low resistance, ultra-low • 2.3 V to 5.5 V si

0.39 Ω, Low-R_{ON}, Ultra-Low Distortion, Compact DPDT Analog Switch

The DG2751 is a compact, low resistance, ultra-low distortion double pole double throw (DPST) analog switch.

The DG2751 features a flat 0.39 Ω ON resistance over the analog signal range from (V+) - 5.5 V to V+, supporting bi-directional negative signal swing. The design brings superior signal fidelity by eliminating the distortion caused by double hump switch resistance character of conventional analog switches.

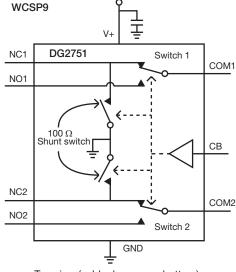
The DG2751 operates over a voltage range from 3 V to 5.5 V. Because of its low current consumption, it can be powered directly by a GPIO. When V+ power is off, all switch pins are of high impedance mode.

Shunt switches are integrated at normally close (NOn) channels to discharge the AC-coupling capacitance at the terminals.

The part is controlled by a single bit, S, which can interface with 1.2 V low voltage I/O. Switch ON/OFF is of break-before-make (BBM).

The DG2751 is available in ultra-compact 1.2 mm x 1.2 mm, 9-bump WCSP package, and operate over the -40 $^{\circ}$ C to +85 $^{\circ}$ C extended temperature range.

- 2.3 V to 5.5 V single supply operation
- Low resistance: 0.39 Ω / typ. at 2.7 V
- Highly flat and matched R_{ON}
- Low parasitic capacitance, C_{ON} = 31 pF, C_{OFF} = 30 pF
- High bandwidth: 290 MHz
- Guaranteed logic high 1.2 V, logic low 0.3 V
- Break before make switching
- Signal swing over V+ capable
- Power down protection
- Latch up current: 300 mA (JESD78)
- ESD/HBM: > 8 kV
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>


APPLICATIONS

- Applications
- Smart phones
- Tablets
- · Portable media players
- Headphones
- Audio / video equipment
- Low-distortion signal switches
- Digital cameras
- Docking devices

BENEFITS

- Low and flat resistance
- Excellent total harmonic distortion
- Low parasitic capacitance
- Low voltage control interface

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Top view (solder bumps on bottom)

 $\begin{bmatrix} 1 & 2 & 3 \\ & & \\ &$

WCSP9. 1.25 mm x 1.25 mm

Top view (solder bumps on bottom)

Device marking: AB for DG2751 x = date / lot traceability code

ХХХ

AΒ

Document Number: 66780

Pin A1

For technical questions, contact: <u>analogswitchtechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

RoHS

COMPLIANT

Vishay Siliconix

DESCRIPTION

S16-1267-Rev. B, 27-Jun-16

1 ontact: analogewite

www.vishay.com

DG2751

Vishay Siliconix

FUNCTION

TRUTH TABLE	
СВ	

	65	
COMx is connected to NCx	0 1	
COMx is connected to NOx, NCx is connected to shunt resistor		
NCX is connected to		

ORDERING INFO	ORDERING INFORMATION				
PART NUMBER	PACKAGE	MARKING CODE	TEMPERATURE RANGE	STANDARD PACKAGING QUANTITY	
DG2751DB-T2-GE1	WCSP9	AB	-40 °C to +85 °C lead (Pb)-free	Tape and reel 3000 units	

PIN DESCRIPTION					
PIN NAME FUNCTION					
A1	NC1	Normally close terminal for switch 1			
A2	СВ	Logic control input. Drive CB low to connect COMx to NCx. Drive CB high to connect COMx to NOx.			
A3	NC2	Normally closed terminal for switch 2			
B1	COM1	Common terminal for switch 1			
B2	GND	Ground			
B3	COM2	Common terminal for switch 2			
C1	NO1	Normally open terminal for switch 1			
C2	V+	Device power supply input. Bypass V+ to GND with a 0.1 μ capacitor as close to the pin as possible			
C3	NO2	Normally open terminal for switch 2			

ABSOLUTE MAXIMUM RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)					
PARAMETER		LIMIT	UNIT		
Reference to GND	V+, IN	-0.3 to 6	V		
Reference to GND	COM, NO, NC ^a	(V+) - 5.5 to (V+ + 0.3)	V		
Current (any terminal except COM, NO, NC, IN)		30			
Continuous Current (COM, NO, NC, IN)	nuous Current (COM, NO, NC, IN)		mA		
Peak Current (pulsed at 1 ms, 10 % duty cycle)		± 500			
Storage Temperature (D suffix)		-65 to +150	°C		
Power Dissipation (packages) ^b	WCSP9-40 ° 963		mW		
Junction-to-Ambient Thermal Resistance (θ _{JA}) ESD (human body model) I/O to GND Latch-Up (per JESD78)		83	°C/W		
		8	kV		
		400	mA		

Notes

a. Signals on COM, NO, NC, exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

- b. All leads welded or soldered to PC board.
- c. Derate 12 mW/°C above 70 °C.
- d. Package thermal resistances were obtained using the method described in JEDEC® specification JESD51-7.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2

www.vishay.com

DG2751

Vishay Siliconix

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SPECIFICATIONS								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							••		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETER	SYMBOL	V+ = 3.3 V, T_A = -40 °C to +85 °C control logic are either at 0 V or V+,	TEMP. ^a				UNIT	
	Analog Switch		· · · ·						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Analog Signal Range ^d	V _{ANALOG}		Full	(V+) - 5.5	-	V+	V	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	On Posistanco		N	Room	-	0.390	0.600		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	OII-Resistance	- (- 7	V + = 3.3 V, $V_0 = 0 V + 1.8 V$	Full	-	0.470	0.800		
	On-Resistance Match		$I_{S} = 80 \text{ mA}$	Room	-	0.002		0	
	On-Resistance Flatness	R _{ON} Flatness		Room	-			22	
Switch Off Leakage Current INO(eff) V + 3.3 V, V_{NO} = ± 2.V, V_{NO} = \pm 2.V, V_{NO	Pull Down Resistance	Bpp	$I = 80 \text{ mA}$, $V_{SW} = +1.8 \text{ V}$, $V_{+} = 3 \text{ V}$		-				
		•••••	-						
		hio/eff		-					
		NO(oπ)		Full	-50			ıΔ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Switch Off Leakage Current			Room	-100	31	100	μΛ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ownen on Leakage ourrent	^I COM(off)	V_{COM} = ± 2 V, V_{NO} or V_{NC} = ∓ 2 V	Full	-100	33	100		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		I a		Room	-30	20	30	m۸	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		NC(off) 9	$V_{NC} = \pm 2 V, V_{NO} = \mp 2 V$	Full	-30	21	30	ША	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chappel On Leakage Current	la su su s		Room	-100	31	100		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Channel On Leakage Current	^I COM(on)	$V_{COM} = +2 V \text{ or } -2 V$	Full	-100	33	100	μA	
$ \begin{array}{ l $	Digital Control								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V _{INH}	V+ - 2.3 V to 5.5 V		1.2	-	-	v	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· •	V _{INL}	V+ = 2.0 V to 3.5 V	Full	-	-	0.3	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Input Capacitance	C _{IN}			-	-		pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		I _{INL} or I _{INH}	V+ = 5 V, V _{IN} = 0 or V+	Full	-1	0.02	1	μA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic Characteristics	1							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Break-Before-Make Time ^{e, d}	teen				41	90	μs	
				-		-	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Switch Turn-On Time ^{e, d}	ton			-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ON			-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Switch Turn-Off Time ^{e, d}	tore			-		_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_	$R_{L} = 50 \Omega_{2}, C_{L} = 35 \text{ pF}$	-		-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Power ON Delay								
Switch On Rise Time TR Full - 24 35 Charge Injection d Q_{INJ} $C_L = 1 nF, R_{GEN} = 0 \Omega, V_{GEN} = 0 V$ $V_{SW} = 0.7 V_{GMS}$ $V_{SW} = 2V_{RMS}$ $-$ 18.9 $ pC$ Total Harmonic Distortion Plus Noise $THD+N$ $f = 1 kHz, V + = 3.V, A-weighted filter, R_L = 20 k\Omega$ $V_{SW} = 1.5 V_{RMS}$ $V_{SW} = 1.5 V_{RMS}$ $ -100$ $ f = 1 kHz, V + = 3.3 V, A-weighted filter, R_L = 32 \Omega$ $V_{SW} = 0.7 V_{RMS}$ $V_{SW} = 0.7 V_{RMS}$ $V_{SW} = 0.7 V_{RMS}$ $ -111$ $-$ Off-Isolation d OIRR $V + = 3.3 V, R_L = 50 \Omega, C_L = 5 pF, f = 20 kHz, PSRR at 3.3 V$ $V_{SW} = 0.5 V_{RMS}$ $ -110$ $ -110$ $ -$ <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Switch On Rise Time	TR				-	-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Charge Injection d	0		Full	-			~^	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Charge Injection 4	Q _{INJ}		-	-			pC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-				-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			A-weighted filter,	-				-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Llarmania Distortion								
$ \begin{array}{ c c c c c c c c c } \hline f = 1 \ kHz, V + = 3.3 \ V, \\ \hline A - weighted filter, \\ R_L = 32 \ \Omega \end{array} & \hline V_{SW} = 0.7 \ V_{RMS} \\ \hline V_{SW} = 0.5 \ V_{RMS} \\ \hline V_{SW} = 0.5 \ V_{RMS} \\ \hline V_{SW} = 0.3 \ V_{SW} \\ \hline V_{SW} = 0.3 \ V_{SW}$		THD+N							
$ \begin{array}{ c c c c c c c c } \hline A-weighted filter, \\ R_L = 32 \ \Omega \\ \hline V_{SW} = 0.5 \ V_{RMS} \\ \hline V_{SW} = 0.3 \ V_{SW} \\ \hline V_{SW} = 0.$			$f = 1 \text{ kHz}, V_{+} = 3.3 \text{ V}, V_{OW} = 0.7 \text{ V}_{RMS}$		_			dB	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			A-weighted filter,	Room	_				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Off-Isolation ^d	OIBB			-		-		
Bandwidth dBWV+ = 3.3 V, R_L = 50 \Omega, -3 dB-290-MHzChannel-Off Capacitance d $C_{NC/NO(off)}$ Channel-On Capacitance dV+ = 3.3 V, R_L = 50 \Omega, C_L = 5 pF-30pFPower SupplyPower Supply RangeV+Power Supply CurrentI+V+ = 3.3 V, V_{IN} = 0 V, or 1.8 VFull-1829 μA Power Supply CurrentI+V+ = 3.3 V, V_{IN} = 0 V, or 1.8 VFull-1829 μA Power Supply RangeV+ $B_{COM} = 50 \Omega, f = 1 \text{ kHz}, V + = 3.3 VRoom104-dP$			f = 20 kHz, PSRR at 3.3 V		-		-		
$ \begin{array}{c c} \hline Channel-Off Capacitance d & C_{NC/NO(off)} \\ \hline Channel-On Capacitance d & C_{COM/NC/NO(on)} \\ \hline Power Supply \\ \hline Power Supply Range & V+ \\ \hline Power Supply Current & I+ \\ \hline V+=3.3 V, V_{IN}=0 V, or 1.8 V \\ \hline Power Supply Current & I+ \\ \hline V+=3.3 V, V_{IN}=0 V, or 1.8 V \\ \hline Full & - \\ \hline 18 & 29 \\ \hline \muA \\ \hline Power Supply Range & PSPP \\ \hline Power Supply Current & I+ \\ \hline Power Supply Current $					-		-	MHz	
Channel-On Capacitance d C _{COM/NC/NO(on)} V = 3.3 V, H _L = 50 Ω, C _L = 5 pF - 31 - pF Power Supply Power Supply Range V+ 2.3 - 5.5 V Power Supply Current I+ V+= 3.3 V, V _{IN} = 0 V, or 1.8 V Full - 18 29 µA Power Supply Current I+ Second = 50 Ω, f = 1 kHz, V+ = 3.3 V Room - - - 104 - dP				1					
Power Supply V+ 2.3 - 5.5 V Power Supply Range V+ 2.3 - 5.5 V Power Supply Current I+ V+= 3.3 V, V _{IN} = 0 V, or 1.8 V Full - 18 29 μA Power Supply Rejection Ratio DSEP R _{COM} = 50 Ω, f = 1 kHz, V+ = 3.3 V Room - -104 - dP			V+ = 3.3 V, R _L = 50 Ω, C _L = 5 pF		-		-	pF	
Power Supply Range V+ 2.3 - 5.5 V Power Supply Current I+ V+= 3.3 V, V _{IN} = 0 V, or 1.8 V Full - 18 29 μA Power Supply Current I+ V+= 3.3 V, V _{IN} = 0 V, or 1.8 V Full - 18 29 μA Power Supply Rejection Ratio PSPP R _{COM} = 50 Ω, f = 1 kHz, V+ = 3.3 V Room - -104 - dP	-								
Power Supply Current I+ V+ = 3.3 V, V _{IN} = 0 V, or 1.8 V Full - 18 29 μA Devicer Supply Dejection Pation DSEP R _{COM} = 50 Ω, f = 1 kHz, V+ = 3.3 V Room - -104 - dP	,	V+			2.3	-	5.5	V	
Bower Supply Beiestion Batic DSPR $R_{COM} = 50 \Omega$, f = 1 kHz, V+ = 3.3 V Room104 - dR			V+ = 3.3 V, V _{IN} = 0 V, or 1.8 V	Full	-	18			
Power Supply Rejection Ratio PSRR $R_{COM} = 50 \Omega$, f = 217 Hz, V+ = 3.3 V Room106 - dB					-			· · ·	
	Power Supply Rejection Ratio	PSKK	$R_{COM} = 50 \Omega$, f = 217 Hz, V+ = 3.3 V		-		-	ав	

Notes

a. Room = 25 °C, Full = as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

Typical values are for design aid only, not guaranteed nor subject to production testing. c.

d. Guarantee by design, not subjected to production test.

 V_{IN} = input voltage to perform proper function. e.

f. Crosstalk measured between channels.

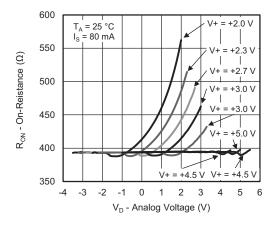
When NC is off, NC is connected to the 100 Ω shunt resistor. g.

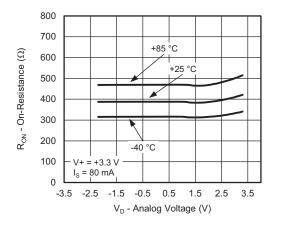
S16-1267-Rev. B, 27-Jun-16

3

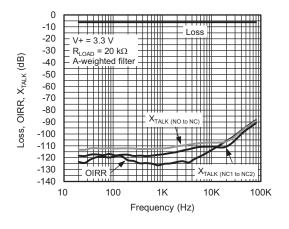
Document Number: 66780

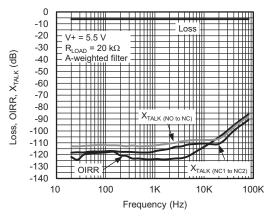
For technical questions, contact: analogswitchtechsupport@vishay.com

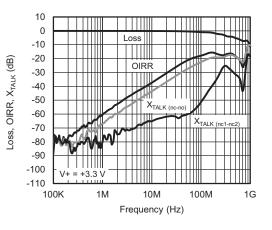

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

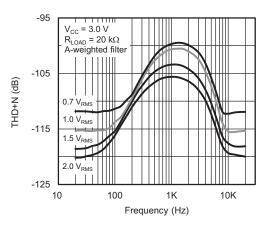

DG2751

Vishay Siliconix


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)


On-Resistance vs. V_D and Supply Voltage


On-Resistance vs. Analog Voltage and Temperature


Loss, Off-Isolation, Crosstalk vs. Audio Frequency V+ = 3.3 V

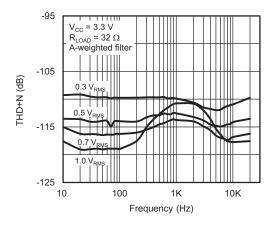
Loss, Off-Isolation, Crosstalk vs. Audio Frequency $$\rm V$+$ = 5.5 V

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

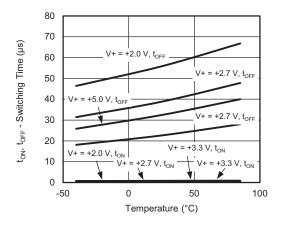
THD+N vs. Frequency

S16-1267-Rev. B, 27-Jun-16

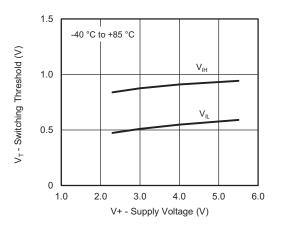
4

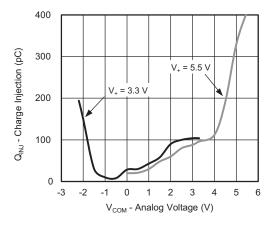

Document Number: 66780

For technical questions, contact: <u>analogswitchtechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



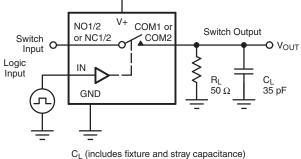
Vishay Siliconix


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

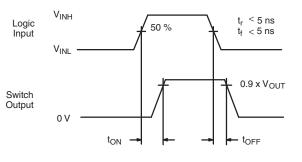

THD+N vs. Frequency

Switching Time vs. Temperature and Supply Voltage

Switching Threshold vs. Supply Voltage



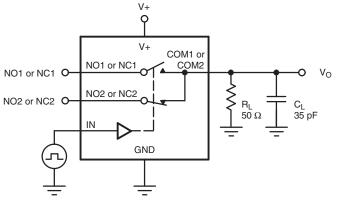
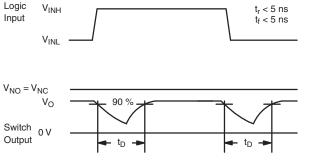
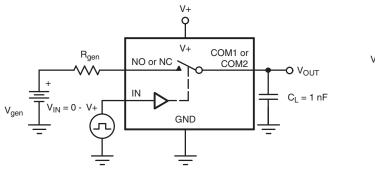
Charge Injection vs. Analog Voltage

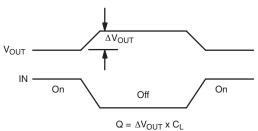

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

V+ Q

www.vishay.com

Logic "1" = Switch on Logic input waveforms inverted for switches that have the opposite logic sense.


Fig. 1 - Switching Time

C_L (includes fixture and stray capacitance)

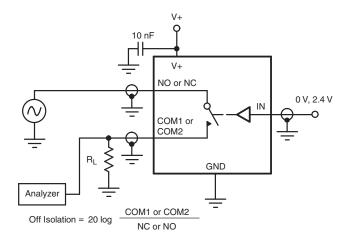
IN depends on switch configuration: input polarity determined by sense of switch.

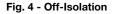
Fig. 3 - Charge Injection

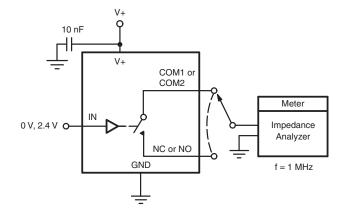
VISHAY

TEST CIRCUITS

DG2751


Vishay Siliconix




DG2751


Vishay Siliconix

TEST CIRCUITS

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?66780.

7

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.