

S-5717 Series

LOW VOLTAGE OPERATION BOTH POLES / UNIPOLAR DETECTION TYPE HALL IC

www.ablic.com

© ABLIC Inc., 2013

The S-5717 Series, developed by CMOS technology, is a high-accuracy Hall IC that operates at a low voltage and low current consumption.

The output voltage changes when the S-5717 Series detects the intensity level of flux density. Using the S-5717 Series with a magnet makes it possible to detect the open / close in various devices.

High-density mounting is possible by using the super-small SNT-4A package.

Due to its low voltage operation and low current consumption, the S-5717 Series is suitable for battery-operated portable devices. Also, due to its high-accuracy magnetic characteristics, the S-5717 Series can make operation's dispersion in the system combined with magnet smaller.

Caution This product is intended to use in general electronic devices such as consumer electronics, office equipment, and communications devices. Before using the product in medical equipment or automobile equipment including car audio, keyless entry and engine control unit, contact to ABLIC Inc. is indispensable.

Features

- Pole detection^{*1}:
- Detection logic for magnetism^{*1}:
- Output form^{*1}:
- Magnetic sensitivity:
- Operating cycle (current consumption)^{*1}:

Active "L", active "H" Nch open-drain output, CMOS output $B_{OP} = 3.3 \text{ mT typ.}$ Product with both poles detection $t_{CYCLE} = 50.50 \text{ ms } (I_{DD} = 2.0 \ \mu\text{A}) \text{ typ.}$ Product with S pole or N pole detection $t_{CYCLE} = 50.85 \text{ ms } (I_{DD} = 1.4 \ \mu\text{A}) \text{ typ.}$ $V_{DD} = 1.6 \text{ V to } 3.6 \text{ V}$ Ta = -40°C to +85°C

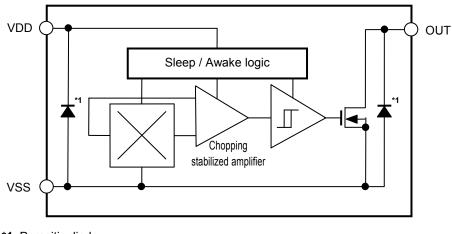
Detection of both poles, S pole or N pole

- Power supply voltage range:
- Operation temperature range:
- Lead-free (Sn 100%), halogen-free

*1. The option can be selected.

Applications

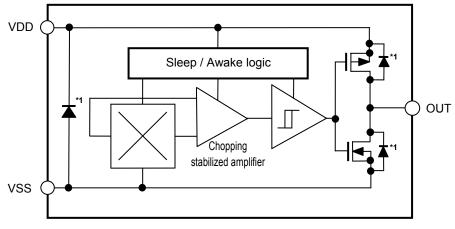
- Mobile phone, smart phone
- Notebook PC, tablet PC
- Digital video camera
- Plaything, portable game
- Home appliance



SNT-4A

Rev.1.0_02

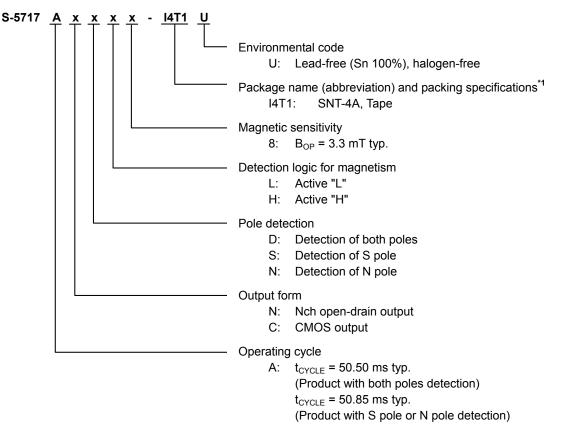
Block Diagrams


1. Nch open-drain output product

*1. Parasitic diode

Figure 1

2. CMOS output product



*1. Parasitic diode

Figure 2

Product Name Structure

1. Product name

*1. Refer to the tape drawing.

2. Package

Table 1	Package D	rawing	Codes
	I acrage D	lawing	ooues

Package Name Dimension		Таре	Reel	Land	
SNT-4A	PF004-A-P-SD	PF004-A-C-SD	PF004-A-R-SD	PF004-A-L-SD	

3. Product name list

3.1 SNT-4A

3. 1. 1 Nch open-drain output product

Table 2

S-5717ANDL8-I4T1U 50.50 ms typ. Nch open-drain output Both poles Active "L" 3.3 mT typ.	Product Name	Operating Cycle (t _{CYCLE})	Output Form	Pole Detection	Detection Logic for Magnetism	Magnetic Sensitivity (B _{OP})
	S-5717ANDL8-I4T1U 50.50 ms typ. Nch open-drain output Both poles Active "L" 3.3 mT typ.					

Remark Please contact our sales office for products other than the above.

3. 1. 2 CMOS output product

Table	3
-------	---

Product Name Operating Cycle (t _{CYCLE})		Output Form	Pole Detection	Detection Logic for Magnetism	Magnetic Sensitivity (B _{OP})
S-5717ACDL8-I4T1U	50.50 ms typ.	CMOS output	Both poles	Active "L"	3.3 mT typ.

Remark Please contact our sales office for products other than the above.

Pin Configuration

1. SNT-4A

Т	ор	view
1 2	ſ	4 3

Figure 3

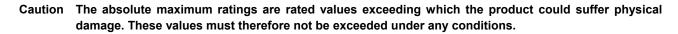
Table 4					
Pin No. Symbol Pin Description					
1	OUT	Output pin			
2	VSS	GND pin			
3	NC ^{*1}	No connection			
4	VDD	Power supply pin			

*1. The NC pin is electrically open.

The NC pin can be connected to the VDD pin or the VSS pin.

Absolute Maximum Ratings

Table 5


			(Ta = +25°C unless otherwis	e specified)
	Item	Symbol	Absolute Maximum Rating	Unit
Power supply volta	age	V _{DD}	$V_{SS}{-}0.3$ to $V_{SS}{+}7.0$	V
Output current		I _{OUT}	±1.0	mA
No	Nch open-drain output product	V	$V_{SS}{-}0.3$ to $V_{SS}{+}7.0$	V
Output voltage	CMOS output product	- V _{OUT}	$V_{SS} - 0.3 \text{ to } V_{DD} + 0.3$	V
Power dissipation		PD	300 ^{*1}	mW
Operation ambient	t temperature	T _{opr}	-40 to +85	°C
Storage temperatu	ire	T _{stg}	-40 to +125	°C

*1. When mounted on board

[Mounted board]

(1) Board size: 114.3 mm \times 76.2 mm \times t1.6 mm

JEDEC STANDARD51-7 (2) Name:

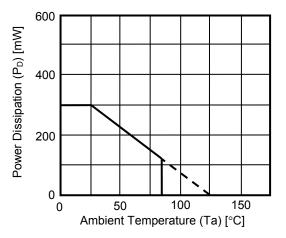


Figure 4 Power Dissipation of Package (When Mounted on Board)

ABLIC Inc.

Table 6

Electrical Characteristics

1. Product with both poles detection

1.1 S-5717AxDxx

			(Ta = +25°C, V _{DD}	, = 1.85 V,	$V_{SS} = 0 V$	unless oth	erwise s	pecified)
Item	Symbol	C	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Power supply voltage	V _{DD}		_	1.60	1.85	3.60	V	_
Current consumption	I _{DD}	Average value		_	2.0	3.5	μA	1
Output voltage V _{OU}		Nch open-drain output product	Output transistor Nch, I _{OUT} = 0.5 mA	_	_	0.2	V	2
	V _{OUT}	CMOS output	Output transistor Nch, I _{OUT} = 0.5 mA	_	_	0.2	V	2
		product	Output transistor Pch, $I_{OUT} = -0.5 \text{ mA}$	V _{DD} – 0.2	_	-	V	3
Leakage current	I _{LEAK}	•	Nch open-drain output product Output transistor Nch, V _{OUT} = 3.5 V		_	1	μA	4
Awake mode time	t _{AW}	_		-	0.10	-	ms	_
Sleep mode time	t _{SL}	_		_	50.40	_	ms	_
Operating cycle	t _{CYCLE}	$t_{AW} + t_{SL}$		_	50.50	100.00	ms	_

2. Product with S pole or N pole detection

2.1 S-5717AxSxx, S-5717AxNxx

(Ta = +25°C, V_{DD} = 1.85 V, V_{SS} = 0 V unless otherwise specified) Test Item Symbol Condition Min. Typ. Max. Unit Circuit Power supply voltage V_{DD} 1.60 1.85 3.60 V _ _ Current consumption 1 I_{DD} Average value 1.4 3.0 μA _ Nch open-drain Output transistor Nch, V 2 _ 0.2 I_{OUT} = 0.5 mA output product Output transistor Nch, Output voltage VOUT _ 0.2 V 2 _ CMOS output $I_{OUT} = 0.5 \text{ mA}$ product Output transistor Pch, V_{DD} – V 3 I_{OUT} = -0.5 mA 0.2 Nch open-drain output product 1 4 Leakage current **I**LEAK _ _ μΑ Output transistor Nch, $V_{OUT} = 3.5 V$ Awake mode time _ 0.05 _ ms t_{AW} _ _ 50.80 Sleep mode time t_{SL} ms t_{CYCLE} 100.00 ms Operating cycle 50.85 $t_{AW} + t_{SL}$ _ _

Table 7

LOW VOLTAGE OPERATION BOTH POLES / UNIPOLAR DETECTION TYPE HALL IC S-5717 Series Rev.1.0_02

Magnetic Characteristics

1. Product with both poles detection

1.1 Product with $B_{OP} = 3.3 \text{ mT typ.}$

Table 8	
---------	--

(Ta = $+25^{\circ}$ C, V _{DD} = 1.85 V, V _{SS} = 0 V unless otherwise specified)								
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
o	S pole	B _{OPS}	_	2.3	3.3	4.7	mT	5
Operation point ^{*1}	N pole	B _{OPN}	-	-4.7	-3.3	-2.3	mT	5
Release point ^{*2} S pole N pole	S pole	B _{RPS}	-	1.2	2.4	3.4	mT	5
	N pole	B _{RPN}	-	-3.4	-2.4	-1.2	mT	5
Hysteresis width ^{*3}	S pole	B _{HYSS}	B _{HYSS} = B _{OPS} – B _{RPS}	_	0.9	1	mT	5
	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	-	0.9	-	mT	5

2. Product with S pole detection

2.1 Product with B_{OP} = 3.3 mT typ.

Table 9

			(Ta = +25	°C, V _{DD} = 1	I.85 V, V _{SS}	= 0 V unle	ss other	wise specified)
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point ^{*1}	S pole	B _{OPS}	-	2.3	3.3	4.7	mT	5
Release point ^{*2}	S pole	B _{RPS}	_	1.2	2.4	3.4	mT	5
Hysteresis width*3	S pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	-	0.9	-	mT	5

3. Product with N pole detection

3. 1 Product with $B_{OP} = 3.3 \text{ mT typ.}$

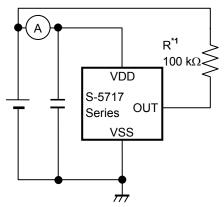
Table 10

			(Ta = +25	°C, V _{DD} = ′	1.85 V, V _{SS}	= 0 V unle	ess other	wise specified)
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point ^{*1}	N pole	B _{OPN}	-	-4.7	-3.3	-2.3	mT	5
Release point ^{*2}	N pole	B _{RPN}	_	-3.4	-2.4	-1.2	mT	5
Hysteresis width*3	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	I	0.9	-	mT	5

*1. B_{OPN}, B_{OPS}: Operation points

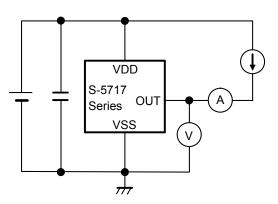
 B_{OPN} and B_{OPS} are the values of magnetic flux density when the output voltage (V_{OUT}) is inverted after the magnetic flux density applied to the S-5717 Series by the magnet (N pole or S pole) is increased (the magnet is moved closer). Even when the magnetic flux density exceeds B_{OPN} or B_{OPS} , V_{OUT} retains the status.

*2. B_{RPN}, B_{RPS}: Release points


 B_{RPN} and B_{RPS} are the values of magnetic flux density when the output voltage (V_{OUT}) is inverted after the magnetic flux density applied to the S-5717 Series by the magnet (N pole or S pole) is decreased (the magnet is moved further away). Even when the magnetic flux density falls below B_{RPN} or B_{RPS} , V_{OUT} retains the status.

***3.** B_{HYSN}, B_{HYSS}: Hysteresis widths

 B_{HYSN} and B_{HYSS} are the difference between B_{OPN} and $B_{\text{RPN}},$ and B_{OPS} and $B_{\text{RPS}},$ respectively.


Remark The unit of magnetic density mT can be converted by using the formula 1 mT = 10 Gauss.

Test Circuits

*1. Resistor (R) is unnecessary for the CMOS output product.

Figure 5 Test Circuit 1

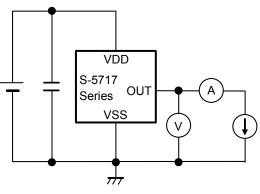
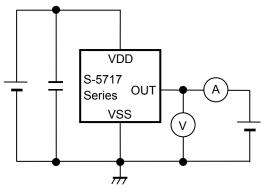
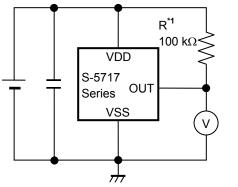
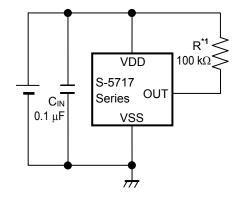


Figure 7 Test Circuit 3


Figure 8 Test Circuit 4

*1. Resistor (R) is unnecessary for the CMOS output product.

Figure 9 Test Circuit 5

Standard Circuit

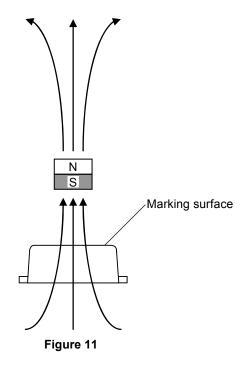
*1. Resistor (R) is unnecessary for the CMOS output product.

Figure 10

Caution The above connection diagram and constant will not guarantee successful operation. Perform thorough evaluation using the actual application to set the constant.

Operation

1. Direction of applied magnetic flux

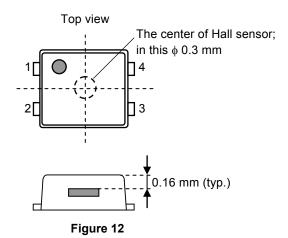

The S-5717 Series detects the flux density which is vertical to the marking surface.

In the product with both poles detection, the output voltage (V_{OUT}) is inverted when the S pole or N pole is moved closer to the marking surface.

In the product with S pole detection, V_{OUT} is inverted when the S pole is moved closer to the marking surface.

In the product with N pole detection, V_{OUT} is inverted when the N pole is moved closer to the marking surface.

Figure 11 shows the direction in which magnetic flux is being applied.

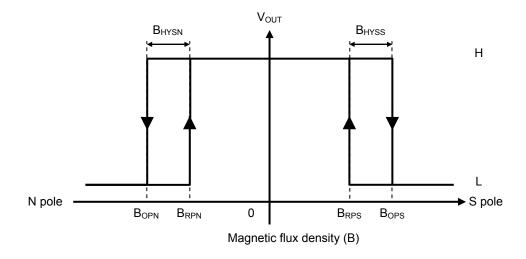


2. Position of Hall sensor

Figure 12 shows the position of Hall sensor.

The center of this Hall sensor is located in the area indicated by a circle, which is in the center of a package as described below.

The following also shows the distance (typ. value) between the marking surface and the chip surface of a package.

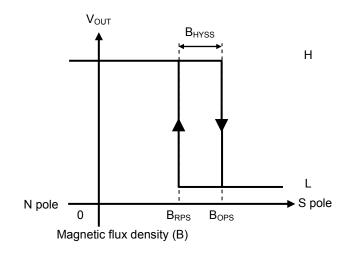

3. Basic operation

The S-5717 Series changes the output voltage level (V_{OUT}) according to the level of the magnetic flux density (N pole or S pole) applied by a magnet.

The following explains the operation when the magnetism detection logic is active "L".

3.1 Product with both poles detection

When the magnetic flux density vertical to the marking surface exceeds the operation point (B_{OPN} or B_{OPS}) after the S pole or N pole of a magnet is moved closer to the marking surface of the S-5717 Series, V_{OUT} changes from "H" to "L". When the S pole or N pole of a magnet is moved further away from the marking surface of the S-5717 Series and the magnetic flux density is lower than the release point (B_{RPN} or B_{RPS}), V_{OUT} changes from "L" to "H". **Figure 13** shows the relationship between the magnetic density and V_{OUT} .



3.2 Product with S pole detection

When the magnetic flux density vertical to the marking surface exceeds B_{OPS} after the S pole of a magnet is moved closer to the marking surface of the S-5717 Series, V_{OUT} changes from "H" to "L". When the S pole of a magnet is moved further away from the marking surface of the S-5717 Series and the magnetic flux density is lower than B_{RPS} , V_{OUT} changes from "L" to "H".

Figure 14 shows the relationship between the magnetic density and $V_{\text{OUT}}.$

ABLIC Inc.

3.3 Product with N pole detection

When the magnetic flux density vertical to the marking surface exceeds B_{OPN} after the N pole of a magnet is moved closer to the marking surface of the S-5717 Series, V_{OUT} changes from "H" to "L". When the N pole of a magnet is moved further away from the marking surface of the S-5717 Series and the magnetic flux density is lower than B_{RPN} , V_{OUT} changes from "L" to "H".

Figure 15 shows the relationship between the magnetic density and V_{OUT} .

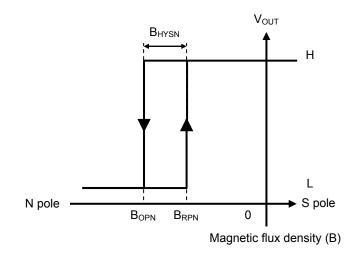
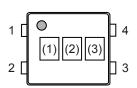


Figure 15

Precautions

- If the impedance of the power supply is high, the IC may malfunction due to a supply voltage drop caused by feedthrough current. Take care with the pattern wiring to ensure that the impedance of the power supply is low.
- Note that the IC may malfunction if the power supply voltage rapidly changes.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- Large stress on this IC may affect on the magnetic characteristics. Avoid large stress which is caused by bend and distortion during mounting the IC on a board or handle after mounting.
- ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

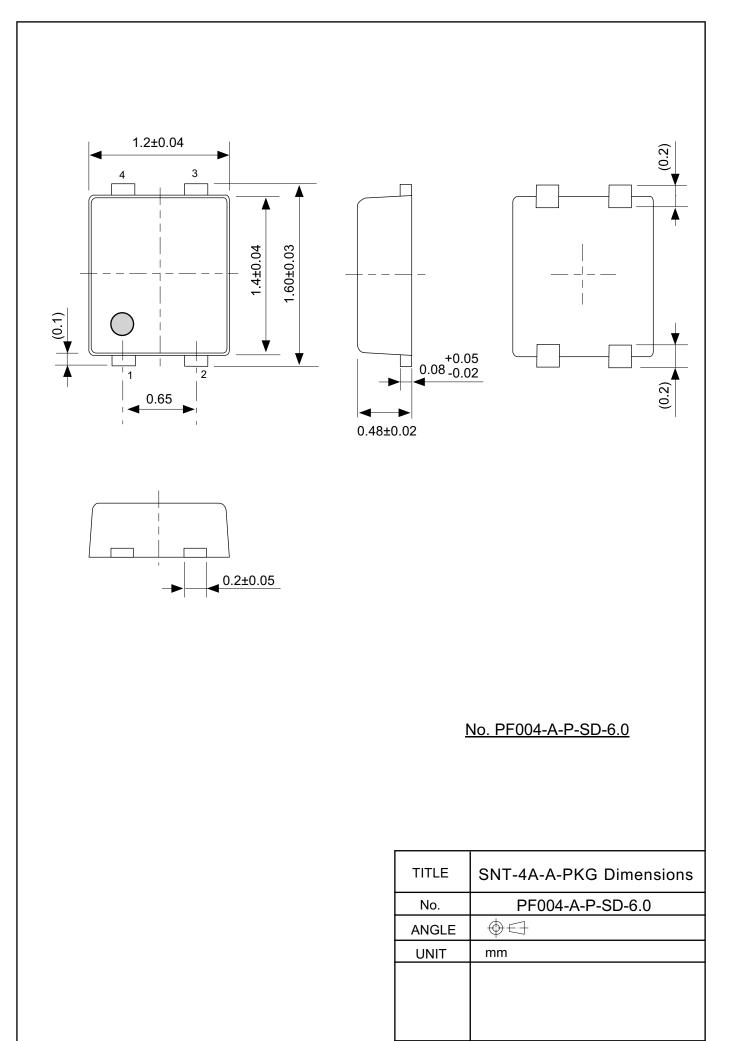

LOW VOLTAGE OPERATION BOTH POLES / UNIPOLAR DETECTION TYPE HALL IC S-5717 Series Rev.1.0_02

Marking Specification

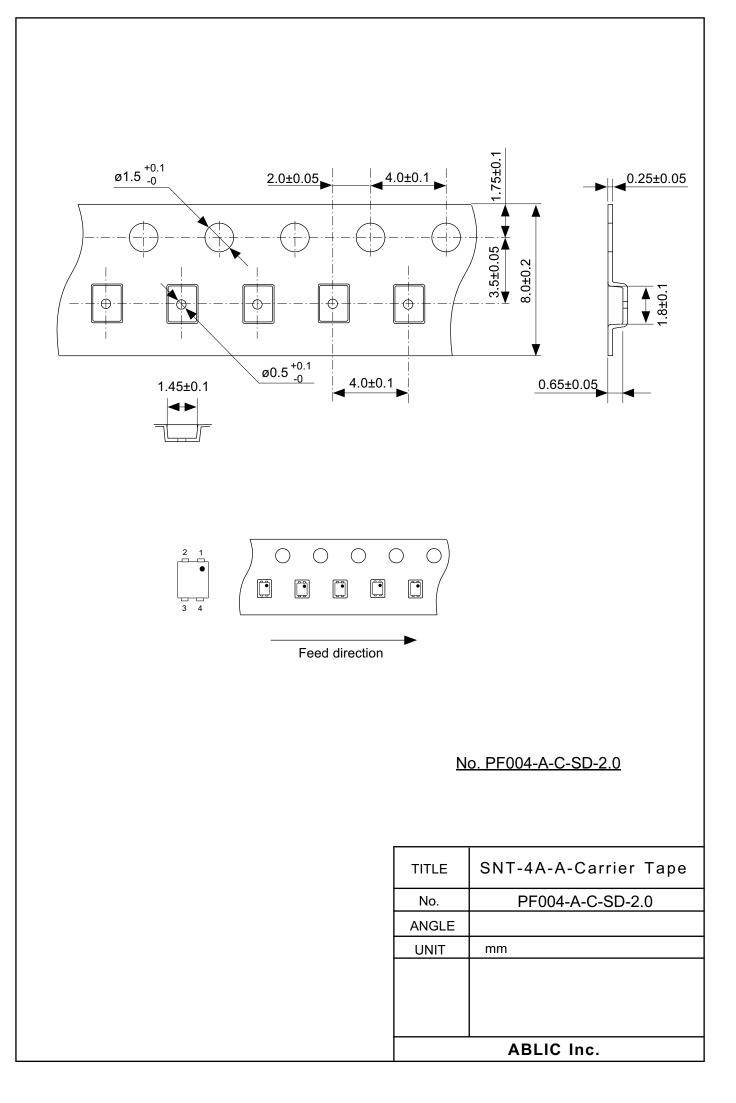
1. SNT-4A

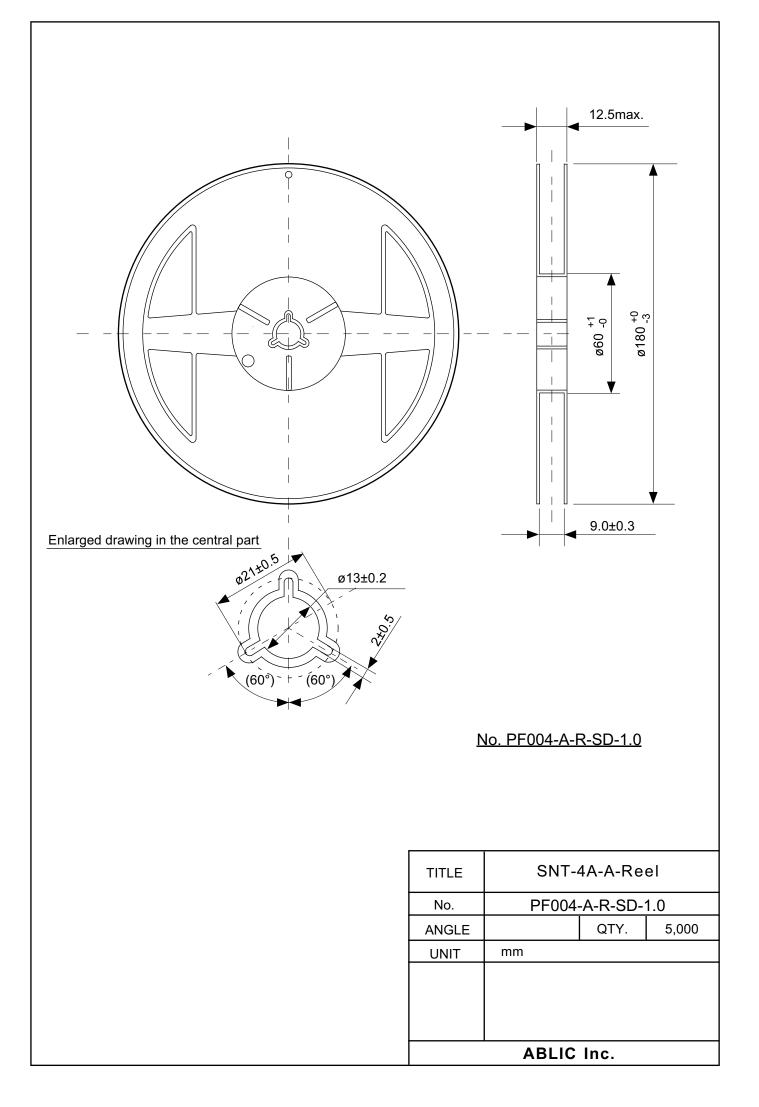
Top view

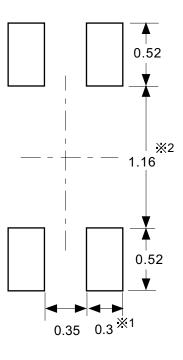
(1) to (3): Product code (Refer to **Product name vs. Product code**.)


Product name vs. Product code

1.1 Nch open-drain output product


Draduat Nama	Product Code				
Product Name	(1)	(2)	(3)		
S-5717ANDL8-I4T1U	4	S	Α		


1.2 CMOS output product


Draduat Nama	Product Code			
Product Name	(1)	(2)	(3)	
S-5717ACDL8-I4T1U	4	S	В	

ABLIC Inc.

※1. ランドパターンの幅に注意してください (0.25 mm min. / 0.30 mm typ.)。 ※2. パッケージ中央にランドパターンを広げないでください (1.10 mm ~ 1.20 mm)。

- 注意 1. パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
 - 2. パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から0.03 mm 以下にしてください。
 - 3. マスク開口サイズと開口位置はランドパターンと合わせてください。
 - 4. 詳細は "SNTパッケージ活用の手引き" を参照してください。

X1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).

%2. Do not widen the land pattern to the center of the package (1.10 mm to 1.20 mm).

Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.

- 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface.
 - 3. Match the mask aperture size and aperture position with the land pattern.
- 4. Refer to "SNT Package User's Guide" for details.
- ※1. 请注意焊盘模式的宽度 (0.25 mm min. / 0.30 mm typ.)。
- ※2. 请勿向封装中间扩展焊盘模式 (1.10 mm~1.20 mm)。
- 注意 1. 请勿在树脂型封装的下面印刷丝网、焊锡。
 - 2. 在封装下、布线上的阻焊膜厚度 (从焊盘模式表面起) 请控制在 0.03 mm 以下。
 - 3. 钢网的开口尺寸和开口位置请与焊盘模式对齐。
 - 4. 详细内容请参阅 "SNT 封装的应用指南"。

TITLE	SNT-4A-A -Land Recommendation	
No.	PF004-A-L-SD-4.1	
ANGLE		
UNIT	mm	
ABLIC Inc.		

<u>No. PF004-A-L-SD-4.1</u>

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.
- 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.

The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.

- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.
- 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.

2.4-2019.07