

4-Mbit (512 K × 8) MoBL[®] Static RAM

Features

■ Temperature Ranges
□ Industrial: –40 °C to 85 °C

■ Very high speed: 55 ns

□ Wide voltage range: 2.20 V-3.60 V

■ Pin-compatible with CY62148CV25, CY62148CV30 and

CY62148CV33

■ Ultra low active power

□ Typical active current: 1.5 mA at f = 1 MHz

□ Typical active current: 8 mA at f = f_{max} (55-ns speed)

■ Ultra low standby power

■ Easy memory expansion with \overline{CE} , and \overline{OE} features

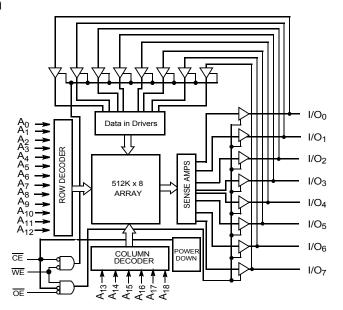
■ Automatic power-down when deselected

■ Complementary metal oxide semiconductor (CMOS) for optimum speed/power

■ Available in Pb-free 32-pin Small-outline integrated circuit (SOIC package)

Functional Description

The CY62148DV30 ^[1] is a high-performance CMOS static RAM organized as 512K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life $^{\text{TM}}$ (MoBL $^{\text{B}}$) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can be put into standby mode reducing power consumption when deselected ($\overline{\text{CE}}$ HIGH). The eight input and output pins (I/O0 through I/O7) are placed in a high-impedance state when:


- Deselected (CE HIGH)
- Outputs are disabled (OE HIGH)
- When the write operation is active(CE LOW and WE LOW)

Write to the device by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins $(I/O_0$ through I/O₇) is then written into the location specified on the address pins $(A_0$ through A_{18}).

Read from the device by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

For a complete list of related documentation, click here.

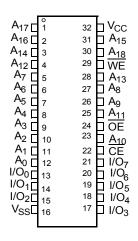
Logic Block Diagram

Note

1. For best practice recommendations, refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Contents

Pin Configuration	3
Product Portfolio	
Maximum Ratings	4
Operating Range	
Electrical Characteristics	4
Capacitance	
Thermal Resistance	5
AC Test Loads and Waveforms	
Data Retention Characteristics	
Data Retention Waveform	
Switching Characteristics	
Switching Waveforms	
Truth Table	


Ordering Information	11
Ordering Code Definitions	11
Package Diagrams	
Acronyms	
Document Conventions	
Units of Measure	
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	15
Cypress Developer Community	
Technical Support	

Pin Configuration

Figure 1. 32-pin SOIC pinout

Top View

Product Portfolio

			Power Dissipation									
Product	Range	V _{CC} Range (V)		V _{CC} Range (V)		Speed		Operating	I _{CC} (mA)		Standby	Ι. (Δ)
Floudet	Kange				(ns)	f = 1 MHz		f = 1 MHz f = f _{max}		max	Standby I _{SB2} (μA)	
		Min	Typ ^[2]	Max		Typ ^[2]	Max	Typ ^[2]	Max	Typ ^[2]	Max	
CY62148DV30LL	Industrial	2.2	3.0	3.6	55	1.5	3	8	10	2	8	

Note

Document Number: 38-05341 Rev. *J

^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25$ °C.

Maximum Ratings

DC input voltage $^{[3, 4]}$ 0.3 V to $V_{CC(max)}$ + 0.3 V
Output current into outputs (LOW)
Static discharge voltage (per MIL-STD-883, method 3015) > 2001 V
Latch-up current> 200 mA

Operating Range

Product	Range	Ambient Temperature	V _{CC} ^[5]
CY62148DV30LL	Industrial	–40 °C to +85 °C	2.2 V to 3.6 V

Electrical Characteristics

Over the Operating Range

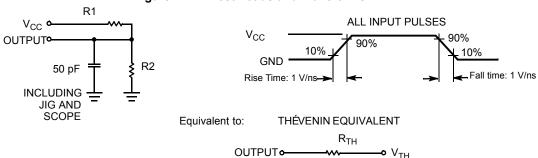
D	Description	Tant 0.		55 ns			11!4
Parameter	Description	lest Co	nditions	Min	Typ [2]	Max	Unit
V _{OH}	Output HIGH voltage	$I_{OH} = -0.1 \text{ mA}$	V _{CC} = 2.20 V	2.0	_	_	V
		$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.70 V	2.4	_	_	V
V _{OL}	Output LOW voltage	I _{OL} = 0.1 mA	V _{CC} = 2.20 V	_	_	0.4	V
		I _{OL} = 2.1 mA	V _{CC} = 2.70 V	_	_	0.4	V
V _{IH}	Input HIGH voltage	V _{CC} = 2.2 V to 2.	7 V	1.8	_	V _{CC} + 0.3	V
		$V_{CC} = 2.7 \text{ V to } 3.0$	6 V	2.2	_	V _{CC} + 0.3	V
V _{IL}	Input LOW voltage	V _{CC} = 2.2 V to 2.	7 V	-0.3	_	0.6	V
		$V_{CC} = 2.7 \text{ V to } 3.0$	6 V	-0.3	_	0.8	V
I _{IX}	Input leakage current	$GND \le V_1 \le V_{CC}$		– 1	_	+1	μΑ
I _{OZ}	Output leakage current	$GND \le V_O \le V_{CC}$	output disabled	– 1	_	+1	μΑ
I _{CC}	V _{CC} operating supply current	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CC(max)}$		8	10	mA
		f = 1 MHz	I _{OUT} = 0 mA CMOS levels	_	1.5	3	mA
I _{SB1}	Automatic CE Power-down current – CMOS inputs	$\label{eq:continuous} \begin{split} \overline{\text{CE}} &\geq \text{V}_{\text{CC}} - 0.2 \text{ V},\\ \text{V}_{\text{IN}} &\geq \text{V}_{\text{CC}} - 0.2 \text{ V}, \text{V}_{\text{IN}} \leq 0.2 \text{ V}),\\ \text{f} &= \text{f}_{\text{max}} (\text{address and data only}),\\ \text{f} &= 0 (\overline{\text{OE}}, \text{and} \overline{\text{WE}}), \text{V}_{\text{CC}} = 3.60 \text{ V} \end{split}$		-	2	8	μА
I _{SB2}	Automatic CE Power-down current – CMOS inputs	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V}$ $\text{f} = 0, \text{V}_{\text{CC}} = 3.60$	′ or V _{IN} <u>≤</u> 0.2 V,	-	2	8	μА

Notes

- 3. $V_{IL(min)} = -2.0 \text{ V}$ for pulse durations less than 20 ns.
- 4. $V_{IH(max)} = V_{CC} + 0.75 \text{ V for pulse durations less than 20 ns.}$
- 5. Full device AC operation assumes a 100 μ s ramp time from 0 to $V_{CC(min)}$ and 200 μ s wait time after V_{CC} stabilization.

Document Number: 38-05341 Rev. *J

Capacitance


Parameter [7]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

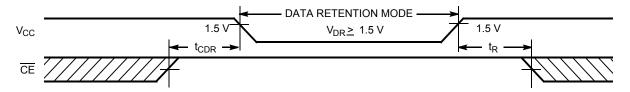
Thermal Resistance

Parameter [7]	Description	Test Conditions	SOIC	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	55	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		22	°C/W

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms

Parameters	2.5 V (2.2 V – 2.7 V)	3.0 V (2.7 V – 3.6 V)	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ ^[6]	Max	Unit
V_{DR}	V _{CC} for data retention		1.5	_	-	V
I _{CCDR}	Data retention current	$V_{CC} = 1.5 \text{ V}, \overline{CE} \ge V_{CC} - 0.2 \text{ V},$	_		6	μА
		$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$				
t _{CDR} ^[7]	Chip deselect to data retention time		0	_	_	ns
t _R ^[8]	Operation recovery time		55	_	_	ns

Data Retention Waveform

Figure 3. Data Retention Waveform

- 6. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
- Tested initially and after any design or process changes that may affect these parameters.
 Full Device AC operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.

Switching Characteristics

Over the Operating Range

Parameter [9]	Description	55	ns	11!4
Parameter [9]	Description	Min	Max	Unit
Read Cycle				•
t _{RC}	Read cycle time	55	_	ns
t _{AA}	Address to data valid	-	55	ns
t _{OHA}	Data hold from address change	10	_	ns
t _{ACE}	CE LOW to data valid	_	55	ns
t _{DOE}	OE LOW to data valid	_	25	ns
t _{LZOE}	OE LOW to Low Z [10]	5	_	ns
t _{HZOE}	OE HIGH to High Z [10, 11]	_	20	ns
t _{LZCE}	CE LOW to Low Z [10]	10	_	ns
t _{HZCE}	CE HIGH to High Z [10, 11]	_	20	ns
t _{PU}	CE LOW to power-up	0	_	ns
t _{PD}	CE HIGH to power-up	_	55	ns
Write Cycle [12	, 13]			•
t _{WC}	Write cycle time	55	_	ns
t _{SCE}	CE LOW to write end	40	_	ns
t _{AW}	Address set-up to write end	40	_	ns
t _{HA}	Address hold from write end	0	_	ns
t _{SA}	Address set-up to write start	0	_	ns
t _{PWE}	WE pulse width	40	_	ns
t _{SD}	Data set-up to write end	25	_	ns
t _{HD}	Data hold from write end	0	_	ns
t _{HZWE}	WE LOW to High Z [10, 11]	_	20	ns
t _{LZWE}	WE HIGH to Low Z [10]	10	_	ns

^{9.} Test Conditions for all parameters other than three-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to $V_{CC(typ)}$, and output loading of the specified I_{OL}/I_{OH} as shown in the Figure 2 on page 5.

^{10.} At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

^{11.} t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the output enter a high impedance state.

The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.
 The minimum write cycle pulse width for Write Cycle No. 3 (WE controlled, OE LOW) should be equal to the sum of t_{SD} and t_{HZWE}.

Switching Waveforms

Figure 4. Read Cycle No. 1 (Address Transition Controlled) [14, 15]

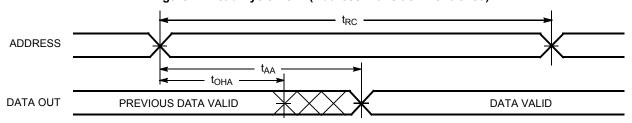
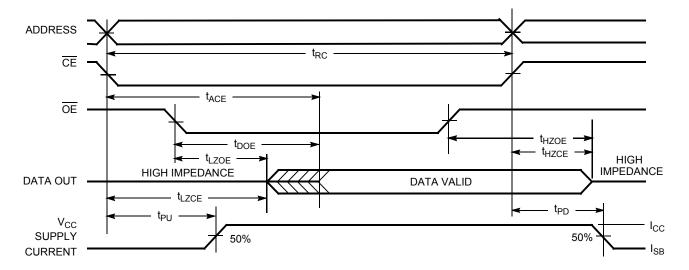
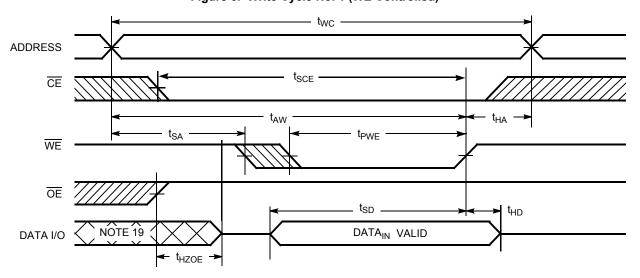



Figure 5. Read Cycle No. 2 (OE Controlled) [15, 16]

Notes

^{14.} Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.


^{15.} WE is HIGH for read cycle.

^{16.} Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

Switching Waveforms (continued)

Figure 6. Write Cycle No. 1 (WE Controlled) [17, 18]

^{17.} Data I/O is high impedance if $\overline{OE} = V_{IH}$.

^{18.} If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in high-impedance state.

^{19.} During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 2 (CE Controlled) [20, 21]

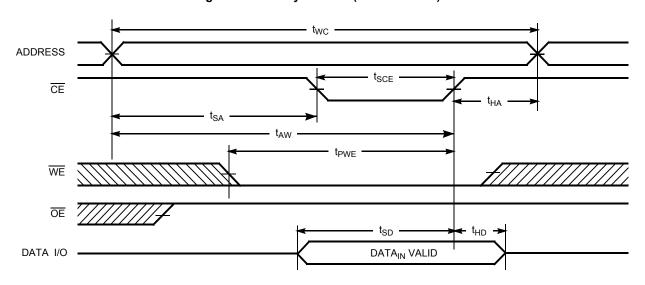
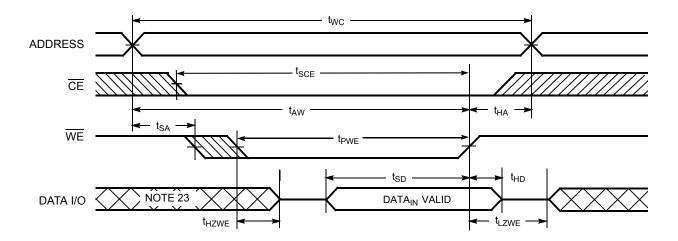
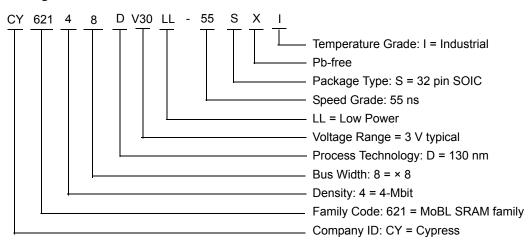



Figure 8. Write Cycle No. 3 (WE Controlled, OE LOW) [21, 22]

Notes

- 20. Data I/O is high impedance if OE = V_{IH}.
 21. If CE goes HIGH simultaneously with WE HIGH, the output remains in high-impedance state.
- 22. The minimum write cycle pulse width should be equal to the sum of t_{SD} and t_{HZWE} .
- 23. During this period, the I/Os are in output state and input signals should not be applied.

Truth Table

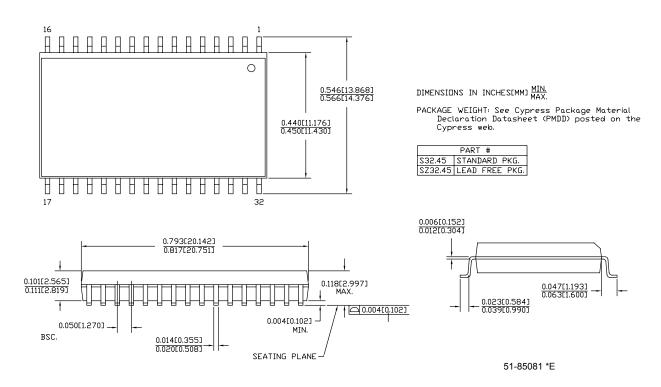

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data out (I/O ₀ -I/O ₇)	Read	Active (I _{CC})
L	Н	Н	High Z	Output disabled	Active (Icc)
L	L	Х	Data in (I/O ₀ -I/O ₇)	Write	Active (Icc)

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62148DV30LL-55SXI	51-85081	32-pin SOIC (Pb-free)	Industrial

Contact your local Cypress sales representative for availability of these parts.

Ordering Code Definitions



Document Number: 38-05341 Rev. *J

Package Diagrams

Figure 9. 32-pin SOIC (450 Mils) Package Outline, 51-85081

Acronyms

Acronym	Description		
CMOS	Complementary Metal Oxide Semiconductor		
I/O	Input/Output		
MoBL	More Battery Life		
SOIC	Small-Outline Integrated Circuit		
SRAM	Static Random Access Memory		

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μΑ	microampere			
mA	milliampere			
ns	nanosecond			
pF	picofarad			
V	volt			
W	watt			

Document History Page

		Document Number: 38-05341 Pour ECN No. Issue Data Orig. of Description of Ch					
Rev.	ECN No.	Issue Date	Change	Description of Change			
**	127480	06/17/03	HRT	Created new data sheet			
*A	131041	01/23/04	CBD	Changed from Advance to Preliminary			
*B	222180	See ECN	AJU	Changed from Preliminary to Final Added 70 ns speed bin Modified footnote #6 and #12 Removed MAX value for V _{DR} on "Data Retention Characteristics" table Modified input and output capacitance values Added Pb-free ordering information Removed 32-pin STSOP package			
*C	498575	See ECN	NXR	Added Automotive-A Operating Range Removed SOIC package from Product Offering Updated Ordering Information Table			
*D	729917	See ECN	VKN	Added SOIC package and its related information Updated Ordering Information Table			
*E	2896036	03/19/10	AJU	Added Table of Contents. Removed inactive parts from Ordering Information. Updated Packaging Information Updated links in Sales, Solutions, and Legal Information.			
*F	3166059	02/08/2011	RAME	Removed Automotive related info Removed 70 ns speed bin related info Remove TSOP and VFBGA package related info Added Ordering Code Definitions. Added Acronyms and Units of Measure. Updated to new template.			
*G	4315741	03/20/2014	VINI	Updated Package Diagrams: spec 51-85081 – Changed revision from *C to *E. Updated to new template. Completing Sunset Review.			
*H	4576406	01/16/2015	VINI	Added related documentation hyperlink in page 1. Updated Switching Characteristics: Added Note 13 and referred the same note in "Write Cycle". Updated Switching Waveforms: Added Note 22 and referred the same note in Figure 8.			
*	4702987	03/27/2015	VINI	Updated Maximum Ratings: Referred Notes 3, 4 in "Supply voltage to ground potential". Completing Sunset Review.			
*K	5975781	11/24/2017	AESATMP8	Updated logo and Copyright.			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

cypress.com/arm

cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

 Memory
 cypress.com/memory

 Microcontrollers
 cypress.com/mcu

 PSoC
 cypress.com/psoc

 Power Management ICs
 cypress.com/pmic

Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2003-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-05341 Rev. *J Revised November 24, 2017 Page 15 of 15