Reference

S	PECIFICATIONS
Product Type	16-bit LED panel driver
Model No.	IR2D07 (IR2D071)
	· · · · · · · · · · · · · · · · · · ·
* This specifications	contains 21 pages including the cover and appendix.
* This specifications	contains 21 pages including the cover and appendix.
	contains 21 pages including the cover and appendix.
CUSTOMERS	
CUSTOMERS ACCEPTANCE	PRESENTED
CUSTOMERS ACCEPTANCE DATE:	
CUSTOMERS ACCEPTANCE DATE:	PRESENTED BY: H. Fugilar
CUSTOMERS ACCEPTANCE DATE:	PRESENTED BY: H. Fujita H. Fujita

- •Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- •When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
- (1)The products covered herein are designed and manufactured the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - \cdot Office electronics
 - · Instrumentation and measuring equipment
 - \cdot Machine tools
 - · Audiovisual equipment
 - Home appliances
 - · Communication equipment other than for trunk lines.
- (2)Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - · Gas leak detectors and automatic cutoff devices
 - · Rescue and security equipment
 - Other safety devices and safety equipment, etc.
- (3)Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - · Aerospace equipment
 - · Communications equipment for trunk lines
 - · Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
- (4)Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- •Please direct all queries regarding the products covered herein to a sales representative of the company.

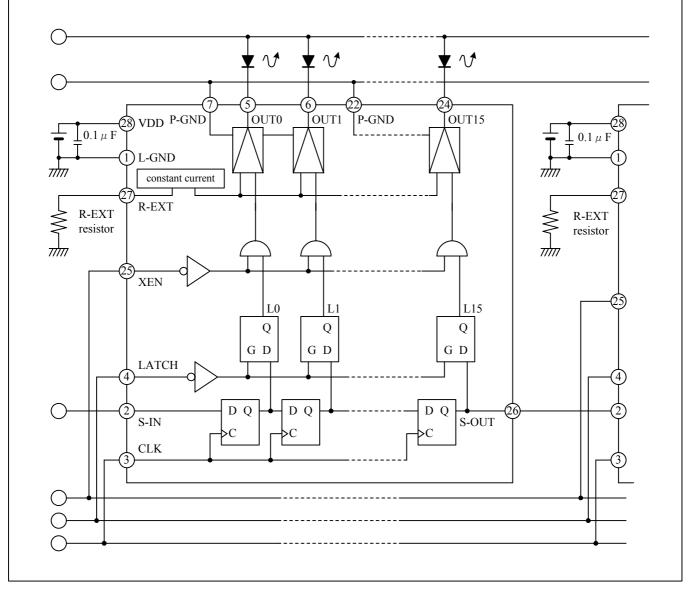
Reference

CONTENTS

1. General Description 2 2. Features 2 _____ Block Diagram and Typical Application Circuit 3. 2 4. Terminal Name 3 _ _ _ _ _ _ _____ 5. **Terminal Connections** 3 6. Equivalent Circuits for Inputs and Outputs 4 _____ 7. **Function Description** 5 7-1. **Terminal Description** _____ 7-2. Truth Table 5 ------7-3. Precautions _____ 6 8. Absolute Maximum Ratings 7 _____ 9. **Recommended Operating Conditions** 7 10. **Electrical Characteristics** 10-1. DC Electrical Characteristics 8 _____ 10-2. Switching Electrical Characteristics 8 _____ 10-3. **AC Electrical Characteristics** 9 _____ 11. Timing Waveform 10 _____ 12. **Typical Characteristics** 11 _____ Application Circuit Example 13. 12 _____ Package Outline Specification 13 14. _____

2

Page

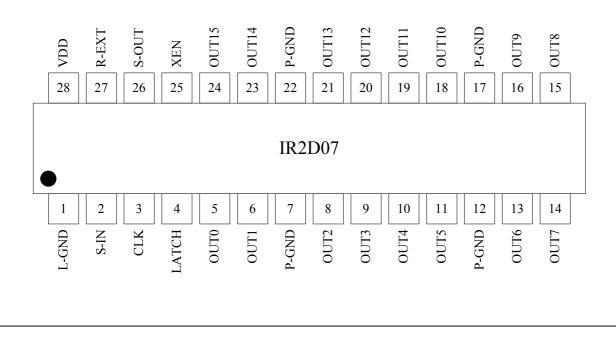

1. General Description

The Sharp IR2D07 is a current-sink constant current driver incorporating 16-bit shift register, 16-bit data-latch and a gate circuit. This driver is low power consumption and high accuracy current driving. This driver is designed for driving LEDs and LED displays.

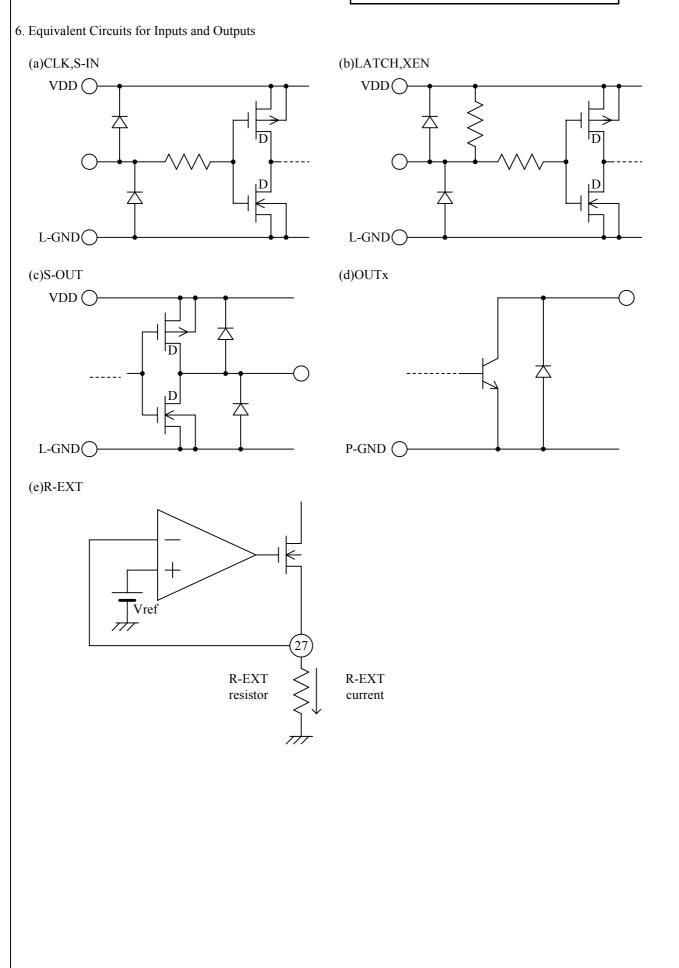
2. Features

 Clock frequency : max. 20MHz (non cascade condition) max. 16.6MHz (cascade condition)
Constant current range : 2 to 60 mA (can be set by one external resistor or one external constant current source)
Input level : CMOS level
Not designed or rated as radiation hardened.
Package material: Plastic
Chip material and wafer substrate type: P type silicon
Number of pins and package type: 28pin SDIP
Process Structure: Bi-CMOS
Applications: LEDs, LED displays

3. Block Diagram and Typical Application Circuit



Reference


4. Terminal Name

Pin No.	Term. Name	Description					
1	L-GND	Logic-ground					
2	S-IN	Serial data input					
3	CLK	Clock input					
4	LATCH	Latch input					
5	OUT0	nstant current output					
6	OUT1	Constant current output					
7	P-GND	Power-ground					
8	OUT2	Constant current output					
9	OUT3	Constant current output					
10	OUT4	Constant current output					
11	OUT5	Constant current output					
12	P-GND	Power-ground					
13	OUT6	onstant current output					
14	OUT7	onstant current output					
15	OUT8	onstant current output					
16	OUT9	Constant current output					
17	P-GND	Power-ground					
18	OUT10	Constant current output					
19	OUT11	Constant current output					
20	OUT12	Constant current output					
21	OUT13	Constant current output					
22	P-GND	Power-ground					
23	OUT14	Constant current output					
24	OUT15	Constant current output					
25	XEN	Output enable input					
26	S-OUT	Serial data output					
27	R-EXT	External resistor					
28	VDD	Power supply					

5. Terminal Connections

Reference

IR21007 Reference

7. Functional Description

7-1 Terminal Description

Pin No.	Symbol	Description
1	L-GND	Ground terminal for logic and constant current control circuit
2	S-IN	Serial data input terminal
3	CLK	Clock input for shift register. The data in shift register is shifted synchronizing to the rising edge of CLK.
4	LATCH	Latch input. When this terminal goes low, the data on shift register goes through the latch . When this terminal goes high, the data is latched.
5,6 8~11 13~16 18~21 23,24	OUT0 ² OUT15	Constant current output terminal. This terminal is open collector output.
7, 12 17, 21	P-GND	Ground terminal for LED driver.
25	XEN	Inpit foe output enable. When XEN goes high, all outputs of constant current driver goes off. When XEN goes low and data of latch (Ln) goes high, the corresponding outputs (OUTn) of constant current driver turns on.
26	S-OUT	Serial data output
27	R-EXT	Control terminal of constant current value . Output current (IOUT) is set by connecting one external resistor or one current source between R-EXTand GND. resistor: IOUT[A] = (Vref / R-EXT resistor) × 200 current source: IOUT[A] = R-EXT current × 200
28	VDD	Power supply for logic and constant current circuit

7-2 Truth Table

INF	PUT	OUTPUT
XEN	Ln	OUTn
L	L	OFF
L	Н	ON
Н	*	OFF

*: Don't care

7-3 Precautions

- If the EXT terminal is shorted with other terminals, an excessive current might flow. Therefore the EXT terminal should not be shorted with other terminals.
- If R-EXT resistor is connected to Unstable GND potential, a constant current output terminal might oscillate. It is recommended that this terminal connected with the stable GND line.
- The power-on reset circuit is not built in IC, Therefore, the data of F/F for a latch is not decided when a power supply is turned on.
- Please be sure to connect L-GND and P-GND on the outside.
- It is recommended that the decoupling capacitor of 1uF or more between VDD and L-GND as much as possible near the IC terminal.
- · Please do not open the constant current output terminals.
- Please adjust the voltage of the output terminal 0.6V or more when the LEDs are drived (Iout< 48.5mA)
- · Please do not open the S-IN terminal and the CLK terminal .
- It is recommended that the LEDs are arrange near this IC, because operation may become unstable due to the electromagnetic interference caused by the wiring and something else.
- This application circuit example is a reference example and is not guaranteed its operation in all conditions.Be sure to check the operation of your circuits.
- Please do not exceed the absolute maximum rating in any case, including turning on and turning off the power.
- This device does not include protection circuits for over voltage, over current or over temperature. If protection is necessary, please protect on the control circuit side.

8. Absolute Maximum Ratings

			(T	a=25°C)
Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	VDD		7.0	V
Input voltage	VIN		-0.3 ~ VDD+0.3	V
Output current	Iout		60	mA
Output voltage	Vout		7.0	V
Power dissipation	Pd	Ta ≦ 25°C	1.35	W
Derating ratio	$\Delta Pd/^{\circ}C$	Ta > 25°C	10.8	mW/°C
Operating temperature range	Topr		-40 ~ +100	°C
Storage temperature range	Tstg		-55 ~ +150	°C

9. Recommended Operating Conditions

				(VDD	=3.0 ~ 5.5	∕,Ta=-40 ~	100°C)
Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage		VDD		3.0	3.3	5.5	V
Output current	OUTn	Iout	Duty1/4	2.0	-	55.0	
	S-OUT	Іон		-	-	-1.0	mA
		Iol		-	-	1.0	
Input voltage		VIN		0.0	-	VDD	V
Clock frequency		fclk		-	-	20	MHz
			Cascade Connected	-	-	16.6	

* It is recommended the above-mentioned Recommended Operating Condittions.

When using it exceeding this condition, the reliability of this IC might be influenced harmfully.

1 0. Electrical Characteristics

10-1. DC Electrical Characteristics

					5V,Ta=	-40 ~ 100	<u>)°C)</u>
Parameter Symbol		Conditions		MIN.	TYP.	MAX.	Unit
"H"Input voltage			0.7VDD	-	VDD	V	
"L"Input voltage			GND	-	0.3VDD		
S-OUT terminal	Voh	VDD=3.3V,I _{O H} =-1.0mA		2.7	3.0	-	V
Output voltage	Vol	VDD=3.3V,I _{0 L} =1.0mA		-	0.3	0.6	
Output leakage current	Ioleak	VOUT=7.0V, Per one term	ninal.	-	-	10	μΑ
Output current		VDD=3.3V					
	Iout	R-EXT resistor = $5k\Omega$		43.5	48.5	53.5	mA
		VOUT=0.6V					
Error between bits	ΔI_{OL} Ta=25°C		-	1.0	4.0	±%	
R-EXT terminal voltage	Vref	R-EXT resistor=5kΩ	VDD=3.3V	1.18	1.24	1.30	V
Supply voltage regulation	∆Vref	Ta=25°C	VDD= $3.0V \rightarrow 3.6V$	-10	10	30	mV
Input Pull-Up resistor R _{IN}		LATCH,XEN		50	110	200	kΩ
Supply current		VDD=3.3V(Note 1)		-	450	1500	μΑ
		R-EXT resistor=5kΩ, CLK=0Hz					

Note 1: Data is inputted so that all output terminals may be set to "ON", and XEN terminal = "H"

1 0 - 2 . Switching Characteristics

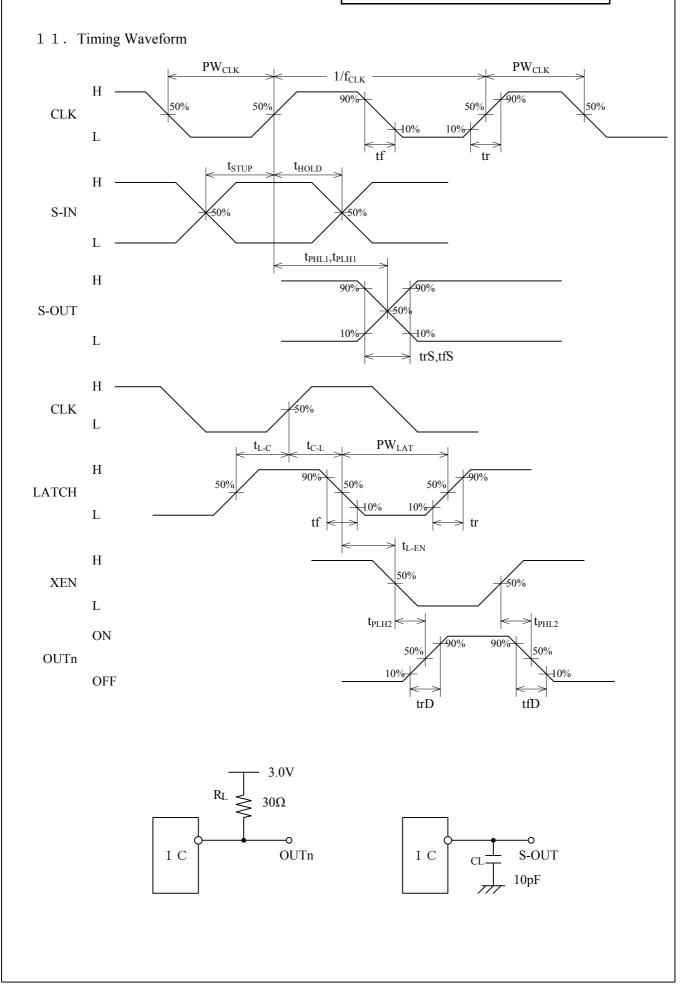
(VDD=3.0 ~ 5.5V,Ta=-40 ~ 100°C) Parameter Conditions MIN. TYP. MAX. Symbol Unit CLOCK pulse width PWCLK The period VI(CLK) is "H" 25 -ns The period VI(CLK) is "L" 25 _ _ ns Clock frequency **f**CLK Duty=50±10% 20 MHz --Set-up time for CLOCK terminal 10 S-IN-CLK↑ tstup _ ns Hold time for CLOCK terminal CLK↑ -S-IN 5 thold -ns 40 CLK↑ -LATCH CLK↑ -LATCH↓ _ tc-l ns LATCH↑ -CLK↑ LATCH↑ -CLK↑ 40 tl-C ns --LATCH -EN LATCH -EN 40 tl-en -_ ns PWLAT LATCH pulse width The period LATCH is "L" 25 -ns Maximum CLK & LATCH rise time (Note 2) 500 tr ns --Maximum CLK & LATCH fall time tf (Note 2) -500 _ ns

Refer to the timing chart (p10)

Note 2:

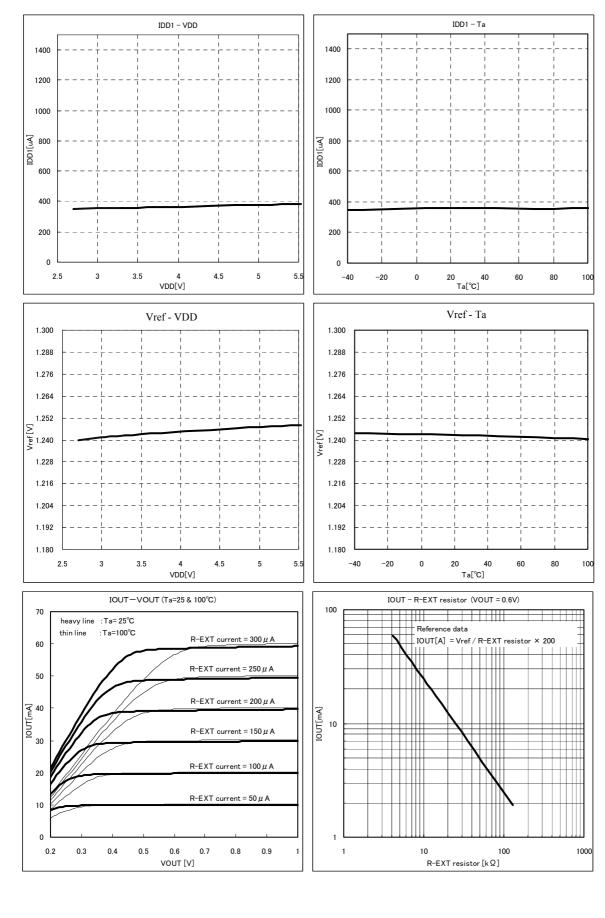
If the device is connected in a cascade and tr/tf for the waveform is large,

it might not be able to secure the timing required for data transfer.

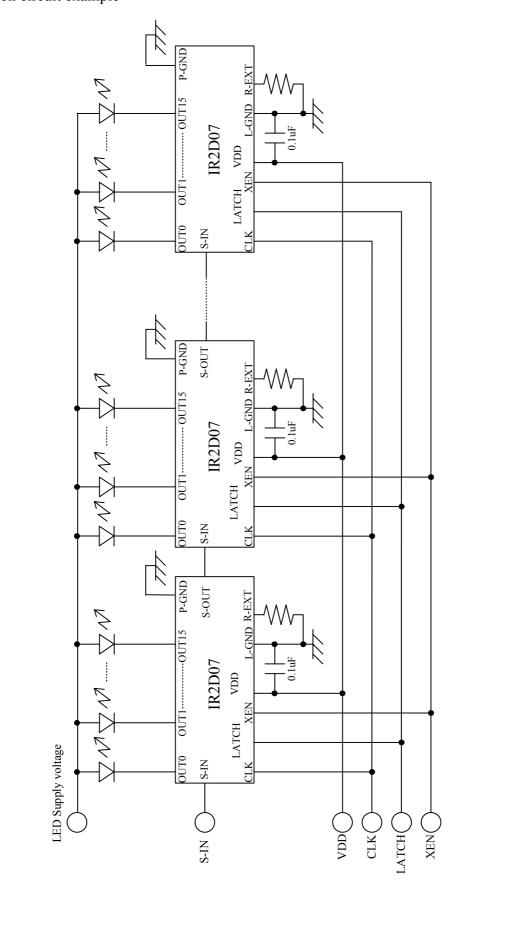

Please consider the timing carefully.

$1 \ 0 - 3$. AC Electrical Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
S-OUT propagation delay time	tplh1	CLK↑ -S-OUT↑	5	20	50	ns
		CL=10pF				
	tphl1	CLK↑ -S-OUT↓	5	20	50	ns
		CL=10pF				
OUT propagation delay time	tplH2	XEN \downarrow -OUTn \uparrow ,RL= 30 Ω	-	100	400	ns
		R-EXT resistor= $5k\Omega$				
	tphl2	XEN \uparrow -OUTn \downarrow ,R _L = 30 Ω	-	100	400	ns
		R-EXT resistor = $5k\Omega$				
S-OUT rise time	trs	CL=10pF	-	-	30	ns
S-OUT fall time	tfs	CL=10pF	-	-	30	ns
OUT rise time	tr _D	$R_L=30\Omega$	-	100	400	ns
OUT fall time	tfD	$R_L=30\Omega$	-	100	400	ns
R-EXT settling time	tIset	$IOUT = 48.5 \pm 5 mA$	-	-	10	μs
		R-EXT resistor = $5k\Omega$				


Please refer to the timing chart (p10)

Reference


Reference

1 2. Electrical characteristic curves

IR2D07 Reference

13. Application circuit example

14 Package and packing specification

Reference

[Applicability]

This specification applies to an IC package of the LEAD-FREE delivered as a standard specification.

IR2D0

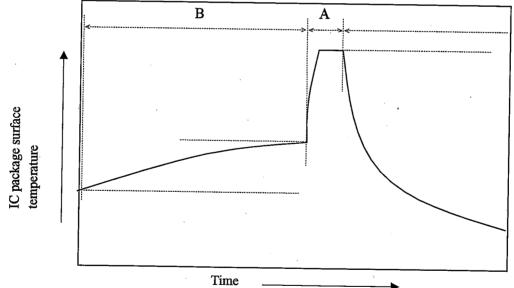
1. Storage Conditions.

- Normal temperature : 5∼35℃
- Normal humidity : 75% (Relative humidity) max.
- Storage period : One year max.
 - *"Humidity" means "Relative humidity"

2. Baking Condition.

Baking is no necessity.

3. Mounting conditions.


Please mount the ICs as follows in order to prevent the IC quality deteriorating.

- 3-1. Soldering conditions. (The following conditions apply only to one-time soldering.)
- (1) Solder dipping. (one-time dipping only)

• Temperature and period :

- A) Peak temperature. 260°C max. for 10 seconds Max.
- B) Preheat temperature of 120 to 150°C for 120±60 seconds
- Measuring point :
 - A) Solder bath.
 - B) IC package surface.

Temperature profile :

- (2) Manual soldering (soldering iron) (one-time soldering only) Soldering iron should only touch the IC's outer leads.
 - · Temperature and period :
 - 380°C max. for 3 seconds Max. / pin max.
 - (Soldering iron should only touch the IC's outer leads.)
 - · Measuring point : Soldering iron tip.

4. Condition for removal of residual flux.

- (1) Ultrasonic washing power : 25 watts / liter max.
- (2) Washing time : Total 1 minute max.
- (3) Solvent temperature : $15 \sim 40^{\circ}$ C

SHA

Reference

5. Package outline specification.

5-1. Package outline.

Refer to the attached drawing.

(Plastic body dimensions do not include burr of resin.)

- 5-2. LEAD FINISH or BALL TYPE
 - LEAD FREE TYPE (Sn-2%Bi) 10µm TYP.(Min. 5µm)

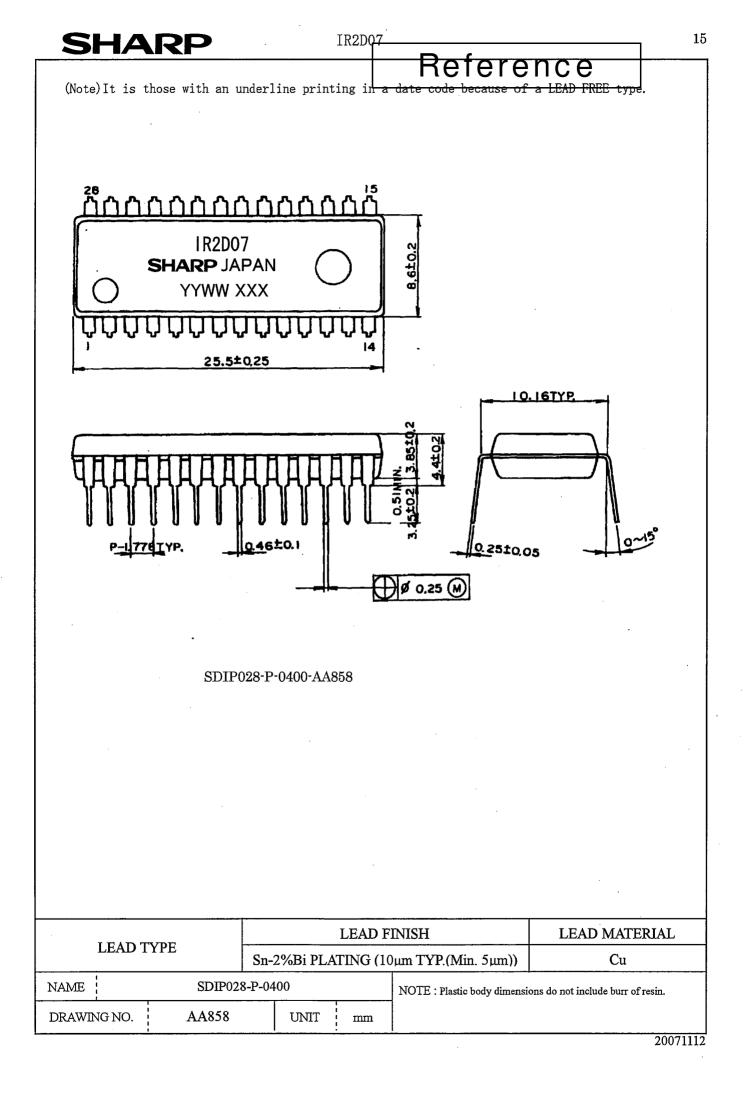
6. Markings.

6-1. Marking details. (The information on the package should be given as follows.)

- (1) Product name : IR2D07
- (2) Company name : SHARP
- (3) Date code : (Example) YYWW XXX

YY \rightarrow Denotes the production year. (Last two digits of the year.)

WW \rightarrow Denotes the production week. $(01 \cdot 02 \cdot \sim \cdot 52 \cdot 53)$


XXX \rightarrow Denotes the production ref code.

(4) "JAPAN" indicates the country of origin.

6-2.Marking layout.

The layout is shown in the attached drawing.

(However, this layout does not specify the size of the marking character and marking position.)

IR2D07

Reference

7.Packing specifications.

7-1. Packing materials.

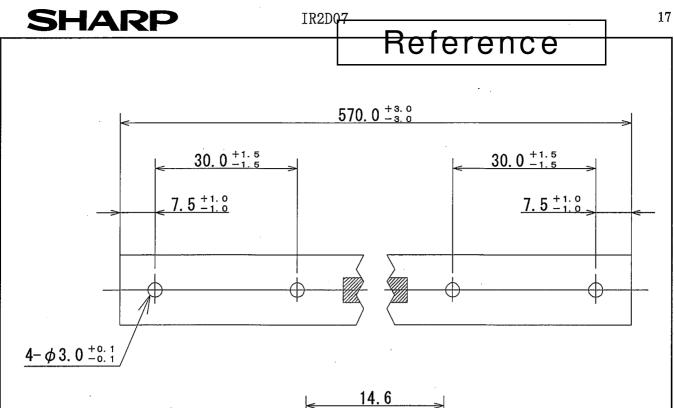
Material name	Material specifications	Purpose		
Magazine	Anti-static treated plastic (20 devices/magazine)	Packing of devices.		
Stopper	Plastic or rubber	Securing of devices.		
Label	Paper (1piece/inner carton)	Indication of product name, quantity and packed date.		
Inner carton	Cardboard (1000 devices/carton max.)	Packing the magazines.		
Outer carton	Cardboard (4000 devices/carton max.)	Outer packing.		

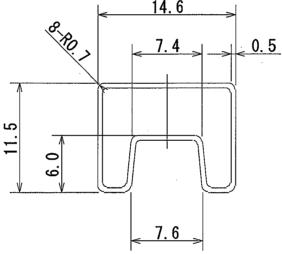
(Devices must be inserted into the magazine in the same direction.)

7-2.Outline dimension of magazine.

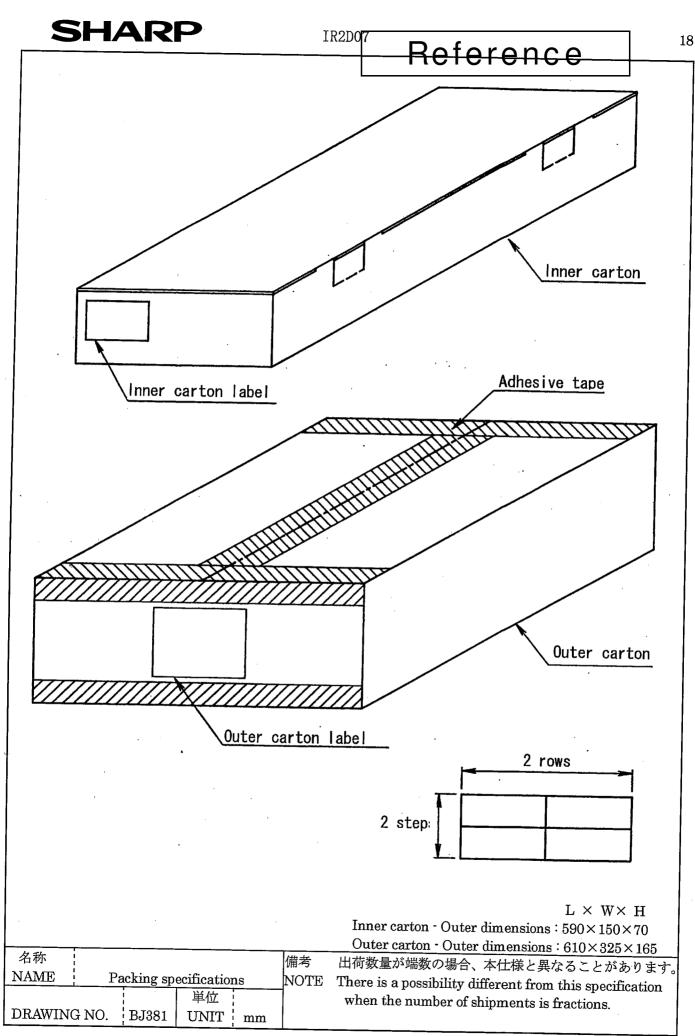
Refer to the attached drawing.

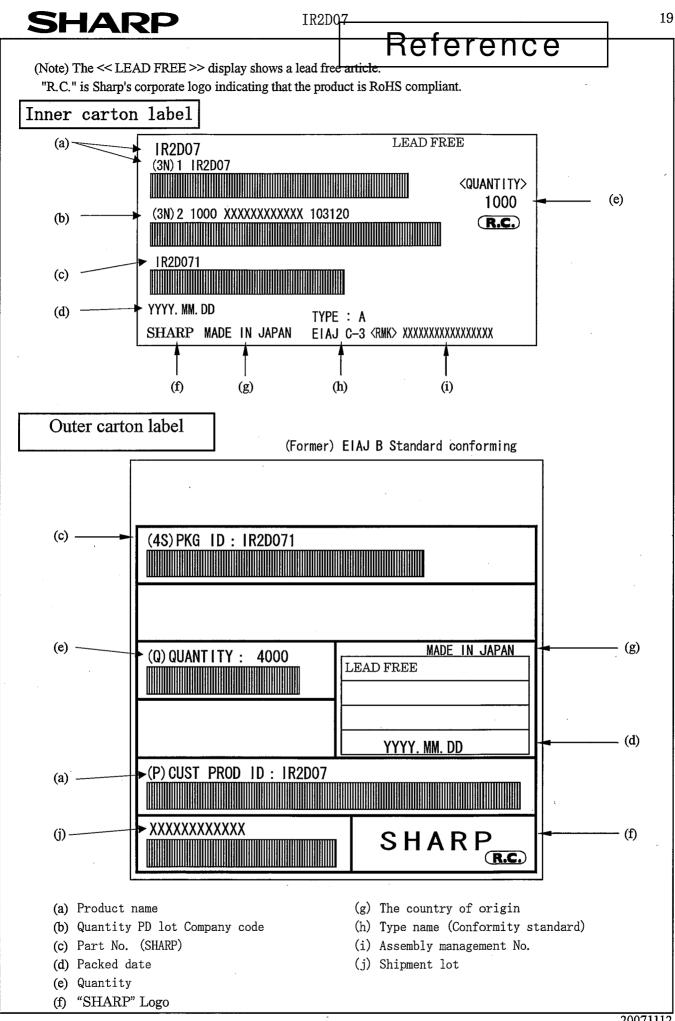
7-3. Outline dimension of carton. Refer to the attached drawing.


8.Precautions for use.


(1) Opening must be done on an anti-ESD treated workbench.

All workers must also have undergone anti-ESD treatment.


(2) The magazines have undergone either conductive or anti-ESD treatment. If another magazine is used, make sure it has also undergone conductive or anti-ESD treatment.


(3) The devices should be mounted within one year of the date of delivery.

				: 片側ピンストッパー、片側ゴムストッパーとする。 指示無き寸法公差は全て±0.5とする。 S: One end of the magazine(sleeve) is plugged by a rubber stopper, and the other end is plugged by plastic pin-stopper. All tolerances are ±0.5mm unless otherwise specified.
名称				備考
Name	DP400SPS	S-A2		Note
		単位	1	
Drawing no.	CV1041	Unit	mm	

