver Transmitter (UART) . 860

36.1 Description . 860

36.2 Embedded Characteristics . 860

36.3 Block Diagram. 860

36.4 Product Dependencies . 861

36.5 Functional Description. 861

36.6 Universal Asynchronous Receiver Transmitter (UART) User Interface . 867

37. Universal Synchronous Asynchronous Receiver Transmitter (USART) 878

37.1 Description . 878

37.2 Embedded Characteristics . 878

37.3 Block Diagram. 880

37.4 I/O Lines Description . 880

37.5 Product Dependencies . 881

37.6 Functional Description. 882

37.7 Universal Synchronous Asynchronous Receiver Transmitter (USART) User Interface 912

38. Timer Counter (TC) . 949

38.1 Description . 949

38.2 Embedded Characteristics . 949

38.3 Block Diagram. 950

38.4 Pin List . 951

38.5 Product Dependencies . 951

38.6 Functional Description. 952

38.7 Timer Counter (TC) User Interface . 976

39. Pulse Width Modulation Controller (PWM) . 1009

39.1 Description . 1009

39.2 Embedded Characteristics . 1010

39.3 Block Diagram. 1011

39.4 I/O Lines Description . 1011

39.5 Product Dependencies . 1011

39.6 Functional Description. 1013

39.7 Pulse Width Modulation Controller (PWM) User Interface . 1040

40. High Speed Multimedia Card Interface (HSMCI) . 1093

40.1 Description . 1093

40.2 Embedded Characteristics . 1093

40.3 Block Diagram. 1094

1425SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

40.4 Application Block Diagram . 1095

40.5 Pin Name List . 1095

40.6 Product Dependencies . 1096

40.7 Bus Topology . 1096

40.8 High Speed MultiMedia Card Operations . 1098

40.9 SD/SDIO Card Operation . 1106

40.10 CE-ATA Operation . 1107

40.11 HSMCI Boot Operation Mode . 1108

40.12 HSMCI Transfer Done Timings . 1109

40.13 Register Write Protection . 1111

40.14 High Speed MultiMedia Card Interface (HSMCI) User Interface. 1112

41. USB Device Port (UDP) . 1140

41.1 Description . 1140

41.2 Embedded Characteristics . 1140

41.3 Block Diagram. 1141

41.4 Product Dependencies . 1141

41.5 Typical Connection . 1142

41.6 Functional Description. 1144

41.7 USB Device Port (UDP) User Interface. 1157

42. Ethernet MAC (GMAC) . 1181

42.1 Description . 1181

42.2 Embedded Characteristics . 1181

42.3 Block Diagram. 1182

42.4 Signal Interfaces . 1182

42.5 Product Dependencies . 1183

42.6 Functional Description. 1184

42.7 Programming Interface . 1203

42.8 Ethernet MAC (GMAC) User Interface . 1207

43. Analog Front-End Controller (AFEC) . 1265

43.1 Description . 1265

43.2 Embedded Characteristics . 1266

43.3 Block Diagram. 1267

43.4 Signal Description . 1267

43.5 Product Dependencies . 1268

43.6 Functional Description. 1270

43.7 Analog Front-End Controller (AFEC) User Interface . 1287

44. Digital-to-Analog Converter Controller (DACC) . 1318

44.1 Description . 1318

44.2 Embedded Characteristics . 1318

44.3 Block Diagram. 1319

44.4 Signal Description . 1319

44.5 Product Dependencies . 1319

44.6 Functional Description. 1321

44.7 Digital-to-Analog Converter Controller (DACC) User Interface . 1323

45. Analog Comparator Controller (ACC) . 1340

45.1 Description . 1340

45.2 Embedded Characteristics . 1340

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1426

45.3 Block Diagram. 1340

45.4 Signal Description . 1341

45.5 Product Dependencies . 1341

45.6 Functional Description. 1341

45.7 Analog Comparator Controller (ACC) User Interface . 1343

46. SAM4E Electrical Characteristics . 1354

46.1 Absolute Maximum Ratings. 1354

46.2 DC Characteristics . 1355

46.3 Power Consumption . 1361

46.4 Oscillator Characteristics. 1369

46.5 PLLA Characteristics. 1373

46.6 USB Transceiver Characteristics . 1374

46.7 12-bit AFE (Analog Front End) Characteristics . 1376

46.8 12-bit DAC Characteristics . 1387

46.9 Analog Comparator Characteristics . 1389

46.10 Temperature Sensor . 1389

46.11 AC Characteristics. 1390

47. SAM4E Mechanical Characteristics . 1408

47.1 100-ball TFBGA Package Drawing . 1408

47.2 144-ball LFBGA Package Drawing . 1409

47.3 100-lead LQFP Package Drawing. 1410

47.4 144-lead LQFP Package Drawing. 1411

47.5 Soldering Profile . 1412

47.6 Packaging Resources . 1412

48. Marking . 1413

49. Ordering Information . 1414

50. Errata on SAM4E Devices . 1416

50.1 Errata SAM4E Rev. A Parts . 1416

50.2 Errata SAM4E Rev.B Parts . 1417

Table of Contents . 1419

51. Revision History . 1427

1427SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

51. Revision History

In the tables that follow, the most recent version of the document appears first.

Table 51-1. SAM4E Datasheet Rev. 11157H 31-Mar-2016 Revision History

Doc. Date Changes

31-Mar-2016

Updated Figure 2-1. SAM4E 144-pin Block Diagram (replaced AFEx_AD0..11 with AFEx_AD0..14)

Section 4. “Package and Pinout”

GNDPLL, GNDCORE, GNDANA and GNDIO replaced with GND for BGA packages in Table 4-1 “SAM4E 100-ball

TFBGA Pinout” and Table 4-2 “SAM4E 144-ball LFBGA Pinout”

Adde note 2 to XIN32 and XOUT32 in Table 6-1 “System I/O Configuration Pin List”

Section 11. “Cortex-M4 processor” : Removed SCB_AFSR in Section 11-33 “System Control Block (SCB) Register

Mapping”

Section 12. “Debug and Test Features”: Updated Section 12.6.9 “IEEE® 1149.1 JTAG Boundary Scan”

Section 13. “Reset Controller (RSTC)”

Updated Section 13.4.3.3 “Watchdog Reset”: Replaced “is set” with “is written to 1” and “is reset” with “is written to 0”.

Updated Section 13.4.2.1 “NRST Signal or Interrupt”

Reworked Section 13.1 “Description” and Section 13.2 “Embedded Characteristics”

Section 15. “Real-time Clock (RTC)”

Updated Section 15.2 “Embedded Characteristics”

Figure 15-5, “Calibration Circuitry Waveforms” corrected two instances of “3,906 ms” to “3.906 ms”

Table 15-2 “Register Mapping”: added offset 0xCC as reserved

Section 15.6.1 “RTC Control Register”: updated descriptions of value ‘0’ for bits UPDTIM and UPDCAL and updated

CALEVSEL bit description

Deleted “All non-significant bits read zero.” from the following registers:

- Section 15.6.3 “RTC Time Register”

- Section 15.6.4 “RTC Calendar Register”

Reworked Figure 15-5, “Calibration Circuitry Waveforms”

Modified Section 15.5.6 “Updating Time/Calendar”

Section 16. “Watchdog Timer (WDT)”

Replaced “Idle mode” with “Sleep mode (idle mode)” in Section 16.1 “Description” and with “Sleep mode” in Section 16.4

“Functional Description”

Section 16.5.1 “Watchdog Timer Control Register”: added note on modification of WDT_CR values.

Section 16.5.2 “Watchdog Timer Mode Register”: updated note on modification of WDT_MR values.

Section 16.4 “Functional Description” and Section 16.5.2 “Watchdog Timer Mode Register” (WDDIS bit description) :

modified information on WDDIS bit setting”

Section 16.4 “Functional Description” : Modified paragraph starting with “The reload of the WDT must occur...”

Section 20. “Enhanced Embedded Flash Controller (EEFC)”

Section 20.4.3.6 “Calibration Bit”: changed information on oscillators that are calibrated in production

Section 21. “Fast Flash Programming Interface (FFPI)”

Figure 21.3.3. Entering Parallel Programming Mode: deleted note on device clocking.

Section 21.3 “Parallel Fast Flash Programming”: in block diagrams, changed input source for XIN.

Table 21-1 Signal Description List: deleted comment for XIN.

Section 21.3.3 “Entering Parallel Programming Mode”: reworded steps 2 and 3.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1428

31-Mar-2016

Section 22. “Cortex-M Cache Controller (CMCC)”

Updated Section 22.2 “Embedded Characteristics”

Section 25. “DMA Controller (DMAC)”

Section 25.7 “DMAC Software Requirements”: deleted bullet referencing hardware handshake interface protocol

Moved Section 25.6.7 “Register Write Protection” into Section 25.6 “Functional Description”

Section 25.6.5 “Programming a Channel”: “DMAC_SARx, DMAC_DARx, DMAC_CTLx, and DMAC_LLPx” corrected to

“DMAC_SADDRx, DMAC_DADDRx, DMAC_CTRLAx, DMAC_CTRLBx, and DMAC_DSCRx”

Section 25-3 “Multiple Buffers Transfer Management”:

- added links to footnotes

- deleted footnote “Channel stalled is true if the relevant BTC interrupt is not masked

Section 27. “Static Memory Controller (SMC)”

Modified Figure 27-3 “NAND Flash Signal Multiplexing on SMC Pins” and added Note 1 below the figure

Section 27.10 “Scrambling/Unscrambling Function”: added details on access for SMC_KEY1 and SMC_KEY2 registers.

Section 27.16.6 “SMC Off-Chip Memory Scrambling Key1 Register” and Section 27.16.7 “SMC Off-Chip Memory

Scrambling Key2 Register”: added Note (1) to clarify Write-once access

Section 28. “Clock Generator”

Section 29.17 “Register Write Protection”: added “PMC Clock Generator Main Clock Frequency Register” to list of

protectable registers

Updated Figure 28-1 “Clock Generator Block Diagram”

Section 29.11 “Fast Startup”: inserted warning “The duration of the WKUPx pins active level must be greater than four

main clock cycles.”

Section 34. “Serial Peripheral Interface (SPI)”

Section 34.8.1 “SPI Control Register”: added bit REQCLR

Section 34-5 “Register Mapping”: for Chip Select Register, replaced fixed offset with equation

Modified transmission condition description in Section 34.7.3 “Master Mode Operations”

Section 37. “Universal Synchronous Asynchronous Receiver Transmitter (USART)”

Section 8.6 “USART Interrupt Enable Register (SPI_MODE)”: added bit NSSE (register bit 19) in Section 37.7.6 “USART

Interrupt Enable Register (SPI_MODE)”, Section 37.7.8 “USART Interrupt Disable Register (SPI_MODE)”, and Section

37.7.10 “USART Interrupt Mask Register (SPI_MODE)”.

Section 37.7.12 “USART Channel Status Register (SPI_MODE)”: added bit NSSE (register bit 19) and bit NSS (register

bit 23).

Section 37-2 “Baud Rate Generator”: added label “Selected Clock” to USCLKS multiplexer output and corrected value in

"The frequency of the signal provided on SCK must be at least...

Section “Baud Rate Calculation Example”: in baud rate calculation formula, replaced “fperipheral clock” with “Selected Clock”

Figure 37-3, “Fractional Baud Rate Generator”: added label “Selected Clock” to USCLKS mux output

Section 37.6.1.3 “Baud Rate in Synchronous Mode or SPI Mode”: in second paragraph, replaced “fperipheral clock” with

“Selected Clock”

At end of Section 37.6.1.2 “Fractional Baud Rate in Asynchronous Mode”, added warning “When the value of field FP is

greater than 0...”

Cont’d

Table 51-1. SAM4E Datasheet Rev. 11157H 31-Mar-2016 Revision History

Doc. Date Changes

1429SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

31-Mar-2016

Section 37.7.15 “USART Baud Rate Generator Register”: added warning “When the value of field FP is greater than 0...”

to FP field description:

Section 37.6.3.4 “Manchester Decoder”: corrected “MANE flag” with “MANERR” flag.

Section 37.6.8.5 “Character Transmission”: corrected bit names: RTSEN to RCS, RTSDIS to FCS and added content “An

additional condition...on the receiver side”.

Section 37.7.1 “USART Control Register”: updated RTSDIS bit description.

Section 37.7.3 “USART Mode Register”: updated descripiton for row 0xE, SPI_MASTER

Section 38. “Timer Counter (TC)”

Section 38.2 “Embedded Characteristics”: rephrased "Total number of TC channels" to read "Total number of TC

channels implemented on this device

Reformatted and renamed Table 38-2 “Channel Signal Description”

Section 38.6.3 “Clock Selection”: updated notes (1) and (2)

Section 38.6.9 “Transfer with PDC in Capture Mode”: added “in Capture mode” and updated Figure 38-5. Example of

Transfer with PDC in Capture Mode

Replaced TIOA, TIOB, TCLK with TIOAx, TIOBx, TCLK

Section 38.6.16.4 “Position and Rotation Measurement”: added sentence on clearing the internal counter

Added Section 38.6.16.6 “Detecting a Missing Index Pulse”

Section 39. “Pulse Width Modulation Controller (PWM)”

Updated Figure 39-1, “Pulse Width Modulation Controller Block Diagram”

Added reference to Section 39.5.4 “Fault Inputs” in register descriptions

Updated Section 39.6.2.2 “Comparator”

Corrected PWM period formulas in Section 39.7.43 “PWM Channel Period Register” and Section 39.7.44 “PWM Channel

Period Update Register”

Section 39.6.5.1 “Initialization”: modified “Enable of the interrupts...” list item

Section 42. “Ethernet MAC (GMAC)”

Updated Section 42.1 “Description”

Section 42.5.2 “Power Management”: deleted reference to PMC_PCER.

Section 42.5.3 “Interrupt Sources”: deleted reference to ‘Advanced Interrupt Controller’. Replaced by ‘interrupt controller’.

Section 42.6.13 “IEEE 1588 Support”: deleted reference to GMAC_TSS and removed reference to ‘output pins’ in 2nd

paragraph

Section 42.7.1.2 “Receive Buffer List” and Section 42.7.1.3 “Transmit Buffer List”: added note at end of sections on

queue pointer intialization.

Table 51-1. SAM4E Datasheet Rev. 11157H 31-Mar-2016 Revision History

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1430

31-Mar-2016

Section 43. “Analog Front-End Controller (AFEC)”

Section 43.7.13 “AFEC Interrupt Status Register”: defined EOCAL bit as ‘cleared on read’

Section 43.6.1 “Analog Front-End Conversion”: updated section and added equations for AFE conversion time.

Updated Section 43-2 “Sequence of AFE Conversions when Tracking Time > Conversion Time”

Added sentence on write protection below the register table for:

Section 43.7.21 “AFEC Channel Offset Compensation Register”

Section 43.7.22 “AFEC Temperature Sensor Mode Register”

Section 43.6.16 “Register Write Protection”: added ”AFEC Channel Differential Register” to the list of write-protected

registers.

Section 43.7.2 “AFEC Mode Register”: updated descriptions of fields TRACKTIM and TRANSFER

Updated Warning in Section 43.6.10 “AFE Timings”

Section 43.2 “Embedded Characteristics”: deleted bullet on conversion rate (redundant with Electrical Characteristics)

Deleted Section 7.5 ”Conversion Results Format”.

Section 43.6.7 “Comparison Window”: deleted paragraph on conversion sign.

Section 43.7.3 “AFEC Extended Mode Register” bits 28 and 29 now reserved (were ‘SIGNMODE’)

Section 43.7.21 “AFEC Channel Offset Compensation Register”: added note on configuration of AOFF.

Section 43.7.19 “AFEC Channel Selection Register”: updated CSEL bit description.

Section 43.6.9 “Input Gain and Offset”: updated information on AOFF field.

Section 31. “Controller Area Network (CAN)”

Updated MIDvA and MIDvB description in Section 31.9.15 “CAN Message Acceptance Mask Register”

Updated Section 31.6.3 “Interrupt Sources” (replaced “Advanced Interrupt Controller” with ”interrupt controller”) and

Figure 9-1, “Possible Initialization Procedure” (replaced “AIC” with “Interrupt Controller”)

Section 31.8.3.2 “Transmission Handling”: in sixth paragraph, “CAN_MACR” remplaced with “CAN_ACR

Section 46. “SAM4E Electrical Characteristics”

Section 46.11.8.3 “MII Mode” : Removed note 1 below Table 46-66 “EMAC MII Timings”

Deleted tTRACKTIM and ts in Table 46.7.3 “ADC Timings”

Modified Section 46.11.3 “SPI Characteristics”

Table 51-1. SAM4E Datasheet Rev. 11157H 31-Mar-2016 Revision History

Doc. Date Changes

Table 51-2. SAM4E Datasheet Rev. 11157G 12-Feb-2016 Revision History

Doc. Date Changes

12-Feb-2016

Added MRLB (Rev. B) devices:

- Updated Table 32-1 “SAM4E Chip ID Registers”.

- Updated Section 50. “Errata on SAM4E Devices” (added Section 50.1.4 “Floating Point Unit (FPU)”, Section 50.2

“Errata SAM4E Rev.B Parts” and CHIPID information).

- Table 49-1, “Ordering Codes for SAM4E Devices”.

1431SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 51-3. SAM4E Datasheet Rev. 11157F Revision History

Doc. Date Changes

27-Apr-15

Editorial and formatting changes throughout

Deleted reset values and/or address offsets from individual register description sections (information found in “Register

mapping” tables)

Modified Section 1. “Features” and Figure 2-1, “SAM4E 144-pin Block Diagram”

Updated Table 10-1, “Peripheral Identifiers”

Section 11., “ARM Cortex-M4 Processor”

Updated Table 11-11 “Faults”

Table 11-35 “System Timer (SYST) Register Mapping”: corrected SYST_CSR reset value

Modified Figure 11-1 “Typical Cortex-M4F Implementation”

Section 12., “Debug and Test Features”

Updated Section 12.6.3 “ERASE Pin”

Section 13., “Reset Controller (RSTC)”

Updated Section 13.4.1, “Reset Controller Overview”, Section 13.5.2, “Reset Controller Status Register” and Section

13.5.3, “Reset Controller Mode Register”

Section 14. “Real-time Timer (RTT)”

Modified Section 14.4 “Functional Description”

Updated Section 14.5.3 “Real-time Timer Value Register” and Section 14.5.4 “Real-time Timer Status Register”

Section 15., “Real-time Clock (RTC)”

Modified Section 15.3 “Block Diagram”

Updated “Section 15.1 “Description” and Section 15.5 “Functional Description” (removed references to the 20th century)

Section 15.5.5 “RTC Internal Free Running Counter Error Checking”: replaced “RTC status clear control register” with

“Status Clear Command Register”

Modified Section 15.5.7 “RTC Accurate Clock Calibration”

Added TDERR field in Section 15.6.11 “RTC Interrupt Mask Register”

Section 16., “Watchdog Timer (WDT)”

Modified Figure 16-2 “Watchdog Behavior” and Section 16.5.3 “Watchdog Timer Status Register”

Section 17., “Reinforced Safety Watchdog Timer (RSWDT)”

Updated Section 17.1 “Description”, Section 17.2 “Embedded Characteristics” and Section 17.4 “Functional Description”

Section 18., “Supply Controller (SUPC)”

Updated Figure 18-1 “Supply Controller Block Diagram”.

Modified Section 18.4.2, “Slow Clock Generator”

Updated Section 18.5.5, “Supply Controller Mode Register”, Section 18.5.8, “Supply Controller Status Register” and

Section 18.5.7, “Supply Controller Wake-up Inputs Register”

Section 18.4.7.3, “Low-power Tamper Detection and Anti-Tampering”

Modified Figure 18-4 “Wake-up Sources” and added a paragraph and Figure 18-5 “Entering and Exiting Backup Mode

with a WKUP Pin” in Section 18.4.7.2, “Wake-up Inputs”

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1432

27-Apr-15

Section 1. “Enhanced Embedded Flash Controller (EEFC)”

Updated Table 1-8 “Register Mapping”

Updated Section 1.3.2 “Interrupt Sources”

Updated Section 1.4.3.2 “Write Commands”

Updated Section 1.5.1 “EEFC Flash Mode Register”, Section 1.5.2 “EEFC Flash Command Register” and Section 1.5.3

“EEFC Flash Status Register”,

Updated Figure 1-3 “Code Read Optimization for FWS = 0” and Figure 1-4 “Code Read Optimization for FWS = 3”.

Modified Section 1.4.3.3 “Erase Commands”, Section 1.4.3.8 “Unique Identifier Area”, Section 1.4.3.9 “User Signature

Area” and Section 1-7 “Command State Chart”

Section 22. “Cortex-M Cache Controller (CMCC)”

Modified Section 22.4.3 ”Cache Performance Monitoring”, Section 22.5.1 ”Cache Controller Type Register” and Section

22.5.2 ”Cache Controller Configuration Register”

Section 22.5.7 ”Cache Controller Monitor Configuration Register”: changed access from Write-only to Read/Write.

Updated Section 22.5.3 ”Cache Controller Control Register”, Section 22.5.4 ”Cache Controller Status Register”, Section

22.5.5 ”Cache Controller Maintenance Register 0”, Section 22.5.8 ”Cache Controller Monitor Enable Register” and

Section 22.5.9 ”Cache Controller Monitor Control Register”.

Section 25. “DMA Controller (DMAC)”

Updated Section 25.2 “Embedded Characteristics”: added bullet “Register Write Protection”

Added Section 25.5 “Product Dependencies”

Modified Section 25.6.3.1 “Software Handshaking”

Updated Section 25.6.6 “Disabling a Channel Prior to Transfer Completion” and Section 25.6.6.1 “Abnormal Transfer

Termination”

Modified Section 25.8 “Register Write Protection”

Updated Table 25-4, “Register Mapping”: replaced reserved offset range “0x01EC- 0x1FC” with “0x1EC–0x1FC”

Updated Section 25.9.19 “DMAC Write Protection Mode Register” and Section 25.9.20 “DMAC Write Protection Status

Register”

Section 26., “Peripheral DMA Controller (PDC)”

Modified Section 26.5.10, “Transfer Status Register”

Section 27., “Static Memory Controller (SMC)”

Updated Table 27-1 “I/O Line Description”.

Updated Section 27.9.5 “Register Write Protection” and added information on write protection to Section 27.16.1 “SMC

Setup Register”, Section 27.16.2 “SMC Pulse Register”, Section 27.16.3 “SMC Cycle Register” and Section 27.16.5

“SMC OCMS Mode Register”.

Updated Section 27.16.8 “SMC Write Protection Mode Register” and Section 27.16.9 “SMC Write Protection Status

Register”.

Updated Section 27.10 “Scrambling/Unscrambling Function”.

Table 51-3. SAM4E Datasheet Rev. 11157F Revision History (Continued)

Doc. Date Changes

1433SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27-Apr-15

Section 28. “Clock Generator”.

Modified Section 28.2 “Embedded Characteristics” and Section 29.2 “Embedded Characteristics”.

Added Section 28.5.5 ”Bypassing the 3 to 20 MHz Crystal Oscillator”.

Updated Section 28.4.2 “32768 Hz Crystal Oscillator”

Updated Section 28.5.6 “Main Clock Frequency Counter” and Section 28.5.7 “Switching Main Clock between the RC

Oscillator and the Crystal Oscillator”

Modified Section 28.6.1 “Divider and Phase Lock Loop Programming”

Modified Table 29-2, “Register Mapping”

Modified Section 29.7 “USB Clock Controller”, Section 29.11 “Fast Startup” and Section 29.13 “Main Clock Failure

Detector”

Updated Section 29.17.7 “PMC Clock Generator Main Oscillator Register”, Section 29.17.8 “PMC Clock Generator Main

Clock Frequency Register” and Section 29.17.9 “PMC Clock Generator PLLA Register”

Section 30. “Advanced Encryption Standard (AES)”

Section 30.4.2 “Operation Modes”: updated content relative to 1 megabyte limitation

Modified Section 30.4.5.1 “Manual and Auto Modes”

Modified Section 30.5.6 “AES Interrupt Status Register”

Section 32. “Chip Identifier (CHIPID)”

Section 32.3.1 “Chip ID Register”: Updated EPROC, SRAMSIZ and NVPSIZ descriptions

Section 31. “Controller Area Network (CAN)”

Modified Table 31-6, “Register Mapping”

Modified Section 31.9.1 “CAN Mode Register”, Section 31.9.5 “CAN Status Register”, Section 31.9.12 “CAN Write

Protection Mode Register”, Section 31.9.13 “CAN Write Protection Status Register”, Section 31.9.18 “CAN Message

Status Register” and Section 31.9.21 “CAN Message Control Register”

Section 33., “Parallel Input/Output Controller (PIO)”

Section 33.6.38 “PIO Additional Interrupt Modes Mask Register”: modified P0–P31 bit description

Modified Figure 33-1 “Block Diagram” and Figure 33-9 “PIO Controller Connection with CMOS Digital Image Sensor”

Replaced instances of “div_slclk” with “div_slck”; replaced instances of “slow_clock” with “slck”

Modified Table 33-5 “Register Mapping”

Removed section “External Interrupt Lines” and Figure 4-4 Application Block Diagram.

Updated Figure 33-10 “Parallel Capture Mode Waveforms (DSIZE = 2, ALWYS = 0, HALFS = 0)”,Figure 33-11 “Parallel

Capture Mode Waveforms (DSIZE = 2, ALWYS = 1, HALFS = 0)”, Figure 33-12 “Parallel Capture Mode Waveforms

(DSIZE = 2, ALWYS = 0, HALFS = 1, FRSTS = 0)” and Figure 33-13 “Parallel Capture Mode Waveforms (DSIZE = 2,

ALWYS = 0, HALFS = 1, FRSTS = 1)”

Updated Section 33.5.16 “Register Write Protection” and Section 33.6.32 “PIO Pad Pull-Down Status Register”:.” and

Section 33.5.3 “Peripheral A or B or C or D Selection”

Section 34. “Serial Peripheral Interface (SPI)”

Updated Figure 34.3. Block Diagram and Figure 34-7. Master Mode Flow Diagram

Section 34.7.3.6 “SPI Peripheral DMA Controller (PDC)” (“Transfer size”): replaced “8-bit to 16-bit data” with “9-bit to 16-

bit data”

Modified Section 34.7.3.5 “Peripheral Selection” and Section 34.7.3.9 “Peripheral Deselection without DMA nor PDC”

Updated Section 34.7.1 “Modes of Operation”, Section 34.7.3 “Master Mode Operations”, Section 34.8.1 “SPI Control

Register”, Section 34.8.2 “SPI Mode Register”, Section 34.8.5 “SPI Status Register” and Section 34.8.9 “SPI Chip Select

Register”

Table 51-3. SAM4E Datasheet Rev. 11157F Revision History (Continued)

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1434

27-Apr-15

Section 35. “Two-wire Interface (TWI)”

Modified Section 35.1 “Description”

Modified Table 35-1, “Atmel TWI Compatibility with I2C Standard”

Modified Section “Clock Synchronization Sequence” and added Section “Clock Stretching Sequence”

Section 35.7.3.3 “Programming Master Mode”: replaced all occurrences of "TWIHS_" with "TWI_".

Replaced instance of acronym “TWI2” with “TWI” Section 35.8 “Two-wire Interface (TWI) User Interface”

Replaced Sections “Application Block Diagram” with updated Section 35.5 “I/O Lines Description”

Updated Figure 35-9 “Master Read Wait State with Multiple Data Bytes”, Figure 35-23. Read Access Ordered by a

Master, Figure 35-24. Write Access Ordered by a Master, Figure 35-25. Master Performs a General Call Figure 35-30.

Read Write Flowchart in Slave Mode, Figure 35-27. Clock Synchronization in Write Mode and Figure 35-30. Read Write

Flowchart in Slave Mode

Replaced all instances of “(Optional) Wait for the TXCOMP flag in TWI_SR before disabling the peripheral clock if

required.” with “(Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR”

Modified Section 35.7.3.3 “Master Transmitter Mode” and Section “Read Sequence” (note on clearing TXRDY flag)

Section 35.7.3.4 “Master Receiver Mode”: Modified “Warning”.

Modified Section 35.8.5 “TWI Clock Waveform Generator Register” and Section 35.8.6 “TWI Status Register”

Section 36. “Universal Asynchronous Receiver Transmitter (UART)”

Updated Section 36.5.1 “Baud Rate Generator”, Section 36.5.2.4 “Receiver Overrun” and Section 36.6.9 “UART Baud

Rate Generator Register”

Section 37. “Universal Synchronous Asynchronous Receiver Transceiver (USART)”

Updated Section 37.2 “Embedded Characteristics”, Section 37.3 “Block Diagram” and Section 37.6.10 “Register Write

Protection”

Modified Section 37.5.1 “I/O Lines” and Table 37-15 “Register Mapping”

Modifed Section 37.7.1 “USART Control Register”, Section 37.7.3 “USART Mode Register”, Section 37.7.4 “USART

Mode Register (SPI_MODE)”, Section 37.7.5 “USART Interrupt Enable Register”, Section 37.7.6 “USART Interrupt

Enable Register (SPI_MODE)”, Section 37.7.7 “USART Interrupt Disable Register”, Section 37.7.8 “USART Interrupt

Disable Register (SPI_MODE)”Section 37.7.9 “USART Interrupt Mask Register”, Section 37.7.10 “USART Interrupt Mask

Register (SPI_MODE)”Section 37.7.11 “USART Channel Status Register”, and Section 37.7.12 “USART Channel Status

Register (SPI_MODE)”, Section 37.7.15 “USART Baud Rate Generator Register”, Section 37.7.16 “USART Receiver

Time-out Register”, Section 37.7.17 “USART Transmitter Timeguard Register” and Section 37.7.18 “USART FI DI RATIO

Register”

Updated symbols used to express time to JEDEC standards

Section 37.6.3.3 “Asynchronous Receiver”

Section 37.6.1 “Baud Rate Generator”, Section 37.6.4 “ISO7816 Mode”

Section “Transmit Character Repetition”: replaced “ITERATION bit” with “ITER bit”

Removed RXIDLEV bit (bit 31 now reserved) from “USART Manchester Configuration Register”

Modified information on Hardware handshaking

Table 51-3. SAM4E Datasheet Rev. 11157F Revision History (Continued)

Doc. Date Changes

1435SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

27-Apr-15

Section 38. “Timer Counter (TC)”

Modified Section 38.1 “Description”, Section 38.5.2 “Power Management” and Section 38.6.19 “Register Write

Protection”

Moved Table 38-1, “Timer Counter Clock Assignment”

Modified ‘Name’ line in Section 38.7.2 “TC Channel Mode Register: Capture Mode” and Section 38.7.3 “TC Channel

Mode Register: Waveform Mode”

Modified Section 38.7.10 “TC Status Register”, Section 38.7.14 “TC Extended Mode Register”Section 38.7.16 “TC Block

Mode Register”, Section 38.7.20 “TC QDEC Interrupt Status Register” Section 38.7.22 “TC Write Protection Mode

Register”

Modified Section 38.5.3 “Interrupt Sources” and Section 38.6.14 “Synchronization with PWM”, Section 38.6.16.4

“Position and Rotation Measurement”, Section 38.6.16.5 “Speed Measurement”

Section 38.6.16 “Quadrature Decoder”: removed subsection “Missing Pulse Detection and Auto-correction”

Section 39. “Pulse Width Modulation Controller (PWM)”

Modified Section “Method 3: Automatic write of duty-cycle values and automatic trigger of the update”

Updated Section 39.2 “Embedded Characteristics”

throughout: corrected register name PWM_CPRx to PWM_CPRDx (PWM_CPRx does not exist)

Section 39.5.3 “Interrupt Sources”

Section 39.6 “Functional Description”

Section 39.6.2.9 “Synchronous Channels”

Section 39.7.24 “PWM Fault Mode Register”, Section 39.7.25 “PWM Fault Status Register”: changed field descriptions.

Section 39.7.26 “PWM Fault Clear Register”, Section 39.7.28 “PWM Fault Protection Enable Register”

Section 39.7.40 “PWM Channel Mode Register”

Figure 39-17 “Comparison Unit Block Diagram”

Table 39-7 “Register Mapping”: deleted reset value from PWM_SCUPUPD (this register is write-only)

Added Figure 39-20 “Event Line Generation Waveform (Example)”

Section 39.6.4 “PWM Event Lines”: in first sentence, replaced “i.e.” with “e.g.”

Section 40. “High Speed Multimedia Card Interface (HSMCI)”

Modified Section 40.1 “Description”: removed sentence “Only one slot can be selected at a time (slots are multiplexed)”

Added Section 40.14.19 “HSMCI FIFOx Memory Aperture”

Updated Section 40.14.12 “HSMCI Status Register”

Updated Table 40-4, “Bus Topology” (4-bit instead of 8-bit)

Section 41. “USB Device Port (UDP)”

Table 41-6 Register Mapping: update footnote No. 1.

Modified Section 41.7.4, “UDP Interrupt Enable Register”

Section , “Using Endpoints With Ping-pong Attribute”: Replaced Bank 0 with Bank 1 in step 12.

Section 42. “Ethernet MAC (GMAC)”

Modified Section 42.2 “Embedded Characteristics”, Section 42.5.3 “Interrupt Sources”

Modified Section 42.3 “Block Diagram”

Added Section 42.5 “Product Dependencies”.

Modified Section 42.6.3.1 “Receive AHB Buffers” and Section 42.6.3.2 “Transmit AHB Buffers”, Section 42.6.6.1

“Receiver Checksum Offload”, Section 42.6.15.2 “802.3 Pause Frame Transmission”, Section 42.6.16.2 “PFC Pause

Frame Transmission”

Table 51-3. SAM4E Datasheet Rev. 11157F Revision History (Continued)

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1436

27-Apr-15

Updated Section 42.6.4 “MAC Transmit Block”, Section 42.6.5 “MAC Receive Block”, Section 42.6.7 “MAC Filtering

Block”, Section 42.6.13 “IEEE 1588 Support” and Section 42.6.14 “Time Stamp Unit”

Modified Section 42.7.1.8 “Receiving Frames”

Modified “GMAC Type ID Match x Registers” descriptions

Modified Section 42.8 “Ethernet MAC (GMAC) User Interface”

Modified Table 42-17 Register Mapping and updated register description sections accordingly

Updated Section 42.8.1 “GMAC Network Control Register”, Section 42.8.6 “GMAC Transmit Status Register”, , Section

42.8.9 “GMAC Receive Status Register”, Section 42.8.13 “GMAC Interrupt Mask Register” and Section 42.8.14 “GMAC

PHY Maintenance Register”

Section 45. “Analog Comparator Controller (ACC)”

Section 45.2 “Embedded Characteristics”: Changed ADVREF to ‘External Voltage Reference’

Updated Figure 45-1 “Analog Comparator Controller Block Diagram” and Table 45-1, “ACC Signal Description”

Modified Section 45.5.1 “I/O Lines” and Section 45.7.2 “ACC Mode Register”, Section 45.7.6 “ACC Interrupt Status

Register”

Corrected signal names

Removed Table “List of External Analog Data Inputs” and note referring to this table.

Changed all occurrences of ‘MCK’ to ‘peripheral clock’.

Section 43. “Analog Front-End Controller (AFEC)”

Updated Figure 43-1 “Analog Front-End Controller Block Diagram”

Modified Section 43.5.1 “I/O Lines”, Section 43.5.2 “Power Management” and Section 43.6.12 “Temperature Sensor”

Section 43.6.4 “Conversion Results” and Section 43.7.7 “AFEC Channel Disable Register”: updated warning text

Section 43.6.8 “Comparison Window”: Replaced CPM_ALL bit name with CMPALL.

Modified Section 43.6.13 “Enhanced Resolution Mode and Digital Averaging Function” and Section 43.6.14 “Automatic

Calibration”

Changed ‘AFEC Clock’ to ‘AFE clock’ and MCK to ‘peripheral clock’.

Modified Figure 43-4 “EOCx and DRDY Flag Behavior” and Figure 43-5 “EOCx, GOVRE and OVREx Flag Behavior”

Removed “Section 7.3.1 Enhanced Resolution Mode”

Updated Section 43.7.2 “AFEC Mode Register”, Section 43.7.13 “AFEC Interrupt Status Register” and Section 43.7.20

“AFEC Channel Data Register”

Section 44. “Digital-to-Analog Converter Controller (DACC)”

Modified Figure 44-1 “DACC Block Diagram” , Section 44.2 “Embedded Characteristics” and Table 44-3, “Register

Mapping”

Removed references to Sleep mode and refresh period

Modified Section 44.6.6 “DACC Timings”

Updated Section 44.7.2 “DACC Mode Register”, Section 44.7.12 “DACC Write Protection Mode Register”, Section

44.7.13 “DACC Write Protection Status Register”

Section 46. “SAM4E Electrical Characteristics”

Updated Table 46-18 “32.768 kHz Crystal Oscillator Characteristics” (removed CLEXT)

Updated Table 46-2 “DC Characteristics” (conditions for VOL and VOL)

Table 51-3. SAM4E Datasheet Rev. 11157F Revision History (Continued)

Doc. Date Changes

1437SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 51-4. SAM4E Datasheet Rev. 11157E Revision History

Doc. Date Changes

13-Feb-15

Editorial and formatting changes throughout

“Description”:

Corrected “nine general-purpose 16-bit Timers” to “3 three-channel general-purpose 32-bit timers”

Replaced “one RTC” with “a low-power RTC, a low-power RTT, 256-bit General Purpose Backup Registers”

Added paragraph relating to low-power modes

Added paragraph relating to Real-time Event Management

Section 1. “Features”

Updated description of “Low-power Modes”

Under “Peripherals”:

- changed “32-bit Real-time Timer and RTC” to “32-bit low-power Real-time Timer (RTT) and low-power Real-time Clock

(RTC)”

- added bullet “256-bit General Purpose Backup Registers (GPBR)”

Table 1-1 “Configuration Summary”: renamed “EMAC” to “GMAC”

Section 2. “Block Diagram”

Removed Figure “SAM4E 100-pin Block Diagram”

Inserted sentence “See Table 1-1 for detailed configurations of memory size, package and features of the SAM4E

devices”

Revised Figure 2-1 “SAM4E 144-pin Block Diagram”

Section 3. “Signal Description”

Table 3-1 “Signal Description List”: removed Ethernet MAC signals GREFCK, GTXDV, and GCRSDV; redistributed links

to footnote 1

Section 5. “Power Considerations”

Table 5-1 “Low-power Mode Configuration Summary”: replaced “Backup Registers” with “GPBR” in column header

Added Section 5.2 “Power-up Considerations”

Figure 5-2 “Single Supply”:

- changed main supply range from 1.8V-3.6V to 1.62–3.6 V

- renamed “ADC” to “AFEC”

- below figure, added Analog Comparator to AFEC/DAC restrictions

Figure 5-3 “Core Externally Supplied”:

- renamed “ADC” to “AFEC”

- below figure, added Analog Comparator to AFEC/DAC restrictions

Section 5.6.3 “Sleep Mode”: added “with bit LPM = 0 in PMC_FSMR” to end of second paragraph

Section 5.7 “Wake-up Sources”: removed figure “Wake-up Source”

Section 5.8 “Fast Start-up”: in last sentence, changed “switches the master clock on this 4 MHz clock” to “switches the

master clock on this 4 MHz clock by default”; removed figure “Fast Start-up Sources”

Section 6. “Input/Output Lines”

Section 6.2 “System I/O Lines”: rewrote first paragraph

Table 6-1 “System I/O Configuration Pin List”: changed column header “SYSTEM_IO Bit Number” to “CCFG_SYSIO Bit

No.”

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1438

13-Feb-15

Section 7. “Memories”

Inserted Section 7.1 “Product Mapping” (was previously section 7. “Product Mapping”)

Figure 7-1 “SAM4E Product Mapping”: renamed “EFC” to “EEFC”; removed reserved space block between addresses

0x400E1600 and 0x400E1800 of System Controller map

Section 8. “Real-time Event Management”

Section 8.1 “Embedded Characteristics”: renamed instance of “ADC” to “AFEC”

Revised Table 8-1 “Real-time Event Mapping List”

Section 9. “System Controller”

Deleted first two sentences “The System Controller is a set of peripherals...” and “See the system controller block

diagram...”

Removed Figure 10-1. “System Controller Block Diagram”

Removed Section 10.3 “Reset Controller” (reset controller is described in Section 13. “Reset Controller (RSTC)”)

Section 10. “Peripherals”

Table 10-1 “Peripheral Identifiers”: renamed “EFC” to “EEFC”; renamed “EMAC” to “GMAC”; updated instance

descriptions

Table 10-2 “Multiplexing on PIO Controller A (PIOA)”: added footnotes providing information on selecting extra functions

and system functions

Table 10-3 “Multiplexing on PIO Controller B (PIOB)”: added footnotes providing information on selecting extra functions

and system functions

Table 10-4 “Multiplexing on PIO Controller C (PIOC)”: added footnotes providing information on selecting extra functions

Table 10-5 “Multiplexing on PIO Controller D (PIOD)”:

- removed signal GREFCK from PD0/Peripheral A

- removed signal GCRSDV from PD4/Peripheral A

Section 12. “Debug and Test Features”

Section 12.6.1 “Test Pin”: at end of section, deleted sentence “For more on the manufacturing and test mode, refer to

the “Debug and Test” section of the product datasheet”

Section 12.6.4 “Debug Architecture”: in first paragraph, corrected “Cortex-M4 embeds four functional units” to “Cortex-

M4 embeds five functional units”

Section 12.6.5 “Serial Wire JTAG Debug Port (SWJ-DP) Pins”:

- in second paragraph, deleted sentence “Please refer to the “Debug and Test” section of the product datasheet.”

- in sixth paragraph, deleted sentence “For more information about SW-DP and JTAG-DP switching, please refer to the

“Debug and Test” section of the datasheet.”

Section 23. “SAM-BA Boot Program for SAM4E Microcontrollers”

Section 23.6 “SAM-BA Monitor”: rephrased introductory sentence

Section 23.6.3 “USB Device Port”:

- in first paragraph, replaced “from Windows 98SE to Windows XP” with “beginning with Windows 98SE”

- updated link to www.usb.org

- deleted sentence “Unauthorized use of assigned or unassigned USB Vendor ID Numbers and associated Product ID

Numbers is strictly prohibited.”

Section 23.6.4 “In Application Programming (IAP) Feature”: replaced two instances of “MC_FSR register” with

“EEFC_FSR”

Section 24. “Bus Matrix (MATRIX)”

Table 24-2 “Master to Slave Access”: inserted “PDC0” as name of master 2

Table 51-4. SAM4E Datasheet Rev. 11157E Revision History (Continued)

Doc. Date Changes

1439SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

13-Feb-15

Section 27. “Static Memory Controller (SMC)”

Section 27.1 “Description”: replaced instance of “CM4P2” with “SAM4E”

Section 27.7.1 “Implementation Examples”: replaced instance of “CM4P2” with “SAM4E”

Section 46. “SAM4E Electrical Characteristics”

Updated and harmonized parameter symbols

Table 46-2 “DC Characteristics”: updated footnotes

Table 46-3 “1.2V Voltage Regulator Characteristics”: replaced two footnotes with single footnote in VDDIN conditions;

deleted “Cf. External Capacitor Requirements” from CDIN and CDOUT conditions

Table 46-4 “Core Power Supply Brownout Detector Characteristics”: added parameter “Reset Period”

Table 46-7 “Zero-Power-On Reset Characteristics”: modified parameter name “Reset Time-out Period” to “Reset Period”

Section 46.3.2.1 “Sleep Mode”: deleted sentence “Table 47-10 shows the current consumption in typical conditions”

Figure 46-6 “Current Consumption in Sleep Mode (AMP1) versus Master Clock Ranges (refer to Table 46-10)”: replaced

comma with dot as decimal separator in mA values

Table 46-15 “Power Consumption on VDDCORE (VDDIO = 3.3V, VDDCORE = 1.08V, TA = 25°C)”: renamed peripheral

“EMAC” to “GMAC”

Table 46-18 “32.768 kHz Crystal Oscillator Characteristics”: added parameter “Allowed Crystal Capacitance Load”

Figure 46-11 “32.768 kHz Crystal Oscillator Schematics”: added label “Ccrystal”

Table 46-20 “3 to 20 MHz Crystal Oscillator Characteristics”: removed parameter “Maximum External Capacitor on XIN

and XOUT”; added parameter “Allowed Crystal Capacitance Load”

Table 46-22 “XIN Clock Electrical Characteristics (In Bypass Mode)”: added parameters “Internal Parasitic Capacitance

During Standby” and “Internal Parasitic Resistance During Standby”

Added Figure 46-13 “XIN Clock Timing”

Table 46-27 “Analog Power Supply Characteristics”: redirected link in first footnote to section “Low Voltage Supply” (was

linked to section “ADC Channel Input Impedance”)

Table 46-29 “ADVREF Electrical Characteristics”: redirected link in first footnote to section “Low Voltage Supply” (was

linked to section “ADC Channel Input Impedance”)

Figure 46-19 “Simplified Acquisition Path”: added caption “ADC Input”; replaced caption “12-bit ADC Core” with “12-bit

ADC”

Added “Symbol” column to Table 46-50 “Static Performance Characteristics”, Table 46-51 “Dynamic Performance

Characteristics”, Table 46-52 “Analog Outputs”, and Table 46-53 “Analog Comparator Characteristics”

Section 46.10 “Temperature Sensor”: specified instances of “27°C” as ambient temperature

Table 46-54 “Temperature Sensor Characteristics”: deleted “After TSON = 1” from Startup Time conditions

Section 46.11.3.1 “Maximum SPI Frequency”:

- replaced “frequency above the pin FreqMax value” with “frequency above the maximum pad speed” in “Master Write

Mode”

- updated content in “Master Read Mode”

- replaced “25 MHz” with “21 MHz” in “Slave Write Mode”

Table 46-57 “SPI Timings”: removed footnotes defining 1.8V and 3.3V domains (this information is now found at the

beginning of Section 46.11.3.2 “SPI Timings”)

Section 46.11.5 “SMC Timings”: in timings tables, removed footnotes defining 1.8V and 3.3V domains (this information is

already provided at the beginning of the section)

Table 46-62 “USART SPI Timings”: removed footnotes defining 1.8V and 3.3V domains (this information is now found at

the beginning of Section 46.11.6 “USART in SPI Mode Timings”)

Table 46-63 “Two-wire Serial Bus Requirements”: added parameter “Bus free time between a STOP and START

condition”

Table 51-4. SAM4E Datasheet Rev. 11157E Revision History (Continued)

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1440

13-Feb-15

Section 46. “SAM4E Electrical Characteristics” (cont’d)

Section 46.11.8.1 “Timing Conditions”: at end of section, deleted sentence “These values may be product dependent and

should be confirmed by the specification”

Section 46.11.9 “Embedded Flash Characteristics”:

- inserted paragraph explaining that flash contents should be erased prior to programming an application

- in second paragraph, corrected “field FWS of the MC_FMR” to “field FWS of the EEFC_FMR”

- replaced four “Embedded Flash Wait State” tables with single Table 46-67 “Embedded Flash Wait State at 105°C”

Section 49. “Ordering Information”

Table 49-1 “Ordering Codes for SAM4E Devices”: removed “Package Type” column (package type information is

provided on the Atmel website)

Table 51-4. SAM4E Datasheet Rev. 11157E Revision History (Continued)

Doc. Date Changes

1441SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 51-5. SAM4E Datasheet Rev. 11157D 12-Jun-14 Revision history

Doc. Date Changes

12-Jun-2014

Modified Title of the document (SAM4E Series)

Changed structure of the document (order of sections: GMAC, DAC...)

Ethernet MAC (EMAC) replaced with Ethernet MAC (GMAC) and EMAC signals replaced with GMAC signals

throughout the document (example: GTXCK instead of ETXCK, etc.).

Section 1. “Features”

Added tamper detection

Modified note 1 (removed “or using internal voltage regulator”)

Table 1-1 “Configuration Summary”: Modified information on Timer channels

Section 2-1 “SAM4E 144-pin Block Diagram”

Updated Figure 2-1 “SAM4E 144-pin Block Diagram” and Figure 2-2 “SAM4E 144-pin Block Diagram” (Tamper

detection added ; AFE block ; WKUP pins)

Timer Counter B and C added in Figure 2-1 “SAM4E 144-pin Block Diagram”

Section 3. “Signal Description”

Modified Table 3-1 “Signal Description List” (“DATRG” instead of “DACTRG”, WKUP[15:0] added, FFPI signals

modified)

Section 4. “Package and Pinout”

Modified Table 4-1 “SAM4E 100-ball TFBGA Pinout”, Table 4-2 “SAM4E 144-ball LFBGA Pinout”, Table 4-3 “SAM4E

100-lead LQFP Pinout” and Table 4-4 “SAM4E 144-lead LQFP Pinout”

Section 5. “Power Considerations”

Modified notes after Figure 5-2 “Single Supply” and Figure 5-3 “Core Externally Supplied”: 2.0V replaced with 2.4V

(VDDIN minimum value for FAE)

Section 7.2 “Embedded Memories”

Modified Section 7.2.3.1 “Flash Overview” (paragraph below Section 7-4 “Flash Size”)

Updated information on the ERASE pin in Section 7.2.3.5 “Security Bit Feature”

Section 10. “Peripherals”

Removed note 1 in Table 10-2 “Multiplexing on PIO Controller A (PIOA)”, Table 10-3 “Multiplexing on PIO Controller B

(PIOB)” and Table 10-4 “Multiplexing on PIO Controller C (PIOC)”

Removed reset values for Write-only registers

Section 11. “ARM Cortex-M4 Processor”

Minor formatting and editorial changes throughout

Updated 2nd instruction line, in Section 11.5.3 “Power Management Programming Hints”

Section 11.9.1.2 “CPUID Base Register”: updated ‘Constant’ field description

Section 11.9.1.5 “Application Interrupt and Reset Control Register”: updated ‘VECTCLRACTIVE’ and ‘VECTRESET’

field descriptions

Section 11.9.1.7 “Configuration and Control Register”: updated ‘USERSETMPEND’ field description

Section 11.9.1.16 “MemManage Fault Address Register”: updated ‘ADDRESS’ field description

Section 11.9.1.16 “MemManage Fault Address Register”: updated ‘ADDRESS’ field description

Section 11.10.1.1 “SysTick Control and Status”: updated ‘TICKINT’ and ‘ENABLE’ field descriptions

Section 11.10.1.2 “SysTick Reload Value Registers””: updated ‘RELOAD’ field description

Section 11.10.1.3 “SysTick Current Value Register”: updated ‘CURRENT' field description

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1442

12-Jun-2014

Section 11.10.1.4 “SysTick Calibration Value Register”: updated register reset value; updated ‘TENMS’ and ‘SKEW’

field descriptions

Section 11.12.2.1 “Coprocessor Access Control Register”: replaced ‘CPn’ field description with ‘CP10 and CP11’ field

descriptions

Section 11.12.2.3 “Floating-point Context Address Register”: updated ‘ADDRESS’ field description

Section 11.12.2.5 “Floating-point Default Status Control Register”: updated descriptions of fields ‘AHP’, ‘DN’, ‘FZ’, and

‘RMode’

Replaced “£” with “≤” in operation description in equations (Section 11.6.7.1 “SSAT and USAT”)

Updated Section 11.8.2.1 “NVIC Programming Hints”

Updated Section 12.6.3 “ERASE Pin”.

Modified Section 12.6.5 “Serial Wire JTAG Debug Port (SWJ-DP) Pins” (added references to PA7)

Section 13. “Reset Controller (RSTC)”

Minor editorial and formatting changes throughout

Section 13.4.2.2 “NRST External Reset Control” replaced “ext_nreset” with “exter_nreset”

Section 13.4.4.1 “General Reset”: replaced “A general reset occurs when a Power-on-reset is detected” with “A general

reset occurs when a VDDIO Power-on-reset is detected”

Updated Figure 13-3 “General Reset State”

Section 13.4.4.2 “Backup Reset”: replaced “core_backup_reset” with “vddcore_nreset”; reworded content to improve

comprehension

Section 13.5.1 “Reset Controller Control Register” updated EXTRST value 1 description

Updated Section 13.5.2 “Reset Controller Status Register”

Updated Section 13.5.3 “Reset Controller Mode Register”

Modified Section 13.2 “Embedded Characteristics” and Section 13.4.4.4 “Software Reset”

Section 14. “Real-time Timer (RTT)”

General editorial and formatting changes throughout

Figure 14-1, “Real-time Timer” replaced “16-bit Divider” with “16-bit Prescaler

Revised Section 14.4 “Functional Description”

Section 14.5.1 “Real-time Timer Mode Register”: updated RTPRES field description

Section 14.5.4 “Real-time Timer Status Register”: updated RTTINC bit description

Updated Section 14.4 “Functional Description”.

Modified ALMV description in Section 14.5.2 “Real-time Timer Alarm Register”.
Updated Figure 14-2 “RTT Counting”

Section 15. “Real-time Clock (RTC)”

Section 15.1 “Description””: updated to explain need for accurate external 32.768 kHz clock Harmonized write

protection register naming throughout

Updated Section 15.2 “Embedded Characteristics”

Section 15.5.6 “Updating Time/Calendar””: reworded second paragraph for clarity

Section 15.5.7 “RTC Accurate Clock Calibration”: replaced sentence “The period interval between 2 correction events is

programmable in order to cover the possible crystal oscillator clock variations” with “According to the CORRECTION,

NEGPPM and HIGHPPM values configured in the RTC Mode Register (RTC_MR), the period interval between two

correction events differs”

Updated Section 15.6.2 “RTC Mode Register”

Modified Section 15.6.1 “RTC Control Register”, Section 15.6.5 “RTC Time Alarm Register” and Section 15.6.6 “RTC

Calendar Alarm Register” : added sentence “This register can only be written if the WPEN bit is cleared in the System

Controller Write Protection Mode Register (SYSC_WPMR)”

Table 51-5. SAM4E Datasheet Rev. 11157D 12-Jun-14 Revision history (Continued)

Doc. Date Changes

1443SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

12-Jun-2014

Section 1. “Watchdog Timer (WDT)”

Figure 1-2, “Watchdog Behavior”, “WDT_CR = WDRSTT” replaced with “WDT_CR.WDRSTT=1”

Section 17. “Reinforced Safety Watchdog Timer (RSWDT)”

General formatting and editorial changes throughout

Section 17.2 “Embedded Characteristics”: added bullet “Windowed Watchdog”

Figure 17-2 “Watchdog Behavior” replaced “RSWDT_CR = WDRSTT” with “RSWDT_CR.WDRSTT = 1”

Added notes in Section 17.5.2 “Reinforced Safety Watchdog Timer Mode Register” and updated Section 17.4

“Functional Description”.

KEY is now decribed with a table in Section 17.5.1 “Reinforced Safety Watchdog Timer Control Register”

Section 18. “Supply Controller (SUPC)”

Added Tamper detection and Anti-tampering (Section 18.2 “Embedded Characteristics”, Section 18.4.7.3 “Low-power

Tamper Detection and Anti-Tampering”)

“Low-power Debouncer Inputs” section restructured: content modified and included in Section 18.4.7.3 “Low-power

Tamper Detection and Anti-Tampering”

Updated Section 18.3 “Block Diagram” and Figure 18-4 “Wake-up Sources”

Updated Section 18.4.2 “Slow Clock Generator”, Section 18.4.4 “Supply Monitor”

Updated Section 18.4.4 “Supply Monitor”

Section 18.4.6.2 “Brownout Detector Reset” : Reworked 1st paragraph

Added Section 18.4.8 “Register Write Protection” and Section 18.4.9 “Register Bits in Backup Domain (VDDIO)”

In Section 18.5.9 “System Controller Write Protection Mode Register”: updated register name and bit descriptions.

Section 18-5 “Low-power Debouncer (Push-to-Make Switch, Pull-up Resistors)”, Section 18-6 “Low-power Debouncer

(Push-to-Break Switch, Pull-down Resistors)” and Section 18-7 “Using WKUP Pins Without RTCOUTx Pins”: Modified

pin names.

Updated Section 18.5.3 “Supply Controller Control Register”, Section 18.5.4 “Supply Controller Supply Monitor Mode

Register”, Section 18.5.6 “Supply Controller Wake-up Mode Register”, Section 18.5.7 “Supply Controller Wake-up

Inputs Register”, Section 18.5.8 “Supply Controller Status Register” and Section 18.5.9 “System Controller Write

Protection Mode Register” (added information on VDDIO domain and WPEN bit)

Section 18.4.7.2 “Wake-up Inputs” corrected WKUPPLx pins to WKUPTx pins. WKUP0, WKUP15 references changed

to WKUPx.

Section 19. “General Purpose Backup Registers (GPBR)”

Minor editorial changes

Section 19-1 “Register Mapping”: added reset value 0x00000000 for all registers SYS_GPBRx

Section 19.3.1 “General Purpose Backup Register x”: inserted sentence “These registers are reset at first power-up and

on each loss of VDDBU” below bitmap

Section 20. “Enhanced Embedded Flash Controller (EEFC)”

Reworked section Section 20.4.3.2 “Write Commands” and all sub-sections with figures Figure 20-7 “Full Page

Programming” to Figure 20-9 “Programming Bytes in the Flash”

Modified Section 20.4.3.3 “Erase Commands”

In Section 20.5.2 “EEFC Flash Command Register”, changed the description of FARG field

Replaced NVIC by “interrupt controller” everywhere in the document.

Revised all figures in the section.

Section 21. “Fast Flash Programming Interface (FFPI)”

Modified Table 21-1 “Signal Description List” (removed references to PGMEN2)

Table 51-5. SAM4E Datasheet Rev. 11157D 12-Jun-14 Revision history (Continued)

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1444

12-Jun-2014

Section 22. “Cortex M Cache Controller (CMCC)”

Modified access rights for “Cache Controller Monitor Configuration Register” and “Cache Controller Monitor Enable

Register”

Modified reset value for “Cache Controller Monitor Status Register”

Removed reset values for write-only registers

Section 24. “SAM-BA Boot Program for SAM4E Microcontrollers”

Modified frequency values in Section 24.2 “Embedded Characteristics” and Section 24.3 “Hardware and Software

Constraints” (“,” replaced with “.”)

Section 25. “DMA Controller (DMAC)”

Modified Section 25.2 “Embedded Characteristics” (added Section 25.3 “DMA Controller Peripheral Connections”)

ARB_CFG described with a table in Section 25.8.1 “DMAC Global Configuration Register”

WPKEY described with a table in Section 25.8.19 “DMAC Write Protect Mode Register”

Section 26. “Peripheral DMA Controller (PDC)”

Replaced “on- and/or off-chip” with “target” in Section 26.1 “Description” and Section 26.5.2 “Memory Pointers”.

Added Section 26.3 “Peripheral DMA Controller Connections”

Added last paragraph to Section 26.5.1 “Configuration” specifying that the peripheral clock must be enabled for a PDC

transfer

Section 29. “Power Management Controller (PMC)”

Added Section 28.5.5 “Switching Main Clock between the Main RC Oscillator and Fast Crystal Oscillator”.

Reworked Section 29.13 “Main Clock Failure Detector” for clarity.

Updated the list of write protected registers

Reworked Section 29.11 “Fast Startup” and added Section 29.12 “Startup from Embedded Flash”

Enhanced Section 29.14 “Programming Sequence”

Section 29.16 “Register Write Protection”: Changed section title and re-worked content.

In Section 29.17.20 “PMC Write Protection Mode Register” and Section 29.17.21 “PMC Write Protection Status

Register”: Changed register names and modified bit and field descriptions.

Updated Figure 28-1, “Clock Generator Block Diagram”, Figure 28-3, “Main Clock Block Diagram”Figure 28-4, “Divider

and PLL Block Diagram”

Section 29.17.8 “PMC Clock Generator Main Clock Frequency Register”: Added equation to MAINF description.

Section 30. “Advanced Encryption Standard (AES)”

Editorial and minor formatting changes throughout

Section 30.4.1 “Operation Modes” updated text at end of section

Restructured Section 30.4.3 “Start Modes” to include Section 30.4.3.3 “DMA Mode”

Restructured Section 30.4.4 “Last Output Data Mode”

Section 30-3 “DMA transfer with LOD = 0”: repositioned rising edge of BTC (channel 0)

Updated Section 30-4 “Last Output Data Mode Behavior versus Start Modes”

In Section 30.6.2 “AES Mode Register”, updated LOD field description:

Section 30.6.2 “AES Mode Register”: updated formula in PROCDLY field description

In Section 30.6.10 “AES Initialization Vector Register x”, updated IV field description.

Section 31. “Chip Identifier (CHIPID)”

Corrected title for Section 31.3 “Chip Identifier (CHIPID) User Interface”

Table 51-5. SAM4E Datasheet Rev. 11157D 12-Jun-14 Revision history (Continued)

Doc. Date Changes

1445SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

12-Jun-2014

Section 32. “Controller Area Network (CAN)”
Minor editorial formatting changes throughout

MCK replaced with Peripheral clock

Section 32.6.3 “Interrupt” and Section 32.8.1 “CAN Controller Initialization”: Replaced 2 “AIC” occurences with “interrupt

controller.

Updated Section 32.9.12 “CAN Write Protection Mode Register”

Section 32-10 “Possible Initialization Procedure” replaced instance of “AIC” with “Interrupt Controller”

Table 32-4 “Receive Mailbox Objects”: added missing title

Table 32-5 “Transmit Mailbox Objects”: added missing title

Section 32.7.4.1 “CAN Bit Timing Configuration”: moved three bullets describing the phase segments to precede the

bullet “TIME QUANTAM”

Section 33. “Parallel Input/Output Controller (PIO)”

Minor editorial and formatting changes throughout

Replaced all instances of “PIO clock” and “PIO controller clock” with “peripheral clock”

“MCK” replaced with “Peripheral clock” as needed

Section 33.5.1 “Pull-up and Pull-down Resistor Control” Changed information to specify that pull-up or pull-down can be

set.

Updated Section 33.5.3 “Peripheral A or B or C or D Selection”

Section 33.5.10 “Input Edge/Level Interrupt”: edited, reorganized and reformatted example of interrupt generation
Figure 33-3 “I/O Line Control Logic”: updated connectivity between clocks and glitch/debouncing filter block; renamed

“Resynchronization Stage” to “Peripheral Clock Resynchronization Stage”

Moved Section 33.5.15 “I/O Lines Programming Example” to appear before Section 33.5.16 “Register Write
Protection”

Section 33.5.16 “Register Write Protection”: Changed section title and revised content.

Updated Section 33.6.46 “PIO Write Protection Mode Register”, Section 33.6.47 “PIO Write Protection Status Register”

Section 33.6.51 “PIO Parallel Capture Interrupt Enable Register” added bit configuration values

Section 33.6.52 “PIO Parallel Capture Interrupt Disable Register”: added bit configuration values

Section 33.6.53 “PIO Parallel Capture Interrupt Mask Register”: added bit configuration values

Section 33-6 “Input Debouncing Filter Timing”: inserted “(div_slclk)” under “Divided Slow Clock” waveform label

Section 34. “Serial Peripheral Interface (SPI)”

Reworked content.

MCK replaced with peripheral clock

Updated Section 34.3 “Block Diagram”, Section 34-3 “SPI Transfer Format (NCPHA = 1, 8 bits per transfer)”

and Section 34-4 “SPI Transfer Format (NCPHA = 0, 8 bits per transfer)”

Section 34.2 “Embedded Characteristics”: added bullet “Register Write Protection”

Modified Section 34.7.3 “Master Mode Operations”,

Modified Section 34.7.5 “Register Write Protection”, Section 34.8.10 “SPI Write Protection Mode Register” and Section

34.8.11 “SPI Write Protection Status Register”

Table 51-5. SAM4E Datasheet Rev. 11157D 12-Jun-14 Revision history (Continued)

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1446

12-Jun-2014

Section 35. “Two-wire Interface (TWI)”

Minor editorial and formatting changes throughout

Added “Register Write Protection” in Section 35.2 “Embedded Characteristics”

Updated Figure 35-1, “Block Diagram”

Updated Section 35.6 “Product Dependencies”, Section 35.7.3.5 “Master Receiver Mode”, Section 35.7.3.7 “Using the

Peripheral DMA Controller (PDC)”

Restructured Section 35.7 “Functional Description”

Table 35-7 “Register Mapping”: replaced TWI_THR reset value “0x00000000” with “–”

Section 35.7.3.3 “Programming Master Mode” added one note

Clock Synchronization in Write Mode” in Section 35.7.5.5 “Data Transfer”: at end of last sentence, changed “in Read

mode” to “in Write mode”

Added Section 35.7.5.6 “Using the Peripheral DMA Controller (PDC) in Slave Mode”

Updated Section 35.7.6 “Register Write Protection” (changed title and content), Section 35.8.1 “TWI Control Register”

Section 35.8.5 “TWI Clock Waveform Generator Register”: replaced tmck with tperipheral clock in CLDIV and CHDIV field

descriptions

Modified Section 35.8.6 “TWI Status Register”: replaced the description of “NACK”, used in master mode, with a new

text (address byte is now referenced too)

Updated Section 35.8.7 “TWI Interrupt Enable Register” (added first paragraph)

Section 35.8.8 “TWI Interrupt Disable Register””: removed reset value from this write-only register

Section 35.8.11 “TWI Transmit Holding Register”: removed reset value from this write-only register

Section 35.8.12 “TWI Write Protection Mode Register”: replaced list of protectable registers with link to Section 35.7.6

“Register Write Protection”

Modified Section 35.8.13 “TWI Write Protection Status Register”

Replaced instances of “shift register” with “internal shifter”

Section 36. “Universal Asynchronous Receiver Transmitter (UART)”

Minor editorial/language changes throughout.

Changed ‘MCK’ to ‘peripheral clock’

Updated Figure 36-1, “UART Functional Block Diagram”

Corrected the offset for PDC registers in Section 36.6 “Universal Asynchronous Receiver Transmitter (UART) User

Interface”.

Added Section 36.5.5 “Register Write Protection”, and Section 36.6.10 “UART Write Protection Mode Register”.

Updated Section 36.6 “Universal Asynchronous Receiver Transmitter (UART) User Interface” table with Write

Protection Register.

Table 51-5. SAM4E Datasheet Rev. 11157D 12-Jun-14 Revision history (Continued)

Doc. Date Changes

1447SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

12-Jun-2014

Section 37. “Universal Synchronous Asynchronous Receiver Transmitter (USART)”

Minor formatting and editorial changes throughout

Replaced all references to ‘MCK’ with ’peripheral clock’

Modified Figure 37-1 “USART Block Diagram”: Removed ‘SLCK’. Added ‘Bus clock’.

Section 37-2 “I/O Line Description”: removed sentences: ‘Note that it is not recommended to use the USART interrupt

line in edge sensitive mode.’ and ‘Configuring the USART does not require the USART clock to be enabled.’

Updated Section 37.2 “Embedded Characteristics”: added bullet: ‘Digital Filter on Receive Line’

Table 37-2 “I/O Line Description”: corrected RXD type from Input to I/O.

Section 37.3 “Block Diagram”: removed table “SPI Operating Mode” (information is already present in Table 37-2 “I/O

Line Description”)

Section 37.7 “Functional Description” Removed list of peripheral characteristics that was redundant with Section 37.2

“Embedded Characteristics”.

In Section 37.7.3.4 “Manchester Decoder”, updated information on RXIDLEV bit in 4th paragraph.

Section 37.7.5.3 “IrDA Demodulator”: replaced instances of “T” with “t” when used to express time

Section 37.7.8.5 “Character Transmission”: INACK replaced by WRDBT.

Section 37.7.10 “Register Write Protection”: Changed section title and reworked content.

Updated Section 37.8.3 “USART Mode Register”

Section 37-13 “IrDA Baud Rate Error”: added missing units of measure to column headers

In Table 9-1, “Section 37-16 “Register Mapping”” changed register name to Manchester Configuration Register to be

consistent throughout the document.

Section 37.8.18 “USART FI DI RATIO Register” modified FI_DI_RATIO field from 16 bits to 11 bits.

In Section 37.8.21 “USART Manchester Configuration Register”: added RXIDLEV as bit 31 and added bit description.

Section 37.8.22 “USART Write Protection Mode Register” and Section 37.8.23 “USART Write Protection Status

Register”: Changed register names and modified bit and field descriptions.

Figure 37-37 “Example of RTS Drive with Timeguard”: Figure modified with RTS rising edge prior to start bit

Table 51-5. SAM4E Datasheet Rev. 11157D 12-Jun-14 Revision history (Continued)

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1448

12-Jun-2014

Section 1. “Timer Counter (TC)”

Editorial and formatting changes throughout

Master clock” or “MCK” replaced with “peripheral clock”.

Removed references to FILTER bit (register bit 19 now reserved in Section 39.7.16 “TC Block Mode Register”)

Figure 1-16 “Synchronization with PWM” added value ‘1’ to all multiplexers

Figure 1-18 “Input Stage”: replaced “FILTER” with “MAXFILTER > 0”

Updated Figure 1-1 “Timer Counter Block Diagram”

Updated Figure 1-5 “Example of Transfer with PDC”

Erroneous description of TCCLKS table, rows 0 to 4 reworked in Section 1.7.2 “TC Channel Mode Register: Capture

Mode” and Section 1.7.3 “TC Channel Mode Register: Waveform Mode””

Updated Section 1.7.16 “TC Block Mode Register”

Section 1.6.16.3 “Direction Status and Change Detection”: rewrote sixth paragraph for clarity

Section 1.6.16.4 “Position and Rotation Measurement” rewrote first paragraph for clarity

Section 1.6.16.3 “Direction Status and Change Detection” replaced sentence “The speed can be read on TC_RA0

register in TC_CMR0” with “The speed can be read on field RA in register TC_RA0”

Added Section 1.6.16.6 “Missing Pulse Detection and Auto-correction”

Added configuration bit AUTOC in Section 1.7.16 “TC Block Mode Register”

Section 1.6.18 “Register Write Protection” changed title (was “Write Protection System”); revised content

Section 1.7.22 “TC Write Protection Mode Register”: modified register name (was “TC Write Protect Mode Register”);

updated WPEN field description (replaced list of protectable registers with link to Section 1.6.18 “Register Write

Protection”)

Replaced “0xFFFF” with “2n-1” (with “n” representing counter size) in Section 1.6.12.1 “WAVSEL = 00”, Section

1.6.12.3 “WAVSEL = 01”, Figure 1-10 “WAVSEL = 10 without Trigger”, Section 1-14 “WAVSEL = 11 without Trigger”,

Figure 1-11 “WAVSEL = 10 with Trigger” and Figure 1-15 “WAVSEL = 11 with Trigger”:

Section 1. “Pulse Width Modulation Controller (PWM)”

Editorial and formatting changes throughout.

Updated Table 1-4 “Fault Inputs”

Modified Section 1.6.2.2 “Comparator”

Section 1.6.6 “Register Write Protection”: at end of section, replaced sentence “The WPVS and PWM_WPSR fields are

automatically reset after reading the PWM_WPSR register” with “The WPVS and WPVSRC fields are automatically

cleared after reading the PWM_WPSR”

Section 1.7.9 “PWM Sync Channels Mode Register”: removed table row for value 3 “reserved” in UPDM field

description

WPKEY/WPCMD are now described with tables in Section 1.7.34 “PWM Write Protection Control Register”

Corrected reset value of PWM_FPV2 in Table 1-7 “Register Mapping” (was 0x0000_0000; is 0x003F_003F)

Deleted instances of “(fault input bit varies from 0 to Z-1)” from field descriptions in Section 1.7.24 “PWM Fault Mode

Register”, Section 1.7.25 “PWM Fault Status Register” on page 1139, Section 1.7.26 “PWM Fault Clear Register” and

Section 1.7.28 on page 1142

Updated Section 1.7.34 “PWM Write Protection Control Register” on page 1148

Table 51-5. SAM4E Datasheet Rev. 11157D 12-Jun-14 Revision history (Continued)

Doc. Date Changes

1449SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

12-Jun-2014

Section 40. “High Speed MultiMedia Card Interface (HSMCI)”

Minor formatting and editorial changes throughout

Figure 40-1, “Block Diagram (4-bit configuration)”: added “(4-bit configuration)” to title; added missing note below figure

Modified Section 40.8.1 “Command - Response Operation”

Section 40.13 “Register Write Protection” changed title (was “Write Protection Registers”); revised content

Section 40.14.17 “HSMCI Write Protection Mode Register”: modified register name (was HSMCI

Write Protect Mode Register); replaced list of protectable registers with cross-reference to section “Register Write

Protection”

Section 40.14.18 “HSMCI Write Protection Status Register” modified register name (was HSMCI Write Protect Status

Register) and updated description

Section 41. “USB Device Port (UDP)”

Minor editorial and formatting changes throughout

Figure 41-1 “Block Diagram”: added “interrupt line” below “udp_int”

Section 41.2 “Embedded Characteristics” on page 1158: replaced bullet “Integrated Pull-up on DP” with “Integrated

Pull-up on DPP” added bullet “Integrated Pull-down on DDM”*

Section 41.5.1 “USB Device Transceiver” on page 1161: reworded content for clarity

Section 41-5 “USB Transfer Events” on page 1163: restructured table and reorganized contents

Section 41.6.3 “Controlling Device States” on page 1173: replaced “may not consume more than 500 μA” with “must not

consume more than 2.5 mA”

Section 41.6.3.6 “Entering in Suspend State” on page 1174: replaced “must drain less than 500uA” with “must drain no

more than 2.5 mA”

Section 41.7.10 “UDP Endpoint Control and Status Register (CONTROL_BULK)”: changed EPTYPE[2:0] field

configuration values from binary to decimal

Section 41.7.11 “UDP Endpoint Control and Status Register (ISOCHRONOUS)””: changed EPTYPE[2:0] field

configuration values from binary to decimal

Section 42. “Ethernet MAC (GMAC)”

Minor editorial and formatting changes throughout

Updated Section 42.6.1.6 “Interrupts”: in first paragraph, deleted content “Depending on the overall system ... CPU

enters the interrupt handler” and “Note that in the default ... be write-one-toclear if desired”

In Section 42.6.2 “Statistics Registers”, deleted sentence “In order to reduce overall design area, the Statistics

Registers may be optionally removed in the configuration file if they are deemed unnecessary for a particular design.”

Section 42.7.1 “Network Control Register” removed bit RDS (“Read Snapshot” function not supported)

Section 42.7.32 “Stacked VLAN Register”: added missing description to field ESVLAN

Updated Section 42.7.27 “Type ID Match 1 Register”, Section 42.7.28 “Type ID Match 2 Register”, Section 42.7.29

“Type ID Match 3 Register” and Section 42.7.30 “Type ID Match 4 Register” (added EINDx bits and updated TID bit

description

Section 42.7.81 “1588 Timer Sync Strobe Seconds [31:0] Register” and Section 42.7.83 “1588 Timer Seconds [31:0]

Register”: updated title and register name (GMAC_TSSSL and GMAC_TSL instead of GMAC_TSSS and
GMAC_TS

Updated Section 42.5.2 “1588 Time Stamp Unit”

Table 51-5. SAM4E Datasheet Rev. 11157D 12-Jun-14 Revision history (Continued)

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1450

12-Jun-2014

Section 43. “Analog Comparator Controller (ACC)”

Updated Figure 43-1 “Analog Comparator Controller Block Diagram”

Added Table 43-1 “List of analog inputs”

Updated Table 43-2 “ACC Pin List”

ADx analog inputs replaced with AFEx_ADx external analog data inputs

Section 43.1 “Description”, Section 43.6.2 “Analog Settings” and Section 43.6.4 “Fault Mode”: Updated section for

clarity.

Replaced Section “Write Protection System” with Section 43.6.5 “Register Write Protection”.

Updated Section 43.7.8 “ACC Write Protection Mode Register” and Section 43.7.9 “ACC Write Protection Status

Register”.

Section 44. “Analog-Front-End Controller (AFEC)”

General editorial and formatting changes throughout

Updated Section 44.3 “Block Diagram”

Updated Section 44.6.3 “Conversion Resolution”

Added Section 44.6.5 “Conversion Results Format”

Added the last paragraph (“Depending on the sign of the conversion...”) in ”Section 44.6.8 “Comparison Window”

Updated Section 44.6.9 “Differential Inputs”,

Section 44.6.13 “Enhanced Resolution Mode and Digital Averaging Function”, added two paragraphs (“Note that,...”

and “As the consequence,...”)

Updated Section 44.6.17 “Register Write Protection”

Section 44-7 “Analog Full Scale Ranges in Single Ended/Differential Applications Versus Gain”: replaced instances of

“vrefin” with “VADVREF”

Updated Table 44-7 “Register Mapping”, added new registers and updated offsets for reserved registers

”Section 44.7.3 “AFEC Extended Mode Register”: added SIGNMODE (bits 29:28) and AFEMODE (bits 21:20)

Section 44.7.14 “AFEC Overrun Status Register” added a note

Section 44.7.15 “AFEC Compare Window Register”:

-LOWTHRES: updated the field description

-HIGHTRES: updated the field description

Section 44.7.17 “AFEC Channel Calibration DC Offset Register” In OFFx bit description, replaced instances of

“Vrefin/2” with “VADVREF/2”

Modified DATA field description in Section 44.7.20 “AFEC Channel Data Register”

Section 44.7.23 “AFEC Temperature Compare Window Register”:

-TLOWTHRES: updated the field description

-THIGHTRES: updated the field description

Section 44.7.25 “AFEC Write Protection Mode Register”

- modified the section title/register name (was “AFEC Write Protect Mode Register”)/content

Section 44.7.26 “AFEC Write Protection Status Register”: updated WPVSRC field description

Table 51-5. SAM4E Datasheet Rev. 11157D 12-Jun-14 Revision history (Continued)

Doc. Date Changes

1451SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

12-Jun-2014

Section 44. “Digital-to-Analog Converter Controller (DACC)”

Editorial and formatting changes throughout.

MCK or Master clock replaced with Peripheral clock.

Removed references to Sleep mode and refresh period

Renamed “Features” chapter as “Embedded Characteristics”

Updated Section 44.2 “Embedded Characteristics””

In Section 44.7.2 “DACC Mode Register”:

- REFRESH bit replaced with ONE bit

- Removed FASTWAKEUP bit and SLEEP bit

Re-worked Section 44.6.7 “Register Write Protection” and associated registers and bit/field descriptions in Section

44.7.7 “DACC Interrupt Enable Register”, Section 44.7.8 “DACC Interrupt Disable Register” and Section 44.7.9 “DACC

Interrupt Mask Register”: modified bit descriptions.

Section 44.7.12 “DACC Write Protection Mode Register”” and Section 44.7.13 “DACC Write Protection Status Register”

Section 46. “SAM4E Electrical Characteristics”

Updated whole section

Added reference to note 1 in Table 46-12 “Typical Current Consumption in Wait Mode (1)” title

IO conditions modified in Table 46-2 “DC Characteristics”

VDDIN replaced with VVDDIN for VDDIN voltage values

VDDIO replaced with VVDDIO for VDDIO voltage values

Modified Section 46.3.1 “Backup Mode Current Consumption”

Modified Figure 46-7, “Measurement Setup for Wait Mode”

Updated Section 46.7 “12-bit AFE (Analog Front End) Characteristics” and Figure 46-15 “12-bit AFE (Analog Front End)

Diagram”

Updated Section 46.8 “12-bit DAC Characteristics”

Added Erase Pin Assertion Time in Table 46-68 “AC Flash Characteristics”

“Marking”section moved to Section 48.

Section 50. “Errata on SAM4E Devices”

Added Section 50.1.3 “Flash”

Table 51-5. SAM4E Datasheet Rev. 11157D 12-Jun-14 Revision history (Continued)

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1452

Table 51-6. SAM4E Datasheet Rev. 11157C 25-Jul-2013 Revision History

Doc. Date Changes

25-Jul-2013

Introduction

In “Features” :

- added information on Two-wire Interface in Peripherals section and Wake-on-LAN for EMAC

- changed operating temperature range to 105°C

Updated Table 1-1 “Configuration Summary” with TWI information

In Section 4. “Package and Pinout”, added the FFPI signals to Table 4-1 “SAM4E 100-ball TFBGA Pinout”, Table 4-2

“SAM4E 144-ball LFBGA Pinout”, Table 4-3 “SAM4E 100-lead LQFP Pinout” and Table 4-4 “SAM4E 144-lead LQFP

Pinout”.

Updated Section 5.5 “Low-power Modes”. Added information on WFE.

In Section 6.1 “General Purpose I/O Lines” on page 21, added information on GPIOs as analog input.

Removed Section 7. “Processor and Architecture”. Removed Sections 11-4 to 11-16. Reordered introduction sections.

Removed Note regarding PIOs and 144-pin package at bottom of Table 11-5, “Multiplexing on PIO Controller D (PIOD),”

on page 40 and Table 11-6, “Multiplexing on PIO Controller E (PIOE),” on page 41.

RSTC:

In Section 15.3.6 “Reset Controller Status Register”, RSTTYP information corrected.

RTT:

Added notes in Section 16.4 “Functional Description”, Section 16.5.1 “Real-time Timer Mode Register” and in Section

16.5.2 “Real-time Timer Alarm Register”.

RTC:

In Section 18.5.3 “Alarm”, added new information and note.

In Section 18.5.7 “RTC Accurate Clock Calibration”, updated information on temperature range.

In Section 18.6.5 “RTC Time Alarm Register” and Section 18.6.6 “RTC Calendar Alarm Register”, added notes.

WDT:

In Section 19.1 “Description”, added information on slow clock at 32 kHz.

In Section 19.2 “Embedded Characteristics”, added that Watchdog Clock is independent from Processor Clock.

Moved note (WDD, WDV) from Section 19.5.3 “Watchdog Timer Status Register” to Section 19.5.2 “Watchdog Timer

Mode Register”.

EFC:

In Section 22.4.3.5 “Lock Bit Protection”, added notes on FARG exceeding limits. Updated existing note in Section

22.4.3.6 “GPNVM Bit”.

Added Section 22.4.3.3 “Optimized Partial Programming”. Added note on programming limitations in Section 22.4.3.2

“Write Commands”.

FFPI:

Removed information throughout on Serial Fast Flash Programming not available for device.

CMCC:

In Table 24.5 “Cortex M Cache Controller (CMCC) User Interface”, updated reset value of CMCC_SR.

1453SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25-Jul-2013

PMC:

Section 30.1.4.2 “Slow Clock Crystal Oscillator”, replaced “...in MOSCSEL bit of CKGR_MOR,...” with “...in XTALSEL bit of

SUPC_CR,...” in the last phrase of the 3d paragraph.

Section 30.1.4.2 “Slow Clock Crystal Oscillator”, added references on the OSCSEL bit of PMC_SR in the 3d paragraph.

Register names in Clock Generator: Replaced “PLL_MCKR” with “PMC_MCKR” and “PLL_SR” with “PMC_SR” in Section

30.1.5.5 “Software Sequence to Detect the Presence of Fast Crystal”.

In Section 30.1.6.1 “Divider and Phase Lock Loop Programming”, 3rd bullet, replaced PMC_IER with PMC_SR. Deleted

previous 4th bullet (was useless sentence “Disable and then enable the PLL...”).

In Figure 30-3 “Main Clock Block Diagram” and Section 30.1.5.3 “3 to 20 MHz Crystal or Ceramic Resonator-based

Oscillator” paragraph 5, replaced MOSCXTCNT with MOSCXTST.

Added code example in step 1. of Section 30.2.13 “Programming Sequence”.

Corrected reset value of CKGR_MOR register in Table 30-2, “Register Mapping”.

USART:

In Table 37-10 “Maximum Timeguard Length Depending on Baud Rate” and in Table 37-11 “Maximum Time-out Period”,

modified 33400 baudrate to 38400.

Updated Figure 37-22 “Parity Error” with corrected stop bit value.

TC:

In Section 38.1 “Description”, corrected reference to TIOA1 with TIOB1.

In Section 38.7.3 “TC Channel Mode Register: Waveform Mode”, added note for ENETRG description.

HSMCI:

In Figure 39-8 “Read Functional Flow Diagram”, Figure 39-9 “Write Functional Flow Diagram” and Figure 39-10 “Multiple

Write Functional Flow Diagram”, corrected HSMCI_MR to HSMCI_BLKR when referring to Block Length field that is not

available in HSMCI_MR. Removed related Note 2.

In Section 39.14.7 “HSMCI Block Register”, BLKLEN bit description, removed reference on accessiblity in Mode Register.

Table 51-6. SAM4E Datasheet Rev. 11157C 25-Jul-2013 Revision History (Continued)

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1454

25-Jul-2013

Electrical Characteristics

Operating temperature is extended to 105°C. Changed/updated in:

- Table 46-1 “Absolute Maximum Ratings*”

- Section 46.2 “DC Characteristics”

- Table 46-5 “VDDIO Supply Monitor”

- Table 46-16 “32 kHz RC Oscillator Characteristics”

- Table 46-17 “4/8/12 MHz RC Oscillators Characteristics”

- Table 46-45 “Temperature Sensor Characteristics”

- Table 46-58 “Embedded Flash Wait State VDDCORE set at 1.08V and VDDIO 1.62V to 3.6V @105C”

- Table 46-59 “Embedded Flash Wait State VDDCORE set at 1.08V and VDDIO 2.7V to 3.6V @105C”

- Table 46-60 “Embedded Flash Wait State VDDCORE set at 1.2V and VDDIO 1.62V to 3.6V @ 105C”

- Table 46-61 “Embedded Flash Wait State VDDCORE set at 1.20V and VDDIO 2.7V to 3.6V @ 105C”

- Table 46-62 “AC Flash Characteristics”. Added Program cycle time/Write page mode values.

In Section 46.3 “Power Consumption”, added bullet with conditions of power consumption values.

In Section 46.3.1.1 “Configuration A: Embedded Slow Clock RC Oscillator Enabled” and Section 46.3.1.2 “Configuration

B: 32768 kHz Crystal Oscillator Enabled”, added bullet on BOD disabled.

New values in Table 46-9 “Power Consumption for Backup Mode Configuration A and B”

In Section 46.3.2.1 “Sleep Mode”, added bullet on VDDIO.

In Section 46.3.2.2 “Wait Mode”, added bullet on VDDIO.

New values in Table 46-12 “Typical Current Consumption in Wait Mode”.

Ordering Information

Table 48-1 “Ordering Codes for SAM4E Devices” updated with new ordering codes for parts at 105°C and for tape & reel

Errata

Added Section 49. “Errata on SAM4E Devices” that includes Section 49.2.1.1 “Watchdog Not Stopped in Wait Mode” and

Section 49.2.2.1 “Unpredictable Behavior if BOD is Disabled, VDDCORE is Lost and VDDIO is Connected”

Table 51-6. SAM4E Datasheet Rev. 11157C 25-Jul-2013 Revision History (Continued)

Doc. Date Changes

1455SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

Table 51-7. SAM4E Datasheet Rev. 11157B 25-April-2013 Revision History

Doc. Date Changes

25-Apr-2013

Introduction:

Updated the section structure and added references to 100-ball TFBGA and 100-lead LQFP packages in:

- Section 1. “Features”

- Table 1-1 “Configuration Summary”

- Figure 2-1 “SAM4E 100-pin Block Diagram”

- Section 4.1 “100-ball TFBGA Package and Pinout”

- Section 4.3 “100-lead LQFP Package and Pinout”

- Table 11-1 “PIO available according to Pin Count”

Added Analog Comparator (ACC) and Reinforced Safety Watchdog Timer (RSWDT) blocks in Figure 2-2 “SAM4E 144-

pin Block Diagram”.

Updated the description of power supply pins in Section 5.1 “Power Supplies”.

Updated Figure 11-3 “Power Management Controller Block Diagram”.

Removed RC80M references in Figure 10-1 “System Controller Block Diagram” and Figure 11-2 “Clock Generator Block

Diagram”.

Add data on consumption and wake-up time in Table 5-1 “Low-power Mode Configuration Summary”.

Removed “AT91SAM” from the document title and further on in the entire document (where appropriate).

Replaced “Cortex™” references with “Cortex®“ in “Description” and further on in the entire document.

Section 11.14 “Chip Identification”, replaced “Table 11-1. SAM4E Chip ID Register” with a cross-reference to the

corresponding Table 14-1 “SAM4E Chip ID Registers” (Section 14. “Chip Identifier (CHIPID)”).

Removed package dimension references in Section 4. “Package and Pinout”.

Added a phrase on the flash write commands usage in Section 8.1.3.1 “Flash Overview” (the last paragraph).

Updated package information in Section 11.2 “Peripheral Signal Multiplexing on I/O Lines”:

- replaced “100/144 pin version” with “144 pin version” in Table 11-4 “Multiplexing on PIO Controller C (PIOC)”

- removed “144 pin version” in Table 11-5 “Multiplexing on PIO Controller D (PIOD)”

Updated Figure 7-1 “SAM4E Product Mapping”.

Replaced GRX by GRX1 on line PD6 in Table 11-5 “Multiplexing on PIO Controller D (PIOD)”.

CHIPID:

Section 14.3 “Chip Identifier (CHIPID) User Interface”, updated the ARCH bitfield table in “ARCH: Architecture Identifier”

(removed rows with not relevant information: 0x43, 0x88, 0x89, 0x8A, 0x93, 0x94, and 0x95).

Section 14.2 “Embedded Characteristics”, replaced ‘0x0011_0201’ with ‘0x0012_0201’ and ‘0x0011_0209’ with

‘0x0012_0209’ in Table 14-1 “SAM4E Chip ID Registers”.

Section 14.3.2 “Chip ID Extension Register”, updated value in the Flash Size table and removed package references in

the Product Number table.

RTT:

Section 16.3 “Block Diagram”, replaced ‘CLKSRC’ source reference with ‘RTC1HZ’ in Figure 16-1 “Real-time Timer”.

Updated the 4th and the 8th paragraphs in Section 16.4 “Functional Description” (“Setting the RTC 1 HZ clock to 1...” and

“The RTTINC bit in RTT_SR is set...” respectively).

Section 16.5.1 “Real-time Timer Mode Register”, added notes in “RTTDIS: Real-time Timer Disable” and “RTC1HZ: Real-

Time Clock 1Hz Clock Selection”.

RSWDT:

Added a new component: Section 17. “Reinforced Safety Watchdog Timer (RSWDT)”.

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1456

25-Apr-2013

RTC:

Section 18.2 “Embedded Characteristics”, added a new bullet "Safety/Security features”, right indented the 2 following

bullets.

Section 18.5 “Functional Description”, added the last paragraph (“The RTC can generate...”).

SUPC:

Updated Figure 20-1 “Supply Controller Block Diagram”.

Updated the 2-nd paragraph in Section 20.4.7.4 “Low-power Tamper Detection Inputs” and placed this section just after

Section 20.4.7.3 “Low-power Debouncer Inputs”.

EFC:

Typo fixed in Section 22.4.3.5 “GPNVM Bit” and added title in Section 22.4.3.6 “Calibration Bit”.

Added notes when FARG exceeds limits in Section 22.4.3.4 “Lock Bit Protection” and reworked the existing note in

Section 22.4.3.5 “GPNVM Bit”.

FFPI:

Removed duplicate and erroneous figures in:

- Section 23.3.1 “Device Configuration”

- Section 23.3.4.1 “Write Handshaking”

- Section 23.3.4.2 “Read Handshaking”

- Section 23.3.5.8 “Get Version Command”

Fixed the section structure.

MATRIX:

Removed references to Special Function Registers (SFR) and to Bus Matrix Priority Registers B for Slaves.

Updated sections:

- Section 26.1 “Description”

- Section 26.2 “Embedded Characteristics”

- Section 26.12 “Bus Matrix (MATRIX) User Interface”:

- Table 26-3 “Register Mapping”

- Section 26.12.1 - Section 26.12.4

- Section 26.12.7

Updated register names to “MATRIX_MCFGx [x=0..6]” and so on in Section 26.12.1 “Bus Matrix Master Configuration

Registers”, Section 26.12.2 “Bus Matrix Slave Configuration Registers”, and Section 26.12.3 “Bus Matrix Priority

Registers A For Slaves”.

Replaced the WPKEY bitfield description with the corresponding table in Section 26.12.7 “Write Protect Mode Register”.

PMC:

Section 30.2.16.9 “PMC Clock Generator PLLA Register”, removed “x8” in “PLLACOUNT: PLLA Counter” bitfield

description.

Section “”, replaced the KEY bitfield description with a table.

Section 30.2.16.20 “PMC Write Protect Mode Register”, replaced the WPKEY bitfield description with a table.

Updated the last paragraph in Section 30.1.5.2 “Fast RC Oscillator Clock Frequency Adjustment” and added the

corresponding note in Section 30.2.16.8 “PMC Clock Generator Main Clock Frequency Register”.

AES:

Updated Section 31.4.4 “DMA Mode” and Section 31.4.7 “DMA Mode” (“PDC Mode” --> “DMA Mode”).

Section 31.6.2 “AES Mode Register”, replaced the CKEY bitfield description with a table.

Table 51-7. SAM4E Datasheet Rev. 11157B 25-April-2013 Revision History (Continued)

Doc. Date Changes

1457SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25-Apr-2013

PIO:

Section 33.5 “Functional Description”, added pull-down resistor and registers in Figure 33-5 “Input Glitch Filter Timing”.

Section 33.7.46 “PIO Write Protect Mode Register”, replaced the WPKEY bitfield description with a table.

Added missing dashes for reserved registers in Table 33-3 “Register Mapping”.

Replaced “DIVx” with “DIV” in Section 33.7.29 “PIO Slow Clock Divider Debouncing Register”.

Updated the SCHMITTx bitfield description in Section 33.7.48 “PIO Schmitt Trigger Register” and updated the Delayx

bitfield description in Section 33.7.49 “PIO I/O Delay Register”.

SPI:

Section 34.7.3.2 “Master Mode Flow Diagram”, added TDRE references in Figure 34-8 “PDC Status Register Flags

Behavior”.

Section 34.7.4 “SPI Slave Mode”, updated the next-to-last paragraph (“Then, a new data is loaded...”).

Replaced offset 0x4C with 0x40, 0xE8 with 0xEC in Section 34.8 “Serial Peripheral Interface (SPI) User Interface”.

USART:

Added a paragraph on IRDA_FILTER programming criteria in Section 37.7.5.3 “IrDA Demodulator” and in the

corresponding bitfield description in Section 37.8.20 “USART IrDA FILTER Register”.

Section 37.8.18 “USART FI DI RATIO Register”, expanded FI_DI_RATIO bitfield to 16 bits in the register table.

Added RXBUFF and TXBUFE bitfields and their descriptions in:

- Section 37.8.6 “USART Interrupt Enable Register (SPI_MODE)”

- Section 37.8.8 “USART Interrupt Disable Register (SPI_MODE)”

- Section 37.8.10 “USART Interrupt Mask Register (SPI_MODE)”

- Section 37.8.12 “USART Channel Status Register (SPI_MODE)”

TC:

Fixed a typo in Section 38.1 “Description”: “TIOA1” --> “TIOB1”.

ACC:

Added Table 42-2 “Analog Comparator Inputs”.

Table 51-7. SAM4E Datasheet Rev. 11157B 25-April-2013 Revision History (Continued)

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1458

25-Apr-2013

AFEC:

Fixed a typo in Section 43.7.25 “AFEC Write Protect Mode Register”: replaced ‘(“AFE” in ASCII)’ with ‘(“ADC” in ASCII)’ in

the WPEN and WPKEY bitfield descriptions.

Updated register tables (replaced bitfield data with “-” for bits from 16 to 23) in:

- Section 43.7.6 “AFEC Channel Enable Register”

- Section 43.7.7 “AFEC Channel Disable Register”

- Section 43.7.8 “AFEC Channel Status Register”

- Section 43.7.17 “AFEC Channel Calibration DC Offset Register”

Updated the acronym from ‘AFE’ to ‘AFEC’ in the entire document (except of ‘AFE Controller’).

Updated Section 43.2 “Embedded Characteristics”.

Reworked Section Section 43.6.9 “Input Gain and Offset”:

- updated the first and the last paragraphs

- removed Table 42-7 Offset of the Sample and Hold Unit: OFFSET DIFF and Gain (G)

- updated Figure 43-7 “Analog Full Scale Ranges in Single Ended/Differential Applications Versus Gain”.

Rewritten Section 43.6.13 “Automatic Calibration”.

Updated Section 43.7 “Analog-Front-End Controller (AFEC) User Interface”:

- AFEC_CSELR, AFEC_COCR are declared as Read-write registers

- “Channel DC Offset Register’ --> ‘Channel Calibration DC Offset Register”

- updated “ANACH: Analog Change” bitfield description table in Section 43.7.2 “AFEC Mode Register”

- updated the OFFx bitfield description and added a note in Section 43.7.17 “AFEC Channel Calibration DC Offset

Register”.

Updated the last paragraph in Section 43.6.3.1 “Enhanced Resolution Mode”.

GMAC:

Replaced "at all three speeds" by "at all supported speeds" in Section 44.1 “Description” and Section 44.2 “Embedded

Characteristics”.

Section 44.7.1 “Network Control Register”, removed the LB bitfield and its description and updated the LBL bitfield

description (removed phrases: "Bit 11 of GMAC_R ... loopback mode." and "Local loopback functionality is optional.").

Section 44.7.4 “User Register”, removed the BPDG, HDFC and RMII bitfields and their descriptions.

Removed references to external FIFO/external FIFO interface in the entire document.

Table 51-7. SAM4E Datasheet Rev. 11157B 25-April-2013 Revision History (Continued)

Doc. Date Changes

1459SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

25-Apr-2013

Electrical Characteristics:

Added references to 100-ball TFBGA and 100-lead LQFP packages in Table 46-1 “Absolute Maximum Ratings*”.

Updated data in:

- Table 46-2 “DC Characteristics”

- Table 46-3 “1.2V Voltage Regulator Characteristics”

- Section 46.3.1.2 “Configuration B: 32768 kHz Crystal Oscillator Enabled”

- Section 46.3.2.1 “Sleep Mode”

- Section 46.3.2.2 “Wait Mode”, including Table 46-12 “Typical Current Consumption in Wait Mode”

- Table 46-13 “Active Power Consumption with VDDCORE @ 1.2V running from Embedded Memory (IDDCORE- AMP1)”

- Table 46-15 “Power Consumption on VDDCORE(1)”

- Table 46-16 “32 kHz RC Oscillator Characteristics”

- Table 46-27 “Analog Power Supply Characteristics”

- Table 46-28 “Channel Conversion Time and ADC Clock”

- Table 46-29 “External Voltage Reference Input”

- Section 46.7.1 “ADC Resolution”

- Section 46.7.2 “Static Performance Characteristics”

- Section 46.7.3 “Dynamic Performance Characteristics”

- Notes in Table 46-47 “I/O Characteristics”

Added:

- Figure 46-6 “Current Consumption in Sleep Mode (AMP1) versus Master Clock Ranges (Condition from Table 46-10)”

- Figure 46-9 “Active Power Consumption with VDDCORE @ 1.2V”

- Section 46.3.3.2 “SAM4E Active Total Power Consumption”

- Figure 46-14 “12-bit AFE (Analog Front End) Diagram”

Updated temperature range from “-40°C - +125°C” to “-40°C - +85°C” in Table 46-16 “32 kHz RC Oscillator

Characteristics”.

Added missing titles in:

- Figure 46-11 “32.768 kHz Crystal Oscillator Schematics”

- Figure 46-12 “3 to 20 MHz Crystal Oscillator Schematics”

Table 51-7. SAM4E Datasheet Rev. 11157B 25-April-2013 Revision History (Continued)

Doc. Date Changes

SAM4E Series [DATASHEET]
Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16

1460

S

25-Apr-2013

Replaced “RES = 1” with “RES = 0” in Table 46-30 “ADC Resolution following Digital Averaging”.

Updated Table 46-33 “Gain and Error Offset, 12-bit Mode, VDDIN 2.4V to 3.6V Supply Voltage Conditions”.

Section 46.7.1.2 “Conditions @ 25 degrees with Gain =4”, replaced “fS = 1 kHz” with “fS = 1 MHz”.

Section 46.11.3.2 “SPI Timings”, updated for better presentation the paragraph “Note that in SPI master mode,...”.

Updated notes in Table 46-52 “SMC Write NCS Controlled (WRITE_MODE = 0)” and in Table 46-57 “EMAC MII Timings”.

Section 46.8 “12-bit DAC Characteristics”, updated data in Table 46-41 “Static Performance Characteristics” and Table

46-42 “Dynamic Performance Characteristics”.

Updated data in Table 46-62 “AC Flash Characteristics”.

Mechanical Characteristics:

Updated the section structure and added references on 100-ball TFBGA and 100-lead LQFP packages in:

- Section 47.1 “100-ball TFBGA Package Drawing”

- Section 47.3 “100-lead LQFP Package Drawing”

Ordering Codes:

Added references to 100-ball TFBGA and 100-lead LQFP packages in Table 48-1 “Ordering Codes for SAM4E Devices”.

Table 51-8. SAM4E Datasheet Rev. 11157A 14-Jan-2013 Revision History

Doc. Date Changes

14-Jan-2013 Initial release

Table 51-7. SAM4E Datasheet Rev. 11157B 25-April-2013 Revision History (Continued)

Doc. Date Changes

XX X XX X

ARM Connected Logo

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-11157H-ATARM-SAM4E16-SAM4E8-Datasheet_31-Mar-16.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

https://plus.google.com/106109247591403112418/posts
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation
https://www.facebook.com/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com
www.atmel.com

	Description
	1. Features
	1.1 Configuration Summary

	2. Block Diagram
	3. Signal Description
	4. Package and Pinout
	4.1 100-ball TFBGA Package and Pinout
	4.1.1 100-ball TFBGA Package Outline
	4.1.2 100-ball TFBGA Pinout

	4.2 144-ball LFBGA Package and Pinout
	4.2.1 144-ball LFBGA Package Outline
	4.2.2 144-ball LFBGA Pinout

	4.3 100-lead LQFP Package and Pinout
	4.3.1 100-lead LQFP Package Outline
	4.3.2 100-lead LQFP Pinout

	4.4 144-lead LQFP Package and Pinout
	4.4.1 144-lead LQFP Package Outline
	4.4.2 144-lead LQFP Pinout

	5. Power Considerations
	5.1 Power Supplies
	5.2 Power-up Considerations
	5.2.1 VDDIO Versus VDDCORE
	5.2.2 VDDIO Versus VDDIN

	5.3 Voltage Regulator
	5.4 Typical Powering Schematics
	5.6 Low-power Modes
	5.6.1 Backup Mode
	5.6.2 Wait Mode
	5.6.3 Sleep Mode
	5.6.4 Low-power Mode Summary Table

	5.7 Wake-up Sources
	5.8 Fast Start-up

	6. Input/Output Lines
	6.1 General Purpose I/O Lines
	6.2 System I/O Lines

	7. Memories
	7.1 Product Mapping
	7.2 Embedded Memories
	7.2.1 Internal SRAM
	7.2.2 Internal ROM
	7.2.3 Embedded Flash
	7.2.3.1 Flash Overview
	7.2.3.2 Enhanced Embedded Flash Controller
	7.2.3.3 Flash Speed
	7.2.3.4 Lock Regions
	7.2.3.5 Security Bit Feature
	7.2.3.6 Calibration Bits
	7.2.3.7 Unique Identifier
	7.2.3.8 User Signature
	7.2.3.9 Fast Flash Programming Interface
	7.2.3.10 SAM-BA Boot
	7.2.3.11 GPNVM Bits

	7.2.4 Boot Strategies

	7.3 External Memories
	7.4 Cortex-M Cache Controller (CMCC)

	8. Real-time Event Management
	8.1 Embedded Characteristics
	8.2 Real-time Event Mapping

	9. System Controller
	9.1 System Controller and Peripherals Mapping
	9.2 Power-on-Reset, Brownout and Supply Monitor
	9.2.1 Power-on-Reset
	9.2.2 Brownout Detector on VDDCORE
	9.2.3 Supply Monitor on VDDIO

	10. Peripherals
	10.1 Peripheral Identifiers
	10.2 Peripheral Signal Multiplexing on I/O Lines
	10.2.1 PIO Controller A Multiplexing
	10.2.2 PIO Controller B Multiplexing
	10.2.3 PIO Controller C Multiplexing
	10.2.4 PIO Controller D Multiplexing
	10.2.5 PIO Controller E Multiplexing

	11. Cortex-M4 processor
	11.1 Description
	11.1.1 System Level Interface
	11.1.2 Integrated Configurable Debug

	11.2 Embedded Characteristics
	11.3 Block Diagram
	11.4 Cortex-M4 Models
	11.4.1 Programmers Model
	11.4.1.1 Processor Modes and Privilege Levels for Software Execution
	11.4.1.2 Stacks
	11.4.1.3 Core Registers
	11.4.1.4 General-purpose Registers
	11.4.1.5 Stack Pointer
	11.4.1.6 Link Register
	11.4.1.7 Program Counter
	11.4.1.8 Program Status Register
	11.4.1.9 Application Program Status Register
	11.4.1.10 Interrupt Program Status Register
	11.4.1.11 Execution Program Status Register
	11.4.1.12 Exception Mask Registers
	11.4.1.13 Priority Mask Register
	11.4.1.14 Fault Mask Register
	11.4.1.15 Base Priority Mask Register
	11.4.1.16 Control Register
	11.4.1.17 Exceptions and Interrupts
	11.4.1.18 Data Types
	11.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

	11.4.2 Memory Model
	11.4.2.1 Memory Regions, Types and Attributes
	Memory Types
	Additional Memory Attributes

	11.4.2.2 Memory System Ordering of Memory Accesses
	11.4.2.3 Behavior of Memory Accesses
	Additional Memory Access Constraints For Caches and Shared Memory
	Instruction Prefetch and Branch Prediction

	11.4.2.4 Software Ordering of Memory Accesses
	DMB
	DSB
	ISB
	MPU Programming

	11.4.2.5 Bit-banding
	Directly Accessing an Alias Region
	Directly Accessing a Bit-band Region

	11.4.2.6 Memory Endianness
	Little-endian Format

	11.4.2.7 Synchronization Primitives
	11.4.2.8 Programming Hints for the Synchronization Primitives

	11.4.3 Exception Model
	11.4.3.1 Exception States
	Inactive
	Pending
	Active
	Active and Pending

	11.4.3.2 Exception Types
	Reset
	Non Maskable Interrupt (NMI)
	Hard Fault
	Memory Management Fault (MemManage)
	Bus Fault
	Usage Fault
	SVCall
	PendSV
	SysTick
	Interrupt (IRQ)

	11.4.3.3 Exception Handlers
	11.4.3.4 Vector Table
	11.4.3.5 Exception Priorities
	11.4.3.6 Interrupt Priority Grouping
	11.4.3.7 Exception Entry and Return
	Preemption
	Return
	Tail-chaining
	Late-arriving
	Exception Entry
	Exception Return

	11.4.3.8 Fault Handling
	Fault Types
	Fault Escalation and Hard Faults
	Fault Status Registers and Fault Address Registers
	Lockup

	11.5 Power Management
	11.5.1 Entering Sleep Mode
	11.5.1.1 Wait for Interrupt
	11.5.1.2 Wait for Event
	11.5.1.3 Sleep-on-exit

	11.5.2 Wakeup from Sleep Mode
	11.5.2.1 Wakeup from WFI or Sleep-on-exit
	11.5.2.2 Wakeup from WFE
	11.5.2.3 External Event Input

	11.5.3 Power Management Programming Hints

	11.6 Cortex-M4 Instruction Set
	11.6.1 Instruction Set Summary
	11.6.2 CMSIS Functions
	11.6.3 Instruction Descriptions
	11.6.3.1 Operands
	11.6.3.2 Restrictions when Using PC or SP
	11.6.3.3 Flexible Second Operand
	Constant
	Instruction Substitution
	Register with Optional Shift

	11.6.3.4 Shift Operations
	ASR
	LSR
	LSL
	ROR
	RRX

	11.6.3.5 Address Alignment
	11.6.3.6 PC-relative Expressions
	11.6.3.7 Conditional Execution
	Condition Flags
	Condition Code Suffixes
	Absolute Value
	Compare and Update Value

	11.6.3.8 Instruction Width Selection

	11.6.4 Memory Access Instructions
	11.6.4.1 ADR
	11.6.4.2 LDR and STR, Immediate Offset
	11.6.4.3 LDR and STR, Register Offset
	11.6.4.4 LDR and STR, Unprivileged
	11.6.4.5 LDR, PC-relative
	11.6.4.6 LDM and STM
	11.6.4.7 PUSH and POP
	11.6.4.8 LDREX and STREX
	11.6.4.9 CLREX

	11.6.5 General Data Processing Instructions
	11.6.5.1 ADD, ADC, SUB, SBC, and RSB
	11.6.5.2 AND, ORR, EOR, BIC, and ORN
	11.6.5.3 ASR, LSL, LSR, ROR, and RRX
	11.6.5.4 CLZ
	11.6.5.5 CMP and CMN
	11.6.5.6 MOV and MVN
	11.6.5.7 MOVT
	11.6.5.8 REV, REV16, REVSH, and RBIT
	11.6.5.9 SADD16 and SADD8
	11.6.5.10 SHADD16 and SHADD8
	11.6.5.11 SHASX and SHSAX
	11.6.5.12 SHSUB16 and SHSUB8
	11.6.5.13 SSUB16 and SSUB8
	11.6.5.14 SASX and SSAX
	11.6.5.15 TST and TEQ
	11.6.5.16 UADD16 and UADD8
	11.6.5.17 UASX and USAX
	11.6.5.18 UHADD16 and UHADD8
	11.6.5.19 UHASX and UHSAX
	11.6.5.20 UHSUB16 and UHSUB8
	11.6.5.21 SEL
	11.6.5.22 USAD8
	11.6.5.23 USADA8
	11.6.5.24 USUB16 and USUB8

	11.6.6 Multiply and Divide Instructions
	11.6.6.1 MUL, MLA, and MLS
	11.6.6.2 UMULL, UMAAL, UMLAL
	11.6.6.3 SMLA and SMLAW
	11.6.6.4 SMLAD
	11.6.6.5 SMLAL and SMLALD
	11.6.6.6 SMLSD and SMLSLD
	11.6.6.7 SMMLA and SMMLS
	11.6.6.8 SMMUL
	11.6.6.9 SMUAD and SMUSD
	11.6.6.10 SMUL and SMULW
	11.6.6.11 UMULL, UMLAL, SMULL, and SMLAL
	11.6.6.12 SDIV and UDIV

	11.6.7 Saturating Instructions
	11.6.7.1 SSAT and USAT
	11.6.7.2 SSAT16 and USAT16
	11.6.7.3 QADD and QSUB
	11.6.7.4 QASX and QSAX
	11.6.7.5 QDADD and QDSUB
	11.6.7.6 UQASX and UQSAX
	11.6.7.7 UQADD and UQSUB

	11.6.8 Packing and Unpacking Instructions
	11.6.8.1 PKHBT and PKHTB
	11.6.8.2 SXT and UXT
	11.6.8.3 SXTA and UXTA

	11.6.9 Bitfield Instructions
	11.6.9.1 BFC and BFI
	11.6.9.2 SBFX and UBFX
	11.6.9.3 SXT and UXT

	11.6.10 Branch and Control Instructions
	11.6.10.1 B, BL, BX, and BLX
	11.6.10.2 CBZ and CBNZ
	11.6.10.3 IT
	11.6.10.4 TBB and TBH

	11.6.11 Floating-point Instructions
	11.6.11.1 VABS
	11.6.11.2 VADD
	11.6.11.3 VCMP, VCMPE
	11.6.11.4 VCVT, VCVTR between Floating-point and Integer
	11.6.11.5 VCVT between Floating-point and Fixed-point
	11.6.11.6 VCVTB, VCVTT
	11.6.11.7 VDIV
	11.6.11.8 VFMA, VFMS
	11.6.11.9 VFNMA, VFNMS
	11.6.11.10 VLDM
	11.6.11.11 VLDR
	11.6.11.12 VLMA, VLMS
	11.6.11.13 VMOV Immediate
	11.6.11.14 VMOV Register
	11.6.11.15 VMOV Scalar to ARM Core Register
	11.6.11.16 VMOV ARM Core Register to Single Precision
	11.6.11.17 VMOV Two ARM Core Registers to Two Single Precision
	11.6.11.18 VMOV ARM Core Register to Scalar
	11.6.11.19 VMRS
	11.6.11.20 VMSR
	11.6.11.21 VMUL
	11.6.11.22 VNEG
	11.6.11.23 VNMLA, VNMLS, VNMUL
	11.6.11.24 VPOP
	11.6.11.25 VPUSH
	11.6.11.26 VSQRT
	11.6.11.27 VSTM
	11.6.11.28 VSTR
	11.6.11.29 VSUB

	11.6.12 Miscellaneous Instructions
	11.6.12.1 BKPT
	11.6.12.2 CPS
	11.6.12.3 DMB
	11.6.12.4 DSB
	11.6.12.5 ISB
	11.6.12.6 MRS
	11.6.12.7 MSR
	11.6.12.8 NOP
	11.6.12.9 SEV
	11.6.12.10 SVC
	11.6.12.11 WFE
	11.6.12.12 WFI

	11.7 Cortex-M4 Core Peripherals
	11.7.1 Peripherals
	11.7.2 Address Map

	11.8 Nested Vectored Interrupt Controller (NVIC)
	11.8.1 Level-sensitive Interrupts
	11.8.1.1 Hardware and Software Control of Interrupts

	11.8.2 NVIC Design Hints and Tips
	11.8.2.1 NVIC Programming Hints

	11.8.3 Nested Vectored Interrupt Controller (NVIC) User Interface
	11.8.3.1 Interrupt Set-enable Registers
	11.8.3.2 Interrupt Clear-enable Registers
	11.8.3.3 Interrupt Set-pending Registers
	11.8.3.4 Interrupt Clear-pending Registers
	11.8.3.5 Interrupt Active Bit Registers
	11.8.3.6 Interrupt Priority Registers
	11.8.3.7 Software Trigger Interrupt Register

	11.9 System Control Block (SCB)
	11.9.1 System Control Block (SCB) User Interface
	11.9.1.1 Auxiliary Control Register
	11.9.1.2 CPUID Base Register
	11.9.1.3 Interrupt Control and State Register
	11.9.1.4 Vector Table Offset Register
	11.9.1.5 Application Interrupt and Reset Control Register
	11.9.1.6 System Control Register
	11.9.1.7 Configuration and Control Register
	11.9.1.8 System Handler Priority Registers
	11.9.1.9 System Handler Priority Register 1
	11.9.1.10 System Handler Priority Register 2
	11.9.1.11 System Handler Priority Register 3
	11.9.1.12 System Handler Control and State Register
	11.9.1.13 Configurable Fault Status Register
	11.9.1.14 Configurable Fault Status Register (Byte Access)
	11.9.1.15 Hard Fault Status Register
	11.9.1.16 MemManage Fault Address Register
	11.9.1.17 Bus Fault Address Register

	11.10 System Timer (SysTick)
	11.10.1 System Timer (SysTick) User Interface
	11.10.1.1 SysTick Control and Status Register
	11.10.1.2 SysTick Reload Value Registers
	11.10.1.3 SysTick Current Value Register
	11.10.1.4 SysTick Calibration Value Register

	11.11 Memory Protection Unit (MPU)
	11.11.1 MPU Access Permission Attributes
	11.11.1.1 MPU Mismatch
	11.11.1.2 Updating an MPU Region
	11.11.1.3 Updating an MPU Region Using Separate Words
	11.11.1.4 Updating an MPU Region Using Multi-word Writes
	11.11.1.5 Subregions
	11.11.1.6 Example of SRD Use
	11.11.1.7 MPU Design Hints And Tips
	MPU Configuration for a Microcontroller

	11.11.2 Memory Protection Unit (MPU) User Interface
	11.11.2.1 MPU Type Register
	11.11.2.2 MPU Control Register
	11.11.2.3 MPU Region Number Register
	11.11.2.4 MPU Region Base Address Register
	11.11.2.5 MPU Region Attribute and Size Register
	11.11.2.6 MPU Region Base Address Register Alias 1
	11.11.2.7 MPU Region Attribute and Size Register Alias 1
	11.11.2.8 MPU Region Base Address Register Alias 2
	11.11.2.9 MPU Region Attribute and Size Register Alias 2
	11.11.2.10 MPU Region Base Address Register Alias 3
	11.11.2.11 MPU Region Attribute and Size Register Alias 3

	11.12 Floating Point Unit (FPU)
	11.12.1 Enabling the FPU
	11.12.2 Floating Point Unit (FPU) User Interface
	11.12.2.1 Coprocessor Access Control Register
	11.12.2.2 Floating-point Context Control Register
	11.12.2.3 Floating-point Context Address Register
	11.12.2.4 Floating-point Status Control Register
	11.12.2.5 Floating-point Default Status Control Register

	11.13 Glossary

	12. Debug and Test Features
	12.1 Description
	12.2 Embedded Characteristics
	12.3 Debug and Test Block Diagram
	12.4 Application Examples
	12.4.1 Debug Environment
	12.4.2 Test Environment

	12.5 Debug and Test Pin Description
	12.6 Functional Description
	12.6.1 Test Pin
	12.6.2 NRST Pin
	12.6.3 ERASE Pin
	12.6.4 Debug Architecture
	12.6.5 Serial Wire JTAG Debug Port (SWJ-DP) Pins
	12.6.5.1 SW-DP and JTAG-DP Selection Mechanism

	12.6.6 FPB (Flash Patch Breakpoint)
	12.6.7 DWT (Data Watchpoint and Trace)
	12.6.8 ITM (Instrumentation Trace Macrocell)
	12.6.8.1 How to Configure the ITM
	12.6.8.2 Asynchronous Mode
	12.6.8.3 How to Configure the TPIU

	12.6.9 IEEE® 1149.1 JTAG Boundary Scan
	12.6.9.1 JTAG Boundary-scan Register

	12.6.10 ID Code Register

	13. Reset Controller (RSTC)
	13.1 Description
	13.2 Embedded Characteristics
	13.3 Block Diagram
	13.4 Functional Description
	13.4.1 Reset Controller Overview
	13.4.2 NRST Manager
	13.4.2.1 NRST Signal or Interrupt
	13.4.2.2 NRST External Reset Control

	13.4.3 Reset States
	13.4.3.1 General Reset
	13.4.3.2 Backup Reset
	13.4.3.3 Watchdog Reset
	13.4.3.4 Software Reset
	13.4.3.5 User Reset

	13.4.4 Reset State Priorities

	13.5 Reset Controller (RSTC) User Interface
	13.5.1 Reset Controller Control Register
	13.5.2 Reset Controller Status Register
	13.5.3 Reset Controller Mode Register

	14. Real-time Timer (RTT)
	14.1 Description
	14.2 Embedded Characteristics
	14.3 Block Diagram
	14.4 Functional Description
	14.5 Real-time Timer (RTT) User Interface
	14.5.1 Real-time Timer Mode Register
	14.5.2 Real-time Timer Alarm Register
	14.5.3 Real-time Timer Value Register
	14.5.4 Real-time Timer Status Register

	15. Real-time Clock (RTC)
	15.1 Description
	15.2 Embedded Characteristics
	15.3 Block Diagram
	15.4 Product Dependencies
	15.4.1 Power Management
	15.4.2 Interrupt

	15.5 Functional Description
	15.5.1 Reference Clock
	15.5.2 Timing
	15.5.3 Alarm
	15.5.4 Error Checking when Programming
	15.5.5 RTC Internal Free Running Counter Error Checking
	15.5.6 Updating Time/Calendar
	15.5.7 RTC Accurate Clock Calibration
	15.5.8 Waveform Generation

	15.6 Real-time Clock (RTC) User Interface
	15.6.1 RTC Control Register
	15.6.2 RTC Mode Register
	15.6.3 RTC Time Register
	15.6.4 RTC Calendar Register
	15.6.5 RTC Time Alarm Register
	15.6.6 RTC Calendar Alarm Register
	15.6.7 RTC Status Register
	15.6.8 RTC Status Clear Command Register
	15.6.9 RTC Interrupt Enable Register
	15.6.10 RTC Interrupt Disable Register
	15.6.11 RTC Interrupt Mask Register
	15.6.12 RTC Valid Entry Register
	15.6.13 RTC TimeStamp Time Register 0 (UTC_MODE)
	15.6.14 RTC TimeStamp Time Register 1 (UTC_MODE)
	15.6.15 RTC TimeStamp Date Register (UTC_MODE)

	16. Watchdog Timer (WDT)
	16.1 Description
	16.2 Embedded Characteristics
	16.3 Block Diagram
	16.4 Functional Description
	16.5 Watchdog Timer (WDT) User Interface
	16.5.1 Watchdog Timer Control Register
	16.5.2 Watchdog Timer Mode Register
	16.5.3 Watchdog Timer Status Register

	17. Reinforced Safety Watchdog Timer (RSWDT)
	17.1 Description
	17.2 Embedded Characteristics
	17.3 Block Diagram
	17.4 Functional Description
	17.5 Reinforced Safety Watchdog Timer (RSWDT) User Interface
	17.5.1 Reinforced Safety Watchdog Timer Control Register
	17.5.2 Reinforced Safety Watchdog Timer Mode Register
	17.5.3 Reinforced Safety Watchdog Timer Status Register

	18. Supply Controller (SUPC)
	18.1 Description
	18.2 Embedded Characteristics
	18.3 Block Diagram
	18.4 Functional Description
	18.4.1 Overview
	18.4.2 Slow Clock Generator
	18.4.3 Core Voltage Regulator Control/Backup Low-power Mode
	18.4.4 Supply Monitor
	18.4.5 Backup Power Supply Reset
	18.4.5.1 Raising the Backup Power Supply

	18.4.6 Core Reset
	18.4.6.1 Supply Monitor Reset
	18.4.6.2 Brownout Detector Reset

	18.4.7 Wake-up Sources
	18.4.7.1 Force Wake-up
	18.4.7.2 Wake-up Inputs
	18.4.7.3 Low-power Tamper Detection and Anti-Tampering
	18.4.7.4 Clock Alarms
	18.4.7.5 Supply Monitor Detection

	18.4.8 Register Write Protection
	18.4.9 Register Bits in Backup Domain (VDDIO)

	18.5 Supply Controller (SUPC) User Interface
	18.5.1 System Controller (SYSC) User Interface
	18.5.2 Supply Controller (SUPC) User Interface
	18.5.3 Supply Controller Control Register
	18.5.4 Supply Controller Supply Monitor Mode Register
	18.5.5 Supply Controller Mode Register
	18.5.6 Supply Controller Wake-up Mode Register
	18.5.7 Supply Controller Wake-up Inputs Register
	18.5.8 Supply Controller Status Register
	18.5.9 System Controller Write Protection Mode Register

	19. General Purpose Backup Registers (GPBR)
	19.1 Description
	19.2 Embedded Characteristics
	19.3 General Purpose Backup Registers (GPBR) User Interface
	19.3.1 General Purpose Backup Register x

	20. Enhanced Embedded Flash Controller (EEFC)
	20.1 Description
	20.2 Embedded Characteristics
	20.3 Product Dependencies
	20.3.1 Power Management
	20.3.2 Interrupt Sources

	20.4 Functional Description
	20.4.1 Embedded Flash Organization
	20.4.2 Read Operations
	20.4.2.1 128- or 64-bit Access Mode
	20.4.2.2 Code Read Optimization
	20.4.2.3 Code Loop Optimization
	20.4.2.4 Data Read Optimization

	20.4.3 Flash Commands
	20.4.3.1 Get Flash Descriptor Command
	20.4.3.2 Write Commands
	Full Page Programming
	Partial Page Programming
	Programming Bytes

	20.4.3.3 Erase Commands
	20.4.3.4 Lock Bit Protection
	20.4.3.5 GPNVM Bit
	20.4.3.6 Calibration Bit
	20.4.3.7 Security Bit Protection
	20.4.3.8 Unique Identifier Area
	20.4.3.9 User Signature Area

	20.5 Enhanced Embedded Flash Controller (EEFC) User Interface
	20.5.1 EEFC Flash Mode Register
	20.5.2 EEFC Flash Command Register
	20.5.3 EEFC Flash Status Register
	20.5.4 EEFC Flash Result Register

	21. Fast Flash Programming Interface (FFPI)
	21.1 Description
	21.2 Embedded Characteristics
	21.3 Parallel Fast Flash Programming
	21.3.1 Device Configuration
	21.3.2 Signal Names
	21.3.3 Entering Parallel Programming Mode
	21.3.4 Programmer Handshaking
	21.3.4.1 Write Handshaking
	21.3.4.2 Read Handshaking

	21.3.5 Device Operations
	21.3.5.1 Flash Read Command
	21.3.5.2 Flash Write Command
	21.3.5.3 Flash Full Erase Command
	21.3.5.4 Flash Lock Commands
	21.3.5.5 Flash General-purpose NVM Commands
	21.3.5.6 Flash Security Bit Command
	21.3.5.7 Memory Write Command
	21.3.5.8 Get Version Command

	22. Cortex-M Cache Controller (CMCC)
	22.1 Description
	22.2 Embedded Characteristics
	22.3 Block Diagram
	22.4 Functional Description
	22.4.1 Cache Operation
	22.4.2 Cache Maintenance
	22.4.2.1 Cache Invalidate-by-Line Operation
	22.4.2.2 Cache Invalidate All Operation

	22.4.3 Cache Performance Monitoring

	22.5 Cortex-M Cache Controller (CMCC) User Interface
	22.5.1 Cache Controller Type Register
	22.5.2 Cache Controller Configuration Register
	22.5.3 Cache Controller Control Register
	22.5.4 Cache Controller Status Register
	22.5.5 Cache Controller Maintenance Register 0
	22.5.6 Cache Controller Maintenance Register 1
	22.5.7 Cache Controller Monitor Configuration Register
	22.5.8 Cache Controller Monitor Enable Register
	22.5.9 Cache Controller Monitor Control Register
	22.5.10 Cache Controller Monitor Status Register

	23. SAM-BA Boot Program for SAM4E Microcontrollers
	23.1 Description
	23.2 Embedded Characteristics
	23.3 Hardware and Software Constraints
	23.4 Flow Diagram
	23.5 Device Initialization
	23.6 SAM-BA Monitor
	23.6.1 UART0 Serial Port
	23.6.2 Xmodem Protocol
	23.6.3 USB Device Port
	23.6.3.1 Enumeration Process
	23.6.3.2 Communication Endpoints

	23.6.4 In Application Programming (IAP) Feature

	24. Bus Matrix (MATRIX)
	24.1 Description
	24.2 Embedded Characteristics
	24.2.1 Matrix Masters
	24.2.2 Matrix Slaves
	24.2.3 Master to Slave Access

	24.3 Memory Mapping
	24.4 Special Bus Granting Mechanism
	24.5 No Default Master
	24.6 Last Access Master
	24.7 Fixed Default Master
	24.8 Arbitration
	24.8.1 Arbitration Scheduling
	24.8.1.1 Undefined Length Burst Arbitration
	24.8.1.2 Slot Cycle Limit Arbitration

	24.8.2 Arbitration Priority Scheme
	24.8.2.1 Fixed Priority Arbitration
	24.8.2.2 Round-Robin Arbitration

	24.9 System I/O Configuration
	24.10 SMC NAND Flash Chip Select Configuration
	24.11 Write Protect Registers
	24.12 Bus Matrix (MATRIX) User Interface
	24.12.1 Bus Matrix Master Configuration Registers
	24.12.2 Bus Matrix Slave Configuration Registers
	24.12.3 Bus Matrix Priority Registers A For Slaves
	24.12.4 Bus Matrix Master Remap Control Register
	24.12.5 System I/O Configuration Register
	24.12.6 SMC NAND Flash Chip Select Configuration Register
	24.12.7 Write Protect Mode Register
	24.12.8 Write Protect Status Register

	25. DMA Controller (DMAC)
	25.1 Description
	25.2 Embedded Characteristics
	25.3 DMA Controller Peripheral Connections
	25.4 Block Diagram
	25.5 Product Dependencies
	25.5.1 Interrupt Sources

	25.6 Functional Description
	25.6.1 Basic Definitions
	25.6.2 Memory Peripherals
	25.6.3 Handshaking Interface
	25.6.3.1 Software Handshaking

	25.6.4 DMAC Transfer Types
	25.6.4.1 Multi-buffer Transfers
	25.6.4.2 Programming DMAC for Multiple Buffer Transfers
	25.6.4.3 Ending Multi-buffer Transfers

	25.6.5 Programming a Channel
	25.6.5.1 Programming Examples

	25.6.6 Disabling a Channel Prior to Transfer Completion
	25.6.6.1 Abnormal Transfer Termination

	25.6.7 Register Write Protection

	25.7 DMAC Software Requirements
	25.8 DMA Controller (DMAC) User Interface
	25.8.1 DMAC Global Configuration Register
	25.8.2 DMAC Enable Register
	25.8.3 DMAC Software Single Request Register
	25.8.4 DMAC Software Chunk Transfer Request Register
	25.8.5 DMAC Software Last Transfer Flag Register
	25.8.6 DMAC Error, Buffer Transfer and Chained Buffer Transfer Interrupt Enable Register
	25.8.7 DMAC Error, Buffer Transfer and Chained Buffer Transfer Interrupt Disable Register
	25.8.8 DMAC Error, Buffer Transfer and Chained Buffer Transfer Interrupt Mask Register
	25.8.9 DMAC Error, Buffer Transfer and Chained Buffer Transfer Status Register
	25.8.10 DMAC Channel Handler Enable Register
	25.8.11 DMAC Channel Handler Disable Register
	25.8.12 DMAC Channel Handler Status Register
	25.8.13 DMAC Channel x [x = 0..3] Source Address Register
	25.8.14 DMAC Channel x [x = 0..3] Destination Address Register
	25.8.15 DMAC Channel x [x = 0..3] Descriptor Address Register
	25.8.16 DMAC Channel x [x = 0..3] Control A Register
	25.8.17 DMAC Channel x [x = 0..3] Control B Register
	25.8.18 DMAC Channel x [x = 0..3] Configuration Register
	25.8.19 DMAC Write Protection Mode Register
	25.8.20 DMAC Write Protection Status Register

	26. Peripheral DMA Controller (PDC)
	26.1 Description
	26.2 Embedded Characteristics
	26.3 Block Diagram
	26.4 Functional Description
	26.4.1 Configuration
	26.4.2 Memory Pointers
	26.4.3 Transfer Counters
	26.4.4 Data Transfers
	26.4.5 PDC Flags and Peripheral Status Register
	26.4.5.1 Receive Transfer End
	26.4.5.2 Transmit Transfer End
	26.4.5.3 Receive Buffer Full
	26.4.5.4 Transmit Buffer Empty

	26.5 Peripheral DMA Controller (PDC) User Interface
	26.5.1 Receive Pointer Register
	26.5.2 Receive Counter Register
	26.5.3 Transmit Pointer Register
	26.5.4 Transmit Counter Register
	26.5.5 Receive Next Pointer Register
	26.5.6 Receive Next Counter Register
	26.5.7 Transmit Next Pointer Register
	26.5.8 Transmit Next Counter Register
	26.5.9 Transfer Control Register
	26.5.10 Transfer Status Register

	27. Static Memory Controller (SMC)
	27.1 Description
	27.2 Embedded Characteristics
	27.3 I/O Lines Description
	27.4 Multiplexed Signals
	27.5 Product Dependencies
	27.5.1 I/O Lines
	27.5.2 Power Management

	27.6 External Memory Mapping
	27.7 Connection to External Devices
	27.7.1 Data Bus Width
	27.7.2 NAND Flash Support

	27.8 Application Example
	27.8.1 Implementation Examples
	27.8.1.1 8-bit NAND Flash
	Hardware Configuration
	Software Configuration

	27.8.1.2 NOR Flash
	Hardware Configuration
	Software Configuration

	27.9 Standard Read and Write Protocols
	27.9.1 Read Waveforms
	27.9.1.1 NRD Waveform
	27.9.1.2 NCS Waveform
	27.9.1.3 Read Cycle
	27.9.1.4 Null Delay Setup and Hold
	27.9.1.5 Null Pulse

	27.9.2 Read Mode
	27.9.2.1 Read is Controlled by NRD (SMC_MODE.READ_MODE = 1):
	27.9.2.2 Read is Controlled by NCS (SMC_MODE.READ_MODE = 0)

	27.9.3 Write Waveforms
	27.9.3.1 NWE Waveforms
	27.9.3.2 NCS Waveforms
	27.9.3.3 Write Cycle
	27.9.3.4 Null Delay Setup and Hold
	27.9.3.5 Null Pulse

	27.9.4 Write Mode
	27.9.4.1 Write is Controlled by NWE (SMC.MODE.WRITE_MODE = 1):
	27.9.4.2 Write is Controlled by NCS (SMC.MODE.WRITE_MODE = 0)

	27.9.5 Register Write Protection
	27.9.6 Coding Timing Parameters
	27.9.7 Reset Values of Timing Parameters
	27.9.8 Usage Restriction

	27.10 Scrambling/Unscrambling Function
	27.11 Automatic Wait States
	27.11.1 Chip Select Wait States
	27.11.2 Early Read Wait State
	27.11.3 Reload User Configuration Wait State
	27.11.3.1 User Procedure
	27.11.3.2 Slow Clock Mode Transition

	27.11.4 Read to Write Wait State

	27.12 Data Float Wait States
	27.12.1 SMC_MODE.READ_MODE
	27.12.2 TDF Optimization Enabled (SMC_MODE.TDF_MODE = 1)
	27.12.3 TDF Optimization Disabled (SMC_MODE.TDF_MODE = 0)

	27.13 External Wait
	27.13.1 Restriction
	27.13.2 Frozen Mode
	27.13.3 Ready Mode
	27.13.4 NWAIT Latency and Read/Write Timings

	27.14 Slow Clock Mode
	27.14.1 Slow Clock Mode Waveforms
	27.14.2 Switching from (to) Slow Clock Mode to (from) Normal Mode

	27.15 Asynchronous Page Mode
	27.15.1 Protocol and Timings in Page Mode
	27.15.2 Page Mode Restriction
	27.15.3 Sequential and Non-sequential Accesses

	27.16 Static Memory Controller (SMC) User Interface
	27.16.1 SMC Setup Register
	27.16.2 SMC Pulse Register
	27.16.3 SMC Cycle Register
	27.16.4 SMC Mode Register
	27.16.5 SMC Off-Chip Memory Scrambling Register
	27.16.6 SMC Off-Chip Memory Scrambling Key1 Register
	27.16.7 SMC Off-Chip Memory Scrambling Key2 Register
	27.16.8 SMC Write Protection Mode Register
	27.16.9 SMC Write Protection Status Register

	28. Clock Generator
	28.1 Description
	28.2 Embedded Characteristics
	28.3 Block Diagram
	28.4 Slow Clock
	28.4.1 Embedded 32 kHz (typical) RC Oscillator
	28.4.2 32768 Hz Crystal Oscillator

	28.5 Main Clock
	28.5.1 Embedded 4/8/12 MHz RC Oscillator
	28.5.2 4/8/12 MHz RC Oscillator Clock Frequency Adjustment
	28.5.3 3 to 20 MHz Crystal or Ceramic Resonator-based Oscillator
	28.5.4 Main Clock Source Selection
	28.5.5 Bypassing the 3 to 20 MHz Crystal Oscillator
	28.5.6 Main Clock Frequency Counter
	28.5.7 Switching Main Clock between the RC Oscillator and the Crystal Oscillator

	28.6 Divider and PLL Block
	28.6.1 Divider and Phase Lock Loop Programming

	29. Power Management Controller (PMC)
	29.1 Description
	29.2 Embedded Characteristics
	29.3 Block Diagram
	29.4 Master Clock Controller
	29.5 Processor Clock Controller
	29.6 SysTick Clock
	29.7 USB Clock Controller
	29.8 Peripheral Clock Controller
	29.9 Free-Running Processor Clock
	29.10 Programmable Clock Output Controller
	29.11 Fast Startup
	29.12 Startup from Embedded Flash
	29.13 Main Clock Failure Detector
	29.14 32768 Hz Crystal Oscillator Frequency Monitor
	29.15 Programming Sequence
	29.16 Clock Switching Details
	29.16.1 Master Clock Switching Timings
	29.16.2 Clock Switching Waveforms

	29.17 Register Write Protection
	29.18 Power Management Controller (PMC) User Interface
	29.18.1 PMC System Clock Enable Register
	29.18.2 PMC System Clock Disable Register
	29.18.3 PMC System Clock Status Register
	29.18.4 PMC Peripheral Clock Enable Register 0
	29.18.5 PMC Peripheral Clock Disable Register 0
	29.18.6 PMC Peripheral Clock Status Register 0
	29.18.7 PMC Clock Generator Main Oscillator Register
	29.18.8 PMC Clock Generator Main Clock Frequency Register
	29.18.9 PMC Clock Generator PLLA Register
	29.18.10 PMC Master Clock Register
	29.18.11 PMC USB Clock Register
	29.18.12 PMC Programmable Clock Register
	29.18.13 PMC Interrupt Enable Register
	29.18.14 PMC Interrupt Disable Register
	29.18.15 PMC Status Register
	29.18.16 PMC Interrupt Mask Register
	29.18.17 PMC Fast Startup Mode Register
	29.18.18 PMC Fast Startup Polarity Register
	29.18.19 PMC Fault Output Clear Register
	29.18.20 PMC Write Protection Mode Register
	29.18.21 PMC Write Protection Status Register
	29.18.22 PMC Peripheral Clock Enable Register 1
	29.18.23 PMC Peripheral Clock Disable Register 1
	29.18.24 PMC Peripheral Clock Status Register 1
	29.18.25 PMC Oscillator Calibration Register
	29.18.26 PLL Maximum Multiplier Value Register

	30. Advanced Encryption Standard (AES)
	30.1 Description
	30.2 Embedded Characteristics
	30.3 Product Dependencies
	30.3.1 Power Management
	30.3.2 Interrupt Sources

	30.4 Functional Description
	30.4.1 AES Register Endianness
	30.4.2 Operation Modes
	30.4.3 Double Input Buffer
	30.4.4 Start Modes
	30.4.4.1 Manual Mode
	30.4.4.2 Auto Mode
	30.4.4.3 DMA Mode

	30.4.5 Last Output Data Mode
	30.4.5.1 Manual and Auto Modes
	If AES_MR.LOD = 0
	If AES_MR.LOD = 1

	30.4.5.2 DMA Mode
	If AES_MR.LOD = 0
	If AES_MR.LOD = 1

	30.4.6 Security Features
	30.4.6.1 Unspecified Register Access Detection

	30.5 Advanced Encryption Standard (AES) User Interface
	30.5.1 AES Control Register
	30.5.2 AES Mode Register
	30.5.3 AES Interrupt Enable Register
	30.5.4 AES Interrupt Disable Register
	30.5.5 AES Interrupt Mask Register
	30.5.6 AES Interrupt Status Register
	30.5.7 AES Key Word Register x
	30.5.8 AES Input Data Register x
	30.5.9 AES Output Data Register x
	30.5.10 AES Initialization Vector Register x

	31. Controller Area Network (CAN)
	31.1 Description
	31.2 Embedded Characteristics
	31.3 Block Diagram
	31.4 Application Block Diagram
	31.5 I/O Lines Description
	31.6 Product Dependencies
	31.6.1 I/O Lines
	31.6.2 Power Management
	31.6.3 Interrupt Sources

	31.7 CAN Controller Features
	31.7.1 CAN Protocol Overview
	31.7.2 Mailbox Organization
	31.7.2.1 Message Acceptance Procedure
	31.7.2.2 Receive Mailbox
	31.7.2.3 Transmit Mailbox

	31.7.3 Time Management Unit
	31.7.4 CAN 2.0 Standard Features
	31.7.4.1 CAN Bit Timing Configuration
	31.7.4.2 Error Detection
	31.7.4.3 Overload

	31.7.5 Low-power Mode
	31.7.5.1 Enabling Low-power Mode
	31.7.5.2 Disabling Low-power Mode

	31.8 Functional Description
	31.8.1 CAN Controller Initialization
	31.8.2 CAN Controller Interrupt Handling
	31.8.3 CAN Controller Message Handling
	31.8.3.1 Receive Handling
	31.8.3.2 Transmission Handling
	31.8.3.3 Remote Frame Handling

	31.8.4 CAN Controller Timing Modes
	31.8.4.1 Timestamping Mode
	31.8.4.2 Time Triggered Mode

	31.8.5 Register Write Protection

	31.9 Controller Area Network (CAN) User Interface
	31.9.1 CAN Mode Register
	31.9.2 CAN Interrupt Enable Register
	31.9.3 CAN Interrupt Disable Register
	31.9.4 CAN Interrupt Mask Register
	31.9.5 CAN Status Register
	31.9.6 CAN Baudrate Register
	31.9.7 CAN Timer Register
	31.9.8 CAN Timestamp Register
	31.9.9 CAN Error Counter Register
	31.9.10 CAN Transfer Command Register
	31.9.11 CAN Abort Command Register
	31.9.12 CAN Write Protection Mode Register
	31.9.13 CAN Write Protection Status Register
	31.9.14 CAN Message Mode Register
	31.9.15 CAN Message Acceptance Mask Register
	31.9.16 CAN Message ID Register
	31.9.17 CAN Message Family ID Register
	31.9.18 CAN Message Status Register
	31.9.19 CAN Message Data Low Register
	31.9.20 CAN Message Data High Register
	31.9.21 CAN Message Control Register

	32. Chip Identifier (CHIPID)
	32.1 Description
	32.2 Embedded Characteristics
	32.3 Chip Identifier (CHIPID) User Interface
	32.3.1 Chip ID Register
	32.3.2 Chip ID Extension Register

	33. Parallel Input/Output Controller (PIO)
	33.1 Description
	33.2 Embedded Characteristics
	33.3 Block Diagram
	33.4 Product Dependencies
	33.4.1 Pin Multiplexing
	33.4.2 Power Management
	33.4.3 Interrupt Sources

	33.5 Functional Description
	33.5.1 Pull-up and Pull-down Resistor Control
	33.5.2 I/O Line or Peripheral Function Selection
	33.5.3 Peripheral A or B or C or D Selection
	33.5.4 Output Control
	33.5.5 Synchronous Data Output
	33.5.6 Multi-Drive Control (Open Drain)
	33.5.7 Output Line Timings
	33.5.8 Inputs
	33.5.9 Input Glitch and Debouncing Filters
	33.5.10 Input Edge/Level Interrupt
	33.5.11 I/O Lines Lock
	33.5.12 Programmable I/O Delays
	33.5.13 Programmable Schmitt Trigger
	33.5.14 Parallel Capture Mode
	33.5.14.1 Overview
	33.5.14.2 Functional Description
	33.5.14.3 Restrictions
	33.5.14.4 Programming Sequence

	33.5.15 I/O Lines Programming Example
	33.5.16 Register Write Protection

	33.6 Parallel Input/Output Controller (PIO) User Interface
	33.6.1 PIO Enable Register
	33.6.2 PIO Disable Register
	33.6.3 PIO Status Register
	33.6.4 PIO Output Enable Register
	33.6.5 PIO Output Disable Register
	33.6.6 PIO Output Status Register
	33.6.7 PIO Input Filter Enable Register
	33.6.8 PIO Input Filter Disable Register
	33.6.9 PIO Input Filter Status Register
	33.6.10 PIO Set Output Data Register
	33.6.11 PIO Clear Output Data Register
	33.6.12 PIO Output Data Status Register
	33.6.13 PIO Pin Data Status Register
	33.6.14 PIO Interrupt Enable Register
	33.6.15 PIO Interrupt Disable Register
	33.6.16 PIO Interrupt Mask Register
	33.6.17 PIO Interrupt Status Register
	33.6.18 PIO Multi-driver Enable Register
	33.6.19 PIO Multi-driver Disable Register
	33.6.20 PIO Multi-driver Status Register
	33.6.21 PIO Pull-Up Disable Register
	33.6.22 PIO Pull-Up Enable Register
	33.6.23 PIO Pull-Up Status Register
	33.6.24 PIO Peripheral ABCD Select Register 1
	33.6.25 PIO Peripheral ABCD Select Register 2
	33.6.26 PIO Input Filter Slow Clock Disable Register
	33.6.27 PIO Input Filter Slow Clock Enable Register
	33.6.28 PIO Input Filter Slow Clock Status Register
	33.6.29 PIO Slow Clock Divider Debouncing Register
	33.6.30 PIO Pad Pull-Down Disable Register
	33.6.31 PIO Pad Pull-Down Enable Register
	33.6.32 PIO Pad Pull-Down Status Register
	33.6.33 PIO Output Write Enable Register
	33.6.34 PIO Output Write Disable Register
	33.6.35 PIO Output Write Status Register
	33.6.36 PIO Additional Interrupt Modes Enable Register
	33.6.37 PIO Additional Interrupt Modes Disable Register
	33.6.38 PIO Additional Interrupt Modes Mask Register
	33.6.39 PIO Edge Select Register
	33.6.40 PIO Level Select Register
	33.6.41 PIO Edge/Level Status Register
	33.6.42 PIO Falling Edge/Low-Level Select Register
	33.6.43 PIO Rising Edge/High-Level Select Register
	33.6.44 PIO Fall/Rise - Low/High Status Register
	33.6.45 PIO Lock Status Register
	33.6.46 PIO Write Protection Mode Register
	33.6.47 PIO Write Protection Status Register
	33.6.48 PIO Schmitt Trigger Register
	33.6.49 PIO I/O Delay Register
	33.6.50 PIO Parallel Capture Mode Register
	33.6.51 PIO Parallel Capture Interrupt Enable Register
	33.6.52 PIO Parallel Capture Interrupt Disable Register
	33.6.53 PIO Parallel Capture Interrupt Mask Register
	33.6.54 PIO Parallel Capture Interrupt Status Register
	33.6.55 PIO Parallel Capture Reception Holding Register

	34. Serial Peripheral Interface (SPI)
	34.1 Description
	34.2 Embedded Characteristics
	34.3 Block Diagram
	34.4 Application Block Diagram
	34.5 Signal Description
	34.6 Product Dependencies
	34.6.1 I/O Lines
	34.6.2 Power Management
	34.6.3 Interrupt
	34.6.4 Peripheral DMA Controller (PDC) or Direct Memory Access Controller (DMAC)

	34.7 Functional Description
	34.7.1 Modes of Operation
	34.7.2 Data Transfer
	34.7.3 Master Mode Operations
	34.7.3.1 Master Mode Block Diagram
	34.7.3.2 Master Mode Flow Diagram
	34.7.3.3 Clock Generation
	34.7.3.4 Transfer Delays
	34.7.3.5 Peripheral Selection
	34.7.3.6 SPI Peripheral DMA Controller (PDC)
	Transfer Size

	34.7.3.7 SPI Direct Access Memory Controller (DMAC)
	34.7.3.8 Peripheral Chip Select Decoding
	34.7.3.9 Peripheral Deselection without DMA nor PDC
	34.7.3.10 Peripheral Deselection with DMA or PDC
	34.7.3.11 Mode Fault Detection

	34.7.4 SPI Slave Mode
	34.7.5 Register Write Protection

	34.8 Serial Peripheral Interface (SPI) User Interface
	34.8.1 SPI Control Register
	34.8.2 SPI Mode Register
	34.8.3 SPI Receive Data Register
	34.8.4 SPI Transmit Data Register
	34.8.5 SPI Status Register
	34.8.6 SPI Interrupt Enable Register
	34.8.7 SPI Interrupt Disable Register
	34.8.8 SPI Interrupt Mask Register
	34.8.9 SPI Chip Select Register
	34.8.10 SPI Write Protection Mode Register
	34.8.11 SPI Write Protection Status Register

	35. Two-wire Interface (TWI)
	35.1 Description
	35.2 Embedded Characteristics
	35.3 List of Abbreviations
	35.4 Block Diagram
	35.5 I/O Lines Description
	35.6 Product Dependencies
	35.6.1 I/O Lines
	35.6.2 Power Management
	35.6.3 Interrupt Sources

	35.7 Functional Description
	35.7.1 Transfer Format
	35.7.2 Modes of Operation
	35.7.3 Master Mode
	35.7.3.1 Definition
	35.7.3.2 Programming Master Mode
	35.7.3.3 Master Transmitter Mode
	35.7.3.4 Master Receiver Mode
	35.7.3.5 Internal Address
	35.7.3.6 Using the Peripheral DMA Controller (PDC)
	35.7.3.7 SMBus Quick Command (Master Mode Only)
	35.7.3.8 Read/Write Flowcharts

	35.7.4 Multi-master Mode
	35.7.4.1 Definition
	35.7.4.2 Two Multi-master Modes

	35.7.5 Slave Mode
	35.7.5.1 Definition
	35.7.5.2 Programming Slave Mode
	35.7.5.3 Receiving Data
	35.7.5.4 Data Transfer
	Clock Stretching in Read Mode
	Clock Synchronization in Write Mode
	Reversal of Read to Write
	Reversal of Write to Read

	35.7.5.5 Using the Peripheral DMA Controller (PDC) in Slave Mode
	35.7.5.6 Read Write Flowcharts

	35.7.6 Register Write Protection

	35.8 Two-wire Interface (TWI) User Interface
	35.8.1 TWI Control Register
	35.8.2 TWI Master Mode Register
	35.8.3 TWI Slave Mode Register
	35.8.4 TWI Internal Address Register
	35.8.5 TWI Clock Waveform Generator Register
	35.8.6 TWI Status Register
	35.8.7 TWI Interrupt Enable Register
	35.8.8 TWI Interrupt Disable Register
	35.8.9 TWI Interrupt Mask Register
	35.8.10 TWI Receive Holding Register
	35.8.11 TWI Transmit Holding Register
	35.8.12 TWI Write Protection Mode Register
	35.8.13 TWI Write Protection Status Register

	36. Universal Asynchronous Receiver Transmitter (UART)
	36.1 Description
	36.2 Embedded Characteristics
	36.3 Block Diagram
	36.4 Product Dependencies
	36.4.1 I/O Lines
	36.4.2 Power Management
	36.4.3 Interrupt Sources

	36.5 Functional Description
	36.5.1 Baud Rate Generator
	36.5.2 Receiver
	36.5.2.1 Receiver Reset, Enable and Disable
	36.5.2.2 Start Detection and Data Sampling
	36.5.2.3 Receiver Ready
	36.5.2.4 Receiver Overrun
	36.5.2.5 Parity Error
	36.5.2.6 Receiver Framing Error

	36.5.3 Transmitter
	36.5.3.1 Transmitter Reset, Enable and Disable
	36.5.3.2 Transmit Format
	36.5.3.3 Transmitter Control

	36.5.4 Peripheral DMA Controller (PDC)
	36.5.5 Test Modes

	36.6 Universal Asynchronous Receiver Transmitter (UART) User Interface
	36.6.1 UART Control Register
	36.6.2 UART Mode Register
	36.6.3 UART Interrupt Enable Register
	36.6.4 UART Interrupt Disable Register
	36.6.5 UART Interrupt Mask Register
	36.6.6 UART Status Register
	36.6.7 UART Receiver Holding Register
	36.6.8 UART Transmit Holding Register
	36.6.9 UART Baud Rate Generator Register

	37. Universal Synchronous Asynchronous Receiver Transmitter (USART)
	37.1 Description
	37.2 Embedded Characteristics
	37.3 Block Diagram
	37.4 I/O Lines Description
	37.5 Product Dependencies
	37.5.1 I/O Lines
	37.5.2 Power Management
	37.5.3 Interrupt Sources

	37.6 Functional Description
	37.6.1 Baud Rate Generator
	37.6.1.1 Baud Rate in Asynchronous Mode
	Baud Rate Calculation Example

	37.6.1.2 Fractional Baud Rate in Asynchronous Mode
	37.6.1.3 Baud Rate in Synchronous Mode or SPI Mode
	37.6.1.4 Baud Rate in ISO 7816 Mode

	37.6.2 Receiver and Transmitter Control
	37.6.3 Synchronous and Asynchronous Modes
	37.6.3.1 Transmitter Operations
	37.6.3.2 Manchester Encoder
	Drift Compensation

	37.6.3.3 Asynchronous Receiver
	37.6.3.4 Manchester Decoder
	37.6.3.5 Radio Interface: Manchester Encoded USART Application
	37.6.3.6 Synchronous Receiver
	37.6.3.7 Receiver Operations
	37.6.3.8 Parity
	37.6.3.9 Multidrop Mode
	37.6.3.10 Transmitter Timeguard
	37.6.3.11 Receiver Time-out
	37.6.3.12 Framing Error
	37.6.3.13 Transmit Break
	37.6.3.14 Receive Break
	37.6.3.15 Hardware Handshaking

	37.6.4 ISO7816 Mode
	37.6.4.1 ISO7816 Mode Overview
	37.6.4.2 Protocol T = 0
	Receive Error Counter
	Receive NACK Inhibit
	Transmit Character Repetition
	Disable Successive Receive NACK

	37.6.4.3 Protocol T = 1

	37.6.5 IrDA Mode
	37.6.5.1 IrDA Modulation
	37.6.5.2 IrDA Baud Rate
	37.6.5.3 IrDA Demodulator

	37.6.6 RS485 Mode
	37.6.7 Modem Mode
	37.6.8 SPI Mode
	37.6.8.1 Modes of Operation
	37.6.8.2 Baud Rate
	37.6.8.3 Data Transfer
	37.6.8.4 Receiver and Transmitter Control
	37.6.8.5 Character Transmission
	37.6.8.6 Character Reception
	37.6.8.7 Receiver Timeout

	37.6.9 Test Modes
	37.6.9.1 Normal Mode
	37.6.9.2 Automatic Echo Mode
	37.6.9.3 Local Loopback Mode
	37.6.9.4 Remote Loopback Mode

	37.6.10 Register Write Protection

	37.7 Universal Synchronous Asynchronous Receiver Transmitter (USART) User Interface
	37.7.1 USART Control Register
	37.7.2 USART Control Register (SPI_MODE)
	37.7.3 USART Mode Register
	37.7.4 USART Mode Register (SPI_MODE)
	37.7.5 USART Interrupt Enable Register
	37.7.6 USART Interrupt Enable Register (SPI_MODE)
	37.7.7 USART Interrupt Disable Register
	37.7.8 USART Interrupt Disable Register (SPI_MODE)
	37.7.9 USART Interrupt Mask Register
	37.7.10 USART Interrupt Mask Register (SPI_MODE)
	37.7.11 USART Channel Status Register
	37.7.12 USART Channel Status Register (SPI_MODE)
	37.7.13 USART Receive Holding Register
	37.7.14 USART Transmit Holding Register
	37.7.15 USART Baud Rate Generator Register
	37.7.16 USART Receiver Time-out Register
	37.7.17 USART Transmitter Timeguard Register
	37.7.18 USART FI DI RATIO Register
	37.7.19 USART Number of Errors Register
	37.7.20 USART IrDA Filter Register
	37.7.21 USART Manchester Configuration Register
	37.7.22 USART Write Protection Mode Register
	37.7.23 USART Write Protection Status Register

	38. Timer Counter (TC)
	38.1 Description
	38.2 Embedded Characteristics
	38.3 Block Diagram
	38.4 Pin List
	38.5 Product Dependencies
	38.5.1 I/O Lines
	38.5.2 Power Management
	38.5.3 Interrupt Sources
	38.5.4 Synchronization Inputs from PWM
	38.5.5 Fault Output

	38.6 Functional Description
	38.6.1 Description
	38.6.2 32-bit Counter
	38.6.3 Clock Selection
	38.6.4 Clock Control
	38.6.5 Operating Modes
	38.6.6 Trigger
	38.6.7 Capture Mode
	38.6.8 Capture Registers A and B
	38.6.9 Transfer with PDC in Capture Mode
	38.6.10 Trigger Conditions
	38.6.11 Waveform Mode
	38.6.12 Waveform Selection
	38.6.12.1 WAVSEL = 00
	38.6.12.2 WAVSEL = 10
	38.6.12.3 WAVSEL = 01
	38.6.12.4 WAVSEL = 11

	38.6.13 External Event/Trigger Conditions
	38.6.14 Synchronization with PWM
	38.6.15 Output Controller
	38.6.16 Quadrature Decoder
	38.6.16.1 Description
	38.6.16.2 Input Pre-processing
	38.6.16.3 Direction Status and Change Detection
	38.6.16.4 Position and Rotation Measurement
	38.6.16.5 Speed Measurement
	38.6.16.6 Detecting a Missing Index Pulse

	38.6.17 2-bit Gray Up/Down Counter for Stepper Motor
	38.6.18 Fault Mode
	38.6.19 Register Write Protection

	38.7 Timer Counter (TC) User Interface
	38.7.1 TC Channel Control Register
	38.7.2 TC Channel Mode Register: Capture Mode
	38.7.3 TC Channel Mode Register: Waveform Mode
	38.7.4 TC Stepper Motor Mode Register
	38.7.5 TC Register AB
	38.7.6 TC Counter Value Register
	38.7.7 TC Register A
	38.7.8 TC Register B
	38.7.9 TC Register C
	38.7.10 TC Status Register
	38.7.11 TC Interrupt Enable Register
	38.7.12 TC Interrupt Disable Register
	38.7.13 TC Interrupt Mask Register
	38.7.14 TC Extended Mode Register
	38.7.15 TC Block Control Register
	38.7.16 TC Block Mode Register
	38.7.17 TC QDEC Interrupt Enable Register
	38.7.18 TC QDEC Interrupt Disable Register
	38.7.19 TC QDEC Interrupt Mask Register
	38.7.20 TC QDEC Interrupt Status Register
	38.7.21 TC Fault Mode Register
	38.7.22 TC Write Protection Mode Register

	39. Pulse Width Modulation Controller (PWM)
	39.1 Description
	39.2 Embedded Characteristics
	39.3 Block Diagram
	39.4 I/O Lines Description
	39.5 Product Dependencies
	39.5.1 I/O Lines
	39.5.2 Power Management
	39.5.3 Interrupt Sources
	39.5.4 Fault Inputs

	39.6 Functional Description
	39.6.1 PWM Clock Generator
	39.6.2 PWM Channel
	39.6.2.1 Channel Block Diagram
	39.6.2.2 Comparator
	39.6.2.3 Trigger Selection for Timer Counter
	Delay Measurement
	Cumulated ON Time Measurement

	39.6.2.4 2-bit Gray Up/Down Counter for Stepper Motor
	39.6.2.5 Dead-Time Generator
	39.6.2.6 Output Override
	39.6.2.7 Fault Protection
	39.6.2.8 Spread Spectrum Counter
	39.6.2.9 Synchronous Channels
	Method 1: Manual write of duty-cycle values and manual trigger of the update
	Method 2: Manual write of duty-cycle values and automatic trigger of the update
	Method 3: Automatic write of duty-cycle values and automatic trigger of the update

	39.6.2.10 Update Time for Double-Buffering Registers

	39.6.3 PWM Comparison Units
	39.6.4 PWM Event Lines
	39.6.5 PWM Controller Operations
	39.6.5.1 Initialization
	39.6.5.2 Source Clock Selection Criteria
	39.6.5.3 Changing the Duty-Cycle, the Period and the Dead-Times
	39.6.5.4 Changing the Update Period of Synchronous Channels
	39.6.5.5 Changing the Comparison Value and the Comparison Configuration
	39.6.5.6 Interrupt Sources

	39.6.6 Register Write Protection

	39.7 Pulse Width Modulation Controller (PWM) User Interface
	39.7.1 PWM Clock Register
	39.7.2 PWM Enable Register
	39.7.3 PWM Disable Register
	39.7.4 PWM Status Register
	39.7.5 PWM Interrupt Enable Register 1
	39.7.6 PWM Interrupt Disable Register 1
	39.7.7 PWM Interrupt Mask Register 1
	39.7.8 PWM Interrupt Status Register 1
	39.7.9 PWM Sync Channels Mode Register
	39.7.10 PWM DMA Register
	39.7.11 PWM Sync Channels Update Control Register
	39.7.12 PWM Sync Channels Update Period Register
	39.7.13 PWM Sync Channels Update Period Update Register
	39.7.14 PWM Interrupt Enable Register 2
	39.7.15 PWM Interrupt Disable Register 2
	39.7.16 PWM Interrupt Mask Register 2
	39.7.17 PWM Interrupt Status Register 2
	39.7.18 PWM Output Override Value Register
	39.7.19 PWM Output Selection Register
	39.7.20 PWM Output Selection Set Register
	39.7.21 PWM Output Selection Clear Register
	39.7.22 PWM Output Selection Set Update Register
	39.7.23 PWM Output Selection Clear Update Register
	39.7.24 PWM Fault Mode Register
	39.7.25 PWM Fault Status Register
	39.7.26 PWM Fault Clear Register
	39.7.27 PWM Fault Protection Value Register 1
	39.7.28 PWM Fault Protection Enable Register
	39.7.29 PWM Event Line x Register
	39.7.30 PWM Spread Spectrum Register
	39.7.31 PWM Spread Spectrum Update Register
	39.7.32 PWM Stepper Motor Mode Register
	39.7.33 PWM Fault Protection Value Register 2
	39.7.34 PWM Write Protection Control Register
	39.7.35 PWM Write Protection Status Register
	39.7.36 PWM Comparison x Value Register
	39.7.37 PWM Comparison x Value Update Register
	39.7.38 PWM Comparison x Mode Register
	39.7.39 PWM Comparison x Mode Update Register
	39.7.40 PWM Channel Mode Register
	39.7.41 PWM Channel Duty Cycle Register
	39.7.42 PWM Channel Duty Cycle Update Register
	39.7.43 PWM Channel Period Register
	39.7.44 PWM Channel Period Update Register
	39.7.45 PWM Channel Counter Register
	39.7.46 PWM Channel Dead Time Register
	39.7.47 PWM Channel Dead Time Update Register
	39.7.48 PWM Channel Mode Update Register

	40. High Speed Multimedia Card Interface (HSMCI)
	40.1 Description
	40.2 Embedded Characteristics
	40.3 Block Diagram
	40.4 Application Block Diagram
	40.5 Pin Name List
	40.6 Product Dependencies
	40.6.1 I/O Lines
	40.6.2 Power Management
	40.6.3 Interrupt Sources

	40.7 Bus Topology
	40.8 High Speed MultiMedia Card Operations
	40.8.1 Command - Response Operation
	40.8.2 Data Transfer Operation
	40.8.3 Read Operation
	40.8.4 Write Operation

	40.9 SD/SDIO Card Operation
	40.9.1 SDIO Data Transfer Type
	40.9.2 SDIO Interrupts

	40.10 CE-ATA Operation
	40.10.1 Executing an ATA Polling Command
	40.10.2 Executing an ATA Interrupt Command
	40.10.3 Aborting an ATA Command
	40.10.4 CE-ATA Error Recovery

	40.11 HSMCI Boot Operation Mode
	40.11.1 Boot Procedure, Processor Mode

	40.12 HSMCI Transfer Done Timings
	40.12.1 Definition
	40.12.2 Read Access
	40.12.3 Write Access

	40.13 Register Write Protection
	40.14 High Speed MultiMedia Card Interface (HSMCI) User Interface
	40.14.1 HSMCI Control Register
	40.14.2 HSMCI Mode Register
	40.14.3 HSMCI Data Timeout Register
	40.14.4 HSMCI SDCard/SDIO Register
	40.14.5 HSMCI Argument Register
	40.14.6 HSMCI Command Register
	40.14.7 HSMCI Block Register
	40.14.8 HSMCI Completion Signal Timeout Register
	40.14.9 HSMCI Response Register
	40.14.10 HSMCI Receive Data Register
	40.14.11 HSMCI Transmit Data Register
	40.14.12 HSMCI Status Register
	40.14.13 HSMCI Interrupt Enable Register
	40.14.14 HSMCI Interrupt Disable Register
	40.14.15 HSMCI Interrupt Mask Register
	40.14.16 HSMCI Configuration Register
	40.14.17 HSMCI Write Protection Mode Register
	40.14.18 HSMCI Write Protection Status Register
	40.14.19 HSMCI FIFOx Memory Aperture

	41. USB Device Port (UDP)
	41.1 Description
	41.2 Embedded Characteristics
	41.3 Block Diagram
	41.3.1 Signal Description

	41.4 Product Dependencies
	41.4.1 I/O Lines
	41.4.2 Power Management
	41.4.3 Interrupt

	41.5 Typical Connection
	41.5.1 USB Device Transceiver
	41.5.2 VBUS Monitoring

	41.6 Functional Description
	41.6.1 USB 2.0 Full-speed Introduction
	41.6.1.1 USB 2.0 Full-speed Transfer Types
	41.6.1.2 USB Bus Transactions
	41.6.1.3 USB Transfer Event Definitions

	41.6.2 Handling Transactions with USB 2.0 Device Peripheral
	41.6.2.1 Setup Transaction
	41.6.2.2 Data IN Transaction
	Using Endpoints Without Ping-pong Attributes
	Using Endpoints With Ping-pong Attribute

	41.6.2.3 Data OUT Transaction
	Data OUT Transaction Without Ping-pong Attributes
	Using Endpoints With Ping-pong Attributes

	41.6.2.4 Stall Handshake
	41.6.2.5 Transmit Data Cancellation
	Endpoints Without Dual-Banks
	Endpoints With Dual-Banks

	41.6.3 Controlling Device States
	41.6.3.1 Not Powered State
	41.6.3.2 Entering Attached State
	41.6.3.3 From Powered State to Default State
	41.6.3.4 From Default State to Address State
	41.6.3.5 From Address State to Configured State
	41.6.3.6 Entering in Suspend State
	41.6.3.7 Receiving a Host Resume
	41.6.3.8 Sending a Device Remote Wakeup Request

	41.7 USB Device Port (UDP) User Interface
	41.7.1 UDP Frame Number Register
	41.7.2 UDP Global State Register
	41.7.3 UDP Function Address Register
	41.7.4 UDP Interrupt Enable Register
	41.7.5 UDP Interrupt Disable Register
	41.7.6 UDP Interrupt Mask Register
	41.7.7 UDP Interrupt Status Register
	41.7.8 UDP Interrupt Clear Register
	41.7.9 UDP Reset Endpoint Register
	41.7.10 UDP Endpoint Control and Status Register (CONTROL_BULK)
	41.7.11 UDP Endpoint Control and Status Register (ISOCHRONOUS)
	41.7.12 UDP FIFO Data Register
	41.7.13 UDP Transceiver Control Register

	42. Ethernet MAC (GMAC)
	42.1 Description
	42.2 Embedded Characteristics
	42.3 Block Diagram
	42.4 Signal Interfaces
	42.5 Product Dependencies
	42.5.1 I/O Lines
	42.5.2 Power Management
	42.5.3 Interrupt Sources

	42.6 Functional Description
	42.6.1 Media Access Controller
	42.6.2 1588 Time Stamp Unit
	42.6.3 AHB Direct Memory Access Interface
	42.6.3.1 Receive AHB Buffers
	42.6.3.2 Transmit AHB Buffers
	42.6.3.3 DMA Bursting on the AHB

	42.6.4 MAC Transmit Block
	42.6.5 MAC Receive Block
	42.6.6 Checksum Offload for IP, TCP and UDP
	42.6.6.1 Receiver Checksum Offload

	42.6.7 MAC Filtering Block
	42.6.8 Broadcast Address
	42.6.9 Hash Addressing
	42.6.10 Copy all Frames (Promiscuous Mode)
	42.6.11 Disable Copy of Pause Frames
	42.6.12 VLAN Support
	42.6.13 IEEE 1588 Support
	42.6.14 Time Stamp Unit
	42.6.15 MAC 802.3 Pause Frame Support
	42.6.15.1 802.3 Pause Frame Reception
	42.6.15.2 802.3 Pause Frame Transmission

	42.6.16 MAC PFC Priority-based Pause Frame Support
	42.6.16.1 PFC Pause Frame Reception
	42.6.16.2 PFC Pause Frame Transmission

	42.6.17 PHY Interface
	42.6.18 10/100 Operation
	42.6.19 Jumbo Frames

	42.7 Programming Interface
	42.7.1 Initialization
	42.7.1.1 Configuration
	42.7.1.2 Receive Buffer List
	42.7.1.3 Transmit Buffer List
	42.7.1.4 Address Matching
	42.7.1.5 PHY Maintenance
	42.7.1.6 Interrupts
	42.7.1.7 Transmitting Frames
	42.7.1.8 Receiving Frames

	42.8 Ethernet MAC (GMAC) User Interface
	42.8.1 GMAC Network Control Register
	42.8.2 GMAC Network Configuration Register
	42.8.3 GMAC Network Status Register
	42.8.4 GMAC User Register
	42.8.5 GMAC DMA Configuration Register
	42.8.6 GMAC Transmit Status Register
	42.8.7 GMAC Receive Buffer Queue Base Address Register
	42.8.8 GMAC Transmit Buffer Queue Base Address Register
	42.8.9 GMAC Receive Status Register
	42.8.10 GMAC Interrupt Status Register
	42.8.11 GMAC Interrupt Enable Register
	42.8.12 GMAC Interrupt Disable Register
	42.8.13 GMAC Interrupt Mask Register
	42.8.14 GMAC PHY Maintenance Register
	42.8.15 GMAC Receive Pause Quantum Register
	42.8.16 GMAC Transmit Pause Quantum Register
	42.8.17 GMAC Hash Register Bottom
	42.8.18 GMAC Hash Register Top
	42.8.19 GMAC Specific Address 1 Bottom Register
	42.8.20 GMAC Specific Address 1 Top Register
	42.8.21 GMAC Specific Address 2 Bottom Register
	42.8.22 GMAC Specific Address 2 Top Register
	42.8.23 GMAC Specific Address 3 Bottom Register
	42.8.24 GMAC Specific Address 3 Top Register
	42.8.25 GMAC Specific Address 4 Bottom Register
	42.8.26 GMAC Specific Address 4 Top Register
	42.8.27 GMAC Type ID Match 1 Register
	42.8.28 GMAC Type ID Match 2 Register
	42.8.29 GMAC Type ID Match 3 Register
	42.8.30 GMAC Type ID Match 4 Register
	42.8.31 GMAC IPG Stretch Register
	42.8.32 GMAC Stacked VLAN Register
	42.8.33 GMAC Transmit PFC Pause Register
	42.8.34 GMAC Specific Address 1 Mask Bottom Register
	42.8.35 GMAC Specific Address Mask 1 Top Register
	42.8.36 GMAC 1588 Timer Seconds Low Register
	42.8.37 GMAC 1588 Timer Nanoseconds Register
	42.8.38 GMAC 1588 Timer Adjust Register
	42.8.39 GMAC 1588 Timer Increment Register
	42.8.40 GMAC PTP Event Frame Transmitted Seconds Low Register
	42.8.41 GMAC PTP Event Frame Transmitted Nanoseconds Register
	42.8.42 GMAC PTP Event Frame Received Seconds Low Register
	42.8.43 GMAC PTP Event Frame Received Nanoseconds Register
	42.8.44 GMAC PTP Peer Event Frame Transmitted Seconds Low Register
	42.8.45 GMAC PTP Peer Event Frame Transmitted Nanoseconds Register
	42.8.46 GMAC PTP Peer Event Frame Received Seconds Low Register
	42.8.47 GMAC PTP Peer Event Frame Received Nanoseconds Register

	43. Analog Front-End Controller (AFEC)
	43.1 Description
	43.2 Embedded Characteristics
	43.3 Block Diagram
	43.4 Signal Description
	43.5 Product Dependencies
	43.5.1 I/O Lines
	43.5.2 Power Management
	43.5.3 Interrupt Sources
	43.5.4 Temperature Sensor
	43.5.5 Timer Triggers
	43.5.6 PWM Event Line
	43.5.7 Fault Output
	43.5.8 Conversion Performances

	43.6 Functional Description
	43.6.1 Analog Front-End Conversion
	43.6.2 Conversion Reference
	43.6.3 Conversion Resolution
	43.6.4 Conversion Results
	43.6.5 Conversion Triggers
	43.6.6 Sleep Mode and Conversion Sequencer
	43.6.7 Comparison Window
	43.6.8 Differential Inputs
	43.6.9 Input Gain and Offset
	43.6.10 AFE Timings
	43.6.11 Temperature Sensor
	43.6.12 Enhanced Resolution Mode and Digital Averaging Function
	43.6.13 Automatic Calibration
	43.6.14 Buffer Structure
	43.6.15 Fault Output
	43.6.16 Register Write Protection

	43.7 Analog Front-End Controller (AFEC) User Interface
	43.7.1 AFEC Control Register
	43.7.2 AFEC Mode Register
	43.7.3 AFEC Extended Mode Register
	43.7.4 AFEC Channel Sequence 1 Register
	43.7.5 AFEC Channel Sequence 2 Register
	43.7.6 AFEC Channel Enable Register
	43.7.7 AFEC Channel Disable Register
	43.7.8 AFEC Channel Status Register
	43.7.9 AFEC Last Converted Data Register
	43.7.10 AFEC Interrupt Enable Register
	43.7.11 AFEC Interrupt Disable Register
	43.7.12 AFEC Interrupt Mask Register
	43.7.13 AFEC Interrupt Status Register
	43.7.14 AFEC Overrun Status Register
	43.7.15 AFEC Compare Window Register
	43.7.16 AFEC Channel Gain Register
	43.7.17 AFEC Channel Calibration DC Offset Register
	43.7.18 AFEC Channel Differential Register
	43.7.19 AFEC Channel Selection Register
	43.7.20 AFEC Channel Data Register
	43.7.21 AFEC Channel Offset Compensation Register
	43.7.22 AFEC Temperature Sensor Mode Register
	43.7.23 AFEC Temperature Compare Window Register
	43.7.24 AFEC Analog Control Register
	43.7.25 AFEC Write Protection Mode Register
	43.7.26 AFEC Write Protection Status Register

	44. Digital-to-Analog Converter Controller (DACC)
	44.1 Description
	44.2 Embedded Characteristics
	44.3 Block Diagram
	44.4 Signal Description
	44.5 Product Dependencies
	44.5.1 Power Management
	44.5.2 Interrupt Sources
	44.5.3 Conversion Performances

	44.6 Functional Description
	44.6.1 Digital-to-Analog Conversion
	44.6.2 Conversion Results
	44.6.3 Conversion Triggers
	44.6.4 Conversion FIFO
	44.6.5 Channel Selection
	44.6.6 DACC Timings
	44.6.7 Register Write Protection

	44.7 Digital-to-Analog Converter Controller (DACC) User Interface
	44.7.1 DACC Control Register
	44.7.2 DACC Mode Register
	44.7.3 DACC Channel Enable Register
	44.7.4 DACC Channel Disable Register
	44.7.5 DACC Channel Status Register
	44.7.6 DACC Conversion Data Register
	44.7.7 DACC Interrupt Enable Register
	44.7.8 DACC Interrupt Disable Register
	44.7.9 DACC Interrupt Mask Register
	44.7.10 DACC Interrupt Status Register
	44.7.11 DACC Analog Current Register
	44.7.12 DACC Write Protection Mode Register
	44.7.13 DACC Write Protection Status Register

	45. Analog Comparator Controller (ACC)
	45.1 Description
	45.2 Embedded Characteristics
	45.3 Block Diagram
	45.4 Signal Description
	45.5 Product Dependencies
	45.5.1 I/O Lines
	45.5.2 Power Management
	45.5.3 Interrupt Sources
	45.5.4 Fault Output

	45.6 Functional Description
	45.6.1 Description
	45.6.2 Analog Settings
	45.6.3 Output Masking Period
	45.6.4 Fault Mode
	45.6.5 Register Write Protection

	45.7 Analog Comparator Controller (ACC) User Interface
	45.7.1 ACC Control Register
	45.7.2 ACC Mode Register
	45.7.3 ACC Interrupt Enable Register
	45.7.4 ACC Interrupt Disable Register
	45.7.5 ACC Interrupt Mask Register
	45.7.6 ACC Interrupt Status Register
	45.7.7 ACC Analog Control Register
	45.7.8 ACC Write Protection Mode Register
	45.7.9 ACC Write Protection Status Register

	46. SAM4E Electrical Characteristics
	46.1 Absolute Maximum Ratings
	46.2 DC Characteristics
	46.3 Power Consumption
	46.3.1 Backup Mode Current Consumption
	46.3.1.1 Configuration A: Embedded Slow Clock RC Oscillator Enabled
	46.3.1.2 Configuration B: 32.768 kHz Crystal Oscillator Enabled

	46.3.2 Sleep and Wait Mode Current Consumption
	46.3.2.1 Sleep Mode
	46.3.2.2 Wait Mode

	46.3.3 Active Mode Power Consumption
	46.3.3.1 SAM4E Active Power Consumption
	46.3.3.2 SAM4E Active Total Power Consumption

	46.3.4 Peripheral Power Consumption in Active Mode

	46.4 Oscillator Characteristics
	46.4.1 32 kHz RC Oscillator Characteristics
	46.4.2 4/8/12 MHz RC Oscillators Characteristics
	46.4.3 32.768 kHz Crystal Oscillator Characteristics
	46.4.4 32.768 kHz Crystal Characteristics
	46.4.5 3 to 20 MHz Crystal Oscillator Characteristics
	46.4.6 3 to 20 MHz Crystal Characteristics
	46.4.7 3 to 20 MHz XIN Clock Input Characteristics in Bypass Mode
	46.4.8 Crystal Oscillator Design Considerations Information
	46.4.8.1 Choosing a Crystal
	46.4.8.2 Printed Circuit Board (PCB)

	46.5 PLLA Characteristics
	46.6 USB Transceiver Characteristics
	46.6.1 Typical Connection
	46.6.2 USB Electrical Characteristics
	46.6.3 Switching Characteristics

	46.7 12-bit AFE (Analog Front End) Characteristics
	46.7.1 ADC Power Supply
	46.7.1.1 ADC Bias Current

	46.7.2 External Reference Voltage
	46.7.3 ADC Timings
	46.7.4 ADC Transfer Function
	46.7.4.1 Differential Mode
	46.7.4.2 Single-ended Mode
	46.7.4.3 Example of LSB Computation

	46.7.5 ADC Electrical Characteristics
	46.7.5.1 Gain and Offset Errors
	Differential Mode
	Single-ended Mode

	46.7.5.2 ADC Electrical Performances
	Single-ended Static Performances
	Single-ended Dynamic Performances
	Differential Static Performances
	Differential Dynamic Performances
	10-bit ADC Mode
	Low Voltage Supply

	46.7.5.3 ADC Channel Input Impedance
	Track and Hold Time versus Source Output Impedance

	46.7.5.4 AFE DAC Offset Compensation

	46.7.6 ADC Resolution with Averaging
	46.7.6.1 Conditions @ 25°C with Gain = 1
	46.7.6.2 Conditions @ 25°C with Gain = 4

	46.8 12-bit DAC Characteristics
	46.9 Analog Comparator Characteristics
	46.10 Temperature Sensor
	46.11 AC Characteristics
	46.11.1 Master Clock Characteristics
	46.11.2 I/O Characteristics
	46.11.3 SPI Characteristics
	46.11.3.1 Maximum SPI Frequency
	Master Write Mode
	Master Read Mode
	Slave Read Mode
	Slave Write Mode

	46.11.3.2 SPI Timings

	46.11.4 HSMCI Timings
	46.11.5 SMC Timings
	46.11.5.1 Read Timings
	46.11.5.2 Write Timings

	46.11.6 USART in SPI Mode Timings
	46.11.6.1 USART SPI TImings

	46.11.7 Two-wire Serial Interface Characteristics
	46.11.8 Ethernet MAC (GMAC) Characteristics
	46.11.8.1 Timing Conditions
	46.11.8.2 Timing Constraints
	46.11.8.3 MII Mode

	46.11.9 Embedded Flash Characteristics

	47. SAM4E Mechanical Characteristics
	47.1 100-ball TFBGA Package Drawing
	47.2 144-ball LFBGA Package Drawing
	47.3 100-lead LQFP Package Drawing
	47.4 144-lead LQFP Package Drawing
	47.5 Soldering Profile
	47.6 Packaging Resources

	48. Marking
	49. Ordering Information
	50. Errata on SAM4E Devices
	50.1 Errata SAM4E Rev. A Parts
	50.1.1 Watchdog
	50.1.1.1 Watchdog Not Stopped in Wait Mode

	50.1.2 Brownout Detector
	50.1.2.1 Unpredictable Behavior if BOD is Disabled, VDDCORE is Lost and VDDIO is Connected

	50.1.3 Flash
	50.1.3.1 Flash: Incorrect Flash Read May Occur Depending on VDDIO Voltage and Flash Wait State

	50.1.4 Floating Point Unit (FPU)
	50.1.4.1 FPU: IXC flag interrupt

	50.2 Errata SAM4E Rev.B Parts
	50.2.1 Watchdog
	50.2.1.1 Watchdog Not Stopped in Wait Mode

	50.2.2 Brownout Detector
	50.2.2.1 Unpredictable Behavior if BOD is Disabled, VDDCORE is Lost and VDDIO is Connected

	Table of Contents
	51. Revision History

