# **Product Specification**

# OC-12 SR-1/STM I-4 or OC-12 IR-1/STM S-4.1 2x10 SFF Transceiver

# FTLF1322S2xTR

#### **PRODUCT FEATURES**

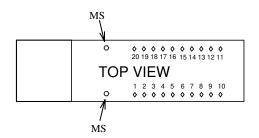
- Up to OC-12/STM-4 bi-directional data links
- Standard 2x10 pin SFF footprint (MSA compliant)
- Analog diagnostics functions
- Uncooled 1310nm FP laser transmitter
- Duplex LC connector
- Very low jitter
- Metal enclosure, for lower EMI
- Single 3.3V power supply
- Low power dissipation <700 mW typical
- Extended operating temperature range: -40°C to 85°C



#### **APPLICATIONS**

- SONET OC-12 SR-1 / SDH STM I-4
- SONET OC-12 IR-1 / SDH STM S-4.1

Finisar's FTLF1322S2xTR Small Form Factor (SFF) transceivers are compatible with the Small Form Factor Multi-Sourcing Agreement (MSA)<sup>1</sup>. They comply with SONET OC-12 SR-1/IR-1 (SDH STM I-4/S-4.1) standards<sup>2</sup>. The transceivers are RoHS compliant and lead-free per Directive 2002/95/EC<sup>5</sup> and Finisar Application Note AN-2038<sup>6</sup>


#### PRODUCT SELECTION

# FTLF1322S2xTR

| X | G | 2 Grounding Pins, Short EMI shield |
|---|---|------------------------------------|
|   | М | 6 Grounding Pins, Short EMI shield |
|   | K | 2 Grounding Pins, Long EMI shield  |
|   | Н | 6 Grounding Pins, Long EMI shield  |

# I. Pin Descriptions

| Pin   | Symbol       | Name/Description                                          | <b>Logic Family</b> |
|-------|--------------|-----------------------------------------------------------|---------------------|
| MS    | MS           | Mounting Studs for mechanical attachment. Chassis         | NA                  |
|       |              | ground is internally isolated from circuit ground.        |                     |
|       |              | Connection to chassis ground is recommended.              |                     |
| 1     | NC           | Not Connected                                             |                     |
| 2,3,6 | $ m V_{EER}$ | Receiver Ground (Common with Transmitter Ground)          | NA                  |
| 4,5   | NC           | Not Connected.                                            |                     |
| 7     | $V_{CCR}$    | Receiver Power Supply                                     | NA                  |
| 8     | SD           | Signal Detect. Logic 1 indicates normal operation.        | LVTTL               |
| 9     | RD-          | Receiver Inverted DATA out. AC Coupled                    | CML                 |
| 10    | RD+          | Receiver Non-inverted DATA out. AC Coupled                | CML                 |
| 11    | $V_{CCT}$    | Transmitter Power Supply                                  | NA                  |
| 12,16 | $V_{EET}$    | Transmitter Ground (Common with Receiver Ground)          | NA                  |
| 13    | $T_{DIS}$    | Transmitter Disable                                       | LVTTL               |
| 14    | TD+          | Transmitter Non-Inverted DATA in. AC Coupled.             | CML                 |
|       |              |                                                           | ECL                 |
| 15    | TD-          | Transmitter Inverted DATA in. AC Coupled.                 | CML                 |
|       |              |                                                           | ECL                 |
| 17    | Bmon-        | Laser Bias Monitoring (-).                                | Analog              |
|       |              |                                                           | Voltage             |
| 18    | Bmon+        | Laser Bias Monitoring (+)                                 | Analog              |
|       |              | $.(Bmon+ - Bmon-) = 10\Omega x laser bias current.$       | Voltage             |
| 19    | Pmon-        | Laser Power Monitoring (-). Current implementation        | Analog              |
|       |              | connects this pin to ground                               | Voltage             |
| 20    | Pmon+        | Laser Power Monitoring (+)                                | Analog              |
|       |              | .(Pmon+ - Pmon-) = $200\Omega$ x mon. photodiode current. | Voltage             |
|       |              |                                                           |                     |



### **II.** Absolute Maximum Ratings

| Parameter                       | Symbol   | Min  | Тур | Max    | Unit | Ref. |
|---------------------------------|----------|------|-----|--------|------|------|
| Maximum Supply Voltage          | Vcc      | -0.5 |     | 4.5    | V    |      |
| Storage Temperature             | $T_{S}$  | -40  |     | 100    | °C   |      |
| Case Operating Temperature      | $T_{OP}$ | -40  |     | 85     | °C   |      |
| Relative Humidity               | RH       | 0    |     | 85     | %    | 1    |
| Lead Soldering Temperature/Time |          |      |     | 260/10 | °C/s |      |

## III. Electrical Characteristics ( $T_{OP} = -40 \text{ to } 85 \text{ }^{\circ}\text{C}$ , $V_{CC} = 3.00 \text{ to } 3.60 \text{ Volts}$ )

| Parameter                       | Symbol                   | Min       | Тур | Max      | Unit | Ref. |
|---------------------------------|--------------------------|-----------|-----|----------|------|------|
| Supply Voltage                  | Vcc                      | 3.00      |     | 3.60     | V    |      |
| Supply Current                  | Icc                      |           | 190 | 300      | mA   |      |
| Transmitter                     |                          |           |     |          |      |      |
| Input differential impedance    | R <sub>in</sub>          |           | 100 |          | Ω    | 2    |
| Single ended data input swing   | Vin,pp                   | 250       |     | 1200     | mV   |      |
| Transmit Disable Voltage        | $V_{\mathrm{D}}$         | Vcc – 1.3 |     | Vcc      | V    |      |
| Transmit Enable Voltage         | $ m V_{EN}$              | Vee       |     | Vee+ 0.8 | V    | 3    |
| Transmit Disable Assert Time    |                          |           |     | 10       | μs   |      |
| Receiver                        |                          |           |     |          |      |      |
| Single ended data output swing  | Vout,pp                  | 300       | 400 | 800      | mV   | 4    |
| Data output rise/fall time      | $t_{\rm r}$              |           |     | 1250     | ps   | 5    |
| SD Assert                       | V <sub>SD assert</sub>   | 2.4       |     | Vcc      | V    | 6    |
| SD De-Assert                    | V <sub>SD deassert</sub> | Vee       |     | 0.5      | V    | 6    |
| Power Supply Rejection          | PSR                      | 100       |     |          | mVpp | 7    |
| Total Generated Receiver Jitter | J <sub>RX</sub> p-p      |           |     | 0.07     | UI   |      |
| (peak to peak)                  |                          |           |     |          |      |      |
| Total Generated Receiver Jitter | $J_{RX}$ rms             |           |     | 0.007    | UI   |      |
| (rms)                           |                          |           |     |          |      |      |

### Notes:

- 1. Non condensing.
- 2. AC coupled.
- 3. Or open circuit.
- 4. Into 100 ohm differential termination.
- 5. 20 80 %
- 6. Signal Detect is LVTTL. Logic 1 indicates normal operation; logic 0 indicates no signal detected.
- All transceiver specifications are compliant with a power supply sinusoidal modulation of 20 Hz to 1.5
  MHz up to specified value applied through the power supply filtering network shown on page 23 of the
  Small Form-factor Pluggable (SFP) Transceiver MultiSource Agreement (MSA), September 14, 2000.

# IV. Optical Characteristics ( $T_{OP} = -40 \text{ to } 85 \text{ °C}$ , $V_{CC} = 3.00 \text{ to } 3.60 \text{ Volts}$ )

| Parameter                          | Symbol              | Min  | Тур | Max   | Unit  | Ref. |  |  |
|------------------------------------|---------------------|------|-----|-------|-------|------|--|--|
| Transmitter                        |                     |      |     |       |       |      |  |  |
| Output Opt. Pwr: 9/125 SMF         | P <sub>OUT</sub>    | -15  |     | -8    | dBm   | 1    |  |  |
| Optical Wavelength                 | λ                   | 1274 |     | 1356  | nm    | 2    |  |  |
| Spectral Width                     | σ                   |      |     | 2.5   | nm    | 2    |  |  |
| Optical Extinction Ratio           | ER                  | 8.2  |     |       | dB    |      |  |  |
| Optical Rise/Fall Time             | $t_r / t_f$         |      |     | 500   | ps    | 3    |  |  |
| Relative Intensity Noise           | RIN                 |      |     | -120  | dB/Hz |      |  |  |
| Total Generated Transmitter Jitter | J <sub>TX</sub> p-p |      |     | 0.07  | UI    |      |  |  |
| (peak to peak)                     |                     |      |     |       |       |      |  |  |
| Total Generated Transmitter Jitter | $J_{TX}rms$         |      |     | 0.007 | UI    |      |  |  |
| (rms)                              |                     |      |     |       |       |      |  |  |
| Receiver                           |                     |      |     |       |       |      |  |  |
| Rx Sensitivity @ OC-12             | R <sub>SENS1</sub>  | -28  |     | -8    | dBm   | 4    |  |  |
| Optical Center (Input) Wavelength  | $\lambda_{ m C}$    | 1260 |     | 1600  | nm    |      |  |  |
| SD Assert                          | $SD_A$              | _    | _   | -34   | dBm   |      |  |  |
| SD De-Assert                       | $SD_D$              | -45  |     |       | dBm   |      |  |  |
| SD Hysteresis                      |                     | 0.5  |     |       | dB    |      |  |  |

#### Notes:

- 1. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations.
- 2. Also specified to meet curves in FC-PI 13.0 Figures 18 and 19, which allow trade-off between wavelength, spectral width and OMA.
- 3. Unfiltered, 20 80%
- 4. With worst-case extinction ratio. Measured with a PRBS 2<sup>23</sup>-1 test pattern.

### V. General Specifications

| Parameter                     | Symbol     | Min | Тур | Max               | Units  | Ref. |
|-------------------------------|------------|-----|-----|-------------------|--------|------|
| Data Rate                     | BR         |     | 622 |                   | Mb/sec | 1    |
| Bit Error Rate                | BER        |     |     | 10 <sup>-10</sup> |        | 2    |
| Max. Supported Link Length on | $L_{MAX5}$ |     | 15  |                   | km     | 4    |
| 9/125μm SMF @ OC-12           |            |     |     |                   |        |      |

#### Notes:

- 1. SONET OC-12 SR/SDH STM I-4 and SONET OC-12 IR-1/SDH STM S-4.1 compliant.
- 2. Tested with a PRBS 2<sup>31</sup>-1 test pattern.
- 3. Attenuation of 0.55 dB/km is used for the link length calculations (per GR-253 CORE). <u>Distances are indicative only.</u> Please refer to the Optical Specifications in Table IV to calculate a more accurate link budget based on specific conditions in your application.

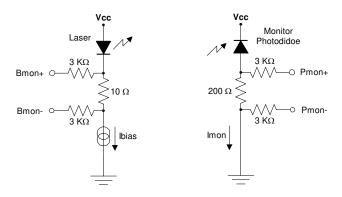
### VI. Environmental Specifications

Finisar 1310nm SFP transceivers have an extended operating temperature range from –40°C to +85°C case temperature.

| Parameter                  | Symbol    | Min | Тур | Max | Units | Ref. |
|----------------------------|-----------|-----|-----|-----|-------|------|
| Case Operating Temperature | $T_{op}$  | -40 |     | 85  | °C    |      |
| Storage Temperature        | $T_{sto}$ | -40 |     | 100 | °C    |      |

### VII. Regulatory Compliance

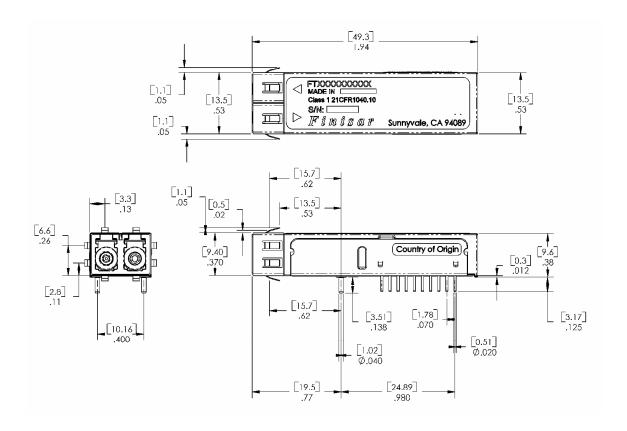
Finisar transceivers are Class 1 Laser Products and comply with US FDA regulations. These products are certified by TÜV and CSA to meet the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950. Copies of certificates are available at Finisar Corporation upon request.


# VIII. Analog Diagnostics Functions ( $T_{op} = -40 \text{ to } 85 \text{ °C}$ , $V_{CC} = 3.00 \text{ to } 3.60 \text{ Volts}$ )

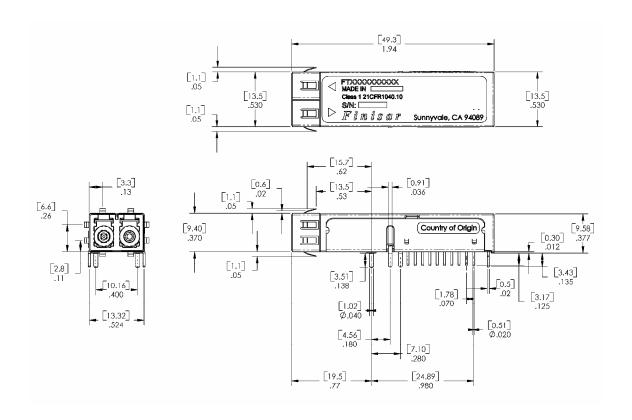
| Parameter                          | Symbol | Min | Тур | Max | Unit | Ref. |
|------------------------------------|--------|-----|-----|-----|------|------|
| Transmitter                        |        |     |     |     |      |      |
| Monitor photodiode current monitor | Pmon+, | 0   |     | Vcc | V    | 1    |
| _                                  | Pmon-  |     |     |     |      |      |
| Laser bias current monitor         | Bmon+, | 0   |     | Vcc | V    | 2    |
|                                    | Bmon-  |     |     |     |      |      |

#### Notes:

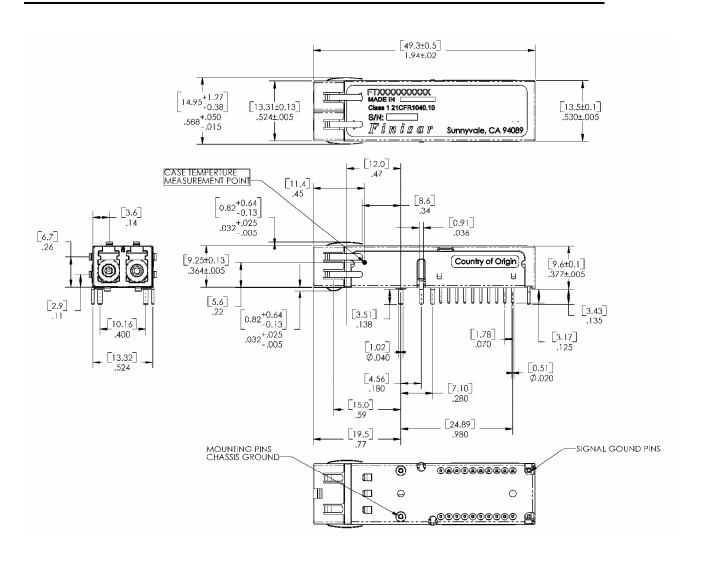
- 1. Pins 19 and 20 provide an analog voltage output proportional to the monitor photodiode current, per the following formula:  $I_{BIAS}$  = .V(Pmon+ Pmon-) / 200 $\Omega$ . The figure below shows the equivalent circuit.
- 2. Pins 17 and 18 provide an analog voltage output proportional to the laser bias current, per the following formula:  $I_{BIAS} = .V(Bmon+ Bmon-) / 10\Omega$ . The figure below shows the equivalent circuit.


3.



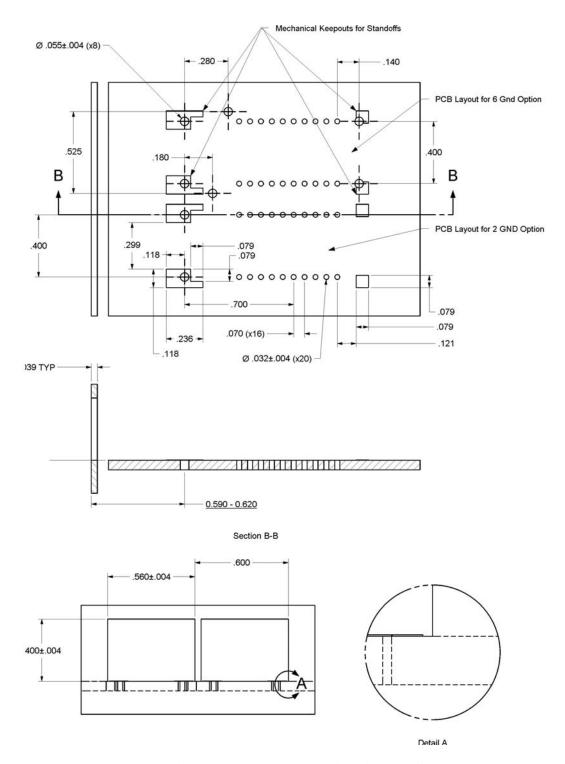

Analog monitoring function connections.

## IX. Mechanical Specifications


Finisar's OC-12/STM-4 Small Form Factor (SFF) transceivers comply with the standard dimensions defined by the Small Form Factor Multi-Sourcing Agreement (MSA).



FTLF1323S2GTR - 2 pin version




FTLF1323S2MTR - 6 pin version



FTLF1323S2HTR - 6 pin version (Long EMI Shield)

# X. PCB Layout and Bezel Recommendations



Minimum Recommended Pitch is 0.600"

#### XI. References

- 1. Small Form Factor (SFF) Transceiver Multisource Agreement (MSA). January 1998.
- 2. Bellcore GR-253 and ITU-T G.957 Specifications (Transmitter Optical Output Power complies with SONET OC-48 requirements only).
- 3. IEEE Std 802.3, 2002 Edition, Clause 38, PMD Type 1000BASE-LX. IEEE Standards Department, 2002. (Transmit Optical Output has a minimum Extinction Ratio of 8.2 dB only).
- 4. Directive 2002/95/EC of the European Council Parliament and of the Council. "On the restriction of the use of certain hazardous substances in electrical and electronic equipment". January 27, 2003.
- 5. "Application Note AN-2038: Finisar Implementation of RoHS Compliant Transceivers: Finisar Corporation, January 21, 2005.
- 6. "Fibre Channel Draft Physical Interface Specification (FC-PI 13.0)". American National Standard for Information Systems. (\*)

#### XII. For More Information

Finisar Corporation 1308 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com