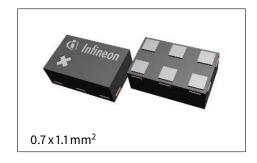


Highband High Performance LNA with Power-Save-Mode

Features

• Operating frequencies: 2.3 to 2.7 GHz

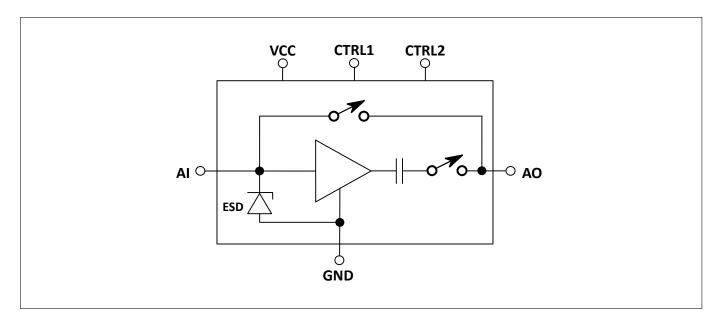

• Insertion power gain: 20.3 dB

• Insertion loss in bypass mode: 4.3 dB

• Low noise figure: 0.6 dB

• Low current consumption: Min. 2.2 mA

Multi-state control to save power


Potential Applications

The BGA9H1BN6 is designed for 4G and 5G applications covering 3GPP bands between 2.3 and 2.7 GHz (optimized for band n41). As a result of a high gain and an ultra-low noise figure performance of the LNA the system sensitivity is significantly improved compared to conventional LNAs. The GPIO interface provides a straightforward control over multiple operation modes. Next to the high gain mode and bypass mode, a power-save and a high performance mode can be selected to increase system dynamic. Due to the low-power mode with 2.2 mA current consumption and 1.2V operation voltage the overall power consumption is extremely low. The BGA9H1BN6 is suitable to be implemented in small battery powered devices like wearables or smartphones.

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Block diagram

Highband High Performance LNA with Power-Save-Mode

Table of Contents

Table of Contents

Та	ble of Contents	1
1	Features	2
2	Maximum Ratings	3
3	Electrical Characteristics	4
4	Application Information	6
5	Package Information	8

1

Highband High Performance LNA with Power-Save-Mode

Features

1 Features

Insertion power gain: Max. 20.3 dB
Insertion loss in bypass mode: 4.3 dB

• Low noise figure: 0.6 dB

Low current consumption: Min. 2.2 mA
Operating frequencies: 2.3 to 2.7 GHz

• Multi-state control

Supply voltage: 1.1 V to 3.3 V

• Ultra small TSNP-6-10 leadless package (footprint: 0.7 x 1.1 x 0.37 mm³)

Silicon germanium BiCMOS technology

• RF output internally matched to 50 Ohm

• Only one external matching component

• RoHS and WEEE compliant package

Description

The BGA9H1BN6 is a low noise amplifier for 4G and 5G which covers a wide frequency range from 2.3 GHz to 2.7 GHz. The LNA provides up to 20.3 dB gain and 0.6 dB noise figure at a current consumption of 5.5 mA in the application configuration described in Chapter 4. With the multi-state feature the gain can be adjusted to increase system dynamic and covers a power-saving option. The two-line-state control is fully backwards compatible to a standard GPIO controlled LNA. The BGA9H1BN6 supports ultra-low bypass current of 0.6 μ A and 1.2 V operating voltage to reduce power consumption. It operates from 1.1 V to 3.3 V supply voltage over temperature. The compact 6 pin TSNP-6 package with the dimension of 1.1 x 0.7 mm² helps to save space on the PCB.

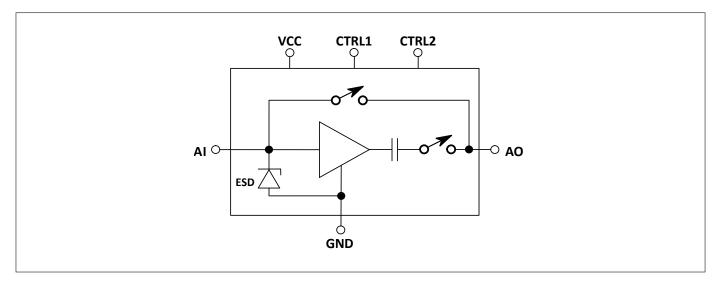


Figure 1: BGA9H1BN6 Block diagram

Product Name	Marking	Package
BGA9H1BN6	Н	PG-TSNP-6-10

Highband High Performance LNA with Power-Save-Mode

Maximum Ratings

2 Maximum Ratings

Table 1: Maximum Ratings

Parameter	Symbol	Symbol Values				Note / Test Condition		
		Min.	Тур.	Max.				
Voltage at pin VCC	V _{cc}	-0.3	_	3.6	٧	1		
Voltage at pin AI	V _{AI}	_	_	_	٧	2		
Voltage at pin AO	V _{AO}	-0.3	_	V _{CC} + 0.3	٧	$V_{\rm CC}$ + 0.3 must not exceed 3.6 V		
Voltage at pins CTRL1/CTRL2	V _{CTRL1,2}	-0.3	-	V _{CC} + 0.3	V	-		
Voltage at pin GND	V_{GND}	-0.3	_	0.3	V	-		
Current into pin VCC	I _{CC}	_	_	27	mA	-		
RF input power	P _{IN}	_	_	+25	dBm	-		
Total power dissipation	P _{tot}	_	_	100	mW			
Junction temperature	TJ	_	_	150	°C	-		
Ambient temperature range	T _A	-40	_	85	°C	-		
Storage temperature range	T_{STG}	-55	_	150	°C	-		
ESD capability, HBM	V _{ESD_HBM}	-2000	_	2000	٧	3		

¹All voltages refer to GND-Nodes unless otherwise noted

Warning: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

²No external DC voltage allowed

³Human Body Model ANSI/ESDA/JEDEC JS-001 ($R = 1.5 \text{ k}\Omega$, C = 100 pF)

Highband High Performance LNA with Power-Save-Mode

Electrical Characteristics

3 Electrical Characteristics

Table 3: Electrical Characteristics at $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 1.8 V, $V_{\rm CTRL1/2}$ = 0/1.8 V

Parameter ¹	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply Voltage	V _{cc}	1.1	1.8	3.3	V	ON-Mode	
		4.2	5.5	6.8	mA	High performance mode	
Committee Committee		3.2	4.2	5.2	mA	High gain mode	
Supply Current	I _{cc}	1.6	2.2	2.8	mA	Power save mode	
		0.0003	0.0006	0.001	mA	Bypass mode	
		18.8	20.3	21.8	dB	High performance mode	
Insertion power gain	c 12	18.0	19.5	21.0	dB	High gain mode	
f = 2600 MHz	$ S_{21} ^2$	15.1	16.6	18.1	dB	Power save mode	
		-5.6	-4.5	-3.6	dB	Bypass mode	
		_	0.6	1.1	dB	High performance mode	
Noise Figure	NF	-	0.6	1.1	dB	High gain mode	
$= 2600$ MHz, $Z_S = 50Ω$	INF	-	0.8	1.3	dB	Power save mode	
		-	4.6	5.6	dB	Bypass mode	
		9	13	_	dB	High performance mode	
put return loss²	RL _{IN}	8	12	_	dB	High gain mode	
f = 2600 MHz		5	8	_	dB	Power save mode	
		4	6	_	dB	Bypass mode	
	RL _{OUT}	10	22	_	dB	High performance mode	
Output return loss		10	21	_	dB	High gain mode	
f = 2600 MHz		10	20	-	dB	Power save mode	
		3	5	-	dB	Bypass mode	
		25	30	-	dB	High performance mode	
Reverse Isolation	1/10 12	24	29	_	dB	High gain mode	
f = 2600 MHz	$ 1/ S_{12} ^2$	24	29	_	dB	Power save mode	
		3.6	4.6	-	dB	Bypass mode	
		-21	-17	-	dBm	High performance mode	
Inband input 1dB-compression	ID.	-20	-16	_	dBm	High gain mode	
point <i>f</i> = 2600 MHz	IP _{1dB}	-14	-10	-	dBm	Power save mode	
		+1	+5	-	dBm	Bypass mode	
		-12	-7	-	dBm	High performance mode	
Inband input 3 rd -order intercept	IID	-12	-7	-	dBm	High gain mode	
point ³	IIP ₃	-16	-11	-	dBm	Power save mode	
		+17	+22	-	dBm	Bypass mode	
Stability	k	>1	_	_		f = 20 MHz - 10 GHz	

¹Based on application described in chapter 4

²Can be tuned by using different external matching components ³Input power = -30 dBm for each tone / -15 dBm for bypass mode, f_1 = 2600 MHz, f_2 = f_1 + 1 MHz

Highband High Performance LNA with Power-Save-Mode

Electrical Characteristics

Table 4: Switching times at $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 1.8 V, $V_{\rm CTRL1/2}$ = 0/1.8 V, f = 2300 – 2700 MHz

Parameter ¹	Symbol	l Values			Unit	Note / Test Condition		
		Min.	Тур.	Max.				
Power up settling time ²	t _{PUP}	_	-	<1	μs			
Gain settling time ³	t_{GST}	_	-	<1	μs	For all gain modes		

¹Based on application described in chapter 4 unless otherwise noted

 $^{^2}$ Time between V_{CC} is at steady state and RF signal is within 1 dB gain error of steady state gain

 $^{^3}$ Time between change of control signal and RF signal is within 1 dB gain error of steady state gain

Application Information

4 Application Information

Pin Configuration and Function

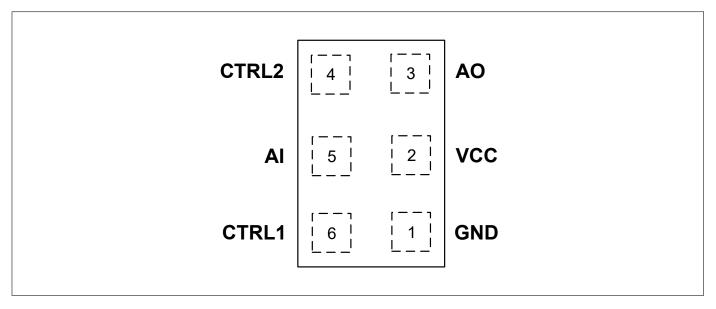


Figure 2: BGA9H1BN6 Pin Configuration (top view)

Table 5: Pin Definition and Function

Pin No.	Name	Function
1	GND	Ground
2	VCC	DC Supply
3	AO	LNA Output
4	CTRL2	Control pin 2
5	Al	LNA Input
6	CTRL1	Control pin 1

Table 6: Gain mode selection truth table

Control voltage V _{CTRL1}	Control voltage V _{CTRL2}	Gain Mode
Low	High	High performance mode
High	Low	High gain mode
High	High	Power save mode
Low	Low	Bypass mode

Highband High Performance LNA with Power-Save-Mode

Application Information

Application Board Configuration

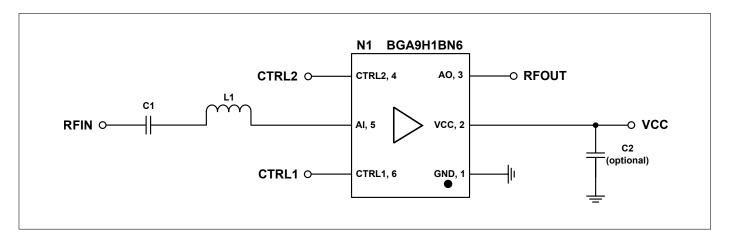


Figure 3: BGA9H1BN6 Application Schematic

Table 7: Bill of Materials Table

Name	Value Package		Manufacturer	Function
C1	22 pF	0201	Various	DC block
C2 (optional)	≥ 10 nF	0201	Various	RF bypass ¹
L1	4.7 nH	0201	muRata LQP03TN type	Input matching
N1	BGA9H1BN6	PG-TSNP-6-10	Infineon	SiGe BiCMOS LNA

¹RF bypass recommended to mitigate power supply noise.

Package Information

5 Package Information

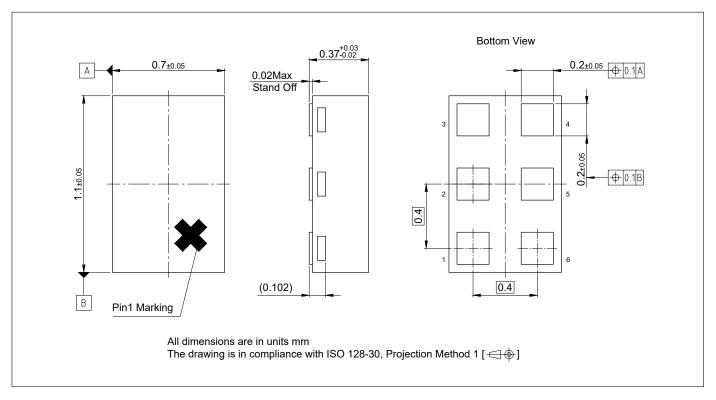


Figure 4: PG-TSNP-6-10 Package Outline (0.7mm x 1.1mm x 0.37mm)

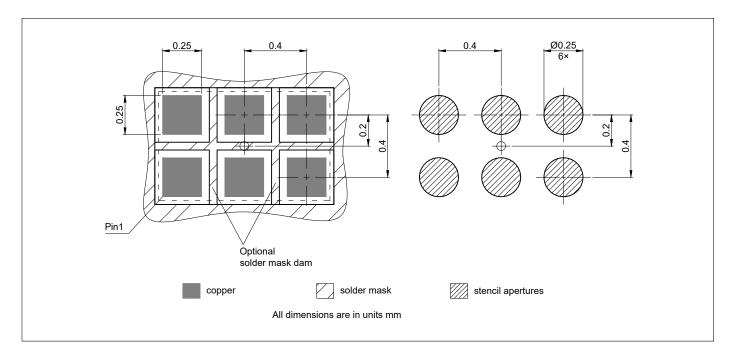


Figure 5: Footprint Recommendation

Highband High Performance LNA with Power-Save-Mode

Package Information

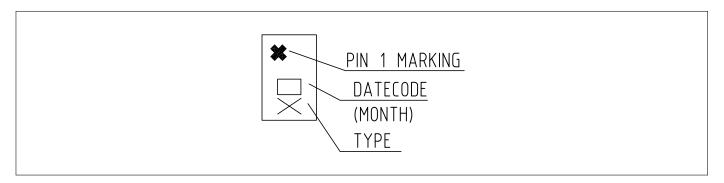


Figure 6: Marking Specification (top view)

Table 8: Monthly Date Code Marking

Tuble of Me	rable of Montalky Bate Gode Marking											
Month	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
1	а	р	Α	Р	а	р	Α	Р	а	р	Α	Р
2	b	q	В	Q	b	q	В	Q	b	q	В	Q
3	С	r	С	R	С	r	С	R	С	r	С	R
4	d	S	D	S	d	S	D	S	d	S	D	S
5	е	t	Е	Т	e	t	E	Т	e	t	E	Т
6	f	u	F	U	f	u	F	U	f	u	F	U
7	g	V	G	V	g	v	G	V	g	v	G	V
8	h	х	Н	Х	h	х	Н	Х	h	х	Н	X
9	j	у	J	Υ	j	у	J	Υ	j	у	J	Υ
10	k	z	K	Z	k	z	K	Z	k	z	K	Z
11	l	2	L	4	l	2	L	4	l	2	L	4
12	n	3	N	5	n	3	N	5	n	3	N	5

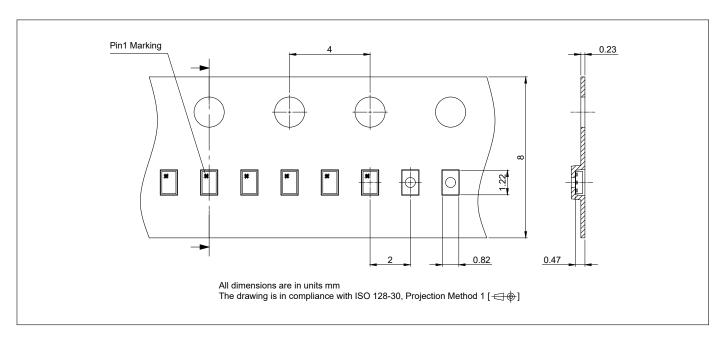


Figure 7: PG-TSNP-6-10 Carrier Tape

Revision History							
Page or Item	Page or Item Subjects (major changes since previous revision)						
Revision 2.0, 2021-1	Revision 2.0, 2021-10-14						
all Initial version of final datasheet							

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-10-14 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference Doc_Number

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.