

Low-Cost, Quad, SPST, CMOS Analog Switches

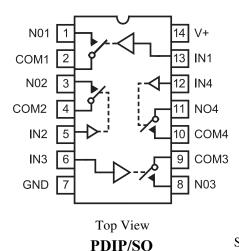
Features

- Low On-Resistance
- On-Resistance Matching Between Channels, 0.2Ω typ
- On-Resistance Flatness, $\leq 2\Omega$ typ
- Low Off-Channel Leakage, <100pA @ +25°C
- TTL/CMOS Logic Compatible
- GND-to-V+ Analog Signal Dynamic Range
- Low Power Consumption ($<12\mu W$)
- Low Crosstalk: -86dB @ 1MHz
- Low Off-Isolation: -58dB @ 1 MHz
- Wide Bandwidth: > 100 MHz
- Small QSOP-16 Package Saves Board Area

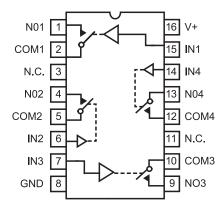
Applications

- Instrumentation, ATE
- Sample-and-Holds
- Audio Switching and Routing
- **Telecommunication Systems**
- PBX, PABX
- **Battery-Powered Systems**

Description


The PS4066/PS4066A are improved SPST CMOS analog switches ideal for low-distortion audio switching. These high precision, medium voltage switches were designed to operate with single-supplies from +3V to 16V. They are fully specified with +12V, +5V, and +3V supplies. The PS4066/PS4066A has four normally open (NO) switches. Each switch conducts current equally well in either direction when on. In the off state each switch blocks voltages up to the power-supply rails.

With +12V power supply, the PS4066/PS4066A guarantee \leq 45 Ω on-resistance. On-resistance matching between channels is within 2Ω (PS4066). On-resistance flatness is less than 4Ω (PS4066A) over the specified range. The PS4066A guarantees low leakage currents (<100pA @ 25°C, <6nA @ +85°C) and fast switching speeds (t_{ON} < 175ns). ESD sensitivity rating is >2,000V per MIL-STD 883, Method 3015.7


Both devices are available in PDIP-14, narrow-body SOIC-14, and QSOP-16 packages. Available temperature ranges are: commercial (0°C to 70°C), and industrial (-40°C to +85°C).

For operation below 5V, the PI5A101/PI5A391/PI5A392 are also recommended.

Functional Diagrams, Pin Configurations, and Truth Table

Switch Logic 0 **OFF** ON 1

N.C. = No Internal Connection Switches shown for logic "0" input

Top View **QSOP**

Absolute Maximum Ratings

Voltages Referenced to GND
V+0.3V to +17V
$V_{IN}, V_{COM}, V_{NC}, V_{NO} (Note 1) \dots -2V to (V+) +2V$
or 30mA, whichever occurs first
Current (any terminal)
Peak Current, COM, NO, NC
(pulsed at 1ms, 10% duty cycle) 100mA
ESD per Method 3015.7>2000V

Thermal Information

Continuous Power Dissipation (T_A = +70°C) Plastic DIP (derate 10.5mW/ °C above +70°C) 800mW SO and QSOP (derate 8.7mW/ °C above +70°C) 650mW Storage Temperature -65°C to +150°C Lead Temperature (soldering, 10s) +300°C

Note

Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +12V Supply

 $(V + = 12V \pm 10\%, GND = 0V, V_{INH} = 4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions		Temp. (°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
Analog Switch	Analog Switch								
Analog Signal Range ⁽³⁾	V _{ANALOG}			Full	0		V+	V	
On Resistance	R _{ON}	$V+ = 12V, I_{COM} = 2$	mA,	25		12	45		
	0.1	$V_{NO} = 10V$		Full			55		
On-Resistance Match	$\Delta R_{ m ON}$	$V+ = 12V, I_{COM} = 2mA$ $V_{NO} = 10V$	PS4066 PS4066A	25		0.5 0.5	4 2	Ω	
Between Channels ⁽⁴⁾	ON	NO		Full			6		
On-Resistance	R _{FLAT(ON)}	RELATION)	$V+ = 12V, I_{COM} = 2mA,$		25		2	4	
Flatness ⁽⁵⁾		$V_{NO} = 10V, 5V, 1V$		Full			6		
NO or NC Off	I _{NO(OFF)}	$V+ = 12V, V_{COM} = 0V,$	PS4066 PS4066A	25	-1 -0.1		1 0.1		
Leakage Current ⁽⁶⁾	I _{NC(OFF)}	$V_{NO} = 10V$		Full	-6		6		
COM Off Leakage Current ⁽⁶⁾	I _{COM(OFF)}	$V+ = 12V, V_{COM} = 0V,$ $V_{NO} = 10V$	PS4066 PS4066A	25	-1 -0.1		1 0.1	nA	
				Full	-6		6		
COM On Leakage Current ⁽⁶⁾	I _{COM(ON)}	$V+ = 12V, V_{COM} = 10V,$	PS4066 PS4066A	25	-2 -0.2		2 0.2		
		$V_{NO} = 10V$		Full	-12		12		

Electrical Specifications - Single +12V Supply (continued)

 $(V + = 12V \pm 10\%, GND = 0V, V_{INH} = 4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp (°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
Logic Input	Logic Input							
Input Current with Input Voltage High	I_{INH}	IN =5V, all others = $0.8V$	F11	-0.5	0.005	0.5	μA	
Input Current with Input Voltage Low	I _{INL}	IN = 0.8V, all others =5V	Full	-0.5	0.005	0.5		
Dynamic								
Turn-On Time	t		25		45	100		
Turn-On Time	t _{ON}	$V_{COM} = 10V$, Figure 2	Full			150	ns	
Turn-Off Time	t		25		17	75		
Turn-On Time	$t_{ m OFF}$		Full			100		
On-Channel Bandwidth	BW	Signal = 0dbm Figure 4, 50Ω in and out			100		MHz	
Charge Injection ⁽³⁾	Q	C_L =1nF, V_{GEN} = 0V, R_{GEN} = 0 Ω , Figure 3			2	10	рC	
Off Isolation	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1$ MHz, Figure 4			-58		1D	
Crosstalk ⁽⁸⁾	X _{TALK}	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1$ MHz, Figure 5	25		-86		- dB	
NO Capacitance	C _(OFF)	f=1 MHz, Figure 6			9			
COM Off Capacitance		f=1 MHz, Figure 6			9		pF	
COM On Capacitance	C _{COM(ON)}	f=1MHz, Figure 7			22			
Supply								
Positive Supply Current	I+	$V_{IN} = 0V$ or V+, all channels on or off	Full	-1	0.001	1	μΑ	
Total Harmonic Distortion	THD		T'UII		0.03		%	

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = \Delta R_{ON} \max \Delta R_{ON} \min$
- 5. Flatness is defined as the difference between the maximum and minimum value of on-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NO})]$, $V_{COM} = 0$ utput, $V_{NC} / V_{NO} = i$ nput to off switch
- 8. Between any two switches.

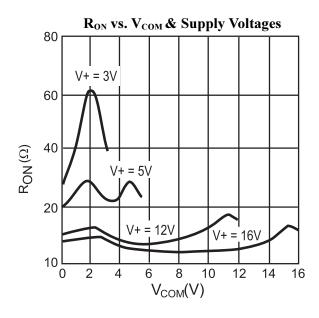
Electrical Specifications - Single +5V Supply (V+ = +5V $\pm 10\%$, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)

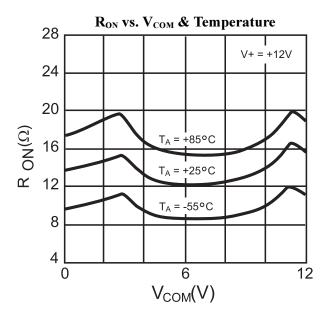
Parameter	Symbol	Conditions		Temp (°C)	Min ⁽¹⁾	Typ(2)	Max ⁽¹⁾	Units
Analog Switch					•			
Analog Signal Range(3)	V _{ANALOG}			Full	0		V+	V
On-Resistance	D	$V+ = 4.5V$, $I_{COM} = -1mA$,		25		22	75	
Olf-Resistance	R_{ON}	$V_{NO} = 3.5V$		Full			100	
On-Resistance	AD	$V+ =5V, I_{COM} = -1mA,$ $V_{NO} = 3V$		25		0.3	4	Ω
MatchBetween Channels ⁽⁴⁾	$\Delta R_{ m ON}$			Full			12	52
On-Resistance Flatness ^(3,5)	D	$V+ = 5V, I_{COM} = -1mA,$ $V_{NO} = 1V, 3V$		25		4	6	
OIFRESIStance Flauress(5,5)	R _{FLAT(ON)}			Full			8	
NO Off Leakage Current ⁽⁹⁾	I _{NO(OFF)}	$V + = 5.5V, V_{COM} = 0V,$	PS4066 PS4066A	25	-1 -0.1		1 0.1	
Curency		$V_{NO} = 4.5V$		Full	-6		6	
COM Off Leakage Curren ⁽⁹⁾	I _{COM(OFF)}	$V+ = 5.5V, V_{COM} = 0V,$ $V_{NO} = 4.5V$	PS4066 PS4066A	25	-1 -0.1		1 0.1	nA
				Full	-6		6	
COM On Leakage	I _{COM(ON)}	$V + = 5.5V, V_{COM} = 5V$	PS4066 PS4066A	25	-2 -0.2		2 0.2	
Current ⁽⁶⁾	Com(on)	$V_{NO} = 4.5V$		Full	-12		12	
Dynamic								
Turn-On Time				25		65	125	
Tuni-On Tine	t _{ON}	$V_{NO} = 3V$	V = 3V				175	nc
Turn-Off Time	t	V _{NO} -3V		25		30	75	ns
Turn-On Thic	t _{OFF}			Full			125	
On-Channel Bandwidth	BW	Signal = $0dBm$, 50Ω in and out Figure 4		25		100		MHz
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V},$ $R_{GEN} = 0 \text{V}, \text{ Figure 3}$		25		1	10	pC
Supply								
Positive Supply Current	I+	$V+ = 5.5V$, $V_{IN} = 0V$ or $V+$, all channels on or off		Full	-1		1	μА

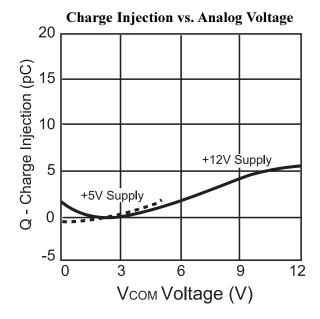
Electrical Specifications - Single +3V Supply

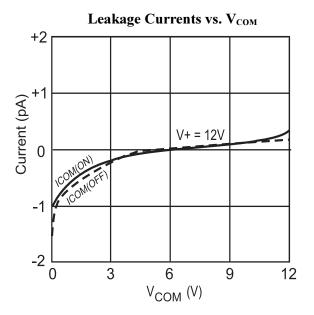
 $(V + = +2.7V \text{ to } 3.3V, \text{GND} = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp°C	Min.(1)	Typ ⁽²⁾	Max.(1)	Units
Analog Switch							
Analog Signal Range(3)	V _{ANALOG}			0		V+	V
Channel On-Resistance	R _{ON}	$V+ = 3V, I_{COM} = -1mA,$ $V_{NO} = 1.5V$	25			170	Ω
			Full			225	
Dynamic							
Turn-On-Time(3)	t _{ON}	$V+=3V, V_{NO}=1.5V$	25		80	185	ns
			Full			230	
Town Off Time(3)	4	VI -2V V - 1 5V	25		40	150	
Turn-Off-Time ⁽³⁾	t _(OFF)	$V+ = 3V, V_{NO} = 1.5V$	Full			200	
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{\text{GEN}} = 0 \text{V},$ $R_{\text{GEN}} = 0 \text{V}$	25		2	10	рC
Supply							
Positive Supply Current	I+	$V+=3.3V$, $V_{IN}=0V$ or $V+$, all channels on or off	Full	-1	0.001	1	μΑ

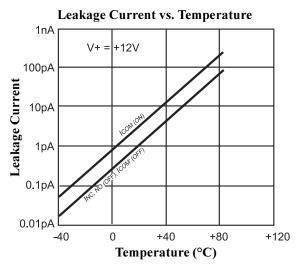

Notes:

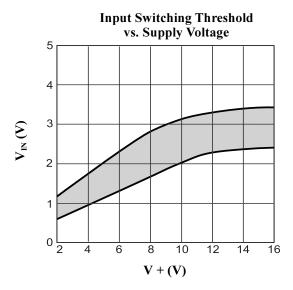

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.

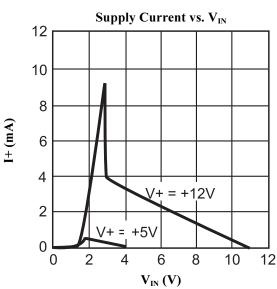

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = \Delta R_{ON} \max \Delta R_{ON} \min$
- 5. Flatness is defined as the difference between the maximum and minimum value of on-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
- 7. Off Isolation = $20\log_{10} [V_{COM} / (V_{NO} \text{ or } V_{NO})], V_{COM} = 0$ utput, $V_{NC} / V_{NO} = 1$ input to off switch
- 8. Between any two switches.

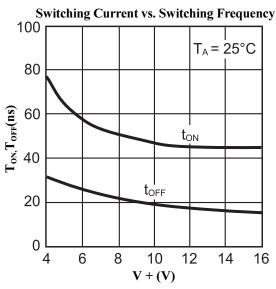


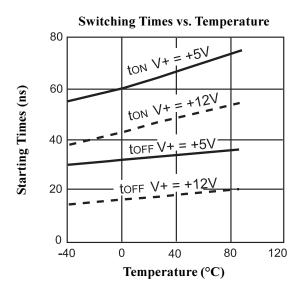
Typical Operating Characteristics (TA = +25°C, unless otherwise noted)

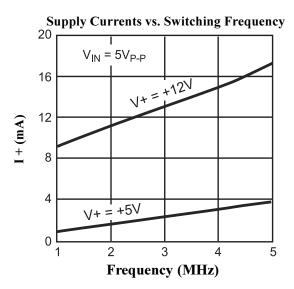





PS8184A 10/15/98




Typical Operating Characteristics (TA = +25°C, unless otherwise noted)



Pin Description

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, and then the logic inputs. If power-supply sequencing is not possible, add a small signal diode or current limiting resistor in series with the supply pin for overvoltage protection (Figure 1). Adding a diode reduces the analog signal range, but low switch resistance and low leakage characteristics are unaffected.



Figure 1. Overvoltage protection is accomplished using an external blocking diode or a current limiting resistor.

Test Circuits/Timing Diagrams

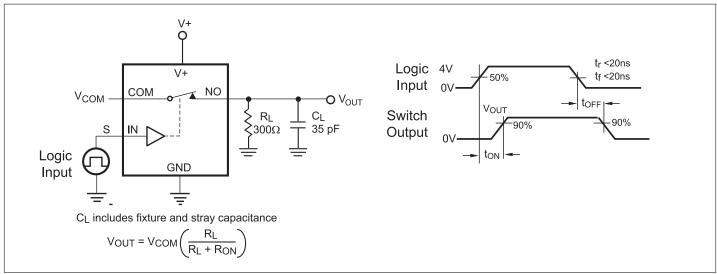


Figure 2. Switching Times

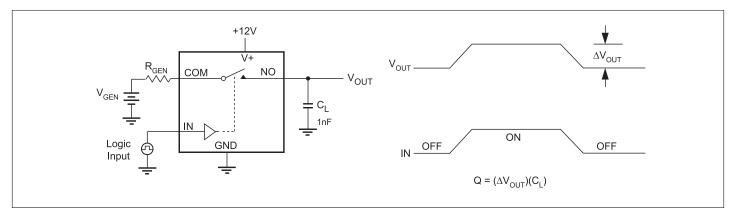


Figure 3. Charge Injection

8 PS8184A 10/15/98

Test Circuits/Timing Diagrams (continued)

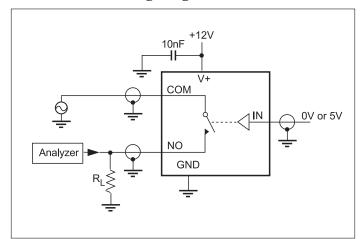


Figure 4. Off Isolation, BW

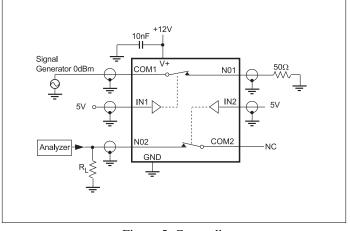


Figure 5. Crosstalk

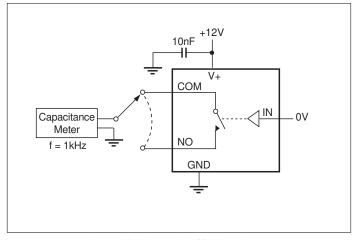


Figure 6. Channel-Off Capacitance

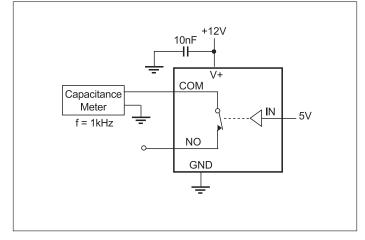


Figure 7. Channel-On Capacitance

Ordering Information

Part Number	Temperature - Range	Package
PS4066CPD	0°C to + 70°C	14 Plastic DIP
PS4066CSD	0°C to + 70°C	14 Narrow SO
PS4066CEE	0°C to + 70°C	16 QSOP
PS4066EPD	-40°C to + 85°C	14 Plastic DIP
PS4066ESD	-40°C to + 85°C	14 Narrow SO
PS4066ACPD	0°C to + 70°C	14 Plastic DIP
PS4066ACSD	0°C to + 70°C	14 Narrow SO
PS4066ACEE	0°C to + 70°C	16 QSOP
PS4066AEPD	-40°C to + 85°C	14 Plastic DIP
PS4066AESD	-40°C to + 85°C	14 Narrow SO
PS4066AEEE	-40°C to + 85°C	16 QSOP

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com

PS8184A 10/15/98