

# **Current Transducer LTSR 25-NP**

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.





#### **Electrical data**

| $I_{PN}$                       | Primary nominal RMS current                                     | 25                                    | At                 |
|--------------------------------|-----------------------------------------------------------------|---------------------------------------|--------------------|
| $I_{PM}$                       | Primary current, measuring range                                | 0 ±80 ¹)                              | At                 |
| $\hat{I}_{P}$                  | Overload capability                                             | 250                                   | At                 |
| $V_{out}$                      | Output voltage (analog)@ $I_P$                                  | 2.5 ±(0.625 ×                         | $I_{P}/I_{PN}$ ) V |
|                                | @ $I_{p} = 0$                                                   | 2.5 2)                                | V                  |
| $V_{\rm ref}$                  | Reference voltage (internal reference), Ref <sub>OUT</sub> mode | 2.5 3)                                | V                  |
|                                | Reference voltage (external reference), Ref <sub>IN</sub> mode  | 1.9 2.7 4)                            | V                  |
| G                              | Sensitivity                                                     | 25                                    | mV/A               |
| $N_{\mathtt{S}}$               | Number of secondary turns (±0.1 %)                              | 2000                                  |                    |
| $R_{\scriptscriptstyle \perp}$ | Load resistance                                                 | $\geq 2$                              | kΩ                 |
| $C_{Lmax}$                     | Maximum capacitive loading                                      | 500                                   | pF                 |
| $R_{\rm IM}$                   | Internal measuring resistance (±0.5 %)                          | 50                                    | Ω                  |
| $TCR_{IM}$                     | Temperature coefficient of $R_{\rm IM}$                         | < 50                                  | ppm/K              |
| $U_{C}$                        | Supply voltage (±5 %)                                           | 5                                     | V                  |
| $I_{C}$                        | Current consumption @ $U_{\rm c}$ = 5 V Typical                 | 28 + $I_{\rm S}^{5)}$ ( $V_{\rm out}$ | $R_{\rm L}$ ) mA   |

# Accuracy - Dynamic performance data

| Accuracy @ $I_{PN}$ , $T_A = 2$            | 5 °C                                                                                                                                                                                                           | ±0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accuracy with $R_{\rm LM}$ , @ $I_{\rm P}$ | <sub>N</sub> , $T_{\Delta} = 25  ^{\circ}\text{C}$                                                                                                                                                             | ±0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Linearity error                            |                                                                                                                                                                                                                | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            |                                                                                                                                                                                                                | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Temperature coefficien                     | t of $V_{\text{out}} / V_{\text{ref}} @ I_{\text{P}} = 0$                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                            | -40 <b>+</b> 85                                                                                                                                                                                                | °C 37.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ppm/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Temperature coefficien                     | t of G -40 +85                                                                                                                                                                                                 | °C 50 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ppm/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Magnetic offset voltage                    | $I_{\rm P} = 0$                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                            | after an overload of $3 \times I_P$                                                                                                                                                                            | <sub>N</sub> ±0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            | after an overload of $5 \times I_p$                                                                                                                                                                            | ±2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            | after an overload of 10 × I                                                                                                                                                                                    | ±2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Temperature coefficien                     | t of $V_{ref}$                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                            | @ $I_p = 0 -10 +85 °C$                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ppm/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            | −40 −10 °C                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ppm/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reaction time @ 10 %                       | of $I_{PN}$                                                                                                                                                                                                    | < 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            |                                                                                                                                                                                                                | < 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Frequency bandwidth                        | (0 −0.5 dB)                                                                                                                                                                                                    | DC 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                            | (-0.5 1 dB)                                                                                                                                                                                                    | DC 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                            | Accuracy with $R_{\text{IM}}$ @ $I_{\text{P}}$ Linearity error  Temperature coefficient Magnetic offset voltage  Temperature coefficient Magnetic offset voltage  Reaction time @ 10 % Step response time to 9 | Temperature coefficient of $V_{\rm out}$ / $V_{\rm ref}$ @ $I_{\rm p}$ = 0 $-40 \dots +85$ Temperature coefficient of $G$ $-40 \dots +85$ Magnetic offset voltage @ $I_{\rm p}$ = 0, after an overload of $3 \times I_{\rm p}$ after an overload of $5 \times I_{\rm p}$ after an overload of $10 \times I_{\rm p}$ after an | Accuracy with $R_{\rm IM}$ @ $I_{\rm PN}$ , $T_{\rm A}$ = 25 °C \$\dots 0.1\$ Max  Temperature coefficient of $V_{\rm out}$ / $V_{\rm ref}$ @ $I_{\rm P}$ = 0 \$\dots 40 \dots \dots 85 °C 37.5\$  Temperature coefficient of $G$ \$\dots 40 \dots \dots 85 °C 50 \dots 60\$ Magnetic offset voltage @ $I_{\rm P}$ = 0, after an overload of $3 \times I_{\rm PN}$ \$\dots 40.5 after an overload of $5 \times I_{\rm PN}$ \$\dots 2.0 after an overload of $10 \times I_{\rm PN}$ \$\dots 2.0\$  Temperature coefficient of $V_{\rm ref}$ @ $I_{\rm P}$ = 0 \$-10 \dots \dots 85 °C \$\dots 50 \\ \$\dots 40 \dots -40 \dots -10 °C\$ 100  Reaction time @ 10 % of $I_{\rm PN}$ \$\dots 100  Step response time to 90 % of $I_{\rm PN}$ \$\dots 400  Frequency bandwidth \$(0 \dots -0.5 \dots 0.5) DC \dots 100 |

Notes: 

1) Only in Ref<sub>OUT</sub> mode or with external Ref less than 2.525 V and greater than 2.475 V. For external Ref<sub>OUT</sub> of these limits see leaflet. 
2)  $V_{\text{out}}$  is linked to  $V_{\text{ref}}$ , by conception the difference between these two nodes for  $I_{\text{p}} = 0$  is maximum ±25 mV, 2.475 V <  $V_{\text{out}}$  < 2.525 V. 
3) In Ref<sub>OUT</sub> mode at  $T_{\text{A}} = 25 \, ^{\circ}\text{C}$ , 2.475 V <  $V_{\text{ref}}$  < 2.525 V. The minimal impedance loading the ref pin should be > 220 k $\Omega$ . Internal impedance = 600  $\Omega$ . For most applications you need to buffer this output to feed it into an A DC for example. 
4) To overdrive the Ref (1.9 V ... 2.7 V) max ±1 mA is needed. 
5)  $I_{\text{S}} = I_{\text{p}}/N_{\text{S}}$ . 
6) Only due to  $TCR_{\text{IM}}$  7) For a di/dt > 60 A/µs.

# $I_{PN} = 25 \, At$



#### **Features**

- Closed loop (compensated) current transducer using the Hall effect
- Unipolar supply voltage
- Insulating plastic case recognized according to UL 94-V0
- Compact design for PCB mounting
- Incorporated measuring resistance
- Extended measuring resistance
- Access to the internal voltage reference
- Possibility to feed the transducer reference from external supply.

#### **Advantages**

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

#### **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

#### **Application domain**

Industrial.



#### **Current Transducer LTSR 25-NP**

|             | General data                      |                 |     |
|-------------|-----------------------------------|-----------------|-----|
| $T_{A}$     | Ambient operating temperature     | -40 <b>+</b> 85 | °C  |
| $T_{\rm s}$ | Ambient storage temperature       | -40 +100        | °C  |
| m           | Mass                              | 10              | g   |
|             | Standards (see Note 1) in page 1) | EN 50178: 1997  | 7   |
|             |                                   | IEC 60950-1: 20 | 001 |

| Insulation coordination |                                                  |              |    |  |  |
|-------------------------|--------------------------------------------------|--------------|----|--|--|
| $U_{d}$                 | RMS voltage for AC insulation test, 50 Hz, 1 min | 3            | kV |  |  |
| $\hat{U}_{W}$           | Impulse withstand voltage 1.2/50 µs              | > 8          | kV |  |  |
| $U_{\rm e}$             | Partial discharge extinction RMS voltage @ 10 pC | > 1.5<br>Min | kV |  |  |
| $d_{\rm Cp}$            | Creepage distance 2)                             | 15.35        | mm |  |  |
| $d_{CI}$                | Clearance 3)                                     | 6.2          | mm |  |  |
| CTI                     | Comparative tracking index (group IIIa)          | 175          |    |  |  |

Notes: 1) On housing

<sup>2)</sup>On PCB with soldering pattern UTEC93-703.

# **Applications examples**

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

|                                         | EN 50178                 | IEC 61010-1     |
|-----------------------------------------|--------------------------|-----------------|
| $d_{\rm Cp},d_{\rm CI},\hat{U}_{\rm W}$ | Rated insulation voltage | Nominal voltage |
| Single insulation                       | 600 V                    | 600 V           |
| Reinforced insulation                   | 300 V                    | 300 V           |

## **Safety**



This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.



Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (e.g. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage. This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.



## UL 508: Ratings and assumptions of certification

File # E189713 Volume: 2 Section: 1

#### **Standards**

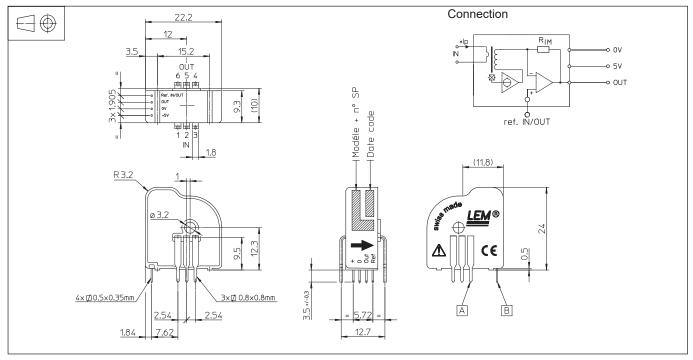
- CSA C22.2 NO. 14-10 INDUSTRIAL CONTROL EQUIPMENT Edition 11
- UL 508 STANDARD FOR INDUSTRIAL CONTROL EQUIPMENT Edition 17

#### **Ratings**

| Parameter                       | Symbol       | Unit    | Value                                |
|---------------------------------|--------------|---------|--------------------------------------|
| Primary involved potential      |              | V AC/DC | 600                                  |
| Max surrounding air temperature | $T_{A}$      | °C      | 85                                   |
| Primary current                 | $I_{P}$      | А       | According to series primary currents |
| Output voltage                  | $V_{ m out}$ | V       | 0 to 5                               |

### **Conditions of acceptability**

When installed in the end-use equipment, consideration shall be given to the following:


- 1 These devices must be mounted in a suitable end-use enclosure.
- 2 The terminals have not been evaluated for field wiring.
- 3 The LTS, LTSR, LTSP Series are intended to be mounted on the printed wiring board of the end-use equipment (with a minimum CTI of 100).
- 4 The LTS, LTSP, LTSP Series shall be used in a pollution degree 2 environment.
- 5 Low voltage circuits are intended to be powered by a circuit derived from an isolating source (such as a transformer, optical isolator, limiting impedance or electro-mechanical relay) and having no direct connection back to the primary circuit (other than through the grounding means).
- 6 The LTS, LTSP, LTSP Series: based on results of temperature tests, in the end-use application, a maximum of 100°C cannot be exceeded at soldering point between primary coil pin and soldering point or on primary bus bar (corrected to the appropriate evaluated max, surrounding air).
- 7 For LTS, LTSP Series, the secondary sensing circuit was evaluated as the circuit intended to be supplied from a Limited Voltage/Current circuit defined in UL 508 standard.

#### **Marking**

Only those products bearing the UL or UR Mark should be considered to be Listed or Recognized and covered under UL's Follow-Up Service. Always look for the Mark on the product.



# Dimensions LTSR 25-NP (in mm)



| Number<br>of primary<br>turns | Primary<br>nominal<br>RMS<br>current | Nominal 1) output voltage $V_{\rm out}$ | Primary resistance $R_p$ [m $\Omega$ ] | Primary insertion inductance $L_{ m p}$ [ $\mu$ H] | Recommended connections    |
|-------------------------------|--------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------------------|----------------------------|
| 1                             | ±25                                  | 2.5 ±0.625                              | 0.18                                   | 0.013                                              | 6 5 4 OUT  O-O-O  IN 1 2 3 |
| 2                             | ±12                                  | 2.5 ±0.600                              | 0.81                                   | 0.05                                               | 6 5 4 OUT<br>O             |
| 3                             | ±8                                   | 2.5 ±0.600                              | 1.62                                   | 0.12                                               | 6 5 4 OUT                  |

## **Mechanical characteristics**

General tolerance

Transducer fastening of primary Recommended PCB hole

Transducer fastening of secondary 4 pins 0.5 × 0.35 mm Recommended PCB hole

• Primary through-hole

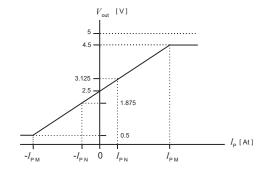
±0.2 mm

6 pins 0.8 × 0.8 mm

1.3 mm

0.8 mm

Ø 3.2 mm


#### **Remarks**

- $\bullet \ \ V_{\rm out}$  swings above 2.5 V when  $I_{\rm P}$  flows from terminals 1, 2, 3 to terminals 4, 5, 6 (with the arrow).
- Temperature of the primary conductor should not exceed 100 °C.
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: **Products/Product Documentation.**

• This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

Note: 1) Ouput voltage when LTSR 25-NP is used with internal reference.

## **Output voltage - Primary current**

