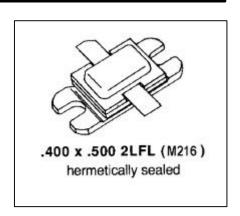


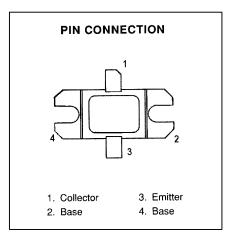
140 COMMERCE DRIVE MONTGOMERYVILLE, PA 18936-1013

PHONE: (215) 631-9840 FAX: (215) 631-9855

MS2210

RF AND MICROWAVE TRANSISTORS AVIONICS APPLICATIONS


Features


- 255 MHz BANDWIDTH
- GOLD METALLIZATION
- EMITTER SITE BALLASTED
- P_{OUT} = 300W MINIMUM
- $G_P = 7.0 dB$
- LOW THERMAL RESISTANCE
- INPUT/OUTPUT MATCHING
- 15:1 VSWR CAPABILITY

DESCRIPTION:

The MS2210 avionics power transistor is a broadband, high peak pulse power device specifically designed for avionics applications requiring broad bandwidth with moderate duty cycle and pulse width constraints such as ground/ship DME/TACAN.

The MS2210 is also designed for specialized applications where reduced power is provided under pulse formats utilizing short pulse widths and high burst or overall duty cycles. This device is capable of withstanding 15:1 VSWR mismatch load conditions at any phase angle under full rated conditions.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25°C)

Symbol	Parameter	Value	Unit
P _{DISS}	Power Dissipation*	940	W
I _C	Device Current*	24	Α
V _{cc}	Collector-Supply Voltage*	50	
T _J	Junction Temperature (RF Pulsed Operation)	+200	°C
T _{STG}	Storage Temperature	- 65 to + 200	°C

THERMAL DATA

$R_{TH(j-c)}$	Junction-Case Thermal Resistance*	0.16	°C/W

^{*}Applies only to rated RF amplifier operation

MS2210

ELECTRICAL SPECIFICATIONS (TCASE = 25°C)

STATIC

Symbol	Test Conditions		Value	Unit			
Syllibol	rest conditions		Min.	Тур.	Max.		
BV _{CBO}	I _C = 50 mA	I _E = 0 mA	65			V	
BV _{EBO}	I _E = 15 mA	$I_C = 0 \text{ mA}$	3.0			٧	
BV _{CER}	I _C = 50 mA	$R_{BE} = 10 \Omega$	65			٧	
I _{CES}	V _{CE} = 50 V				30	mA	
h _{FE}	V _{CE} = 5 V	I _C = 5A	10				

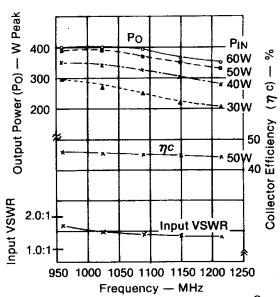
DYNAMIC

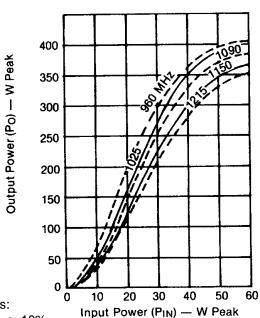
Symbol	Test Conditions		Value		
Symbol	rest Conditions	Min.	Тур.	Max.	Unit
P _{out}	f = 960 - 1215 MHz P _{IN} = 60 W V _{CC} = 50 V	300	330		W
ης	f = 960 - 1215 MHz P _{IN} = 60 W V _{CC} = 50 V	38	45		%
G₽	f = 960 - 1215 MHz P _{IN} = 60 W V _{CC} = 50 V	7.0	7.4		Db

Note: Pulse Format: 10 μ S

Duty Cycle: 10%

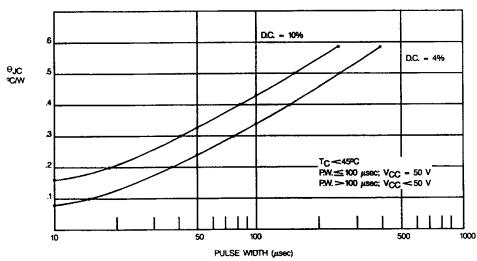
IMPEDANCE DATA


FREQ	$Z_IN(\Omega)$	$Z_{\mathtt{CL}}(\Omega)$		
960 MHz	2.0 + j3.6	1.7 - j2.2		
1090 MHz	3.5 + j1.7	2.0 - j1.7		
1215 MHz	1.6 + j0.5	1.8 - j2.0		



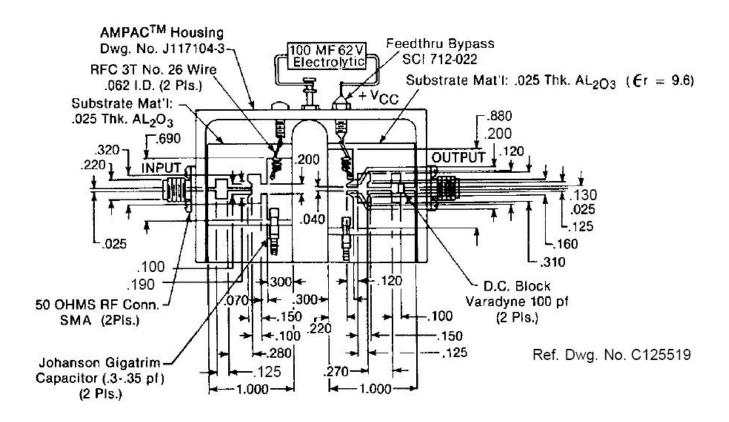
TYPICAL PERFORMANCE

TYPICAL BROADBAND RESPONSE

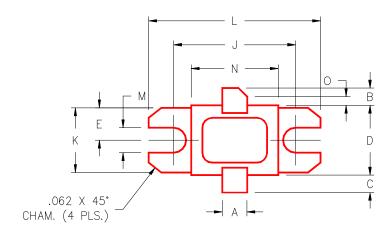


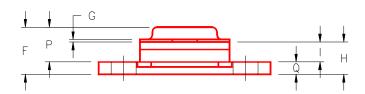
TYPICAL POWER OUTPUT vs POWER INPUT

Conditions: $PW = 10 \mu s$, 10% $V_{CC} = 50 V$


MAXIMUM THERMAL RESISTANCE vs PULSE WIDTH & DUTY CYCLE

TEST CIRCUIT





PACKAGE MECHANICAL DATA

PACKAGE STYLE M216

	MINIMUM	MAXIMUM		MINIMUM	MAXIMUM
	INCHES/MM	INCHES/MM		INCHES/MM	INCHES/MM
Α	.140	/3,56		.700/17,78	
В	.110/2,80		k	.386/9,80	
С	.110/	[′] 2,80	L	.900/22.86	
D	.395/10,03	.407/10,34	M	.120/3,05	
Ε	.193/	/4,90	N	.500/12,70	
F		.230/5,84	C	.050/1,27	
G	.003/0,08	.006/0,15	F		.170/4,32
Н	.118/3,00	.131/3,33	C	.062/1,58	
	.063,	/1,60			