FAIRCHILD

SEMICONDUCTOR

October 1987 Revised January 1999

MM80C95 • MM80C97 • MM80C98 3-STATE Hex Buffers • 3-STATE Hex Inverters

General Description

The MM80C95, MM80C97 and MM80C98 gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. The MM80C95 and the MM80C97 convert CMOS or TTL outputs to 3-STATE outputs with no logic inversion, the MM80C98 provides the logical opposite of the input signal. The MM80C95 has common 3-STATE controls for all six devices. The MM80C97 and the MM80C98 have two 3-STATE controls; one for two devices and one for the other four devices. Inputs are protected from damage due to static discharge by diode clamps to V_{CC} and GND.

Features

- Wide supply voltage range: 3.0V to 15V
- Guaranteed noise margin: 1.0V
- \blacksquare High noise immunity: 0.45 V_{CC} (typ.)
- TTL compatible: Drive 1 TTL Load

Applications

Bus drivers: Typical propagation delay into 150 pF load is 40 ns

Ordering Code:

Order Number	Package Number	Package Description			
MM80C95N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
MM80C97M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow			
MM80C97N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
MM80C98N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

Connection Diagrams

Pin Assignments for DIP

© 1999 Fairchild Semiconductor Corporation DS005907.prf

www.fairchildsemi.com

Absolute Maximum Ratings(Note 3)

Voltage at Any Pin Operating Temperature Range Storage Temperature Range Power Dissipation (P_D) Dual-In-Line Small Outline

-0.3V to V_{CC} + 0.3V -40°C to +85°C -65°C to +150°C 700 mW 500 mW Power Supply Voltage (V_{CC}) Lead Temperature (Soldering, 10 seconds)

Note 3: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

Min/Max lir	mits apply across temperature range	e unless otherwise noted				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO C	CMOS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
		$V_{CC} = 10V$	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
		$V_{CC} = 10V$			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V$	4.5			V
		$V_{CC} = 10V$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V$			0.5	V
		$V_{CC} = 10V$			1.0	V
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V$		0.005	1.0	μA
I _{IN(0)}	Logical "0" Input Current		-1.0	-0.005		μA
I _{oz}	Output Current in High	$V_{CC} = 15V, V_{O} = 15V$		0.005	1.0	μA
	Impedance State	$V_{CC} = 15V, V_{O} = 0V$	-1.0	-0.005		μA
I _{CC}	Supply Current	$V_{CC} = 15V$		0.01	15	μA
TTL INTER	FACE	L. C.				
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 4.75V$	V _{CC} – 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 4.75V$			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	V _{CC} = 4.75V,	2.4			V
		$I_0 = -1.6 \text{ mA}$				
V _{OUT(0)}	Logical "0" Output Voltage	V _{CC} = 4.75V,			0.4	V
		I _O = 1.6 mA				
OUTPUT D	RIVE (Short Circuit Current)	·				
ISOURCE	Output Source Current	$V_{CC} = 5V, V_{IN(1)} = 5V$	-4.35			mA
		$T_A = 25^{\circ}C, V_{OUT} = 0V$				
ISOURCE	Output Source Current	$V_{CC} = 10V, V_{IN(1)} = 10V$	-20			mA
		$T_A = 25^{\circ}C, V_{OUT} = 0V$				
I _{SINK}	Output Sink Current	$V_{CC} = 5V, V_{IN(0)} = 0V$	4.35			mA
		$T_A = 25^{\circ}C, V_{OUT} = V_{CC}$				
I _{SINK}	Output Sink Current	$V_{CC} = 10V, V_{IN(0)} = 0V$	20			mA
		$T_A = 25^{\circ}C$, $V_{OUT} = V_{CC}$				

MM80C95 • MM80C97 • MM80C98

18V

260°C

www.fairchildsemi.com

Symbol	Parameter	Conditions	Min	Тур	Max	Units
pd0, t _{pd1}	Propagation Delay Time to a Logical "0" or					
	Logical "1" from Data Input to Output					
	MM80C95, MM80C97	$V_{CC} = 5V$		60	100	ns
		$V_{CC} = 10V$		25	40	ns
	MM80C98	$V_{CC} = 5V$		70	150	ns
		$V_{CC} = 10V$		35	75	ns
_{pd0} , t _{pd1}	Propagation Delay Time to a Logical "0" or					
puor pur	Logical "1" from Data Input to Output					
	MM80C95, MM80C97	V _{CC} = 5V, C _L = 150 pF		85	160	ns
		$V_{CC} = 10V, C_1 = 150 \text{ pF}$		40	80	ns
	MM80C98	$V_{CC} = 5V, C_{L} = 150 \text{ pF}$		95	210	ns
		$V_{CC} = 10V, C_{L} = 150 \text{ pF}$		45	110	ns
t _{1H} , t _{0H}	Delay from Disable Input to High Impedance	$R_{L} = 10k, C_{L} = 5 pF$				
	State, (from Logical "1" or Logical "0")					
	MM80C95	$V_{CC} = 5V$		80	135	ns
		$V_{CC} = 10V$		50	90	ns
	MM80C97	$V_{CC} = 5V$		70	125	ns
		$V_{CC} = 10V$		50	90	ns
	MM80C98	$V_{CC} = 5V$		90	170	ns
		$V_{CC} = 10V$		70	125	ns
t _{H1} , t _{H0}	Delay from Disable Input to Logical "1" Level	$R_{L} = 10k, C_{L} = 50 \text{ pF}$				
	(from High Impedance State)					
	MM80C95	$V_{CC} = 5V$		120	200	ns
		$V_{CC} = 10V$		50	90	ns
	MM80C96	$V_{CC} = 5V$		130	225	ns
		$V_{CC} = 10V$		60	110	ns
	MM80C98	$V_{CC} = 5V$		120	200	ns
		$V_{CC} = 10V$		50	90	ns
CIN	Input Capacitance	Any Input (Note 5)		5.0		pF
COUT	Output Capacitance 3-STATE	Any Output (Note 5)		11		pF
	Power Dissipation Consoitance	(Noto 6)		60		nE

Note 4: AC Parameters are guaranteed by DC correlated testing.

Note 5: Capacitance is guaranteed by periodic testing.

Note 6: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note AN-90.

AC Test Circuits and Switching Time Waveforms

www.fairchildsemi.com

4

www.fairchildsemi.com

MM80C95 • MM80C97 • MM80C98 3-STATE Hex Buffers • 3-STATE Hex Inverters