# Intelligent Power Module (IPM) 600 V, 8 A

# NFAQ0860L36T

The NFAQ0860L36T is a fully-integrated inverter power stage consisting of a high-voltage driver, six IGBT's and a thermistor, suitable for driving permanent magnet synchronous motors (PMSM), brushless-DC (BLDC) motors and AC asynchronous motors. The IGBT's are configured in a 3-phase bridge with separate emitter connections for the lower legs for maximum flexibility in the choice of control algorithm. The power stage has a full range of protection functions including cross-conduction protection, external shutdown and under-voltage lockout functions. An internal comparator and reference connected to the over-current protection circuit allows the designer to set the over-current protection level.

#### Features

- Three-phase 8 A / 600 V IGBT Module with Integrated Drivers
- Compact 29.6 mm x 18.2 mm Dual In-Line Package
- Built-in Under Voltage Protection
- Cross-conduction Protection
- ITRIP Input to Shut Down All IGBT's
- Integrated Bootstrap Diodes and Resistors
- Thermistor for Substrate Temperature Measurement
- Shut Down Pin
- UL1557 Certification (File Number: E339285)

# **Typical Applications**

- Industrial Pumps
- Industrial Fans
- Industrial Automation
- Home Appliances

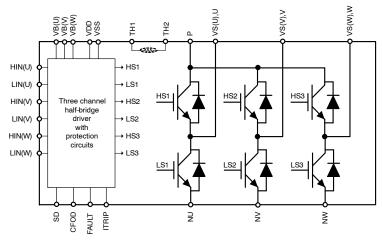
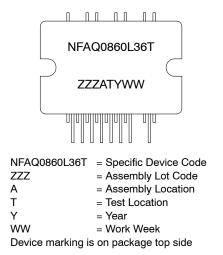



Figure 1. Function Diagram




# **ON Semiconductor®**

www.onsemi.com



DIP38 29.6x18.2 CASE 125BS

### MARKING DIAGRAM



### **ORDERING INFORMATION**

| Device       | Package            | Shipping<br>(Qty / Packing) |
|--------------|--------------------|-----------------------------|
| NFAQ0860L36T | DIP38<br>(Pb-Free) | 400 / Box                   |

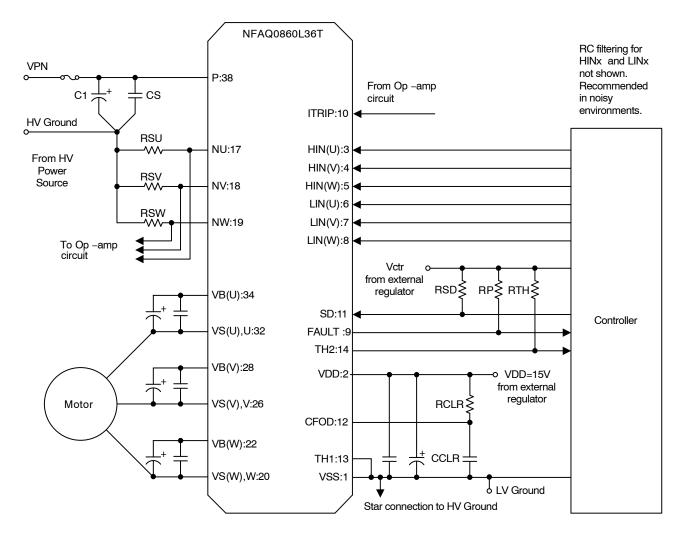



Figure 2. Application Schematic

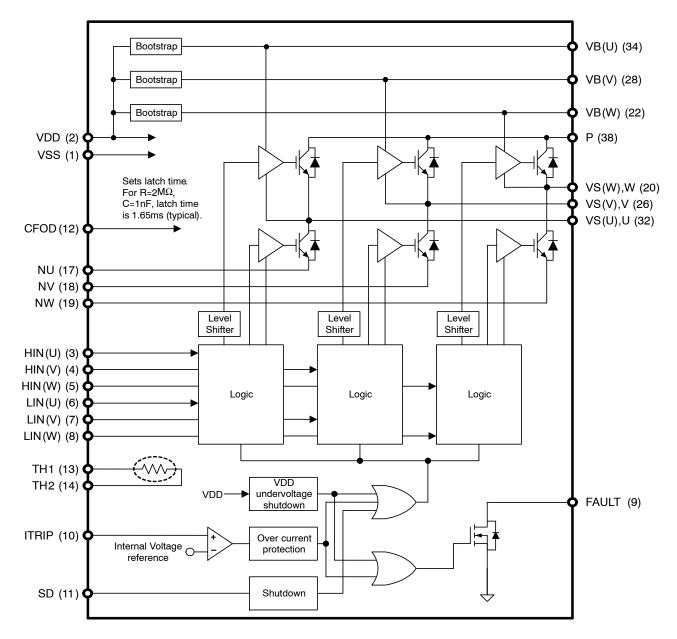



Figure 3. Simplified Block Diagram

#### Table 1. PIN FUNCTION DESCRIPTION

| Pin | Name     | Description                                                             |
|-----|----------|-------------------------------------------------------------------------|
| 1   | VSS      | Low-Side Common Supply Ground                                           |
| 2   | VDD      | Low-Side Bias Voltage for IC and IGBTs Driving                          |
| 3   | HIN(U)   | Signal Input for High-Side U Phase                                      |
| 4   | HIN(V)   | Signal Input for High-Side V Phase                                      |
| 5   | HIN(W)   | Signal Input for High-Side W Phase                                      |
| 6   | LIN(U)   | Signal Input for Low-Side U Phase                                       |
| 7   | LIN(V)   | Signal Input for Low-Side V Phase                                       |
| 8   | LIN(W)   | Signal Input for Low-Side W Phase                                       |
| 9   | FAULT    | Fault output                                                            |
| 10  | ITRIP    | Input for Over Current Protection                                       |
| 11  | SD       | Shut Down Input                                                         |
| 12  | CFOD     | Capacitor and Resistor for Fault Output Duration Selection              |
| 13  | TH1      | Thermistor Bias Voltage                                                 |
| 14  | TH2      | Series Resistor for Thermistor                                          |
| 17  | NU       | Negative DC-Link Input for U Phase                                      |
| 18  | NV       | Negative DC-Link Input for V Phase                                      |
| 19  | NW       | Negative DC-Link Input for W Phase                                      |
| 20  | VS(W), W | High-Side Bias Voltage GND for W phase IGBT Driving, Output for W Phase |
| 22  | VB(W)    | High-Side Bias Voltage for W phase IGBT Driving                         |
| 26  | VS(V), V | High-Side Bias Voltage GND for V phase IGBT Driving, Output for V Phase |
| 28  | VB(V)    | High-Side Bias Voltage for V phase IGBT Driving                         |
| 32  | VS(U), U | High-Side Bias Voltage GND for U phase IGBT Driving, Output for U Phase |
| 34  | VB(U)    | High-Side Bias Voltage for U phase IGBT Driving                         |
| 38  | Р        | Positive DC-Link Input                                                  |

 $NOTE: \quad \text{Pins 15, 16, 21, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36 and 37 are not present}$ 

#### Table 2. ABSOLUTE MAXIMUM RATINGS at T<sub>C</sub> = 25°C (Note 1)

| Parameter                          | Symbol | Conditions                                              | Rating                              | Unit |
|------------------------------------|--------|---------------------------------------------------------|-------------------------------------|------|
| Supply Voltage                     | VPN    | P-NU,NV,NW, VPN (surge) < 500 V (Note 2)                | 450                                 | V    |
| Collector – Emitter Voltage        | VCES   | P-U,V,W; U-NU; V-NV; W-NW                               | 600                                 | V    |
| Each IGBT Collector Current        | IC     | P,U,V,W,NU,NV,NW terminal current                       | ±8                                  | А    |
|                                    |        | P,U,V,W,NU,NV,NW terminal current, Tc = 100°C           | ±4                                  | А    |
| Each IGBT Collector Current (Peak) | ICp    | Tc = 25°C, Under 1 ms Pulse Width                       | ±16                                 | А    |
| Corrector Dissipation              | Pc     | Tc = 25°C, Per One Chip                                 | 32                                  | W    |
| High-Side Control Bias voltage     | VBS    | VB(U)-VS(U), VB(V)-VS(V), (Note 3)<br>VB(W)-VS(W)       | -0.3 to +20.0                       | V    |
| Control Supply Voltage             | VDD    | VDD-VSS                                                 | -0.3 to +20.0                       | V    |
| Input Signal Voltage               | VIN    | HIN(U), HIN(V), HIN(W), LIN(U), LIN(V), LIN(W) –<br>VSS | –0.3 to $V_{\text{DD}}$             | V    |
| FAULT Terminal Voltage             | VFAULT | FAULT-VSS                                               | -0.3 to V <sub>DD</sub>             | V    |
| CFOD Terminal Voltage              | VCFOD  | CFOD-VSS                                                | –0.3 to $V_{DD}$                    | V    |
| SD Terminal Voltage                | VSD    | SD-VSS                                                  | –0.3 to $V_{\mbox{\scriptsize DD}}$ | V    |
| Current Sensing Input Voltage      | VITRIP | ITRIP-VSS                                               | -0.3 to +10.0                       | V    |
| Operating Junction Temperature     | Tj     |                                                         | 150                                 | °C   |
| Storage Temperature                | Tstg   |                                                         | -40 to +125                         | °C   |
| Module Case Operation Temperature  | Тс     |                                                         | -40 to +125                         | °C   |
| Tightening Torque                  | MT     | Case mounting screws                                    | 0.6                                 | Nm   |
| Isolation Voltage                  | Viso   | 50 Hz sine wave AC 1 minute (Note 4)                    | 2000                                | Vrms |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality

should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters

This surge voltage developed by the switching operation due to the wiring inductance between P and NU, NV, NW terminal.
VBS=VB(U)-VS(U), VB(V)-VS(V), VB(W)-VS(W)
Test conditions : AC2500V, 1 s

#### **Table 3. RECOMMENDED OPERATING RANGES**

| Rating                            | Symbol   | Conditions                                     | Min  | Тур | Max  | Unit |
|-----------------------------------|----------|------------------------------------------------|------|-----|------|------|
| Supply Voltage                    | VPN      | P – NU, NV, NW                                 | 0    | 280 | 450  | V    |
| High-Side Control Bias<br>Voltage | VBS      | VB(U) – VS(U), VB(V) – VS(V), VB(W) –<br>VS(W) | 13.0 | 15  | 17.5 | V    |
| Control Supply Voltage            | VDD      | VDD – VSS                                      | 14.0 | 15  | 16.5 | V    |
| ON-state Input Voltage            | VIN(ON)  | HIN(U), HIN(V), HIN(W), LIN(U), LIN(V),        | 3.0  | -   | 5.0  | V    |
| OFF-state Input Voltage           | VIN(OFF) | LIN(W) – VSS                                   | 0    | -   | 0.3  | V    |
| PWM Frequency                     | fPWM     |                                                | 1    | _   | 20   | kHz  |
| Dead Time                         | DT       | Turn-off to Turn-on (external)                 | 1    | -   | -    | μs   |
| Allowable Input Pulse Width       | PWIN     | ON and OFF                                     | 1    | -   | -    | μs   |
| Tightening Torque                 |          | 'M3' Type Screw                                | 0.4  | -   | 0.6  | Nm   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

| Parameter                               | Test Conditions                          | Symbol           | Min  | Тур         | Max  | Unit |
|-----------------------------------------|------------------------------------------|------------------|------|-------------|------|------|
| Power Output Section                    |                                          |                  |      | •           |      |      |
| Collector-Emitter Leakage Current       | V <sub>CE</sub> = 600 V                  | ICES             | -    | -           | 100  | μA   |
| Collector-Emitter Saturation Voltage    | IN = 5 V, IC = 8 A, Tj = 25 $^{\circ}$ C | VCE(sat)         | -    | 2.4         | 3.0  | V    |
|                                         | IN = 5 V, IC = 4 A, Tj = 100 °C          |                  | -    | 1.9         | -    | V    |
| FWDi Forward Voltage                    | IN = 0 V, IC = -8 A, Tj = 25 °C          | VF               | -    | 2.1         | 2.7  | V    |
|                                         | IN = 0 V, IC = -4 A, Tj = 100 °C         |                  | -    | 1.6         | -    | V    |
| Junction to Case Thermal Resistance     | Inverter IGBT Part (per 1/6 Module)      | Rth(j-c)Q        | -    | -           | 3.9  | °C/W |
|                                         | Inverter FRD Part (per 1/6 Module)       | Rth(j-c)F        | -    | -           | 7.3  | °C/W |
| Switching Character                     |                                          |                  |      |             |      |      |
| Switching Time                          | IC = 8 A, VPN = 300 V, Tj = 25°C,        | t <sub>ON</sub>  | -    | 0.4         | 1.1  | μs   |
|                                         | Inductive Switching                      | t <sub>OFF</sub> | -    | 0.4         | 1.1  | μs   |
| Turn-on Switching Loss                  | IC = 8 A, VPN = 300 V, Tj = 25°C         | E <sub>ON</sub>  | -    | 190         | -    | μJ   |
| Turn-off Switching Loss                 |                                          | E <sub>OFF</sub> | -    | 90          | -    | μJ   |
| Total Switching Loss                    |                                          | E <sub>TOT</sub> | -    | 280         | -    | μJ   |
| Turn-on Switching Loss                  | IC = 4 A, VPN = 300 V, Tj = 100°C        | E <sub>ON</sub>  | -    | 100         | -    | μJ   |
| Turn-off Switching Loss                 |                                          | E <sub>OFF</sub> | -    | 50          | -    | μJ   |
| Total Switching Loss                    |                                          | E <sub>TOT</sub> | -    | 150         | -    | μJ   |
| Diode Reverse Recovery Energy           | IC = 4 A, VPN = 300 V, Tj = 100°C,       | E <sub>REC</sub> | -    | 25          | -    | μJ   |
| Diode Reverse Recovery Time             | (di/dt set by internal driver)           | t <sub>RR</sub>  | -    | 140         | -    | ns   |
| Reverse Bias Safe Operating Area        | IC = 16 A, V <sub>CE</sub> = 450 V       | RBSOA            |      | Full Square |      |      |
| Short Circuit Safe Operating Area       | V <sub>CE</sub> = 400 V, Tj = 100°C      | SCSOA            | 4    | -           | -    | μs   |
| Driver Section                          |                                          |                  | •    | •           |      |      |
| Quiescent VBS Supply Current            | VBS = 15 V, HIN = 0 V, per driver        | IQBS             | -    | 0.07        | 0.4  | mA   |
| Quiescent VDD Supply Current            | VDD = 15 V, LIN = 0 V, VDD-VSS           | IQDD             | -    | 0.95        | 3.0  | mA   |
| ON Threshold Voltage                    | HIN(U), HIN(V), HIN(W), LIN(U), LIN(V),  | VIN(ON)          | -    | -           | 2.5  | V    |
| OFF Threshold Voltage                   | LIN(W) – VSS                             | VIN(OFF)         | 0.8  | -           | -    | V    |
| Logic 1 Input Current                   | VIN = +3.3 V                             | IIN+             | -    | 660         | 900  | μA   |
| Logic 0 Input Current                   | VIN = 0 V                                | IIN-             | -    | -           | 3    | μA   |
| Bootstrap ON Resistance                 | IB = 1 mA                                | RB               | -    | 500         | -    | Ω    |
| FAULT Terminal Sink Current             | FAULT: ON / VFAULT = 0.1 V               | loSD             | -    | 2           | -    | mA   |
| Fault-Output Pulse Width                | FAULT-VSS                                | tFOD             | 1.1  | 1.65        | 2.2  | ms   |
| CFOD Threshold                          | CFOD-VSS                                 | VCFOD            | -    | 8           | -    | V    |
| Shut Down Threshold                     | SD-VSS                                   | VSD+             | -    | -           | 2.5  | V    |
|                                         |                                          | VSD-             | 0.8  | -           | -    | V    |
| ITRIP Trip Level                        | ITRIP-VSS                                | VITRIP           | 0.44 | 0.49        | 0.54 | V    |
| ITRIP to Shutdown Propagation Delay     |                                          | tITRIP           | _    | 1.1         | -    | μs   |
| ITRIP Blanking Time                     |                                          | tITRIPBL         | 250  | 350         | -    | ns   |
| High-Side Control Bias Voltage Under-   | Reset Level                              | UVBSR            | 10.3 | 11.1        | 11.9 | V    |
| Voltage Protection                      | Detection Level                          | UVBSD            | 10.1 | 10.9        | 11.7 | V    |
|                                         | Hysteresis                               | UVBSH            | -    | 0.2         | -    | V    |
| Supply Voltage Under-Voltage Protection | Reset Level                              | UVDDR            | 10.3 | 11.1        | 11.7 | V    |
|                                         | Detection Level                          | UVDDD            | 10.1 | 10.9        | 11.5 | V    |
|                                         | Hysteresis                               | UVDDH            | -    | 0.2         | -    | V    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### **TYPICAL CHARACTERISTICS**

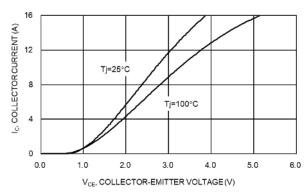



Figure 4.  $V_{CE}$  versus I<sub>C</sub> for Different Temperatures ( $V_{DD}$  = 15 V)

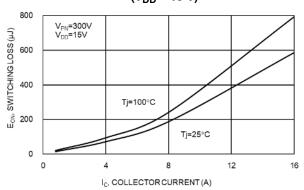



Figure 6.  $E_{ON}$  versus I<sub>C</sub> for Different Temperatures

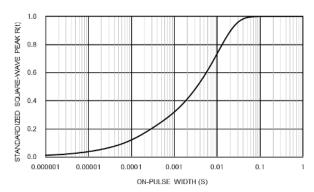



Figure 8. Thermal Impedance Plot (IGBT)

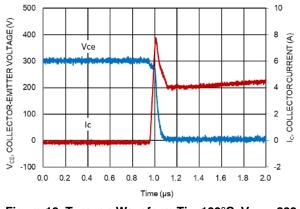



Figure 10. Turn-on Waveform Tj = 100°C, V<sub>CC</sub> = 300 V

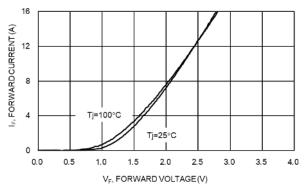



Figure 5. V<sub>F</sub> versus I<sub>F</sub> for Different Temperatures

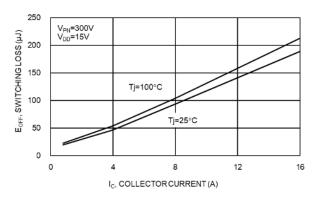



Figure 7. E<sub>OFF</sub> versus I<sub>C</sub> for Different Temperatures

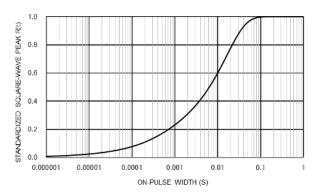



Figure 9. Thermal Impedance Plot (FRD)

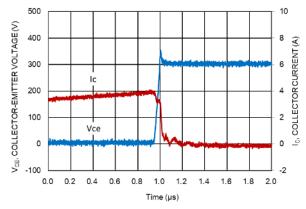
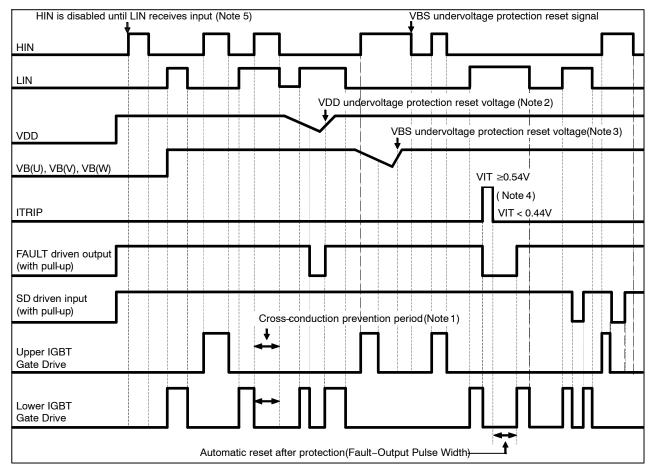




Figure 11. Turn-off Waveform Tj = 100°C, V<sub>CC</sub> = 300 V

### **APPLICATIONS INFORMATION**

#### Input / Output Timing Chart



NOTES:

- 1. This section of the timing diagram shows the effect of cross-conduction prevention.
- 2. This section of the timing diagram shows that when the voltage on VDD decreases sufficiently all gate output signals will go low, switching off all six IGBTs. When the voltage on VDD rises sufficiently, normal operation will resume.
- 3. This section shows that when the bootstrap voltage on VB(U) (VB(V), VB(W)) drops, the corresponding high side output U (V, W) is switched off. When the voltage on VB(U) (VB(V), VB(W)) rises sufficiently, normal operation will resume.
- This section shows that when the voltage on ITRIP exceeds the threshold, all IGBTs are turned off. Normal operation resumes later after the over-current condition is removed.
- 5. After VDD has risen above the threshold to enable normal operation, the driver waits to receive an input signal on the LIN input before enabling the driver for the HIN signal.

#### Figure 12. Input / Output Timing Chart

| INPUT |     |       |    | OUTPUT         |               |                |       |  |
|-------|-----|-------|----|----------------|---------------|----------------|-------|--|
| HIN   | LIN | ITRIP | SD | High side IGBT | Low side IGBT | U,V,W          | FAULT |  |
| Н     | L   | L     | Н  | ON (Note 5)    | OFF           | Р              | OFF   |  |
| L     | Н   | L     | Н  | OFF            | ON            | NU,NV,NW       | OFF   |  |
| L     | L   | L     | Н  | OFF            | OFF           | High Impedance | OFF   |  |
| Н     | Н   | L     | Н  | OFF            | OFF           | High Impedance | OFF   |  |
| Х     | Х   | Н     | Х  | OFF            | OFF           | High Impedance | ON    |  |
| Х     | Х   | L     | L  | OFF            | OFF           | High Impedance | OFF   |  |

#### Table 5. INPUT / OUTPUT LOGIC TABLE

| Parameter               | Symbol           | Condition   | Min  | Тур  | Max  | Unit |
|-------------------------|------------------|-------------|------|------|------|------|
| Resistance              | R <sub>25</sub>  | Tth = 25°C  | 99   | 100  | 101  | kΩ   |
|                         | R <sub>100</sub> | Tth = 100°C | 5.18 | 5.38 | 5.60 | kΩ   |
| B-Constant (25 to 50°C) | В                |             | 4208 | 4250 | 4293 | К    |
| Temperature Range       |                  |             | -40  | -    | +125 | °C   |

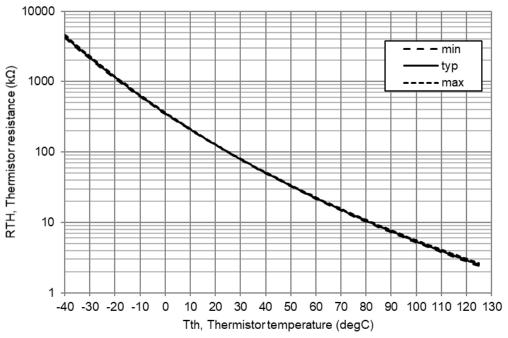
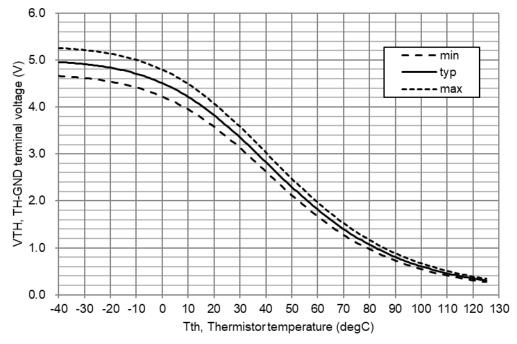
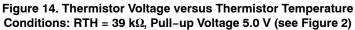





Figure 13. Thermistor Resistance versus Thermistor Temperature





#### FAULT Pin

The FAULT output is an open drain output requiring a pull–up resistor. If the pull–up voltage is 5 V, use a pull–up resistor with a value of 6.8 k $\Omega$  or higher. If the pull–up voltage is 15 V, use a pull–up resistor with a value of 20 k $\Omega$  or higher. The FAULT output is triggered if there is a VDD undervoltage or an overcurrent condition.

#### **Under-voltage Protection**

If VDD goes below the VDD supply under-voltage lockout falling threshold, the FAULT output is switched on. The FAULT output stays on until VDD rises above the VDD supply under-voltage lockout rising threshold. After VDD has risen above the threshold to enable normal operation, the driver waits to receive an input signal on the LIN input before enabling the driver for the HIN signal.

#### **Overcurrent Protection**

An over-current condition is detected if the voltage on the ITRIP pin is larger than the reference voltage. There is a blanking time of typically 350 ns to improve noise immunity. After a shutdown propagation delay of typically 1.1  $\mu$ s, the FAULT output is switched on. The FAULT output is held on for a time determined by the resistor and capacitor connected to the CFOD pin. If RCLR = 2 M $\Omega$  and CCLR = 1 nF, the FAULT output is switched on for 1.65 ms (typ.) because the FAULT pin goes back to high impedance when CFOD is higher than 8 V (typ.).

The over-current protection threshold should be set to be equal or lower to 2 times the module rated current (Io).

An additional fuse is recommended to protect against system level or abnormal over-current fault conditions.

#### **Capacitors on High Voltage and VDD Supplies**

Both the high voltage and VDD supplies require an electrolytic capacitor and an additional high frequency capacitor. The recommended value of the high frequency capacitor is between 100 nF and 10  $\mu$ F.

#### SD Pin

The SD terminal pin is used to enable or shut down the built-in driver. If the voltage on the SD pin rises above the VSD+ voltage, the output drivers are enabled. If the voltage on the SD pin falls below the VSD- voltage, the drivers are disabled.

#### **Minimum Input Pulse Width**

When input pulse width is less than 1  $\mu$ s, an output may not react to the pulse. (Both ON signal and OFF signal)

#### **Calculation of Bootstrap Capacitor Value**

The bootstrap capacitor value CB is calculated using the following approach. The following parameters influence the choice of bootstrap capacitor:

- VBS: Bootstrap power supply. 15 V is recommended.
- QG: Total gate charge of IGBT at VBS = 15 V. 8 nC
- UVLO: Falling threshold for UVLO. Specified as 12 V.
- IDMAX: High side drive power dissipation. Specified as 0.4 mA
- TONMAX: Maximum ON pulse width of high side IGBT.

Capacitance calculation formula:

```
CB = (QG + IDMAX * TONMAX) / (VBS – UVLO)
```

CB is recommended to be approximately 3 times the value calculated above. The recommended value of CB is in the range of 1 to 47  $\mu$ F, however, the value needs to be verified prior to production. When not using the bootstrap circuit, each high side driver power supply requires an external independent power supply.

The internal bootstrap circuit uses a MOSFET. The turn on time of this MOSFET is synchronized with the turn on of the low side IGBT. The bootstrap capacitor is charged by turning on the low side IGBT.

If the low side IGBT is held on for a long period of time (more than one second for example), the bootstrap voltage on the high side MOSFET will slowly discharge.

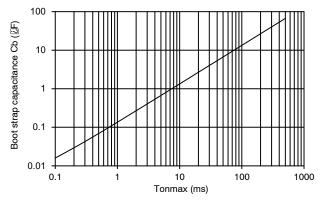



Figure 15. Bootstrap Capacitance versus Tonmax

## **TEST CIRCUITS**

• ICES

|   | U+ | V+ | W+ | U– | V– | W– |
|---|----|----|----|----|----|----|
| А | 38 | 38 | 38 | 32 | 26 | 20 |
| В | 32 | 26 | 20 | 17 | 18 | 19 |

U+, V+, W+ : High side phase U-, V-, W- : Low side phase

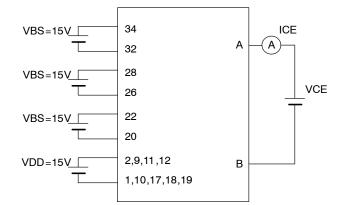



Figure 16. Test Circuit for I<sub>CE</sub>

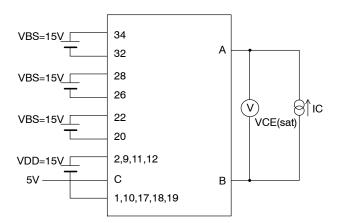



Figure 17. Test Circuit for V<sub>CE(SAT)</sub>

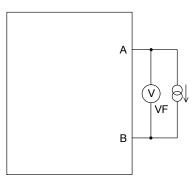



Figure 18. Test Circuit for V<sub>F</sub>

• VCE(sat) (Test by pulse)

• VF (Test by pulse)

А

В

U+

38

32

V+

38

26

W+

38

20

|   | U+ | V+ | W+ | U– | V– | W– |
|---|----|----|----|----|----|----|
| А | 38 | 38 | 38 | 32 | 26 | 20 |
| В | 32 | 26 | 20 | 17 | 18 | 19 |
| С | 3  | 4  | 5  | 6  | 7  | 8  |

U–

32

17

V–

26

18

W-

20

19

• RB (Test by pulse)

|   | U+ | V+ | W+ |
|---|----|----|----|
| А | 2  | 2  | 2  |
| В | 34 | 28 | 22 |
| С | 6  | 7  | 8  |

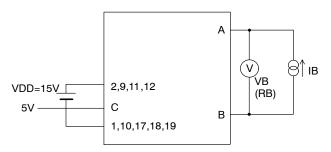
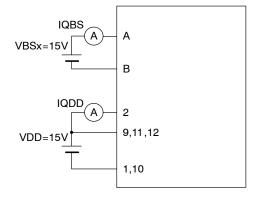




Figure 19. Test Circuit for RB

• IQBS, IQDD

|   | VBS U+ | VBS V+ | VBS W+ | V <sub>DD</sub> |
|---|--------|--------|--------|-----------------|
| А | 34     | 28     | 22     | 2               |
| В | 32     | 26     | 20     | 1               |





• Switching Time (The circuit is a representative example of the Inverter Low side U phase.)

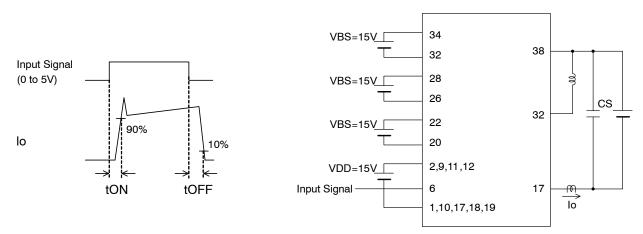



Figure 21. Test Circuit for Switching Time

#### MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

#### DIP38, 29.60x18.20x7.70, 1.00P (EP-4) CASE 125BS ISSUE B **DATE 26 APR 2023** -A D1 38 20 Α2 П f Ħ П F F Н В E4 E3 F HEATSINK SIDE н 19 PIN 1 E5 INDICATOR 24X b 0.20 C A B e NDTES DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. 1. n DIMENSION & APPLIES TO THE PLATED LEAD AND IS MEASURED BETWEEN 0.10 AND 0.25 FROM THE LEAD TIP. 2. З. PACKAGE IS MISSING PINS: 15, 16, 21, 23, 24, 25, 27, 29, 30, 4. 31, 33, 35, 36, AND 37. - A1 MILLIMETERS DIM MIN. NDM. MAX. Α 7.20 7.70 8.20 SEATING PLANE С A1 4.00 4.30 4.60 A2 3.10 3.40 3.70 b 0.40 0.50 0.60 0.35 0.40 С 0.60 29.60 D 29.10 30.10 D1 26.40 26.30 26.50 D2 19.70 20.20 19.20 +E2 Е 17.70 18.20 18.70 E2 14.90 15.40 15.90 E3 19.50 20.00 20.50 E4 20.50 20.00 21.00 υυ υυ E5 3.50 4.00 4.50 1.00 BSC e D2 F 3.40 2.90 3.90 G 4° 5° 6° GENERIC **MARKING DIAGRAM\*** XXXX = Specific Device Code \*This information is generic. Please refer to ZZZ = Lot ID device data sheet for actual part marking. AT = Assembly & Test Location Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may ZZZATYWW Y = Year WW = Work Week not follow the Generic Marking. o

| DOCUMENT NUMBER: | 98AON92315G                           | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | DIP38, 29.60x18.20x7.70, 1.00P (EP-4) |                                                                                                                                                                                     | PAGE 1 OF 1 |  |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or the rights of others.

© Semiconductor Components Industries, LLC, 2018

DUSEU

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

#### ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales