

STL7N80K5

N-channel 800 V, 0.95 Ω typ., 3.6 A MDmesh[™] K5 Power MOSFET in a PowerFLAT[™] 5x6 VHV package

Datasheet - production data

Features

Order code	VDS	RDS(on) max.	ID
STL7N80K5	800 V	1.2 Ω	3.6 A

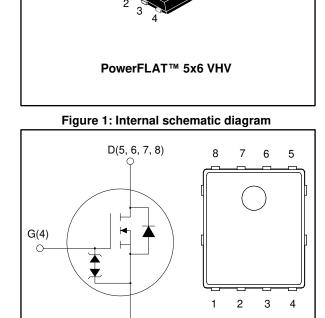
- Industry's lowest R_{DS(on)} x area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.


AM15540v1

Top View

Table 1: Device summary				
Order code	Marking	Package	Packing	
STL7N80K5	7N80K5	PowerFLAT™ 5x6 VHV	Tape and reel	

DocID025551 Rev 2

This is information on a product in full production.

S(1, 2, 3)

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	PowerFLAT™ 5x6 VHV package information	11
	4.2	PowerFLAT™ 5x6 packing information	14
5	Revisio	n history	16

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	±30	V
I _D	Drain current (continuous) at $T_C = 25 \ ^\circ C$	3.6	А
ID	Drain current (continuous) at Tc = 100 °C	2.3	А
IDM ⁽¹⁾	Drain current (pulsed)	14	А
Ртот	Total dissipation at $T_C = 25 \text{ °C}$	42	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
Tj	Operating junction temperature range	55 to 150	°C
T _{stg}	Storage temperature range	- 55 to 150	÷C

Notes:

 $^{(1)}$ Pulse width limited by safe operating area $^{(2)}I_{SD}$ <3.6 A, di/dt <100 A/µs, V_{DS(peak)} <V(BR)DSS $^{(3)}V_{DS}$ < 640 V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case	3	°C/W
R _{thj-pcb}	Thermal resistance junction-pcb	59	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	2	A
Eas	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	88	mJ

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Table 5: On/off-state						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V_{GS} = 0 V, I_{D} = 1 mA	800			V
	7	$V_{GS} = 0 V, V_{DS} = 800 V$			1	μA
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 800 V$ $T_{C} = 125 \ ^{\circ}C \ ^{(1)}$			50	μA
lgss	Gate body leakage current	$V_{DS} = 0 V$, $V_{GS} = \pm 20 V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 100 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 V, I_D = 3 A$		0.95	1.2	Ω

Table 5: On/off-state

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	360	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	30	-	pF
Crss	Reverse transfer capacitance		-	1	-	pF
Co(tr) ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 640 V, V _{GS} = 0 V	-	47	-	pf
$C_{o(er)}^{(2)}$	Equivalent capacitance energy related	$v_{\rm DS} = 0.00040 v, v_{\rm GS} = 0.0$	-	20	-	pf
Rg	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D=0 \text{ A}$	-	6	-	Ω
Qg	Total gate charge	$V_{DD} = 640 \text{ V}, \text{ I}_{D} = 6 \text{ A}$	-	13.4	-	nC
Qgs	Gate-source charge	V _{GS} = 0 to 10 V	-	3.7	-	nC
Q _{gd}	Gate-drain charge	(see Figure 16: "Test circuit for gate charge behavior")	-	7.5	-	nC

Table 6: Dynamic

Notes:

 $^{(1)}C_{o(tr)}$ is a constant capacitance value that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

 $^{(2)}C_{0(er)}$ is a constant capacitance value that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Electrical characteristics

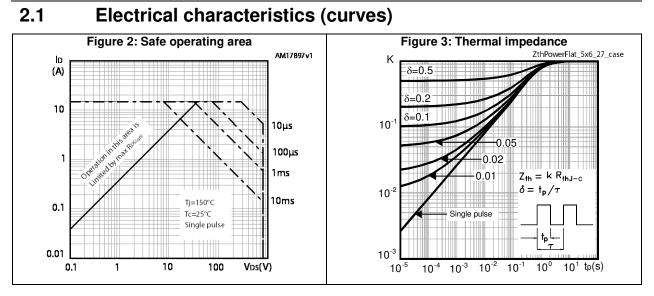
Table 7: Switching times							
Symbol	bol Parameter Test conditions Min. Typ. Max. I						
td(on)	Turn-on delay time	V_{DD} = 400 V, I_D = 3 A, R_G = 4.7 Ω	-	11.3	-	ns	
tr	Rise time	$V_{GS} = 10 V$	-	8.3	-	ns	
t _{d(off)}	Turn-off delay time	(see Figure 15: "Test circuit for resistive load switching times"	-	23.7	-	ns	
tr	Fall time	and Figure 20: "Switching time waveform")	-	20.2	-	ns	

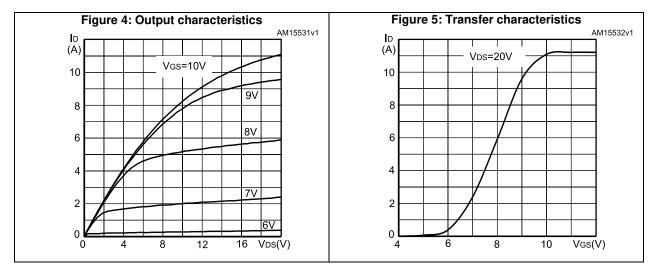
Table 8: Source-drain diode

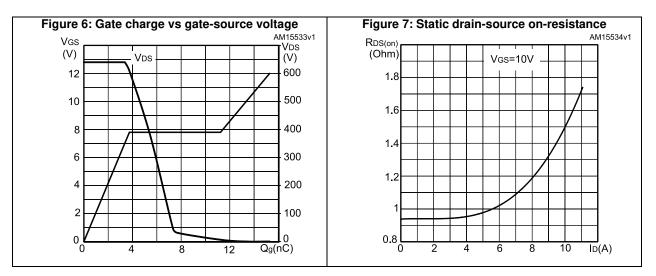
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		3.6	А
Isdm ⁽¹⁾	Source-drain current (pulsed)		-		14	А
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 6 \text{ A}, \text{ V}_{GS} = 0 \text{ V}$	-		1.5	V
trr	Reverse recovery time	I _{SD} = 6 A, di/dt = 100 A/μs,	-	315		ns
Qrr	Reverrse recovery charge	$V_{DD} = 60 V$ (see Figure 17: "Test circuit for	-	2.8		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	17.5		А
trr	Reverse recovery time	I _{SD} = 6 A, di/dt = 100 A/μs,	-	480		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{j} = 150 \text{ °C}$ (see Figure 17: "Test circuit for	-	3.8		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	16		А

Notes:

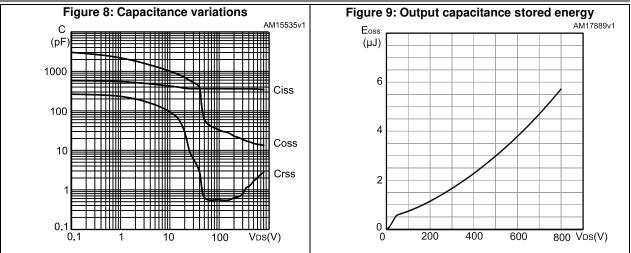
 ${\ensuremath{^{(1)}}}\xspace{\mathsf{Pulse}}$ width limited by safe operating area

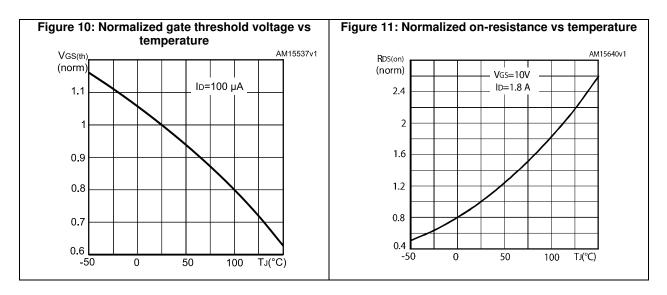

 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

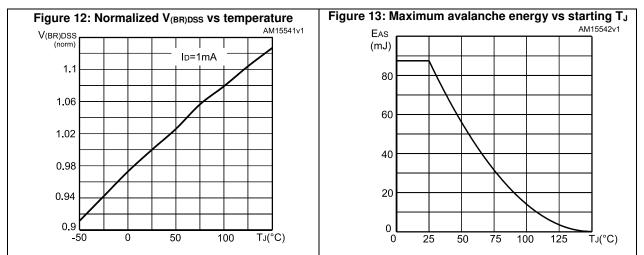

Table 9: Gate-source Zener diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _(BR) GSO	Gate-source breakdown voltage	$I_{GS}=\pm 1$ mA, $I_{D}=0$ A	±30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

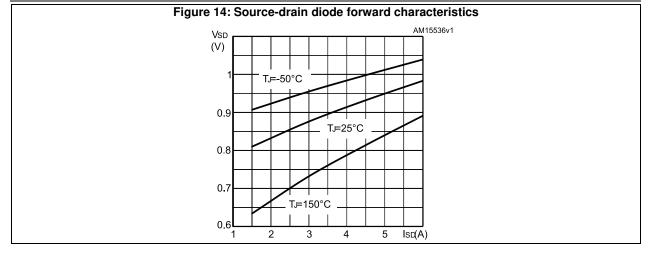

DocID025551 Rev 2



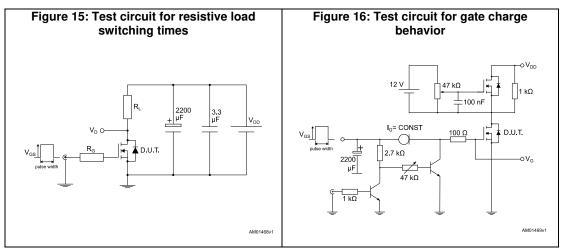

STL7N80K5

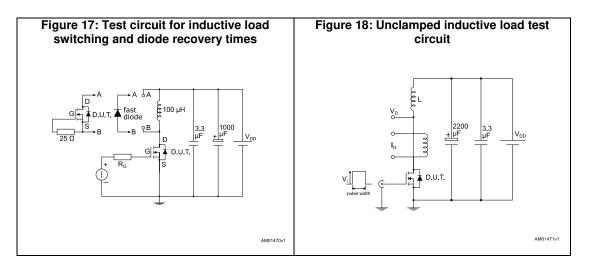
57

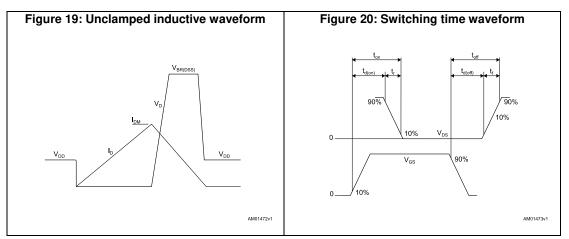
Electrical characteristics



DocID025551 Rev 2

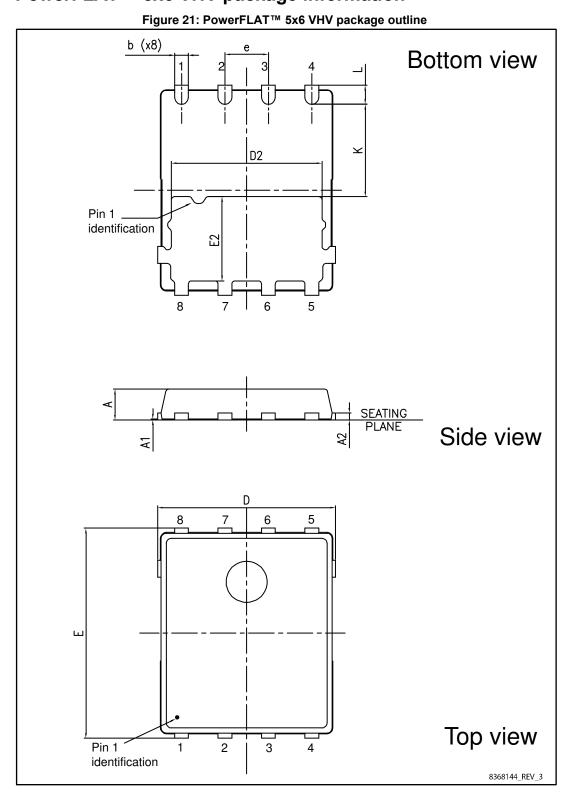

Electrical characteristics


STL7N80K5



3 Test circuits

4 Package information

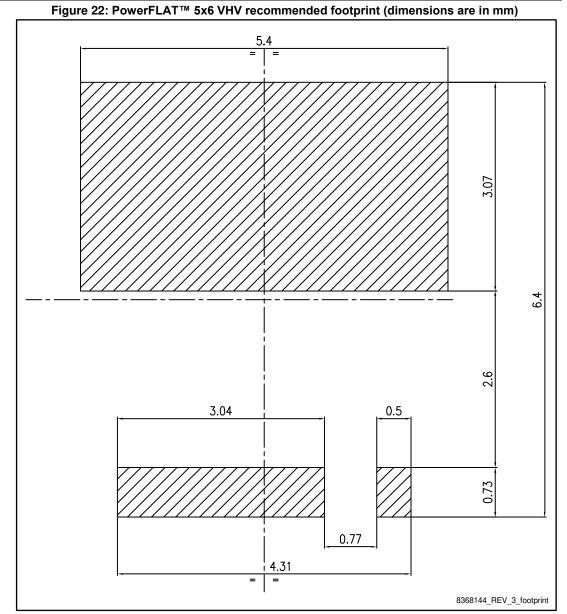

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

57

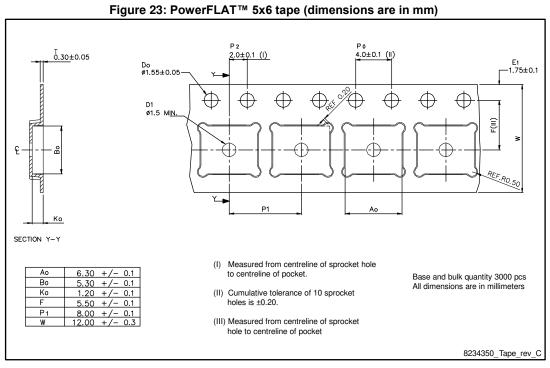
PowerFLAT[™] 5x6 VHV package information

DocID025551 Rev 2

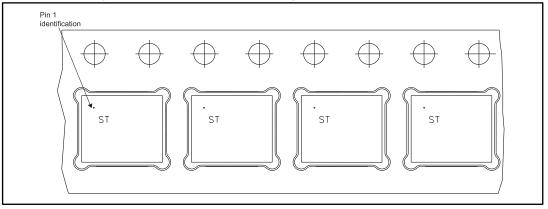
Package information

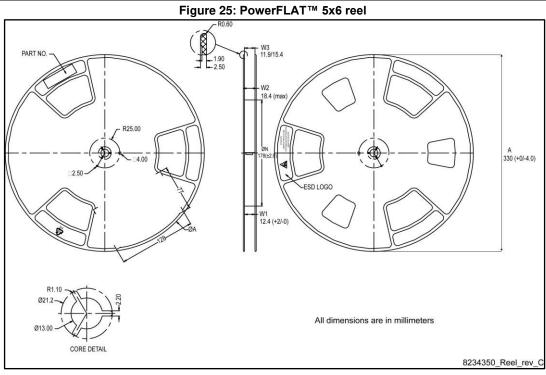

Table 10: PowerFLAT™ 5x6 VHV package mechanical data

Dim.		mm				
Dim.	Min.	Тур.	Max.			
A	0.80		1.00			
A1	0.02		0.05			
A2		0.25				
b	0.30		0.50			
D	5.00	5.20	5.40			
E	5.95	6.15	6.35			
D2	4.30	4.40	4.50			
E2	2.40	2.50	2.60			
e		1.27				
L	0.50	0.55	0.60			
К	2.60	2.70	2.80			


STL7N80K5

Package information




4.2 PowerFLAT[™] 5x6 packing information

5 Revision history

Date	Revision	Changes
19-Nov-2013	1	First release.
07-Jul-2017	2	Modified <i>Table 9: "Gate-source Zener diode"</i> Modified <i>Figure 3: "Thermal impedance".</i> Updated <i>Section 4: "Package information".</i> Minor text changes.

STL7N80K5

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

