

General Description

The MX7245/MX7248 are complete, 12-bit digital-toanalog converters (DACs) that include an internal voltage reference and a voltage-output amplifier. The MX7245/MX7248 are pin and electrically compatible with Analog Devices' AD7245/AD7248.

The MX7245/MX7248 have double-buffered logic interfaces that are easily interfaced to microprocessors (µPs). Data is transferred into the Input register from a 12-bitwide data bus (MX7245) for 16-bit uPs, or in a right-justified (8+4)-bit format (MX7248) for 8- and 16-bit µPs. All logic signals are level triggered and are TTL and CMOS compatible. The timing specifications ensure compatiblity with common uPs.

The DACs are specified and tested for both dual- and single-supply operation. Usable supplies range from single +12V to dual ±15V.

Internal gain-setting resistors allow three output voltage ranges: 0V to +5V and 0V to +10V can be generated using either single or dual supplies. With dual supplies, an additional output range of ±5V is available. The output amplifier drives $2k\Omega$ loads to +10V.

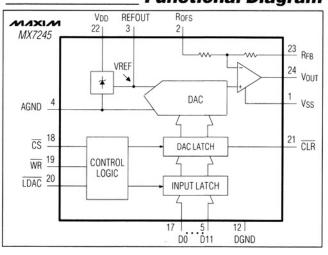
See MAX507/MAX508 data sheet for detailed description.

Applications

Minimum Component Count Analog Systems

Digital Offset and Gain Adjustment

Industrial Control


Arbitrary Function Generators

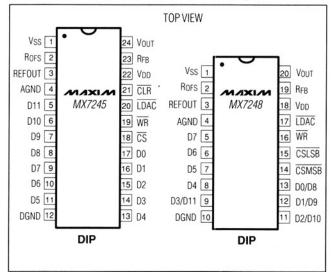
Automatic Test Equipment

Automated Calibration

Machine and Motion Control

Functional Diagram

Features


- 12-Bit Voltage Output
- ♦ Low-Noise, Buried-Zener Voltage Reference
- ♦ Fast Logic Interface (80ns WR Pulse)
- Operate from Single or Dual Supplies
- ♦ 8-/16-Bit Microprocessor-Bus Compatible
- Available in DIP and PLCC Packages
- Pin and Electrically Compatible with AD7245/AD7248

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MX7245JN	0°C to +70°C	24 Plastic DIP
MX7245JP	0°C to +70°C	28 PLCC
MX7245J/D	0°C to +70°C	Dice*
MX7245AQ	-40°C to +85°C	24 CERDIP
MX7245SE	-55°C to +125°C	28 LCC**
MX7245SQ	-55°C to +125°C	24 CERDIP**
MX7248JN	0°C to +70°C	20 Plastic DIP
MX7248JP	0°C to +70°C	20 PLCC
MX7248J/D	0°C to +70°C	Dice*
MX7248AE	-40°C to +85°C	20 LCC***
MX7248AQ	-40°C to +85°C	20 CERDIP
MX7248SE	-55°C to +125°C	20 LCC**
MX7248SQ	-55°C to +125°C	20 CERDIP**

- Contact factory for dice specifications.
- Contact factory for availability and processing to MIL-STD-883.
- ***Contact factory for availability.

Pin Configurations

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Ranges:
MX724_J
MX724_A
MX724_S
Storage Temperature Range65°C to +160°C
Lead Temperature (soldering, 10 sec) +300°C
[10.45 Per] - 10 Per [

Note 1: The output can be shorted to either supply rail if the package power dissipation is not exceeded. Typical short-circuit current to AGND is 25mA.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Single Supply (VDD = +11.4V to +15.75V, VSS = AGND = DGND = 0V, RL = $2k\Omega$, CL = 100pF, REFOUT unloaded, all grades, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
STATIC PERFORMANCE								
Resolution	N			12			Bits	
Relative Accuracy	INL					±1	LSB	
Differential Nonlinearity	DNL					±1	LSB	
Unipolar Offset Error	UOE	$T_A = +25^{\circ}C$				±3	LSB	
Onipolal Onset Endi	OOL	$T_A = T_{MIN}$ to T_{MAX}				±5		
DAC Gain Error						±2	LSB	
Full-Scale Output	FSE	V _{DD} = 12V or 15V	T _A = +25°C			±0.2	% of FSR	
Voltage Error	FSE	VDD = 12V 01 13V	TA = TMIN to TMAX			±0.6	70 01 1 011	
ΔFull-Scale Output		$V_{DD} = 12V \text{ or}$	T _A = +25°C			±0.12	% of FSR	
Voltage Error/ ΔVDD		15V ±5%	$T_A = T_{MIN}$ to T_{MAX}			±0.2	70 01 1 011	
Full Cools Tompos		MX724_J_/A_				±30	ppm of	
Full-Scale Tempco		MX724_S_				±40	FSR/°C	
ΔOffset/ΔV _{DD}		V _{DD} = 12V or 15V ±	±5%			±1	mV	
REFERENCE								
Reference Output		$V_{DD} = 12V \text{ or } 15V,$	T _A = +25°C	4.99		5.01	V	
ΔReference/ΔVDD		$V_{DD} = 12V \text{ or}$	T _A = +25°C			2	mV/V	
ΔReference/ΔVDD		15V ±5%	$T_A = T_{MIN}$ to T_{MAX}			6	IIIV/V	
Reference Temperature	TCVo	MX724_J_/A_			±30		ppm/°C	
Coefficient	1000	MX724_S_			±40		ррпі, О	
Reference Load Sensitivity		I _{LOAD} = 0μA to 100)μΑ			±1	mV	
ANALOG OUTPUT								
Output Range Resistors				15		30	kΩ	
Ranges		(Note 2)				0 to 5 or 10	V	
DC Output Impedance					0.5		Ω	
Short-Circuit Current					25		mA	

ELECTRICAL CHARACTERISTICS (continued)

Single Supply (VDD = +11.4V to +15.75V, VSS = AGND = DGND = 0V, RL = $2k\Omega$, CL = 100pF, REFOUT unloaded, all grades, TA = TMIN to TMAX, unless otherwise noted.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
DYNAMIC PERFORMAN	ICE (Note 3)							
Output Voltage Settling Time	ts	Settling time to ±1/2	LSB			5	μs	
Output Voltage Slew Rate				2			V/µs	
Digital Feedthrough					10		nV-s	
Digital-to-Analog Glitch Impulse	Q	Major carry transitio	n		30		nV-s	
Output Load Resistance		$V_{OUT} = 0V \text{ to } +10V$	(Note 2)	2			kΩ	
POWER SUPPLIES								
V _{DD} Range		For specified perfor	mance	11.40	1000	15.75	V	
In a	O to to alorded	Outputs unloaded	T _A = +25°C			9	mA	
IDD		Outputs unloaded	TA = TMIN to TMAX			12	I IIIA	

ELECTRICAL CHARACTERISTICS

Dual Supply (VDD = +11.4V to +15.75V, VSS = -11.4V to -15.75V, DGND = AGND = 0V, RL = $2k\Omega$, CL = 100pF, REFOUT unloaded, all grades, TA = T_{MIN} to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
STATIC PERFORMANCE								
Resolution	N			12			Bits	
Relative Accuracy	INL					±1	LSB	
Differential Nonlinearity	DNL					±1	LSB	
Dinalar Zara Offeet Error	BZOE	T _A = +25°C				±3	LSB	
Bipolar Zero Offset Error	BZUE	TA = TMIN to TMAX				±5	LOD	
DAC Gain Error						±2	LSB	
		V _{DD} = 15V or -15V	T _A = +25°C			±0.2		
Full-Scale Output	FSE	VDD = 13V 01 -13V	T _A = T _{MIN} to T _{MAX}			±0.6	% of FSR	
Voltage Error		V _{DD} = 12V or -12V	$T_A = +25^{\circ}C$			±0.2		
		VDD = 12V 01-12V	T _A = T _{MIN} to T _{MAX}			±0.6		
ΔFull-Scale Output		$V_{DD} = 12V \text{ or}$	$T_A = +25^{\circ}C$			±0.12	% of FSF	
Voltage Error/ ΔVDD		15V ±5%	$T_A = T_{MIN}$ to T_{MAX}			±0.2	/6 011 311	
ΔFull-Scale Output Voltage Error/ ΔVSS		V _{SS} = 12V or 15V ±	5%			±1	mV	
Full Cools Tompos		MX724_J_/A_				±30	ppm of	
Full-Scale Tempco		MX724_S_				±40	FSR/°C	
ΔOffset/ΔV _{DD}		V _{DD} = 12V or 15V ±	:5%			±1	mV	
REFERENCE								
Reference Output		V _{DD} = 12V or 15V, 7	Γ _A = +25°C	4.99		5.01	V	
4D-f/4V		V _{DD} = 12V or	T _A = +25°C			2	m\//\/	
ΔReference/ΔV _{DD}		15V ±5%	T _A = T _{MIN} to T _{MAX}			6	mV/V	
Reference Temperature	TOVA	MX724_J_/A_			±30		ppm/°C	
Coefficient	TCVo	MX724_S_			±40		ppin/ C	
Reference Load Sensitivity		$I_{LOAD} = 0\mu A$ to 100	μА			±1	mV	

ELECTRICAL CHARACTERISTICS (continued)

Dual Supply (VDD = +11.4V to +15.75V, VSS = -11.4V to -15.75V, DGND = AGND = 0V, RL = $2k\Omega$, CL = 100pF, REFOUT unloaded, all grades, TA = T_{MIN} to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
ANALOG OUTPUT							
Output Range Resistors				15		30	kΩ
Ranges		(Note 2)			0 to 5 or 10 -5 to 5		V
DC Output Impedance					0.5		Ω
Short-Circuit Current					25		mA
DYNAMIC PERFORMAN	CE (Note 3)						
Output Voltage Settling Time	ts	Settling time to ±1/2L	SB			5	μs
Output Voltage Slew Rate				2			V/µs
Digital Feedthrough					10		nV-s
Digital-to-Analog Glitch Impulse	Q	Major carry transition			30		nV-s
Output Load Resistance		$V_{OUT} = -5V \text{ to } +10V$		2			kΩ
POWER SUPPLIES							
V _{DD} Range		For specified perform	nance	11.40		15.75	V
V _{SS} Range		For specified perform	nance	-11.40		-15.75	V
loo		Outputs unloaded	T _A = +25°C			9	mA
IDD		Outputs unloaded	$T_A = T_{MIN}$ to T_{MAX}			12	IIIA
loo		Outputs unloaded	T _A = +25°C	3		3	- mA
Iss		Outputs unloaded	TA = TMIN to TMAX	5			1 MA

ELECTRICAL CHARACTERISTICS

Single or Dual Supply (VDD = +11.4V to +15.75V, VSS = 0V to -15.75V, DGND = AGND = 0V, $R_L = 2k\Omega$, $C_L = 100pF$, REFOUT unloaded, all grades, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.)

PARAMETER	SYMBOL	CONDIT	MIN	TYP	MAX	UNITS	
DIGITAL INPUTS							
Input High Voltage	VINH			2.4			V
Input Low Voltage	VINL					8.0	V
	IN	D0-D11	T _A = +25°C	334,800 opga. 2010 o opga. 2		±1	
	III	00-011	T _A = T _{MIN} to T _{MAX}			±10	
Input Current	linh	CS, WR, LDAC, CLR,	T _A = +25°C			±1	μΑ
		CSMB, CSLSB	TA = TMIN to TMAX			±10	
	INL	CS, WR, LDAC, CLR,	T _A = +25°C			150	
	IINL	CSMB, CSLSB	$T_A = T_{MIN}$ to T_{MAX}			200	
Digital Input	CIN	MX7245				8	nE.
Capacitance	CIN	MX7248				16	pF

Note 2: VouT must be less than (Vpp -2.5V). Note 3: Guaranteed at $T_A = +25$ °C, but not production tested.

SWITCHING CHARACTERISTICS

(TA = TMIN = TMAX, unless otherwise noted.)

DADAMETER	SYMBOL	CONDITIONS	J GF	RADE	A G	RADE	SGF	RADE	UNITS	
PARAMETER	STINIBUL	CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX		
CC Dulas Width	+.	T _A = +25°C	80		80		105		ns	
CS Pulse Width	t ₁	T _A = T _{MIN} to T _{MAX}	100		100		135		1115	
WR Pulse Width	to	T _A = +25°C	80		80		105		ns	
WR Pulse Width	t ₂	$T_A = T_{MIN}$ to T_{MAX}	100		100		135		113	
CS to WR Setup Time	t ₃		0		0		0		ns	
CS to WR Hold Time	t ₄		0		0		0		ns	
	t ₅	T _A = +25°C	100		100		155			
Data to WR Setup Time	(MX7245 only)	$T_A = T_{MIN}$ to T_{MAX}	110		130		250		ns	
Data to Till Cotap Tillo	t ₅	T _A = +25°C	110		110		180			
	(MX7248 only)	TA = TMIN to TMAX	130		130		270			
Data to WR Hold Time	t ₆ (MX7245 only)		10		10		10		ns	
LDAC Dulas Wildth		T _A = +25°C	80		80		90		ns	
LDAC Pulse Width	t ₇	TA = TMIN to TMAX	100		100		120			
OLD Dulas Midth	ta	T _A = +25°C	80		80		140			
CLR Pulse Width	t ₈ (MX7245 only)	TA = TMIN to TMAX	100		100		200		ns	

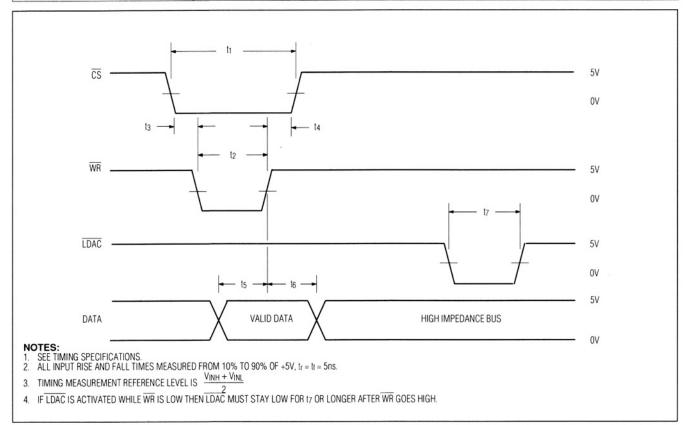


Figure 1. MX7245 Write-Cycle Timing Diagram

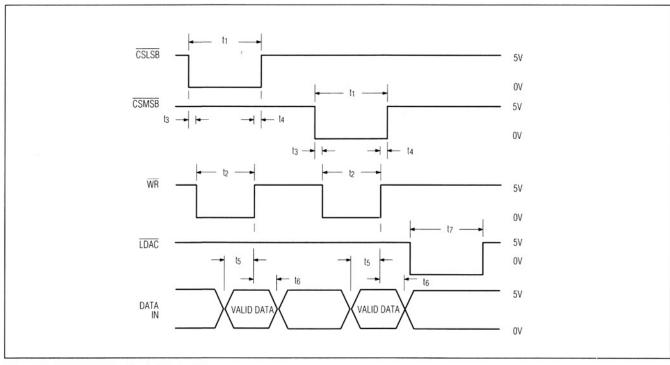


Figure 2. MX7248 Write-Cycle Timing Diagram

MX7245 PIN	MX7248 PIN	NAME	FUNCTION	MX7245 PIN	MX7248 PIN	NAME	FUNCTION
1	1	Vss	Negative Supply Voltage	13-17		D4-D0	Data Bits 4-0
2	2	ROFS	Bipolar Offset Resistor	18		CS	Chip-Select Input - active low
3	3	REFOUT	Reference Output		14	CSMSB	Chip-Select Input for the MSB nibble – active low
4	4	AGND	Analog Ground		15	CSLSB	Chip-Select Input for the LSB byte – active low
	5-8	D7-D4	Data Bits 7-4	19	16	WR	Write Input - active low
	9	D3/D11	Data Bits 3 and 11	20	17	LDAC	Load DAC Input - active low
5-11		D11-D5	Data Bits 11-5	21		CLR	Clear Input - active low
12	10	DGND	Digital Ground	22	18	V_{DD}	Positive Supply Voltage
	11	D2/D10	Data Bits 2 and 10	23	19	R _{FB}	Feedback Resistor
	12	D1/D9	Data Bits 1 and 9	24	20	Vout	Output Voltage
	13	D0-D8	Data Bits 0 and 8				

See MAX507/MAX508 data sheet for applications information.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

WHAT'S NEW PRODUCTS SOLUTIONS

			SITE SEARCH		PART NO. SEARCH
DESIGN	APPNOTES	SUPPORT	BUY	COMPANY	MEMBERS

MX7245

Part Number Table

Notes:

- 1. See the MX7245 QuickView Data Sheet for further information on this product family or download the MX7245 full data sheet (PDF, 2MB).
- 2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales.
- 3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day.
- 4. Part number suffixes: T or T&R = tape and reel; + = RoHS/lead-free; # = RoHS/lead-exempt. More: See full data sheet or Part Naming Conventions.
- 5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses.

Part Number	Free Sample	Buy Direct	Package: TYPE PINS SIZE DRAWING CODE/VAR *	Temp	RoHS/Lead-Free? Materials Analysis
MX7245JENG+	Sample	Buy		-40°C to +85°C	RoHS/Lead-Free: Yes
MX7245SE+	Sample	Buy		-55°C to +125°C	RoHS/Lead-Free: Yes
MX7245AQ		Buy		-40°C to +85°C	RoHS/Lead-Free: No
MX7245SQ		Buy		-55°C to +125°C	RoHS/Lead-Free: No
MX7245J/D		Buy			RoHS/Lead-Free: No
MX7245JN	Sample	Buy	PDIP;24 pin;.300" Dwg: 21-0043D (PDF)	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis

			Use pkgcode/variation: N24-3*		
MX7245JN+	Sample	Buy	PDIP;24 pin;.300" Dwg: 21-0043D (PDF)	0°C to +70°C	RoHS/Lead-Free: Yes
			Use pkgcode/variation: N24+3*		Materials Analysis
MX7245JP+	Sample	Buy	PLCC;28 pin;.453" SQ Dwg: 21-0049D (PDF)	0°C to +70°C	RoHS/Lead-Free: Yes
			Use pkgcode/variation: Q28+2*		Materials Analysis
MX7245JP	Sample	Buy	PLCC;28 pin;.453" sq. Dwg: 21-0049D (PDF) Use pkgcode/variation: Q28-2*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MX7245JP-T	I	Buy	PLCC;28 pin;.453" sq. Dwg: 21-0049D (PDF) Use pkgcode/variation: Q28-2*	0°C to +70°C	RoHS/Lead-Free: No Materials Analysis
MX7245JP+T	I	Buy		0°C to +70°C	RoHS/Lead-Free: Yes
MX7245JENG	[I	Buy	SOIC;24 pin;.300" Dwg: 21-0042B (PDF) Use pkgcode/variation: W24-2*	-40°C to +85°C	RoHS/Lead-Free: No Materials Analysis
MX7245JENG+T	Į.	Buy		-40°C to +85°C	RoHS/Lead-Free: Yes
MX7245JEQI-T	I	Buy		-40°C to +85°C	RoHS/Lead-Free: No
MX7245JENG-T	[I	Buy		-40°C to +85°C	RoHS/Lead-Free: No
MX7245JEQI	Sample	Buy	SOIC;24 pin;.300" Dwg: 21-0042B (PDF) Use pkgcode/variation: W24-2*	-40°C to +85°C	RoHS/Lead-Free: No Materials Analysis
MX7245SE-T	I	Buy		-55°C to +125°C	RoHS/Lead-Free: No
MX7245SE	[I	Buy	SOIC;24 pin;.300" Dwg: 21-0042B (PDF) Use pkgcode/variation: W24-2*	-55°C to +125°C	RoHS/Lead-Free: No Materials Analysis
MX7245SE+T	I	Buy		-55°C to +125°C	RoHS/Lead-Free: Yes

CONTACT US: SEND US AN EMAIL

Copyright © 2007 by Maxim Integrated Products, Dallas Semiconductor • Legal Notices • Privacy Policy