

The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix "MB". However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix "CY".

How to Check the Ordering Part Number

- 1. Go to www.cypress.com/pcn.
- 2. Enter the keyword (for example, ordering part number) in the **SEARCH PCNS** field and click **Apply**.
- 3. Click the corresponding title from the search results.
- 4. Download the Affected Parts List file, which has details of all changes

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

MB90387/387S/F387/F387S MB90V495G

16-bit Microcontrollers F²MC-16LX MB90385 Series

MB90385 series devices are general-purpose high-performance 16-bit micro controllers designed for process control of consumer products, which require high-speed real-time processing. The devices of this series have the built-in full-CAN interface.

The system, inheriting the architecture of F²MC family, employs additional instruction ready for high-level languages, expanded addressing mode, enhanced multiply-divide instructions, and enriched bit-processing instructions. Furthermore, employment of 32-bit accumulator achieves processing of long-word data (32 bits).

The peripheral resources of MB90385 series include the following:

8/10-bit A/D converter, UART (SCI), 8/16-bit PPG timer, 16-bit input-output timer (16-bit free-run timer, input capture 0, 1, 2, 3 (ICU)), and CAN controller.

Features

Clock

- Built-in PLL clock frequency multiplication circuit
- Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 4 times of oscillation clock (for 4-MHz oscillation clock, 4 MHz to 16 MHz).
- Operation by sub-clock (8.192 kHz) is allowed. (MB90387, MB90F387)
- Minimum execution time of instruction: 62.5 ns (when operating with 4-MHz oscillation clock, and 4-time multiplied PLL clock).

16 Mbyte CPU memory Space

■ 24-bit internal addressing

Instruction System Best Suited to Controller

- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- Enhanced multiply-divide instructions and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator

Instruction System Compatible with High-level Language (C language) and Multitask

- Employing system stack pointer
- Enhanced various pointer indirect instructions
- Barrel shift instructions

Increased Processing Speed

■ 4-byte instruction queue

Powerful Interrupt Function with 8 Levels and 34 Factors

Automatic Data Transfer Function Independent of CPU

■ Expanded intelligent I/O service function (EI² OS): Maximum of 16 channels

Low Power Consumption (standby) Mode

■ Sleep mode (a mode that halts CPU operating clock)

- Time-base timer mode (a mode that operates oscillation clock, sub clock, time-base timer and watch timer only)
- Watch mode (a mode that operates sub clock and watch timer only)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU blocking operation mode

Process

■ CMOS technology

I/O Port

■ General-purpose input/output port (CMOS output):

MB90387, MB90F387: 34 ports (including 4 high-current output ports)

MB90387S, MB90F387S: 36 ports (including 4 high-current output ports)

Timer

- Time-base timer, watch timer, watchdog timer: 1 channel
- 8/16-bit PPG timer: 8-bit x 4 channels, or 16-bit x 2 channels
- 16-bit reload timer: 2 channels
- 16-bit input/output timer
 - □ 16-bit free run timer: 1 channel
 - □ 16-bit input capture: (ICU): 4 channels

Interrupt request is issued upon latching a count value of 16-bit free run timer by detection of an edge on pin input.

CAN Controller: 1 channel

- Compliant with Ver2.0A and Ver2.0B CAN specifications
- 8 built-in message buffers
- Transmission rate of 10 kbps to 1 Mbps (by 16 MHz machine clock)
- CAN wake-up

UART (SCI): 1 channel

- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available.

DTP/External Interrupt: 4 channels, CAN wakeup: 1channel

■ Module for activation of expanded intelligent I/O service (El²OS), and generation of external interrupt.

Delay Interrupt Generator Module

■ Generates interrupt request for task switching.

8/10-bit A/D Converter: 8 channels

- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time: 6.125 µs (at 16 MHz machine clock, including sampling time)

Program Patch Function

■ Address matching detection for 2 address pointers.

Document Number: 002-07765 Rev. *A Page 2 of 81

MB90387/387S/F387/F387S MB90V495G

Contents

Product Lineup	. 4
Packages And Product Models	. 5
Product Comparison	. 5
Pin Assignment	. 6
Pin Description	. 7
I/O Circuit Type	. 9
Handling Devices	10
Block Diagram	12
Memory Map	12
Memory Allocation of MB90385	
Memory Map	
I/O Map	14
Interrupt Sources, Interrupt Vectors, And Interrupt Contr	
Registers	21
Peripheral Resources	22
I/O Ports	22
Time-Base Timer	28
Watchdog Timer	
16-bit Input/Output Timer	
16-bit Reload Timer	
Watch Timer Outline	
8/16-bit PPG Timer Outline	39

Delay Interrupt Generation Module Outline	42
DTP/External Interrupt and CAN Wakeup Outline	43
8/10-bit A/D Converter	45
UART Outline	47
CAN Controller	
Address Matching Detection Function Outline	
ROM Mirror Function Selection Module Outline	
512 Kbit Flash Memory Outline	
Electrical Characteristics	55
Absolute Maximum Rating	55
Recommended Operating Conditions	
DC Characteristics	
AC Characteristics	
A/D Converter	67
Definition of A/D Converter Terms	68
Notes on A/D Converter Section	70
Flash Memory Program/Erase Characteristics	70
Example Characteristics	
Ordering Information	77
Package Dimension	78
Major Changes	79
Document History	80
Sales, Solutions, and Legal Information	

1. Product Lineup

Parameter	Part Number	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G		
Classification		Flash ROM	Mask ROM	Evaluation product		
ROM capacity		64 Kbyt	es	_		
RAM capacity		2 Kbyte	es	6 Kbytes		
Process			CMOS			
Package		LQFP-48 (pin pito	LQFP-48 (pin pitch 0.50 mm) PGA-256			
Operating power	r supply voltage	3.5 V to 5	5.5 V	4.5 V to 5.5 V		
Special power semulator*1	upply for	-		None		
CPU functions		Instruction bit length Instruction length Data bit length	: 351 instructions : 8 bits and 16 bits : 1 byte to 7 bytes : 1 bit, 8 bits, 16 bits			
1		Minimum instruction execution tin	•	·		
		Interrupt processing time: 1.5 µs	· · · · · · · · · · · · · · · · · · ·	<u> </u>		
Low power cons (standby) mode		Sleep mode / Watch mode / Time	e-base timer mode / Stop mo	ode / CPU intermittent		
I/O port		General-purpose input/output ports (CMOS output): 34 ports (36 ports*2) including 4 high-current output ports (P14 to P17)				
Time-base timer		18-bit free-run counter Interrupt cycle: 1.024 ms, 4.096 ms, 16.834 ms, 131.072 ms (with oscillation clock frequency at 4 MHz)				
Watchdog timer		Reset generation cycle: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (with oscillation clock frequency at 4 MHz)				
16-bit input/ output timer	16-bit free-run timer	Number of channels: 1 Interrupt upon occurrence of overflow				
	Input capture	Number of channels: 4 Retaining free-run timer value set	by pin input (rising edge, fal	ling edge, and both edges)		
16-bit reload timer		Number of channels: 2 16-bit reload timer operation Count clock cycle: 0.25 μs, 0.5 μs, 2.0 μs (at 16-MHz machine clock frequency) External event count is allowed.				
Watch timer		15-bit free-run counter Interrupt cycle: 31.25 ms, 62.5 ms, 12 ms, 250 ms, 500 ms, 1.0 s, 2.0 s (with 8.192 kHz sub clock)				
8/16-bit PPG timer		Number of channels: 2 (four 8-bit channels are available also.) PPG operation is allowed with four 8-bit channels or two 16-bit channels. Outputting pulse wave of arbitrary cycle or arbitrary duty is allowed. Count clock: 62.5 ns to 1 µs (with 16 MHz machine clock)				
Delay interrupt g	enerator module	Interrupt generator module for task switching. Used for realtime OS.				
DTP/External int	errupt	Number of inputs: 4 Activated by rising edge, falling edge, "H" level or "L" level input. External interrupt or expanded intelligent I/O service (EI²OS) is available.				

Document Number: 002-07765 Rev. *A Page 4 of 81

Part Number Parameter	MB90F387 MB90F387S	MB90387 MB90387S	MB90V495G
8/10-bit A/D converter	Number of channels: 8 Resolution: Selectable 10-bit or 8-bit. Conversion time: 6.125 µs (at 16 MHz machine clock, including sampling time) Sequential conversion of two or more successive channels is allowed. (Setting a maximum of 8 channels is allowed.) Single conversion mode: Selected channel is converted only once. Sequential conversion mode: Selected channel is converted repetitively. Halt conversion mode: Conversion of selected channel is stopped and activated alternately.		
UART(SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 Clock-asynchronous transfer: 9,6 Communication is allowed by bi- slave type connection.	615 bps to 500 kbps	tion function and master/
CAN	Compliant with Ver 2.0A and Ver 8 built-in message buffers. Transmission rate of 10 kbps to CAN wake-up	·	clock)

^{*1:} Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).

2. Packages And Product Models

Package	MB90F387, MB90F387S	MB90387, MB90387S
LQA048	\circ	\circ

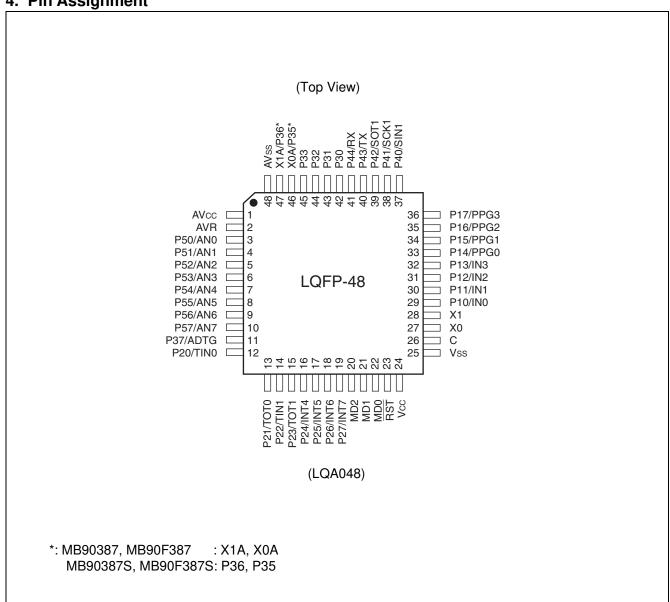
 \bigcirc : Yes \times : No

Note: Refer to Package Dimension for details of the package.

3. Product Comparison

Memory Space

When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:


- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000H to FFFFFFH is viewed on 00 bank and an image of FE0000H to FF3FFFH is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F387/F387S/387/387S, an image from FF4000+ to FFFFFF+ is viewed on 00 bank and an image of FE0000+ to FF3FFF+ is viewed only on FF bank.

Document Number: 002-07765 Rev. *A Page 5 of 81

^{*2:} MB90387S, MB90F387S

4. Pin Assignment

5. Pin Description

Pin No.	Pin Name	Circuit Type	Function		
1	AVcc	_	Vcc power input pin for A/D converter.		
2	AVR	_	Power (Vref+) input pin for A/D converter. Use as input for Vcc or lower.		
3 to 10	P50 to P57	Е	General-purpose input/output ports.		
	AN0 to AN7		Functions as analog input pins for A/D converter. Valid when analog input setting is "enabled."		
11	P37	D	General-purpose input/output port.		
	ADTG		Function as an external trigger input pin for A/D converter. Use the pin by setting as input port.		
12	P20	D	General-purpose input/output port.		
	TIN0		Function as an event input pin for reload timer 0. Use the pin by setting as input port.		
13	P21	D	General-purpose input/output port.		
	ТОТ0		Function as an event output pin for reload timer 0. Valid only when output setting is "enabled."		
14	P22	D	General-purpose input/output port.		
	TIN1		nction as an event input pin for reload timer 1. Use the pin by setting as input port		
15	P23	D	General-purpose input/output port.		
	TOT1		Function as an event output pin for reload timer 1. Valid only when output setting is "enabled."		
16 to 19	P24 to P27	D	General-purpose input/output ports.		
	INT4 to INT7		Functions as external interrupt input pins. Use the pins by setting as input por		
20	MD2	F	Input pin for specifying operation mode. Connect directly to Vss.		
21	MD1	С	Input pin for specifying operation mode. Connect directly to Vcc.		
22	MD0	С	Input pin for specifying operation mode. Connect directly to Vcc.		
23	RST	В	External reset input pin.		
24	Vcc	_	Power source (5 V) input pin.		
25	Vss	_	Power source (0 V) input pin.		
26	С	_	Capacitor pin for stabilizing power source. Connect a ceramic capacitor of approximately 0.1 $\mu\text{F}.$		
27	X0	Α	Pin for high-rate oscillation.		
28	X1	Α	Pin for high-rate oscillation.		
29 to 32	P10 to P13	D	General-purpose input/output ports.		
	IN0 to IN3		Functions as trigger input pins of input capture ch.0 to ch.3. Use the pins by setting as input ports.		
33 to 36	P14 to P17	G	General-purpose input/output ports. High-current output ports.		
	PPG0 to PPG3		Functions as output pins of PPG timers 01 and 23. Valid when output setting is 'enabled."		
37	P40	D	General-purpose input/output port.		
	SIN1		Serial data input pin for UART. Use the pin by setting as input port.		
38	P41	D	General-purpose input/output port.		
	SCK1		Serial clock input pin for UART. Valid only when serial clock input/output setting on UART is "enabled."		

Document Number: 002-07765 Rev. *A Page 7 of 81

Pin No.	Pin Name	Circuit Type	Function	
39	P42	D	General-purpose input/output port.	
	SOT1		Serial data input pin for UART. Valid only when serial data input/output setting on UART is "enabled."	
40	P43	D	General-purpose input/output port.	
	TX		Transmission output pin for CAN. Valid only when output setting is "enabled."	
41	P44	D	General-purpose input/output port.	
	RX		Transmission output pin for CAN. Valid only when output setting is "enabled."	
42 to 45	P30 to P33	D	General-purpose input/output ports.	
46	X0A*	Α	Pin for low-rate oscillation.	
	P35*		General-purpose input/output port.	
47	X1A*	Α	Pin for low-rate oscillation.	
	P36*		General-purpose input/output port.	
48	AVss	_	Vss power source input pin for A/D converter.	

*: MB90387, MB90F387: X1A, X0A MB90387S, MB90F387S: P36, P35

Document Number: 002-07765 Rev. *A Page 8 of 81

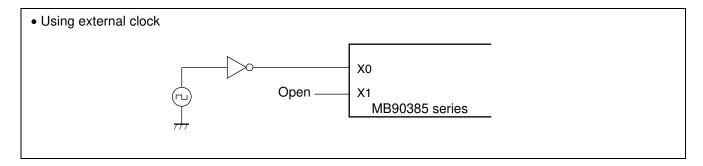
6. I/O Circuit Type

Туре	Circuit	Remarks
A	X1 X1A X0 X0A Standby control signal	 High-rate oscillation feedback resistor, approx.1 MΩ Low-rate oscillation feedback resistor, approx.10 MΩ
В	R ≷ R → W → Hysteresis input	 Hysteresis input with pull-up resistor. Pull-up resistor, approx.50 kΩ
С	R	■ Hysteresis input
D	Vcc P-ch Digital output N-ch Digital output CMOS hysteresis input Standby control	 ■ CMOS hysteresis input ■ CMOS level output ■ Standby control provided
E	P-ch Digital output N-ch Digital output N-ch Digital output Standby control Analog input	 ■ CMOS hysteresis input ■ CMOS level output ■ Shared for analog input pin ■ Standby control provided

Туре	Circuit	Remarks
F		■ Hysteresis input with pull-down resistor
	R	■ Pull-down resistor, approx. 50 kΩ
	☐ ────────────────────────────────────	■ Flash product is not provided with pull-down resistor.
	R 🗲	
G	Ven	■ CMOS hysteresis input
	→ Vcc	■ CMOS level output (high-current output)
	High-current output High-current output N-ch Vss CMOS hysteresis input Standby control	■ Standby control provided

7. Handling Devices

Do Not Exceed Maximum Rating (preventing "latch up")


- On a CMOS IC, latch-up may occur when applying a voltage higher than Vcc or a voltage lower than Vss to input or output pin, which has no middle or high withstand voltage. Latch-up may also occur when a voltage exceeding maximum rating is applied across Vcc pin and Vss pin.
- Latch-up causes drastic increase of power current, which may lead to destruction of elements by heat. Extreme caution must be taken not to exceed maximum rating.
- When turning on and off analog power source, take extra care not to apply an analog power voltages (AVcc and AVR) and analog input voltage that are higher than digital power voltage (Vcc).

Handling Unused Pins

Leaving unused input pins open may cause permanent destruction by malfunction or latch-up. Apply pull-up or pull-down process to the unused pins using resistors of 2 kΩ or higher. Leave unused input/output pins open under output status, or process as input pins if they are under input status.

Using External Clock

■ When using an external clock, drive only X0 pin and leave X1 pin open. An example of using an external clock is shown below.

Document Number: 002-07765 Rev. *A Page 10 of 81

Notes When Using No Sub Clock

■ If an oscillator is not connected to X0A and X1A pin, apply pull-down resistor to X0A pin and leave X1A pin open.

About Power Supply Pins

- If two or more Vcc and Vss pins exist, the pins that should be at the same potential are connected to each other inside the device. For reducing unwanted emissions and preventing malfunction of strobe signals caused by increase of ground level, however, be sure to connect the Vcc and Vss pins to the power source and the ground externally.
- Pay attention to connect a power supply to Vcc and Vss of MB90385 series device in a lowest-possible impedance.
- Near pins of MB90385 series device, connecting a bypass capacitor is recommended at 0.1 μF across Vcc pin and Vss pin.

Crystal Oscillator Circuit

- Noises around X0 and X1 pins cause malfunctions on a MB90385 series device. Design a print circuit so that X0 and X1 pins, an crystal oscillator (or a ceramic oscillator), and bypass capacitor to the ground become as close as possible to each other. Furthermore, avoid wires to X0 and X1 pins crossing each other as much as possible.
- Print circuit designing that surrounds X0 and X1 pins with grounding wires, which ensures stable operation, is strongly recommended.

Caution on Operations during PLL Clock Mode

■ If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

Sequence of Turning on Power of A/D Converter and Applying Analog Input

- Be sure to turn on digital power (Vcc) before applying signals to the A/D converter and applying analog input signals (AN0 to AN7 pins).
- Be sure to turn off the power of A/D converter and analog input before turning off the digital power source.
- Be sure not to apply AVR exceeding AVcc when turning on and off. (No problems occur if analog and digital power is turned on and off simultaneously.)

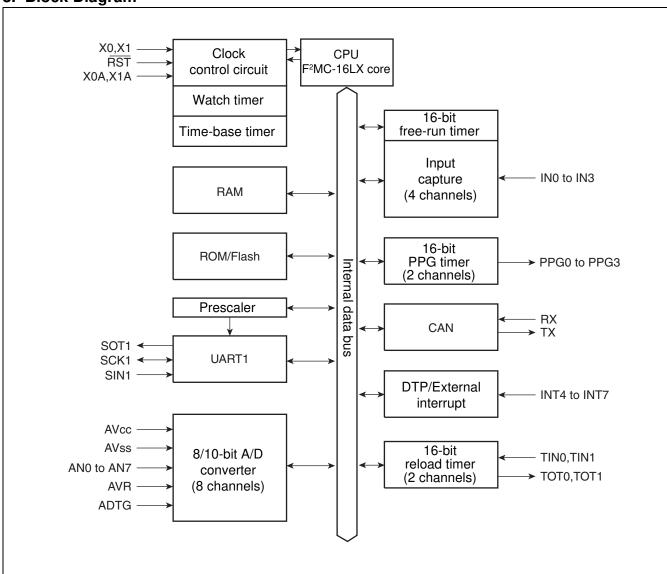
Handling Pins When A/D Converter is Not Used

■ If the A/D converter is not used, connect the pins under the following conditions: "AVcc=AVR=Vcc," and "AVss=Vss"

Note on Turning on Power

■ For preventing malfunctions on built-in step-down circuit, maintain a minimum of 50 μs of voltage rising time (between 0.2 V and 2.7V) when turning on the power.

Stabilization of Supply Voltage


■ A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.

For reference, the supply voltage should be controlled so that V_{cc} ripple variations (peak-to-peak values) at commercial frequencies (50 Hz / 60 Hz) fall below 10% of the standard V_{cc} supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

Document Number: 002-07765 Rev. *A Page 11 of 81

8. Block Diagram

9. Memory Map

MB90385 series allows specifying a memory access mode "single chip mode."

9.1 Memory Allocation of MB90385

MB90385 series model has 24-bit wide internal address bus and up to 24-bit bus of external address bus. A maximum of 16-Mbyte memory space of external access memory is accessible.

9.2 Memory Map

	(with ROM mirror function enable		
000000н 0000С0н 000100н Address #1 003800н 004000н 010000н FE0000н FF0000н	Peripheral RAM area Register Extension IO area ROM area (FF bank image) ROM area* ROM area		
		Model	Address #1
		MB90V495G	001900 _H
		MB90F387/MB90F387S	000900 _H
		MB90387/MB90387S	000900 _H
	ternal access men	nory	

Note: When internal ROM is operating, F²MC-16LX allows viewing ROM data image on FF bank at upper-level of 00 bank. This function is called "mirroring ROM," which allows effective use of C compiler small model.

*: On MB90387/S or MB90F387/S, to read "FE0000h" to "FEFFFFh" is to read out

"FF0000h" to "FFFFFh".

F²MC-16LX assigns the same low order 16-bit address to FF bank and 00 bank, which allows referencing table in ROM without specifying "far" using pointer.

For example, when accessing to "00C000H", ROM data at "FFC000H" is accessed actually. However, because ROM area of FF bank exceeds 48 Kbytes, viewing all areas is not possible on 00 bank image. Because ROM data of "FF4000H" to "FFFFFH" is viewed on "004000H" to "00FFFH" image, store a ROM data table in area "FF4000H" to "FFFFFFH."

Document Number: 002-07765 Rev. *A Page 13 of 81

10. I/O Map

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
000000н		(Reserve	ed area) *		
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB
000003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXB
000006н to 000010н		(Reserve	ed area) *		
000011н	DDR1	Port 1 direction data register	R/W	Port 1	0000000В
000012н	DDR2	Port 2 direction data register	R/W	Port 2	0000000в
000013н	DDR3	Port 3 direction data register	R/W	Port 3	000Х0000в
000014н	DDR4	Port 4 direction data register	R/W	Port 4	ХХХ00000в
000015н	DDR5	Port 5 direction data register	R/W	Port 5	0000000в
000016н to 00001Ан		(Reserve	ed area) *		
00001Вн	ADER	Analog input permission register	R/W	8/10-bit A/D converter	11111111в
00001Снtо 000025н		(Reserve	ed area) *		
000026н	SMR1	Serial mode register 1	R/W	UART1	0000000В
000027н	SCR1	Serial control register 1	R/W, W		00000100в
000028н	SIDR1/ SODR1	Serial input data register 1/ Serial output data register 1	R, W		XXXXXXXXB
000029н	SSR1	Serial status data register 1	R, R/W		00001000в
00002Ан		(Reserve	ed area) *	•	
00002Вн	CDCR1	Communication prescaler control register 1	R/W	UART1	0ХХХ0000в
00002Cнto 00002Fн		(Reserve	ed area) *		
000030н	ENIR	DTP/External interrupt permission register	R/W	DTP/External interrupt	0000000В
000031н	EIRR	DTP/External interrupt permission register	R/W		XXXXXXXXB
000032н	ELVR	Detection level setting register	R/W	1	0000000в
000033н	1		R/W	1	0000000в
000034н	ADCS	A/D control status register	R/W	8/10-bit A/D	0000000в
000035н	1		R/W, W	converter	0000000в
000036н	ADCR	A/D data register	W, R	1	XXXXXXXXB
000037н			R		00101XXX _B

Document Number: 002-07765 Rev. *A Page 14 of 81

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
000038н		(Reserve	ed area) *		
to 00003Fн					
000040н	PPGC0	PPG0 operation mode control register	R/W, W	8/16-bit PPG timer 0/	0X000XX1в
000041н	PPGC1	PPG1 operation mode control register	R/W, W	1	0Х000001в
000042н	PPG01	PPG0/1 count clock selection register	R/W		000000XX _B
000043н		(Reserve	ed area) *	I.	
000044н	PPGC2	PPG2 operation mode control register	R/W, W	8/16-bit PPG timer 2/	0X000XX1в
000045н	PPGC3	PPG3 operation mode control register	R/W, W	3	0Х000001в
000046н	PPG23	PPG2/3 count clock selection register	R/W		000000XXB
000047нto 00004Fн		(Reserve	ed area) *		
000050н	IPCP0	Input capture data register 0	R	16-bit input/output	XXXXXXXX
000051н				timer	XXXXXXXX
000052н	IPCP1	Input capture data register 1	R]	XXXXXXXX
000053н				-	XXXXXXXX
000054н	ICS01	Input capture control status register	R/W		0000000В
000055н	ICS23				0000000В
000056н	TCDT	Timer counter data register	R/W		0000000В
000057н					0000000В
000058н	TCCS	Timer counter control status register	R/W		0000000В
000059н		(Reserve	ed area) *		
00005Ан	IPCP2	Input capture data register 2	R	16-bit input/output	XXXXXXXX
00005Вн				timer	XXXXXXXX
00005Сн	IPCP3	Input capture data register 3	R		XXXXXXXX
00005Дн					XXXXXXXX
00005Eнto 000065н		(Reserve	ed area) *		
000066н	TMCSR0	Timer control status register	R/W	16-bit reload timer 0	0000000В
000067н			R/W		XXXX0000B
000068н	TMCSR1		R/W	16-bit reload timer 1	0000000В
000069н			R/W		XXXX0000 _B
00006 A нto 00006Ен		(Reserve	ed area) *	<u> </u>	
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	XXXXXXX1 _B
000070н		(Reserve	ed area) *		
to 00007F⊦					
000080н	BVALR	Message buffer enabling register	R/W	CAN controller	00000000в
000081н			ed area) *		
UUUUUIH			,		

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value	
000083н		(Reserve	ed area) *			
000084н	TCANR	Send cancel register	W	CAN controller	0000000В	
000085н		(Reserve	ed area) *			
000086н	TCR	Send completion register	R/W	CAN controller	0000000В	
000087н		(Reserve	ed area) *			
000088н	RCR	Receive completion register	R/W	CAN controller	0000000в	
000089н		(Reserve	ed area) *			
00008Ан	RRTRR	Receive RTR register	R/W	CAN controller	0000000В	
00008Вн		(Reserve	ed area) *	-		
00008Сн	ROVRR	Receive overrun register	R/W	CAN controller	0000000В	
00008Dн		(Reserve	ed area) *			
00008Ен	RIER	Receive completion interrupt permission register	R/W	CAN controller	0000000в	
00008Fн to 00009Dн		(Reserve	ed area) *			
00009Ен	PACSR	Address detection control register	R/W	Address matching detection function	0000000В	
00009Fн	DIRR	Delay interrupt request generation/ release register	R/W	Delay interrupt generation module	XXXXXXX0 _B	
0000А0н	LPMCR	Lower power consumption mode control register	W,R/W	Lower power consumption mode	00011000в	
0000А1н	CKSCR	Clock selection register	R,R/W	Clock	11111100в	
0000A2н to 0000A7н		(Reserve	ed area) *			
н8А0000	WDTC	Watchdog timer control register	R,W	Watchdog timer	XXXXX111 _B	
0000А9н	TBTC	Time-base timer control register	R/W,W	Time-base timer	1XX00100 _B	
0000ААн	WTC	Watch timer control register	R,R/W	Watch timer	1Х001000в	
0000ABн to 0000ADн		(Reserve	ed area) *			
0000АЕн	FMCS	Flash memory control status register	R,W,R/W	512k-bit Flash memory	000Х0000в	
0000АГн		(Reserve	ed area) *			

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
0000В0н	ICR00	Interrupt control register 00	R/W	Interrupt controller	00000111в
0000В1н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02			00000111в
0000ВЗн	ICR03	Interrupt control register 03			00000111в
0000В4н	ICR04	Interrupt control register 04			00000111в
0000В5н	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000В7н	ICR07	Interrupt control register 07			00000111в
0000В8н	ICR08	Interrupt control register 08			00000111в
0000В9н	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000ВВн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12			00000111в
0000ВДн	ICR13	Interrupt control register 13			00000111в
0000ВЕн	ICR14	Interrupt control register 14			00000111в
0000ВFн	ICR15	Interrupt control register 15			00000111в
0000С0н to 0000FFн		(Reser	ved area) *		
001FF0н	PADR0	Detection address setting register 0 (low-order)	R/W	Address matching detection function	XXXXXXXXB
001FF1н		Detection address setting register 0 (middle-order)			XXXXXXXXB
001FF2н		Detection address setting register 0 (high-order)			XXXXXXXXB
001FF3н	PADR1	Detection address setting register 1 (low-order)	R/W		XXXXXXXXB
001FF4н		Detection address setting register 1 (middle-order)			XXXXXXXXB
001FF5н		Detection address setting register 1 (high-order)			XXXXXXXXB
003900н	TMR0/	16-bit timer register 0/16-bit reload	R,W	16-bit reload timer 0	XXXXXXXXB
003901н	TMRLR0	register			XXXXXXXX
003902н	TMR1/	16-bit timer register 1/16-bit reload	R,W	16-bit reload timer 1	XXXXXXXXB
003903н	TMRLR1	register			XXXXXXXXB
003904н to 00390Fн		(Reser	ved area) *	1	

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003910н	PRLL0	PPG0 reload register L	R/W	8/16-bit PPG timer	XXXXXXXXB
003911н	PRLH0	PPG0 reload register H	R/W		XXXXXXXXB
003912н	PRLL1	PPG1 reload register L	R/W		XXXXXXXXB
003913н	PRLH1	PPG1 reload register H	R/W		XXXXXXXXB
003914н	PRLL2	PPG2 reload register L	R/W		XXXXXXXXB
003915н	PRLH2	PPG2 reload register H	R/W		XXXXXXXXB
003916н	PRLL3	PPG3 reload register L	R/W		XXXXXXXXB
003917н	PRLH3	PPG3 reload register H	R/W		XXXXXXXXB
003918н to 00392Fн			eserved area) *		
003930н to 003BFFн			eserved area) *		
003С00н to 003С0Fн		RAM (Ge	neral-purpose R	AM)	
003С10н to 003С13н	IDR0	ID register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB
003С14н to 003С17н	IDR1	ID register 1	R/W		XXXXXXXB to XXXXXXXXB
003С18н to 003С1Вн	IDR2	ID register 2	R/W		XXXXXXXXB to XXXXXXXXB
003С1Сн to 003С1Fн	IDR3	ID register 3	R/W		XXXXXXXXB to XXXXXXXXB
003С20н to 003С23н	IDR4	ID register 4	R/W		XXXXXXXB to XXXXXXXXB
003С24н to 003С27н	IDR5	ID register 5	R/W		XXXXXXXB to XXXXXXXXB
003С28н to 003С2Вн	IDR6	ID register 6	R/W		XXXXXXXXB to XXXXXXXXB
003С2Сн to 003С2Fн	IDR7	ID register 7	R/W		XXXXXXXXB to XXXXXXXXB
003С30н, 003С31н	DLCR0	DLC register 0	R/W		XXXXXXX _B , XXXXXXXX _B
003С32н, 003С33н	DLCR1	DLC register 1	R/W		XXXXXXX _B , XXXXXXXX _B
003С34н, 003С35н	DLCR2	DLC register 2	R/W		XXXXXXX _B , XXXXXXXX _B
003С36н, 003С37н	DLCR3	DLC register 3	R/W		XXXXXXX _B , XXXXXXX _B

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003С38н, 003С39н	DLCR4	DLC register 4	R/W	CAN controller	XXXXXXX _B , XXXXXXXX _B
003С3Ан, 003С3Вн	DLCR5	DLC register 5	R/W		XXXXXXX _B , XXXXXXXX _B
003С3Сн, 003С3Dн	DLCR6	DLC register 6	R/W		XXXXXXX _B , XXXXXXXX _B
003С3Ен, 003С3Fн	DLCR7	DLC register 7	R/W		XXXXXXX _B , XXXXXXXX _B
003С40н to 003С47н	DTR0	Data register 0	R/W		XXXXXXXB to XXXXXXXXB
003С48н to 003С4Fн	DTR1	Data register 1	R/W		XXXXXXXB to XXXXXXXXB
003С50н to 003С57н	DTR2	Data register 2	R/W		XXXXXXXB to XXXXXXXXB
003С58н to 003С5Fн	DTR3	Data register 3	R/W		XXXXXXXB to XXXXXXXXB
003С60н to 003С67н	DTR4	Data register 4	R/W		XXXXXXXB to XXXXXXXXB
003С68н to 003С6Fн	DTR5	Data register 5	R/W		XXXXXXXB to XXXXXXXXB
003С70н to 003С77н	DTR6	Data register 6	R/W		XXXXXXXB to XXXXXXXXB
003С78н to 003С7Fн	DTR7	Data register 7	R/W		XXXXXXXB to XXXXXXXXB
003С80н to 003СFFн		(Reser	ved area) *		
003D00н, 003D01н	CSR	Control status register	R/W, R	CAN controller	0XXXX001в, 00XXX000в
003D02н	LEIR	Last event display register	R/W		000ХХ000в
003D03н		(Reser	ved area) *	•	•
003D04н, 003D05н	RTEC	Send/receive error counter	R	CAN controller	00000000в, 00000000в
003D06н, 003D07н	BTR	Bit timing register	R/W		11111111в, Х1111111в
003D08н	IDER	IDE register	R/W		XXXXXXXX
003D09н		(Reser	ved area) *		
003D0Ан	TRTRR	Send RTR register	R/W	CAN controller	0000000В
003D0Вн		(Reser	ved area) *		
003D0Сн	RFWTR	Remote frame receive wait register	R/W	CAN controller	XXXXXXXX

Address	Register Abbreviation	Register	Read/ Write	Resource	Initial Value
003D0Dн		(Reserv	ed area) *		
003D0Ен	TIER	Send completion interrupt permission register	R/W	CAN controller	0000000В
003D0Fн		(Reserv	ed area) *		•
003D10н, 003D11н	AMSR	Acceptance mask selection register	R/W	CAN controller	XXXXXXX _B , XXXXXXXX _B
003D12н, 003D13н		(Reserv	ed area) *	-	
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB
003D18н to 003D1Вн	AMR1	Acceptance mask register 1	R/W		XXXXXXXB to XXXXXXXXB
003D1Cн to 003DFFн		(Reserv	ed area) *		
003E00н to 003EFFн		(Reserv	ed area) *		
003FF0н to 003FFFн		(Reserv	ed area) *		

Initial values:

0: Initial value of this bit is "0."

1: Initial value of this bit is "1."

X: Initial value of this bit is undefined.

*: "Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

Document Number: 002-07765 Rev. *A Page 20 of 81

11. Interrupt Sources, Interrupt Vectors, And Interrupt Control Registers

Intermed Course	El ² OS	I	nterrup	t Vector	Interrupt C	ontrol Register	Dui a vitu «*3
Interrupt Source	Readiness	Nur	nber	Address	ICR	Address	Priority*3
Reset	×	#08	08н	FFFFDCH	-	_	High
INT 9 instruction	×	#09	09н	FFFFD8 _H	-	_	↑
Exceptional treatment	×	#10	0Ан	FFFFD4 _H	-	-	
CAN controller reception completed (RX)	,	#11	0Вн	FFFFD0 _H	ICR00	0000В0н*1	
CAN controller transmission completed (TX) / Node status transition (NS)	,	#12	0Сн	FFFFCCH			
Reserved	×	#13	0Дн	FFFFC8 _H	ICR01	0000В1н	
Reserved	×	#14	0Ен	FFFFC4 _H			
CAN wakeup	Δ	#15	0Fн	FFFFC0 _H	ICR02	0000В2н*1	
Time-base timer	×	#16	10н	FFFFBCH			
16-bit reload timer 0	Δ	#17	11н	FFFFB8 _H	ICR03	0000ВЗн*1	
8/10-bit A/D converter	Δ	#18	12н	FFFFB4 _H			
16-bit free-run timer overflow	Δ	#19	13н	FFFFB0 _H	ICR04	0000В4н*1	
Reserved	×	#20	14н	FFFFACH	•		
Reserved	×	#21	15н	FFFFA8 _H	ICR05	0000В5н*1	
PPG timer ch0, ch1 underflow	,	#22	16н	FFFFA4 _H			
Input capture 0-input	Δ	#23	17н	FFFFA0 _H	ICR06	0000В6н*1	
External interrupt (INT4/INT5)	Δ	#24	18н	FFFF9C _H			
Input capture 1-input	Δ	#25	19н	FFFF98 _H	ICR07	0000В7н*2	
PPG timer ch2, ch3 underflow	,	#26	1Ан	FFFF94 _H	-		
External interrupt (INT6/INT7)	Δ	#27	1Вн	FFFF90⊦	ICR08	0000В8н*1	
Watch timer	Δ	#28	1Сн	FFFF8C _H			
Reserved	×	#29	1Dн	FFFF88 _H	ICR09	0000В9н*1	
Input capture 2-input Input capture 3-input	,	#30	1Ен	FFFF84 _H			
Reserved	×	#31	1F _H	FFFF80 _H	ICR10	0000BA _H *1	
Reserved	×	#32	20н	FFFF7C _H	1		
Reserved	×	#33	21н	FFFF78 _H	ICR11	0000BB _H *1	
Reserved	×	#34	22н	FFFF74 _H	1		
Reserved	×	#35	23н	FFFF70 _H	ICR12	0000BCн*1	→
16-bit reload timer 1	0	#36	24н	FFFF6C _H			Low

Document Number: 002-07765 Rev. *A Page 21 of 81

Interrupt Source	El ² OS	I	nterrup	t Vector	Interrupt Co	Priority*3	
interrupt Source	Readiness	Number		Address	ICR	Address	Priority
UART1 reception completed	0	#37	25н	FFFF68 _H	ICR13	0000BDн*1	High
UART1 transmission completed	Δ	#38	26н	FFFF64 _H			1
Reserved	×	#39	27н	FFFF60 _H	ICR14	0000BEн*1	
Reserved	×	#40	28н	FFFF5CH			
Flash memory	×	#41	29н	FFFF58 _H	ICR15	0000BF _H *1	↓
Delay interrupt generation module	×	#42	2Ан	FFFF54 _H			Low

- O: Available
- × : Unavailable
- : Available El²OS function is provided.

 Δ : Available when a cause of interrupt sharing a same ICR is not used.

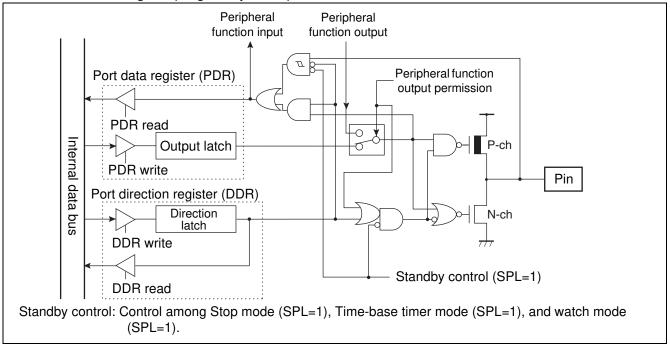
- *1
 - □ Peripheral functions sharing an ICR register have the same interrupt level.
 - □ If peripheral functions share an ICR register, only one function is available when using expanded intelligent I/O service.
 - ☐ If peripheral functions share an ICR register, a function using expanded intelligent I/O service does not allow interrupt by another function.
- *2: Input capture 1 corresponds to El²OS, however, PPG does not. When using El²OS by input capture 1, interrupt should be disabled for PPG.
- *3:Priority when two or more interrupts of a same level occur simultaneously.

12. Peripheral Resources

12.1 I/O Ports

The I/O ports are used as general-purpose input/output ports (parallel I/O ports). The MB60385 series model is provided with 5 ports (34 inputs). The ports function as input/output pins for peripheral functions also.

I/O Port Functions

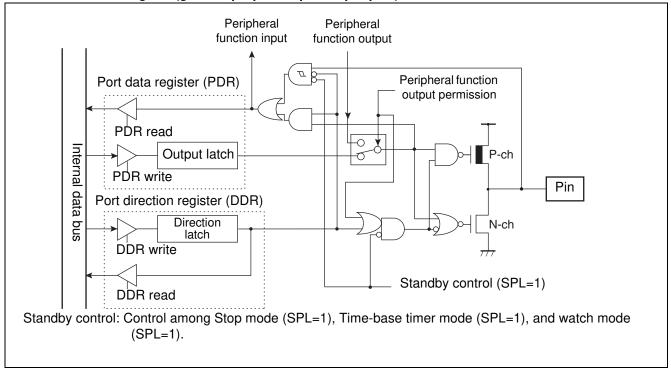

An I/O port, using port data resister (PDR), outputs the output data to I/O pin and input a signal input to I/O port. The port direction register (DDR) specifies direction of input/output of I/O pins on a bit-by-bit basis.

The following summarizes functions of the ports and sharing peripheral functions:

- Port 1: General-purpose input/output port, used also for PPG timer output and input capture inputs.
- Port 2: General-purpose input/output port, used also for reload timer input/output and external interrupt input.
- Port 3: General-purpose input/output port, used also for A/D converter activation trigger pin.
- Port 4: General-purpose input/output port, used also for UART input/output and CAN controller send/receive pin.
- Port 5: General-purpose input/output port, used also analog input pin.

Port 1 Pins Block Diagram (single-chip mode)

Port 1 Registers (single-chip mode)


- Port 1 registers include port 1 data register (PDR1) and port 1 direction register (DDR1).
- The bits configuring the register correspond to port 1 pins on a one-to-one basis.

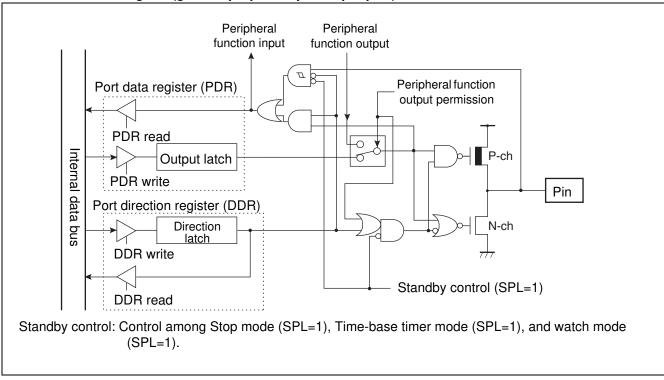
Relation between Port 1 Registers and Pins

Port Name	Bits of Register and Corresponding Pins										
Port 1	PDR1, DDR1	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
	Corresponding pins	P17	P16	P15	P14	P13	P12	P11	P10		

Port 2 Pins Block Diagram (general-purpose input/output port)

Port 2 Registers

- Port 2 registers include port 2 data register (PDR2) and port 2 direction register (DDR2).
- The bits configuring the register correspond to port 2 pins on a one-to-one basis.


Relation between Port 2 Registers and Pins

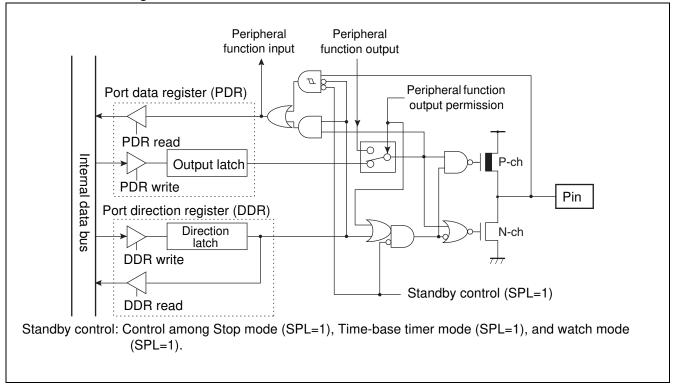
Port Name	Bits of Register and Corresponding Pins									
Port 2	PDR2,DDR2	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
	Corresponding pins	P27	P26	P25	P24	P23	P22	P21	P20	

Document Number: 002-07765 Rev. *A Page 24 of 81

Port 3 Pins Block Diagram (general-purpose input/output port)

Port 3 Registers

- Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
- The bits configuring the register correspond to port 3 pins on a one-to-one basis.

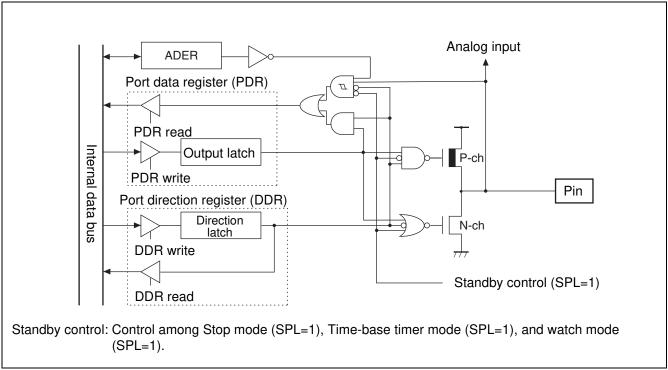

Relation between Port 3 Registers and Pins

Port Name	Bits of Register and Corresponding Pins										
Port 3	PDR3, DDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
	Corresponding pins	Corresponding pins P37 P36* P35* - P33 P32 P31 P3									

^{*:} P35 and P36 do not exist on MB90387and MB90F387.

Port 4 Pins Block Diagram

Port 4 Registers


- Port 4 registers include port 4 data register (PDR4) and port 4 direction register (DDR4).
- The bits configuring the register correspond to port 4 pins on a one-to-one basis.

Relation between Port 4 Registers and Pins

Port Name	Bits of Register and Corresponding Pins									
Port 4	PDR4, DDR4	-	-	-	bit4	bit3	bit2	bit1	bit0	
	Corresponding pins	-	-	-	P44	P43	P42	P41	P40	

Port 5 Pins Block Diagram

Port 5 Registers

- Port 5 registers include port 5 data register (PDR5), port 5 direction register (DDR5), and analog input permission register (ADER).
- Analog input permission register (ADER) allows or disallows input of analog signal to the analog input pin.
- The bits configuring the register correspond to port 5 pins on a one-to-one basis.

Relation between Port 5 Registers and Pins

Port Name		Bits of Register and Corresponding Pins										
Port 5	PDR5, DDR5	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0			
	ADER	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0			
	Corresponding pins	P57	P56	P55	P54	P53	P52	P51	P50			

12.2 Time-Base Timer

The time-base time is an 18-bit free-run counter (time-base timer counter) that counts up in synchronization with the main clock (dividing main oscillation clock by 2).

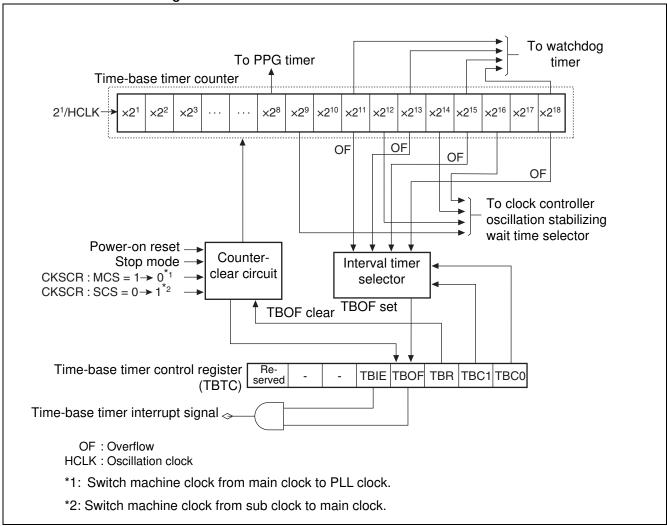
- Four choices of interval time are selectable, and generation of interrupt request is allowed for each interval time.
- Provides operation clock signal to oscillation stabilizing wait timer and peripheral functions.

Interval Timer Function

- When the counter of time-base timer reaches an interval time specified by interval time selection bit (TBTC:TBC1, TBC0), an overflow (carrying-over) occurs (TBTC: TBOF=1) and interrupt request is generated.
- If an interrupt by overflow is permitted (TBTC: TBIE=1), an interrupt is generated when overflow occurs (TBTC: TBOF=1).
- The following four interval time settings are selectable:

Interval Time of Time-base Timer

Count Clock	Interval Time
2/HCLK (0.5 μs)	2 ¹² /HCLK (Approx. 1.0 ms)
	2 ¹⁴ /HCLK (Approx. 4.1 ms)
	2 ¹⁶ /HCLK (Approx. 16.4 ms)
	219/HCLK (Approx. 131.1 ms)


HCLK: Oscillation clock

Values in parentheses "()" are those under operation of 4-MHz oscillation clock.

Document Number: 002-07765 Rev. *A Page 28 of 81

Time-base Timer Block Diagram

Actual interrupt request number of time-base timer is as follows:

Interrupt request number: #16 (10H)

12.3 Watchdog Timer

The watchdog timer is a 2-bit counter that uses time-base timer or watch timer as count clock. If the counter is not cleared within an interval time, CPU is reset.

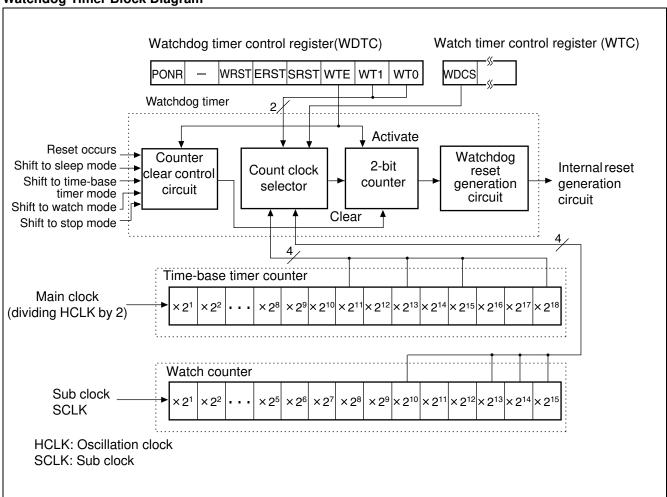
Watchdog Timer Functions

- The watchdog timer is a timer counter that prevents runaway of a program. Once a watchdog timer is activated, the counter of watchdog timer must always be cleared within a specified time of interval. If specified interval time elapses without clearing the counter of a watchdog timer, CPU resetting occurs. This is the function of a watchdog timer.
- The interval time of a watchdog timer is determined by a clock cycle, which is input as a count clock. Watchdog resetting occurs between a minimum time and a maximum time specified.
- The output target of a clock source is specified by the watchdog clock selection bit (WTC: WDCS) in the watch timer control register.
- Interval time of a watchdog timer is specified by the time-base timer output selection bit / watch timer output selection bit (WDTC: WT1, WT0) in the watchdog timer control register.

Interval Timer of Watchdog Timer

Min	Max	Clock Cycle	Min	Max	Clock Cycle
Approx. 3.58 ms	Approx. 4.61 ms	(2 ¹⁴ ±2 ¹¹) /HCLK	Approx. 0.457 s	Approx. 0.576 s	(2 ¹² ±2 ⁹) /SCLK
Approx. 14.33 ms	Approx. 18.3 ms	(2 ¹⁶ ±2 ¹³) /HCLK	Approx. 3.584 s	Approx. 4.608 s	(2 ¹⁵ ±2 ¹²) /SCLK
Approx. 57.23 ms	Approx. 73.73 ms	(2 ¹⁸ ±2 ¹⁵) /HCLK	Approx. 7.168 s	Approx. 9.216 s	(2 ¹⁶ ±2 ¹³) /SCLK
Approx. 458.75 ms	Approx. 589.82 ms	(2 ²¹ ±2 ¹⁸) /HCLK	Approx. 14.336 s	Approx. 18.432 s	(2 ¹⁷ ±2 ¹⁴) /SCLK

HCLK: Oscillation clock (4 MHz), CSCLK: Sub clock (8.192 kHz)


Notes:

- If the time-base timer is cleared when watchdog timer count clock is used as time base timer output (carry-over signal), watchdog reset time may become longer.
- When using the sub clock as machine clock, be sure to specify watchdog timer clock source selection bit (WDCS) in watch timer control register (WTC) at "0," selecting output of watch timer.

Document Number: 002-07765 Rev. *A Page 30 of 81

Watchdog Timer Block Diagram

12.4 16-bit Input/Output Timer

The 16-bit input/output timer is a compound module composed of 16-bit free-run timer, (1 unit) and input capture (2 units, 4 input pins). The timer, using the 16-bit free-run timer as a basis, enables measurement of clock cycle of an input signal and its pulse width.

Configuration of 16-bit Input/Output Timer

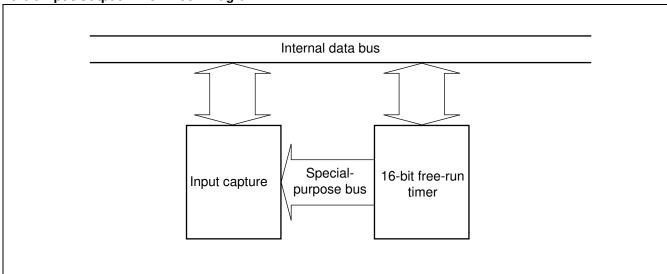
The 16-bit input/output timer is composed of the following modules:

- 16-bit free-run timer (1 unit)
- Input capture (2 units, 2 input pins per unit)

Functions of 16-bit Input/Output Timer

Functions of 16-bit Free-run Timer

The 16-bit free-run timer is composed of 16-bit up counter, timer counter control status register, and prescaler. The 16-bit up counter increments in synchronization with dividing ratio of machine clock.

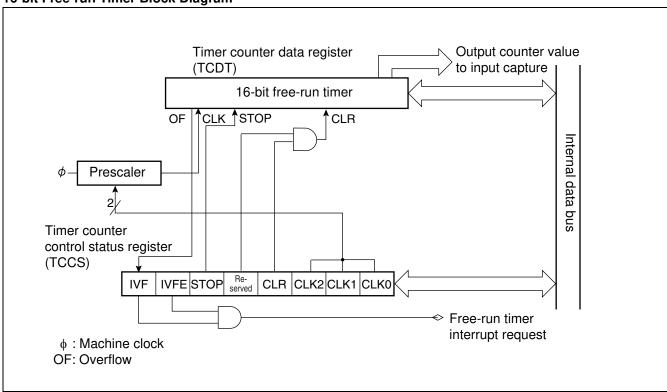

- Count clock is set among four types of machine clock dividing rates.
- Generation of interrupt is allowed by counter value overflow.
- Activation of expanded intelligent I/O service (El²OS) is allowed by interrupt generation.
- Counter value of 16-bit free-run timer is cleared to "0000H" by either resetting or software-clearing with timer count clear bit (TCCS: CLR).
- Counter value of 16-bit free-run timer is output to input capture, which is available as base time for capture operation.

Functions of Input Capture

The input capture, upon detecting an edge of a signal input to the input pin from external device, stores a counter value of 16-bit freerun timer at the time of detection into the input capture data register. The function includes the input capture data registers corresponding to four input pins, input capture control status register, and edge detection circuit.

- Rising edge, falling edge, and both edges are selectable for detection.
- Generating interrupt on CPU is allowed by detecting an edge of input signal.
- Expanded intelligent I/O service (El²OS) is activated by interrupt generation.
- The four input capture input pins and input capture data registers allows monitoring of a maximum of four events.

16-bit Input/Output Timer Block Diagram


16-bit Free-run Timer

Counter value of 16-bit free-run timer is used as reference time (base time) of input capture.

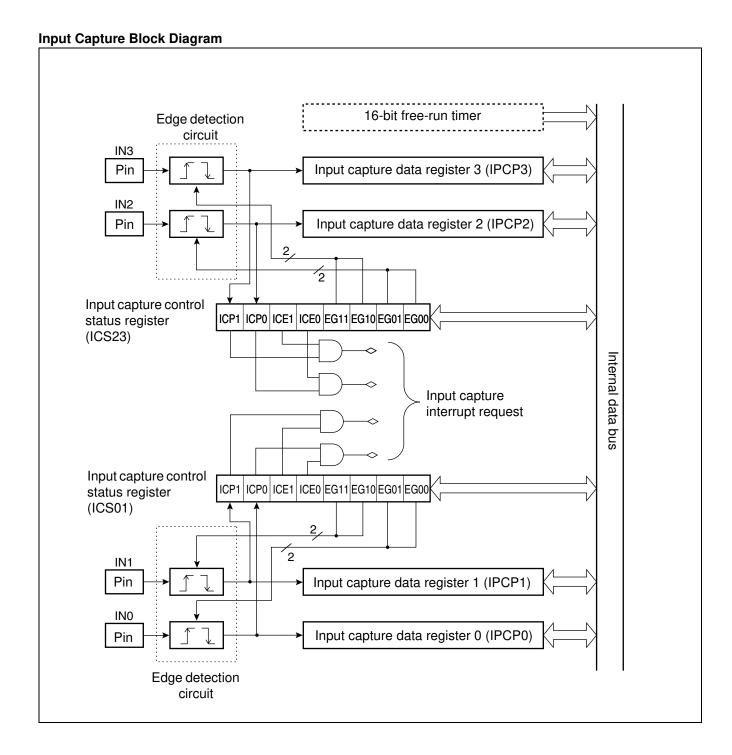
Input Capture

Input capture detects rising edge, falling edge or both edges and retains a counter value of 16-bit free-run timer. Detection of edge on input signal is allowed to generate interrupt.

16-bit Free-run Timer Block Diagram

Detailed Pin Assignment on Block Diagram

The 16-bit input/output timer includes a 16-bit free-run timer. Interrupt request number of the 16-bit free-run timer is as follows: Interrupt request number: 19 (13H)


Prescaler

The prescaler divides a machine clock and provides a counter clock to the 16-bit up counter. Dividing ratio of the machine clock is specified by timer counter control status register (TCCS) among four values.

Timer Counter Data Register (TCDT)

The timer counter data register is a 16-bit up counter. A current counter value of the 16-bit free-run timer is read. Writing a value during halt of the counter allows setting an arbitrary counter value.

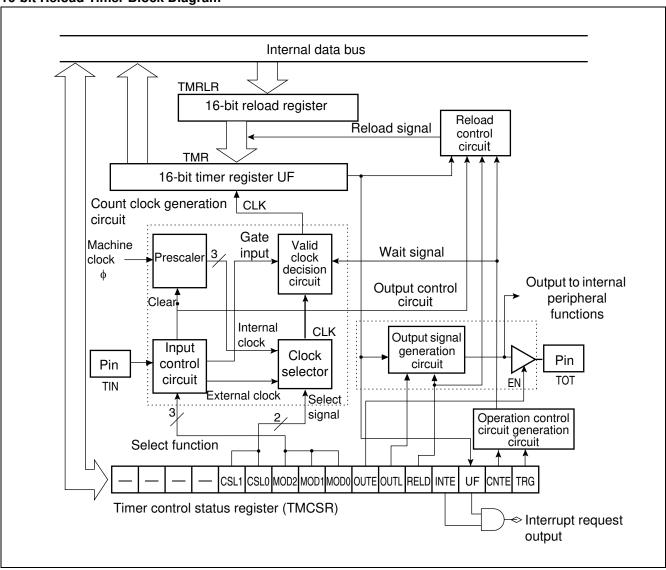
12.5 16-bit Reload Timer

The 16-bit reload timer has the following functions:

- Count clock is selectable among 3 internal clocks and external event clock.
- Activation trigger is selectable between software trigger and external trigger.
- Generation of CPU interrupt is allowed upon occurrence of underflow on 16-bit timer register. Available as an interval timer using the interrupt function.
- When underflow of 16-bit timer register (TMR) occurs, one of two reload modes is selectable between one-shot mode that halts counting operation of TMR, and reload mode that reloads 16-bit reload register value to TMR, continuing TMR counting operation.
- The 16-bit reload timer is ready for expanded intelligent I/O service (El²OS).
- MB90385 series device has 2 channels of built-in 16-bit reload timer.

Operation Mode of 16-bit Reload Timer

Count Clock	Activation Trigger	Operation upon Underflow
Internal clock mode	Software trigger, external trigger	One-shot mode, reload mode
Event count mode	Software trigger	One-shot mode, reload mode


Internal Clock Mode

- The 16-bit reload timer is set to internal clock mode, by setting count clock selection bit (TMCSR: CSL1, CSL0) to "00_B", "01_B", "10_B".
- In the internal clock mode, the counter decrements in synchronization with the internal clock.
- Three types of count clock cycles are selectable by count clock selection bit (TMCSR: CSL1, CSL0) in timer control status register.
- Edge detection of software trigger or external trigger is specified as an activation trigger.

Document Number: 002-07765 Rev. *A Page 35 of 81

16-bit Reload Timer Block Diagram

12.6 Watch Timer Outline

The watch timer is a 15-bit free-run counter that increments in synchronization with sub clock.

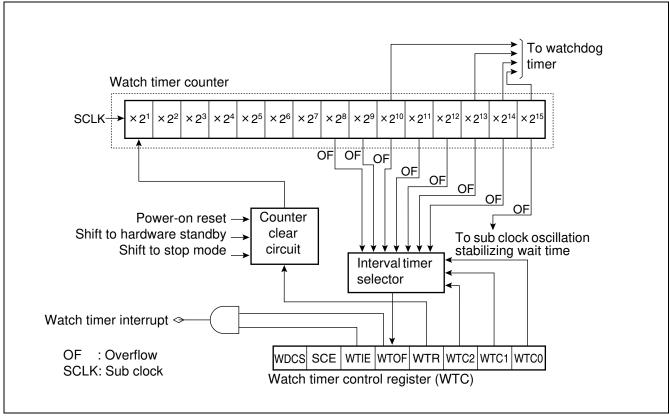
- Interval time is selectable among 7 choices, and generation of interrupt request is allowed for each interval.
- Provides operation clock to the subclock oscillation stabilizing wait timer and watchdog timer.
- Always uses subclock as a count clock regardless of settings of clock selection register (CKSCR).

Interval Timer Function

- In the watch timer, a bit corresponding to the interval time overflows (carry-over) when an interval time, which is specified by interval time selection bit, is reached. Then overflow flag bit is set (WTC: WTOF=1).
- If an interrupt by overflow is permitted (WTC: WTIE=1), an interrupt request is generated upon setting an overflow flag bit.
- Interval time of watch timer is selectable among the following seven choices:

Interval Time of Watch Timer

Sub Clock Cycle	Interval Time
1/SCLK (122 μs)	28/SCLK (31.25 ms)
	29/SCLK (62.5 ms)
	210/SCLK (125 ms)
	2 ¹¹ /SCLK (250 ms)
	212/SCLK (500 ms)
	2 ¹³ /SCLK (1.0 s)
	214/SCLK (2.0 s)


SCLK: Sub clock frequency

Values in parentheses "()" are calculation when operating with 8.192 kHz clock.

Document Number: 002-07765 Rev. *A Page 37 of 81

Watch Timer Block Diagram

Actual interrupt request number of watch timer is as follows:

Interrupt request number: #28 (1CH)

Watch Timer Counter

A 15-bit up counter that uses sub clock (SCLK) as a count clock.

Counter Clear Circuit

A circuit that clears the watch timer counter.

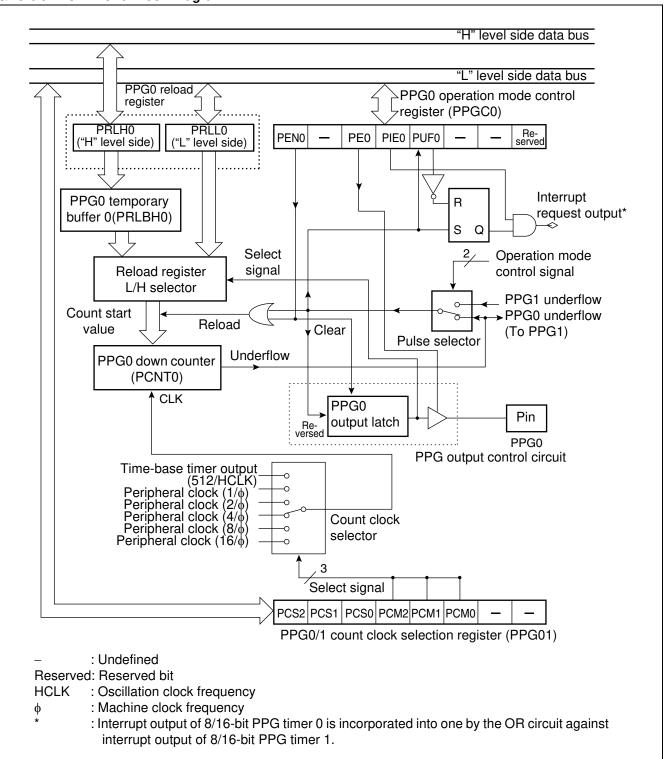
12.7 8/16-bit PPG Timer Outline

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode

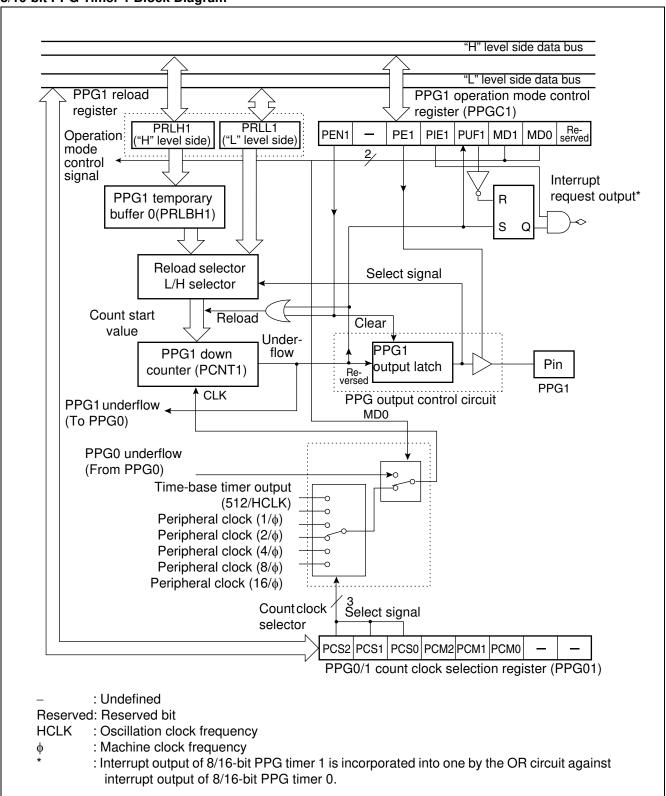
MB90385 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/3 have the same functions as those of PPG0/1.

Functions of 8/16-bit PPG Timer


The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).

- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

Document Number: 002-07765 Rev. *A Page 39 of 81

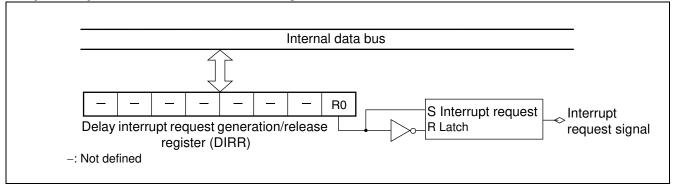


8/16-bit PPG Timer 0 Block Diagram

8/16-bit PPG Timer 1 Block Diagram

12.8 Delay Interrupt Generation Module Outline

The delay interrupt generation module is a module that generates interrupts for switching tasks. Generation of a hardware interrupt request is performed by software.


Delay Interrupt Generation Module Outline

Using the delay interrupt generation module, hardware interrupt request is generated and released by software.

Table 12-1. Delay Interrupt Generation Module Outline

	Function and Control
Cause of interrupt	Set "1" in R0 bit of delay interrupt request generation/release register (DIRR: R0=1), generating an interrupt request. Set "0" in R0 bit of delay interrupt request generation/release register (DIRR: R0=0), releasing an interrupt request.
Interrupt number	#42 (2A _H)
Interrupt control	No setting of permission register is provided.
Interrupt flag	Retained in DIRR: R0 bit
El ² OS	Not ready for expanded intelligent I/O service.

Delay Interrupt Generation Module Block Diagram

Interrupt Request Latch

A latch that retains settings on delay interrupt request generation/release register (generation or release of delay interrupt request).

Delay Interrupt Request Generation/Release Register (DIRR)

Generates or releases delay interrupt request.

Interrupt Number

An interrupt number used in delay interrupt generation module is as follows:

Interrupt number: #42 (2AH)

Document Number: 002-07765 Rev. *A Page 42 of 81

12.9 DTP/External Interrupt and CAN Wakeup Outline

DTP/external interrupt transfers an interrupt request generated by an external peripheral device or a data transmission request to CPU, generating external interrupt request and activating expanded intelligent I/O service. Input RX of CAN controller is used as external interrupt input.

DTP/External Interrupt and CAN Wakeup Function

An interrupt request input from external peripheral device to external input pins (INT7 to INT4) and RX pin, just as interrupt request of peripheral device, generates an interrupt request. The interrupt request generates an external interrupt and activates expanded intelligent I/O service (El²OS).

If the expanded intelligent I/O service (El²OS) has been disabled by interrupt control register (ICR: ISE=0), external interrupt function is enabled and branches to interrupt processing.

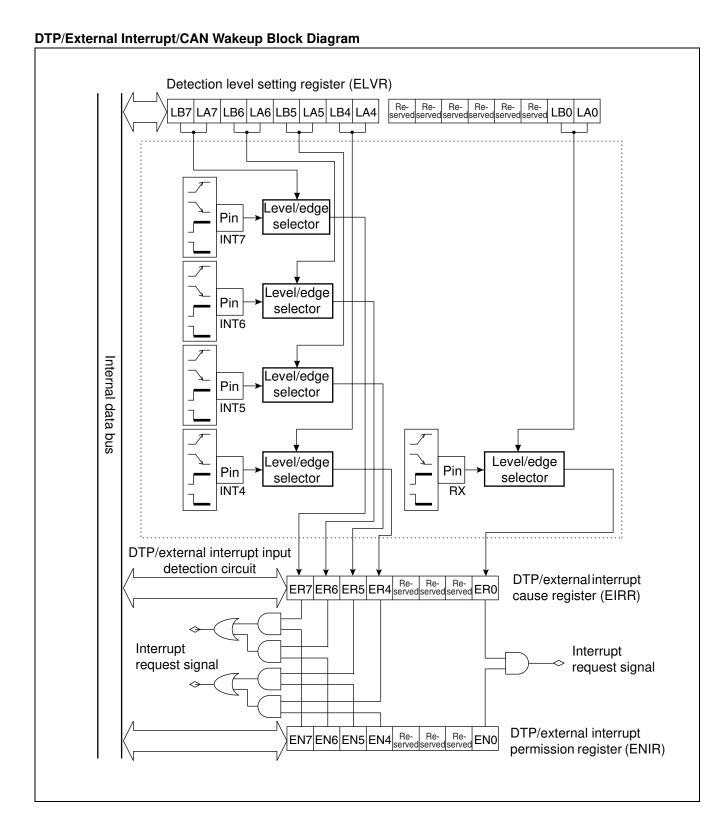

If the El²OS has been enabled, (ICR: ISE=1), DTP function is enabled and automatic data transmission is performed by El²OS. After performing specified number of data transmission processes, the process branches to interrupt processing.

Table 12-2. DTP/External Interrupt and CAN Wakeup Outline

	External Interrupt DTP Function				
Input pin	5 pins (RX, and INT4 to INT7)				
Interrupt cause	Specify for each pin with detection level setting	register (ELVR).			
	Input of "H" level/"L" level/rising edge/falling edge.	Input of "H" level/ "L" level			
Interrupt number	#15 (0Fн), #24 (18н), #27 (1Вн)				
Interrupt control	Enabling or disabling output of interrupt request, using DTP/external interrupt permission register (ENIR).				
Interrupt flag	Retaining interrupt cause with DTP/external inte	rrupt cause register (EIRR).			
Process selection	Disable El ² OS (ICR: ISE=0) Enable El ² OS (ICR: ISE=1)				
Process	Branch to external interrupt process	After automatic data transmission by El ² OS for specified number of times, branch to interrupt process.			

Document Number: 002-07765 Rev. *A Page 43 of 81

12.10 8/10-bit A/D Converter

The 8/10-bit A/D converter converts an analog input voltage into 8-bit or 10/bit digital value, using the RC-type successive approximation conversion method.

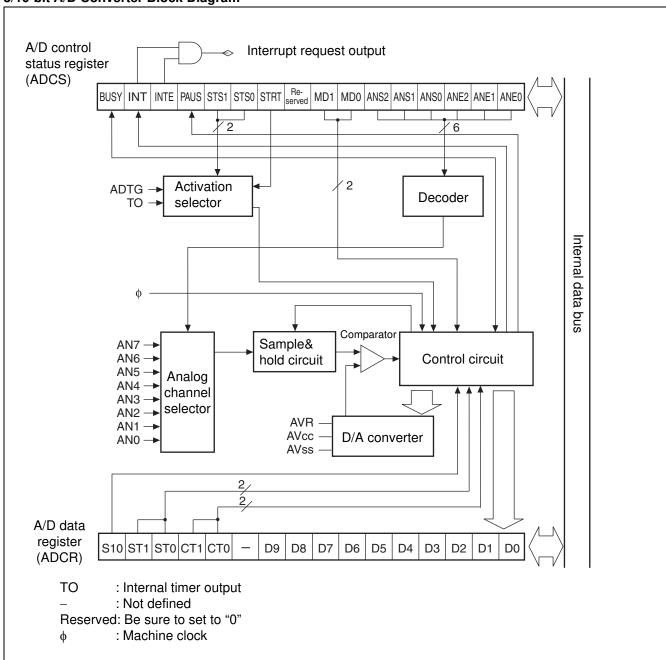
- Input signal is selected among 8 channels of analog input pins.
- Activation trigger is selected among software trigger, internal timer output, and external trigger.

Functions of 8/10-bit A/D Converter

The 8/10-bit A/D converter converts an analog voltage (input voltage) input to analog input pin into an 8-bit or 10-bit digital value (A/D conversion).

The 8/10-bit A/D converter has the following functions:

- A/D conversion takes a minimum of 6.12 µs* for 1 channel, including sampling time. (A/D conversion)
- Sampling of one channel takes a minimum of 2.0 μs*.
- RC-type successive approximation conversion method, with sample & hold circuit is used for conversion.
- Resolution of either 8 bits or 10 bits is specifiable.
- A maximum of 8 channels of analog input pins are allowed for use.
- Generation of interrupt request is allowed, by storing A/D conversion result in A/D data register.
- Activation of El²OS is allowed upon occurrence of an interrupt request. With use of El²OS, data loss is avoided even if A/D conversion is performed successively.
- An activation trigger is selectable among software trigger, internal timer output, and external trigger (fall edge).
- : When operating with 16 MHz machine clock


8/10-bit A/D Converter Conversion Mode

Conversion Mode	Description
	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function stops.
Sequential conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function resumes from the start channel.
Pausing conversion mode	The A/D conversion is performed by pausing at each channel. Upon completion of A/D conversion on an end channel, A/D conversion and pause functions resume from the start channel.

Document Number: 002-07765 Rev. *A Page 45 of 81

8/10-bit A/D Converter Block Diagram

12.11 UART Outline

UART is a general-purpose serial data communication interface for synchronous and asynchronous communication using external devices.

- Provided with bi-directional communication function for both clock-synchronous and clock-asynchronous modes.
- Provided with master/slave communication function (multi-processor mode). (Only master side is available.)
- Interrupt request is generated upon completion of reception, completion of transmission and detection of reception error.
- Ready for expanded intelligent service, El²OS.

Table 12-3. UART Functions

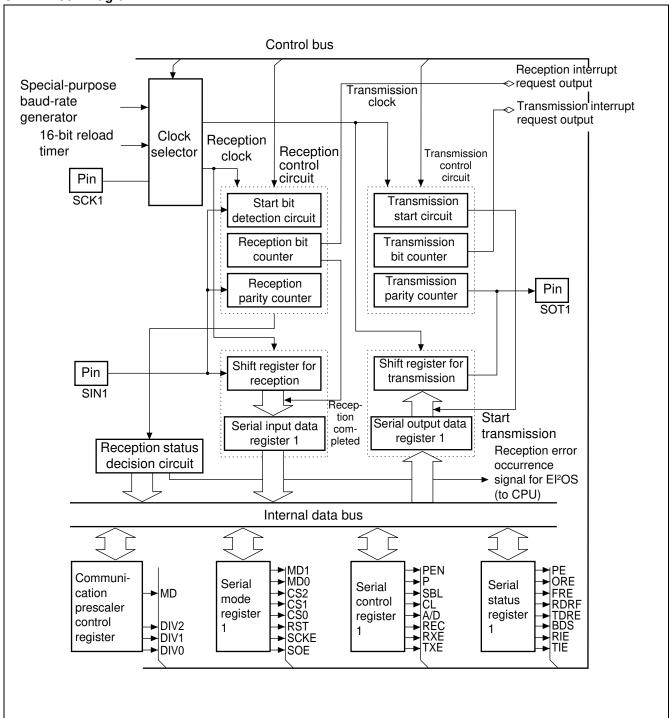
	Description
Data buffer	Full-duplex double buffer
Transmission mode	Clock synchronous (No start/stop bit, no parity bit) Clock asynchronous (start-stop synchronous)
Baud rate	Built-in special-purpose baud-rate generator. Setting is selectable among 8 values. Input of external values is allowed. Use of clock from external timer (16-bit reload timer 0) is allowed.
Data length	7 bits (only asynchronous normal mode) 8 bits
Signaling system	Non Return to Zero (NRZ) system
Reception error detection	Framing error Overrun error Parity error (not detectable in operation mode 1 (multi-processor mode))
Interrupt request	Receive interrupt (reception completed, reception error detected) Transmission interrupt (transmission completed) Ready for expanded intelligent I/O service (El ² OS) in both transmission and reception
Master/slave communication function (asynchronous, multi-processor mode)	Communication between 1 (master) and n (slaves) are available (usable as master only).

Note: Start/stop bit is not added upon clock-synchronous transmission. Data only is transmitted.

Table 12-4. UART Operation Modes

Operation Made		Data L	ength	Synchronization	Stop Bit Length	
	Operation Mode	With Parity	Without Parity	Synchronization	Stop Bit Length	
0	Asynchronous mode (normal mode)	7-bit or 8-bit		Asynchronous	1- bit or 2-bit *2	
1	Multi processor mode	8+1*1 –		Asynchronous		
2	Synchronous mode	8 –		Synchronous	No	

^{-:} Disallowed


Document Number: 002-07765 Rev. *A Page 47 of 81

^{1: &}quot;+1" is an address/data selection bit used for communication control (bit 11 of SCR1 register: A/D).

^{2:} Only 1 bit is detected as a stop bit on data reception.

UART Block Diagram

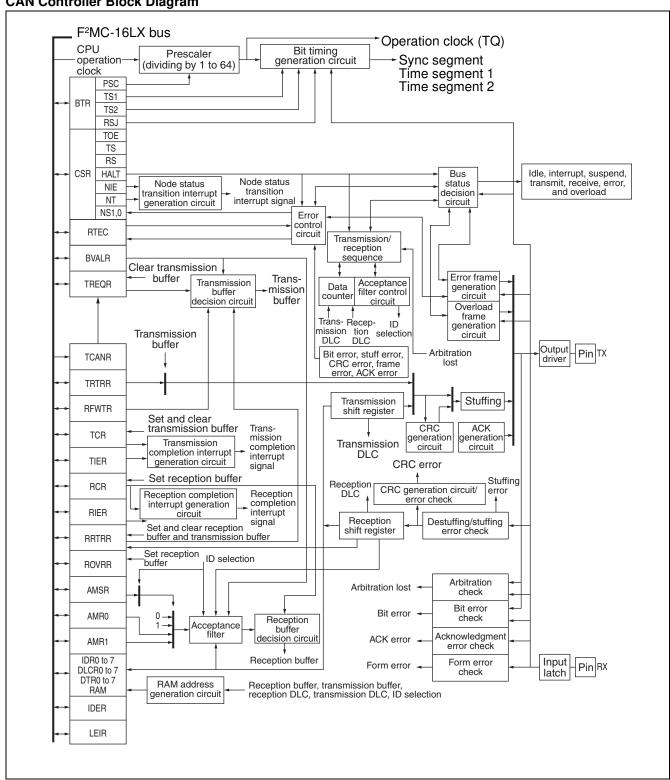
12.12 CAN Controller

The Controller Area Network (CAN) is a serial communication protocol compliant with CANVer2.0A and Ver2.0B. The protocol allows data transmission and reception in both standard frame format and expanded frame format.

Features of CAN Controller

- CAN controller format is compliant with CANVer2.0A and Ver2.0B.
- The protocol allows data transmission and reception in standard frame format and expanded frame format.
- Automatic transmission of data frame by remote frame reception is allowed.
- Baud rate ranges from 10 kbps to 1 Mbps (with 16-MHz machine clock).

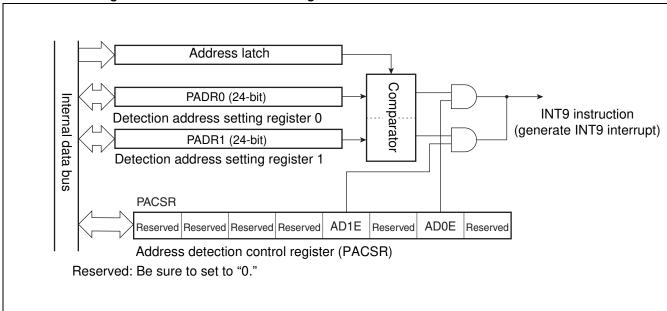
Table 12-5. Data Transmission Baud Rate


Machine Clock	Baud Rate (Max)
16 MHz	1 Mbps
12 MHz	1 Mbps
8 MHz	1 Mbps
4 MHz	500 kbps
2 MHz	250 kbps

- Provided with 8 transmission/reception message buffers.
- Transmission/reception is allowed at ID 11 bit in standard format, and at ID 29 bit in expanded frame format.
- Specifying 0 byte to 8 bytes is allowed in message data.
- Multi-level message buffer configuration is allowed.
- CAN controller has two built-in acceptance masks. Mask settings are independently allowed for the two acceptance masks on reception IDs.
- The two acceptance masks allow reception in standard frame format and expanded frame format.
- For types of masking, all-bit comparison, all-bit masking, and partial masking with acceptance mask register 0/1, are specifiable.

Document Number: 002-07765 Rev. *A Page 49 of 81

CAN Controller Block Diagram


12.13 Address Matching Detection Function Outline

The address matching detection function checks if an address of an instruction to be processed next to a currently-processed instruction is identical with an address specified in the detection address register. If the addresses match with each other, an instruction to be processed next in program is forcibly replaced with INT9 instruction, and process branches to the interrupt process program. Using INT9 interrupt, this function is available for correcting program by batch processing.

Address Matching Detection Function Outline

- An address of an instruction to be processed next to a currently-processed instruction of the program is always retained in an address latch via internal data bus. By the address matching detection function, the address value retained in the address latch is always compared with an address specified in detection address setting register. If the compared address values match with each other, an instruction to be processed next by CPU is forcibly replaced with INT9 instruction, and an interrupt process program is executed.
- Two detection address setting registers are provided (PADR0 and PADR1), and each register is provided with interrupt permission bit. Generation of interrupt, which is caused by address matching between the address retained in address latch and the address specified in address setting register, is permitted and prohibited on a register-by-register basis.

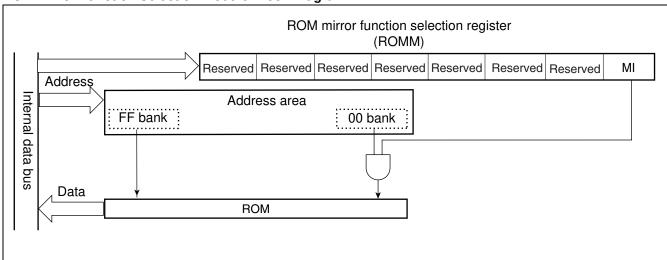
Address Matching Detection Function Block Diagram

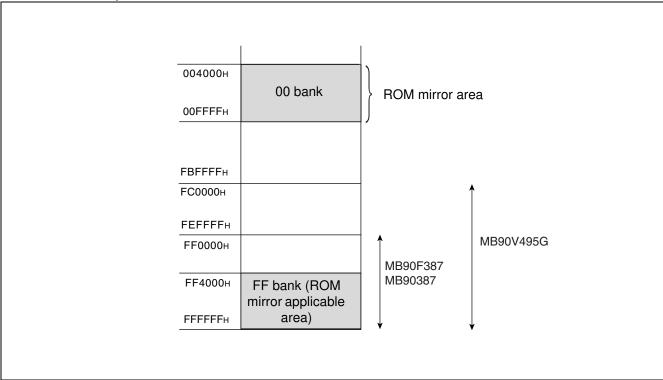
■ Address latch

Retains address value output to internal data bus.

- Address detection control register (PACSR)

 Specifies if interrupt is permitted or prohibited when addresses match with each other.
- Detection address setting (PADR0, PADR1)


 Specifies addresses to be compared with values in address latch.


12.14 ROM Mirror Function Selection Module Outline

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.

ROM Mirror Function Selection Module Block Diagram

FF Bank Access by ROM Mirror Function

12.15 512 Kbit Flash Memory Outline

The following three methods are provided for data writing and deleting on Flash memory:

- 1. Parallel writer
- 2. Serial special-purpose writer
- 3. Writing/deleting by program execution

This section describes "3. Writing/deleting by program execution."

512 Kbit Flash Memory Outline

The 512 Kbit Flash memory is allocated on FF_H bank of CPU memory map. Using the function of Flash memory interface circuit, the memory allows read access and program access from CPU.

Writing/deleting on Flash memory is performed by instruction from CPU via Flash memory interface. Because rewriting is allowed on mounted memory, modifying program and data is performed efficiently.

Features of 512 Kbit Flash Memory

- 128 K words x 8 bits/64 K words x 16 bits (16 K + 8 K + 8 K + 32 K) sector configuration
- Automatic program algorithm (Embedded Algorithm: Similar to MBM29LV200.)
- Built-in deletion pause/deletion resume function
- Detection of completed writing/deleting by data polling and toggle bits.
- Detection of completed writing/deleting by CPU interrupt.
- Deletion is allowed on a sector-by-sector basis (sectors are combined freely).
- Number of writing/deleting operations (minimum): 10,000 times
- Sector protection
- Expanded sector protection
- Temporaly sector unprotection

Note: A function of reading manufacture code and device code is not provided. These codes are not accessible by command either.

Flash Memory Writing/Deleting

- Writing and reading data is not allowed simultaneously on the Flash memory.
- Data writing and deleting on the Flash memory is performed by the processes as follows: Make a copy of program on Flash memory onto RAM. Then, execute the program copied on the RAM.

List of Registers and Reset Values in Flash Memory

Flash memory control status register (FMCS) bit 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0

×: Undefined

Sector Configuration

For access from CPU, SA0 to SA3 are allocated in FF bank register.

Document Number: 002-07765 Rev. *A Page 53 of 81

Sector Configuration of 512 Kbit Flash Memory

Flash memory	CPU address	Writer address*
	FF0000H	70000н
SA0 (32 Kbytes)		
	FF7FFFH	77FFFн
	FF8000H	78000н
SA1 (8 Kbytes)		
	FF9FFFH	79FFFн
	FFA000H	7А000н
SA2 (8 Kbytes)		
	FFBFFFH	7BFFFн
	FFC000H	7С000н
SA3 (16 Kbytes)		
	FFFFFFH	7FFFFH

^{*: &}quot;Writer address" is an address equivalent to CPU address, which is used when data is written on Flash memory, using parallel writer. When writing/deleting data with general-purpose writer, the writer address is used for writing and deleting.

13. Electrical Characteristics

13.1 Absolute Maximum Rating

Davamatav	Combal	Rat	ting	Unit	Domonto
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 6.0	V	
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2
	AVR	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVR*2
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3
Maximum clamp current	ICLAMP	- 2.0	+ 2.0	mA	*7
Total maximum clamp current	Σ ICLAMP	-	20	mA	*7
"L" level maximum output current	lol1	-	15	mA	Normal output*4
	lol2	-	40	mA	High-current output*4
"L" level average output current	lolav1	-	4	mA	Normal output*5
	lolav2	-	30	mA	High-current output*5
"L" level maximum total output current	Σlol1	-	125	mA	Normal output
	ΣΙοι2	-	160	mA	High-current output
"L" level average total output current	Σ l olav1	_	40	mA	Normal output*6
	Σ l olav2	_	40	mA	High-current output*6
"H" level maximum output current	Іон1	_	-15	mA	Normal output*4
	Іон2	_	-40	mA	High-current output*4
"H" level average output current	Iohav1	_	-4	mA	Normal output*5
	IOHAV2	-	-30	mA	High-current output*5
"H" level maximum total output current	ΣΙοη1	_	-125	mA	Normal output
	ΣІОН2	_	-160	mA	High-current output
"H" level average total output current	ΣΙομαν1	_	-40	mA	Normal output*6
	ΣΙομαν2	_	-40	mA	High-current output*6
Power consumption	PD	_	245	mW	
Operating temperature	TA	-40	+105	°C	
Storage temperature	Tstg	-55	+150	°C	

^{*1:} The parameter is based on Vss = AVss = 0.0 V.

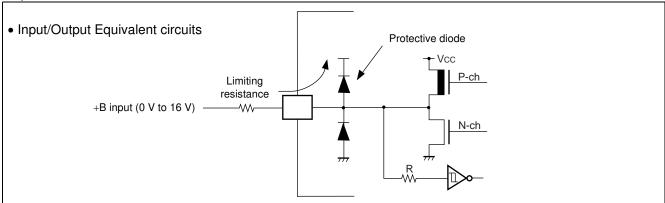
*7

Document Number: 002-07765 Rev. *A Page 55 of 81

^{*2:} AVcc and AVR should not exceed Vcc.

^{*3:} V_I and V_O should not exceed Vcc + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the Iclamp rating supersedes the V_I rating.

^{*4:} A peak value of an applicable one pin is specified as a maximum output current.


^{*5:} An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)

^{*6:} An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)

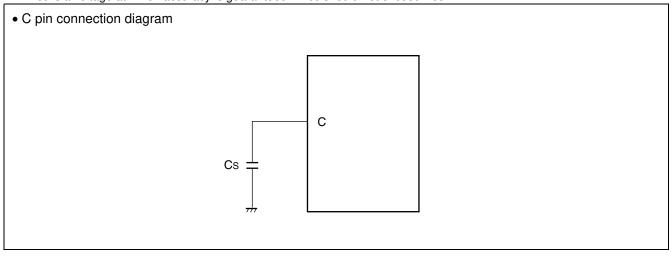
Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35*, P36*, P37, P40 to P44, P50 to P57
 *: P35 and P36 are MB90387S and MB90F387S only.

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits:

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Document Number: 002-07765 Rev. *A Page 56 of 81

13.2 Recommended Operating Conditions


(Vss = AVss = 0.0V)

Parameter	Symbol	Value			Unit	Remarks	
raiailietei	Symbol	Min	Тур	Max	Oilit	nemarks	
Power supply voltage	Vcc	3.5	5.0	5.5	V	Under normal operation	
		3.0	-	5.5	V	Retain status of stop operation	
	AVcc	4.0	_	5.5	V	*2	
Smoothing capacitor	Cs	0.1	_	1.0	μF	*1	
Operating temperature	TA	-40	_	+105	°C		

^{*1:} Use a ceramic capacitor, or a capacitor of similar frequency characteristics. On the Vcc pin, use a bypass capacitor that has a larger capacity than that of Cs.

Refer to the following figure for connection of smoothing capacitor Cs.

*2: AVcc is a voltage at which accuracy is guaranteed. AVcc should not exceed Vcc.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

13.3 DC Characteristics

(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, Ta = -40 °C to +105 °C)

Doromotor	Cumbal	Pin Name	Conditions		Value	Unit	Remarks	
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	Remarks
"H" level input	VIHS	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc + 0.3	V	
voltage	Vінм	MD input pin	_	Vcc - 0.3	_	Vcc + 0.3	٧	
"L" level input	VILS	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	٧	
voltage	VILM	MD input pin	_	Vss - 0.3	_	Vss + 0.3	٧	
"H" level output	V _{OH1}	Pins other than P14 to P17	Vcc = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	_	٧	
voltage	V _{OH2}	P14 to P17	Vcc = 4.5 V, Іон = -14.0 mA	Vcc - 0.5	_	_	V	
"L" level output	V _{OL1}	Pins other than P14 to P17	Vcc = 4.5 V, lo _L = 4.0 mA	_	_	0.4	٧	
voltage	V _{OL2}	P14 to P17	Vcc = 4.5 V, lo _L = 20.0 mA	_	_	0.4	٧	
Input leak current	lıL	All input pins	Vcc = 5.5 V, Vss < V _I < Vcc	- 5	_	+5	μА	
Power supply current*	Icc	Vcc	Vcc = 5.0 V, Internally operating at 16 MHz, normal operation.	_	25	30	mA	
			Vcc = 5.0 V, Internally operating at 16 MHz, writing on Flash memory.	_	45	50	mA	MB90F387/S
			Vcc = 5.0 V, Internally operating at 16 MHz, deleting on Flash memory.	_	45	50	mA	MB90F387/S
	Iccs		Vcc = 5.0 V, Internally operating at 16 MHz, sleeping.	_	8	12	mA	
	Істѕ	Internally opera	Internally operating at	_	0.75	1.0	mA	MB90F387/S
			2 MHz, transition from main clock mode, in time-base timer mode.		0.2	0.35		MB90387/S

Document Number: 002-07765 Rev. *A Page 58 of 81

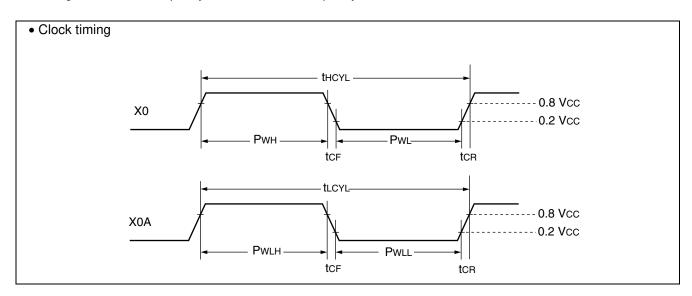
(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, Ta = -40 °C to +105 °C)

Davamatav	Complete	Pin Name	Conditions		Value	Unit	Remarks	
Parameter	Symbol	Pin Name	Conditions	Min	Тур	Max	Unit	nemarks
Power supply current*	Iccl	Vcc	Vcc = 5.0 V, Internally operating at 8 kHz, subclock operation,	_	0.3	1.2	mA	MB90F387/S
Carrone			T _A = + 25°C	_	40	100	μА	MB90387/S
	Iccls		Vcc = 5.0 V, Internally operating at 8 kHz, subclock, sleep mode, T _A = + 25°C		10	30	μА	
	Ісст		Vcc = 5.0 V, Internally operating at 8 kHz, watch mode, T _A = + 25°C	_	8	25	μА	
	Іссн		Stopping, T _A = + 25°C	_	5	20	μА	
Input capacity	Cin	Other than AVcc, AVss, AVR, C, Vcc, Vss	-	_	5	15	pF	
Pull-up resistor	Rup	RST	_	25	50	100	kΩ	
Pull-down resistor	RDOWN	MD2	_	25	50	100	kΩ	Flash product is not provided with pull-down resistor.

^{*:} Test conditions of power supply current are based on a device using external clock.

Document Number: 002-07765 Rev. *A Page 59 of 81

13.4 AC Characteristics

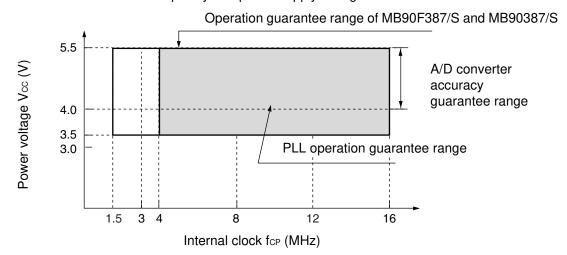

13.4.1 Clock Timing

$$(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, TA = -40 °C to +105 °C)$$

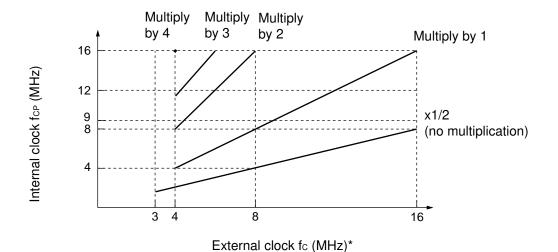
Parameter	Cumbal	Pin Name		Value		Unit	Remarks
Parameter	Symbol	Pili Naille	Min	Тур	Max	Ullit	nemarks
Clock frequency	fc	X0, X1	3	_	8	MHz	When crystal or ceramic resonator is used*2
			3	_	16	MHz	External clock input*1, *2
			4	_	16	MHz	PLL Multiply by 1 *2
			4	_	8	MHz	PLL Multiply by 2 *2
			4	_	5.33	MHz	PLL Multiply by 3 *2
			4	_	4	MHz	PLL Multiply by 4 *2
	fcL	X0A, X1A	_	32.768	_	kHz	
Clock cycle time	thcyl	X0, X1	125	_	333	ns	
	tlcyl	X0A, X1A	_	30.5	_	μS	
Input clock pulse width	Pwh, Pwl	X0	10	_	_	ns	Set duty factor at 30% to 70% as a guideline.
	Pwlh,Pwll	X0A	_	15.2	_	μS	
Input clock rise time and fall time	tcr, tcr	X0	_	_	5	ns	When external clock is used
Internal operation clock frequency	fcp	_	1.5	_	16	MHz	When main clock is used
	fLCP	_	_	8.192	_	kHz	When sub clock is used
Internal operation clock cycle time	tcp	_	62.5	_	666	ns	When main clock is used
	tLCP	_	_	122.1	_	μS	When sub clock is used

^{*1:} Internal operation clock frequency should not exceed 16 MHz.

^{*2:} When selecting the PLL clock, the range of clock frequency is limited. Use this product within range as mentioned in "Relation among external clock frequency and internal clock frequency".

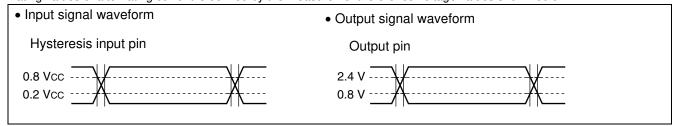


Document Number: 002-07765 Rev. *A Page 60 of 81



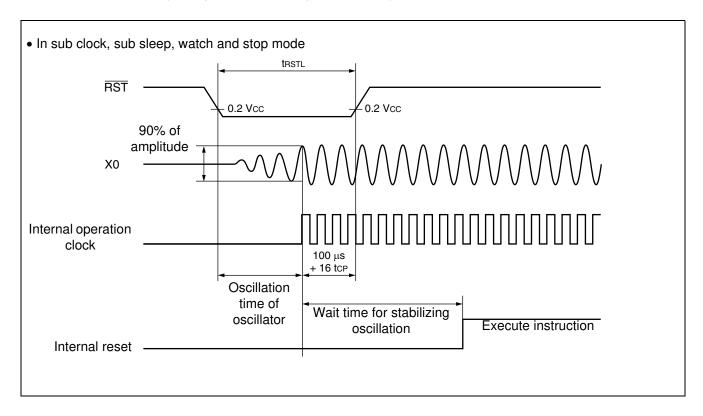
• PLL operation guarantee range

Relation between internal operation clock frequency and power supply voltage


Relation among external clock frequency and internal clock frequency

^{*:} fc is 8 MHz at maximum when crystal or ceramic resonator circuit is used.

Rating values of alternating current is defined by the measurement reference voltage values shown below:



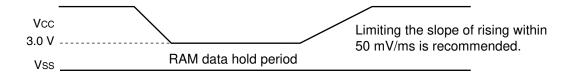
13.4.2 Reset Input Timing

Parameter	Symbol	Pin Name	Value			Remarks
Farameter	Symbol	Fill Name	Min	Max	Unit	nemarks
Reset input time	t RSTL	RST	16 tcp*3	-	ns	Normal operation
			Oscillation time of oscillator*1 + $100 \mu s + 16 tcP^{*3}$	_		In sub clock*2, sub sleep*2, watch*2 and stop mode
			100	_	μS	In timebase timer

^{*1:} Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

- *2: Except for MB90F387S and MB90387S.
- *3: Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).




13.4.3 Power-on Reset

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +105 °C)$

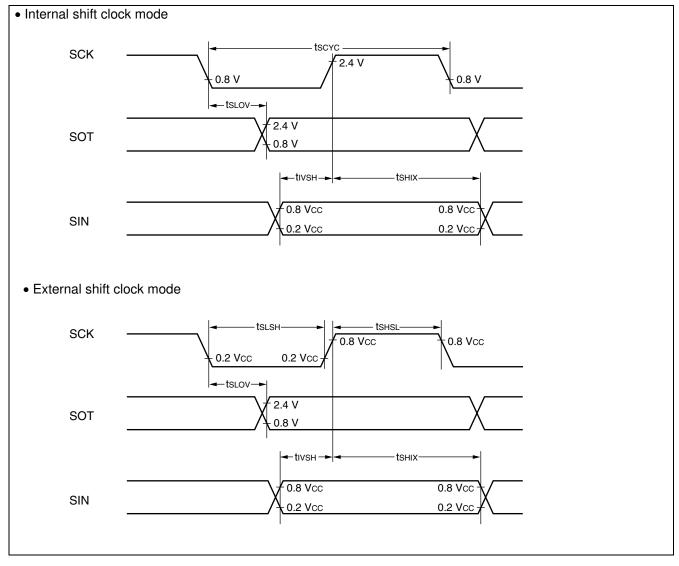
Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
raiailletei	Syllibol	Fill Name	Conditions	Min	Max	Oilit	nemarks
Power supply rise time	t⊓	Vcc	_	0.05	30	ms	
Power supply shutdown time	toff	Vcc		1	-		Waiting time until power-on

Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, raise the power smoothly by suppressing variation of voltages as shown below. When raising the power, do not use PLL clock. However, if voltage drop is 1V/s or less, use of PLL clock is allowed during operation.

13.4.4 UART Timing

(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V, Ta = -40 °C to +105 °C)

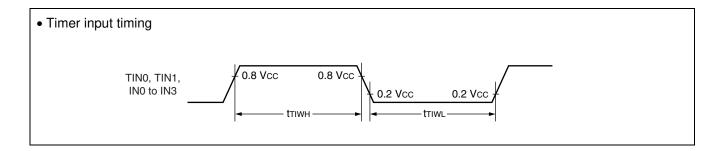
Parameter	Symbol	Pin Name	Conditions	Val	ue	Unit	Remarks
Faiailletei	Syllibol	Fill Name	Conditions	Min	Min Max		nemarks
Serial clock cycle time	tscyc	SCK1	Internal shift clock	4 tcp*	_	ns	
$SCK \downarrow \rightarrow SOT$ delay time	tslov	SCK1, SOT1	mode output pin is: CL = 80 pF+1TTL.	-80	+80	ns	
Valid SIN → SCK ↑	tıvsн	SCK1, SIN1		100	_	ns	
$SCK \uparrow \rightarrow valid SIN hold time$	tsнıх	SCK1, SIN1		60	_	ns	
Serial clock "H" pulse width	t shsl	SCK1	External shift clock	2 tcp*	_	ns	
Serial clock "L" pulse width	t slsh	SCK1	mode output pin is: CL = 80 pF+1TTL.	2 tcp*	_	ns	
$SCK \downarrow \rightarrow SOT$ delay time	tslov	SCK1, SOT1		-	150	ns	
Valid SIN → SCK ↑	tıvsн	SCK1, SIN1		60	_	ns	
$SCK \uparrow \rightarrow valid SIN hold time$	tsнıх	SCK1, SIN1		60	_	ns	


^{*:} Refer to Clock Timing ratings for top (internal operation clock cycle time).

Notes:

- AC Characteristics in CLK synchronous mode.
- \blacksquare C_{L} is a load capacitance value on pins for testing.

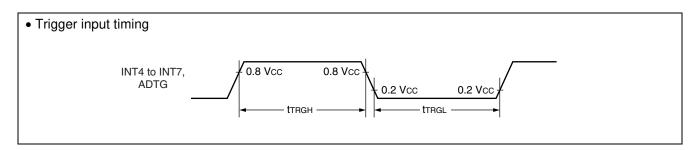
Document Number: 002-07765 Rev. *A Page 64 of 81


13.4.5 Timer Input Timing

 $(Vcc = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40 \, ^{\circ}\text{C to } +105 \, ^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Conditions	Conditions				Unit	Remarks
raiailietei	Symbol	riii Naille	Conditions	Min	Max	Oilit	nemarks		
Input pulse width	t тıwн	TIN0, TIN1	-	4 tcp*	-	ns			
	t TIWL	IN0 to IN3							

^{*:} Refer to Clock Timing ratings for tcp (internal operation clock cycle time).



13.4.6 Trigger Input Timing

(Vcc = 4.5 V to 5.5 V, Vss = 0.0 V,
$$T_A = -40 \, ^{\circ}\text{C}$$
 to +105 $^{\circ}\text{C}$)

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks
Parameter Symbol	FIII Name	Conditions	Min	Max	Oilit	Heiliaiks	
Input pulse width	tтrgн ttrgl	INT4 to INT7, ADTG	_	5 tcp*	-	ns	

*: Refer to Clock Timing ratings for tcp (internal operation clock cycle time).

13.5 A/D Converter

 $(\text{Vcc} = \text{AVcc} = 4.0 \text{ V to } 5.5 \text{ V}, \text{Vss} = \text{AVss} = 0.0 \text{ V}, 3.0 \text{ V} \leq \text{AVR} - \text{AVss}, \text{T}_{\text{A}} = -40 \text{ }^{\circ}\text{C to } +105 \text{ }^{\circ}\text{C})$

Davamatav	Cumbal	Pin Name		Value		I I m la	Damayka
Parameter	Symbol	Pin Name	Min	Тур	Max	Unit	Remarks
Resolution	_	_	-	_	10	bit	
Total error	_	_	_	_	± 3.0	LSB	
Nonlinear error	_	_	_	_	± 2.5	LSB	
Differential linear error	_	_	_	_	± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	1 LSB = (AVR – AVss) / 1024
Full-scale transition voltage	V _{FST}	AN0 to AN7	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	
Compare time	-	-	66 tcp*1	-	_	ns	With 16 MHz machine clock 5.5 V ≥ AVcc ≥ 4.5 V
			88 tcp*1	-	_	ns	With 16 MHz machine clock 4.5 V > AVcc ≥ 4.0 V
Sampling time	-	-	32 tcp*1	-	-	ns	With 16 MHz machine clock 5.5 V ≥ AVcc ≥ 4.5 V
			128 tcp *1	-	_	ns	With 16 MHz machine clock 4.5 V > AVcc ≥ 4.0 V
Analog port input current	lain	AN0 to AN7	_	-	10	μА	
Analog input voltage	Vain	AN0 to AN7	AVss	-	AVR	V	
Reference voltage	_	AVR	AVss + 2.7	_	AVcc	V	
Power supply current	lΑ	AVcc	-	3.5	7.5	mA	
	Іан	AVcc	-	_	5	μА	*2
Reference voltage	IR	AVR	-	165	250	μА	
supplying current	IRH	AVR	_	_	5	μΑ	*2
Variation among channels	-	AN0 to AN7	-	-	4	LSB	

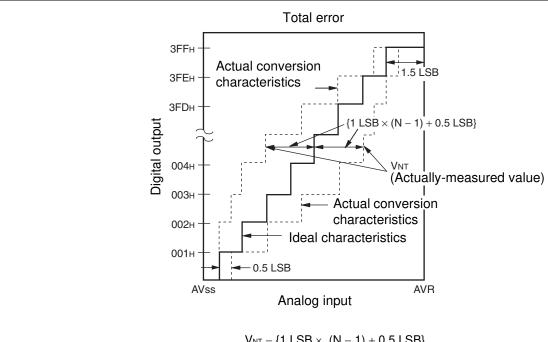
^{*1:} Refer to Clock Timing on AC Characteristics.

Document Number: 002-07765 Rev. *A Page 67 of 81

^{*2:} If A/D converter is not operating, a current when CPU is stopped is applicable (Vcc=AVcc=AVR=5.0 V).

13.6 Definition of A/D Converter Terms

Resolution: Analog variation that is recognized by an A/D converter.


Linear error: Deviation between a line across zero-transition line ("00 0000 00 0 0" ←→"00 0000 0001")

and full-scale transition line ("11 1111 11 10" ←→ "11 1111 1111") and actual conversion characteristics.

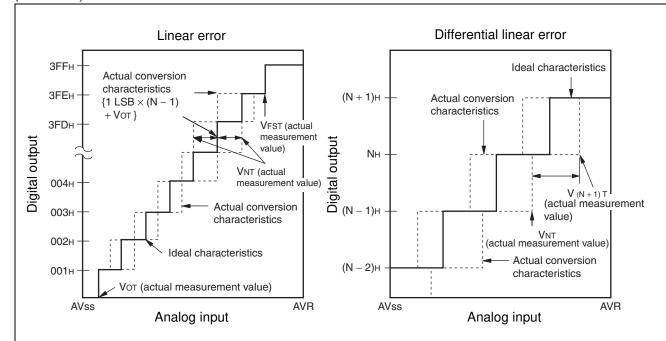
Differential linear error: Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

Total error: Difference between an actual value and an ideal value. A total error includes zero transition error, full-

scale transition error, and linear error.

Total error of digital output "N" =
$$V_{NT} - \{1 \text{ LSB} \times (N-1) + 0.5 \text{ LSB}\}\$$
 [LSB]

1 LSB = (Ideal value)
$$\frac{AVR - AV_{SS}}{1024}$$
 [V]


 V_{OT} (Ideal value) = $AV_{SS} + 0.5 LSB [V]$

V_{FST} (Ideal value) = AVR - 1.5 LSB [V]

V_{NT}: A voltage at which digital output transits from (N-1)_H to N_H.

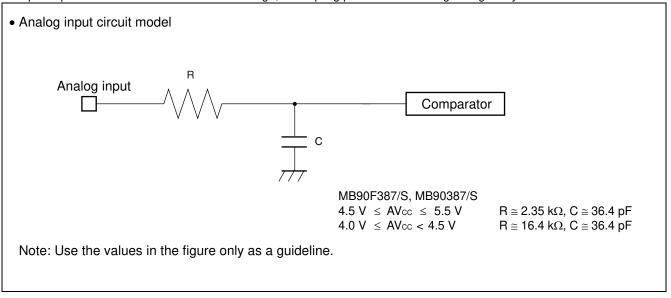
(Continued)

$$Linear\ error\ of\ digital\ output\ N = \frac{V_{NT} - \{1\ LSB\times\ (N-1) + V_{OT}\}}{1\ LSB} [LSB]$$

$$\label{eq:differential linear error of digital output N = } \frac{V \left(N + 1\right) T - V_{NT}}{1 \; LSB} - 1 LSB \; [LSB]$$

$$1 LSB = \frac{V_{FST} - V_{OT}}{1022} [V$$

Vot: Voltage at which digital output transits from "000H" to "001H." VFST: Voltage at which digital output transits from "3FEH" to "3FFH."


13.7 Notes on A/D Converter Section

Use the device with external circuits of the following output impedance for analog inputs:

Recommended output impedance of external circuits are: Approx. 3.9 k Ω or lower (4.5 V \leq AVcc \leq 5.5 V) (sampling period=2.00 μ s at 16 MHz machine clock), Approx. 11 k Ω or lower (4.0 V \leq AVcc < 4.5 V) (sampling period=8.0 μ s at 16 MHz machine clock).

If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.

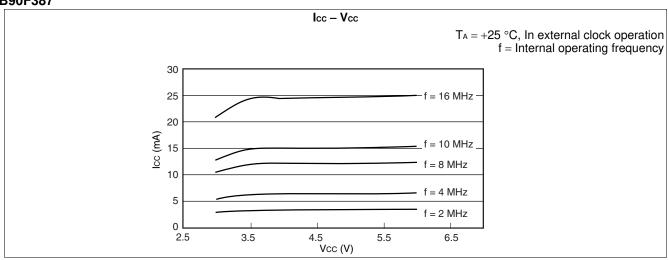
If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.

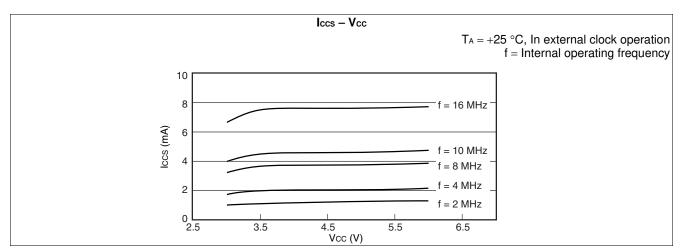
About errors

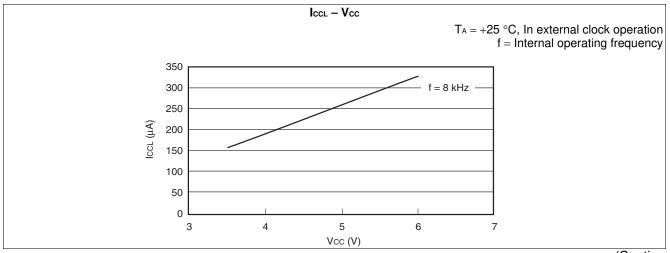
As [AVR-AVss] become smaller, values of relative errors grow larger.

13.8 Flash Memory Program/Erase Characteristics

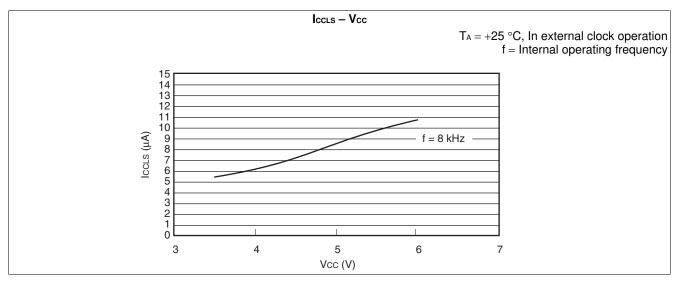
Parameter	Conditions		Value		Unit	Remarks
raiailletei	Conditions	Min	Тур	Max	Oilit	nemarks
Sector erase time	$T_A = +25 ^{\circ}C$ $V_{CC} = 5.0 V$	-	1	15	s	Excludes 00H programming prior to erasure
Chip erase time		-	4	-	S	Excludes 00H programming prior to erasure
Word (16-bit width) programming time		-	16	3,600	μS	Except for the over head time of the system
Program/Erase cycle	-	10,000	_	_	cycle	
Flash Data Retention Time	Average T _A = + 85 °C	20	_	_	Year	*

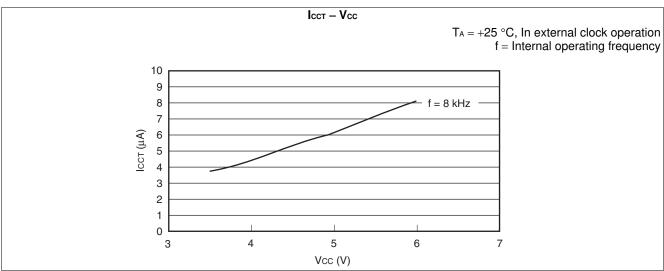

^{*:} This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

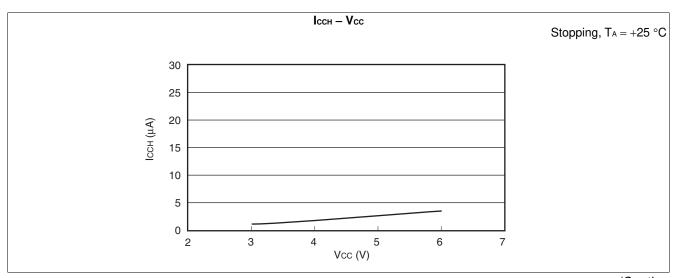

Document Number: 002-07765 Rev. *A Page 70 of 81

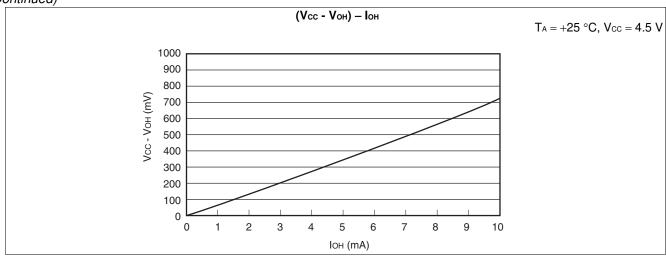


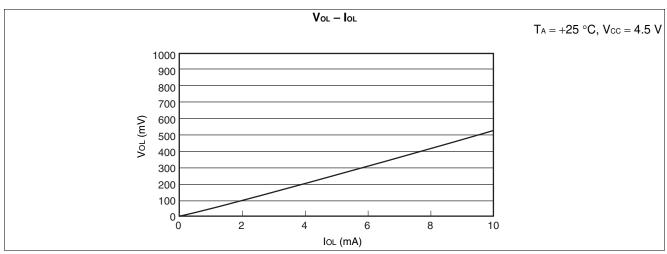
14. Example Characteristics

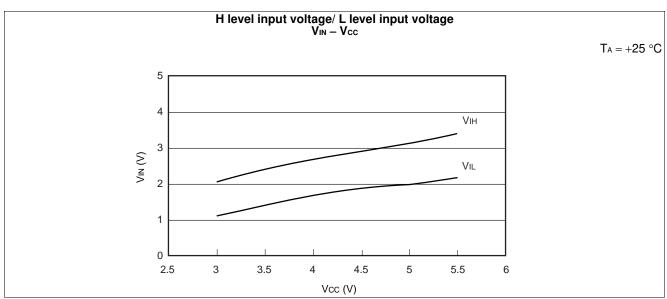

MB90F387

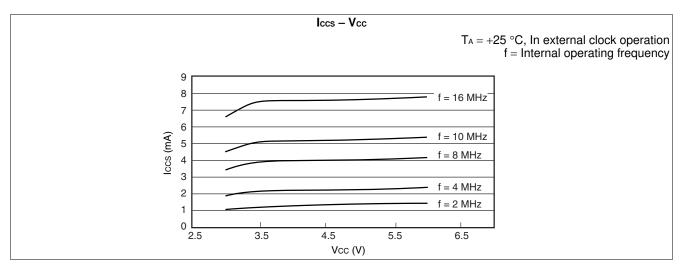


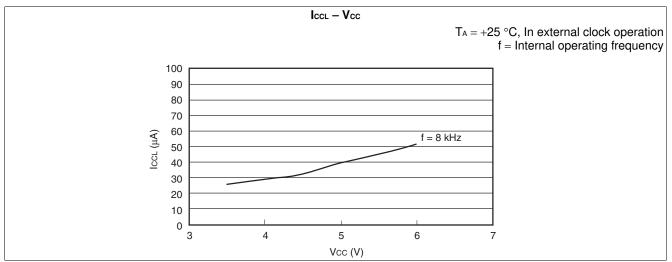


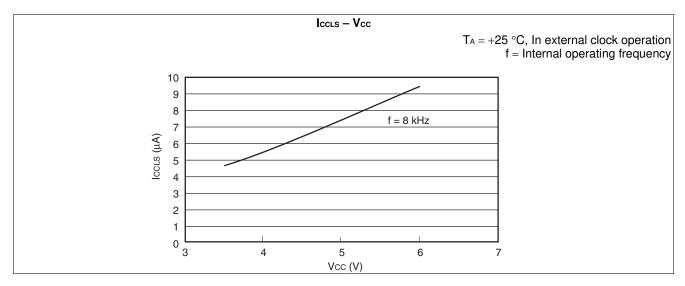


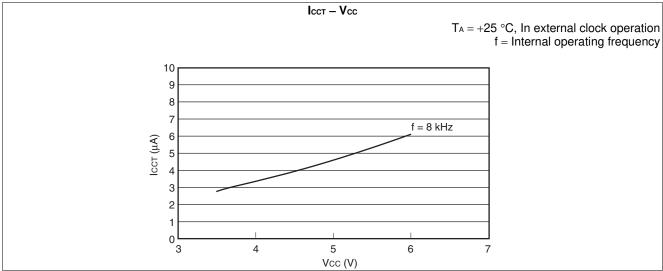




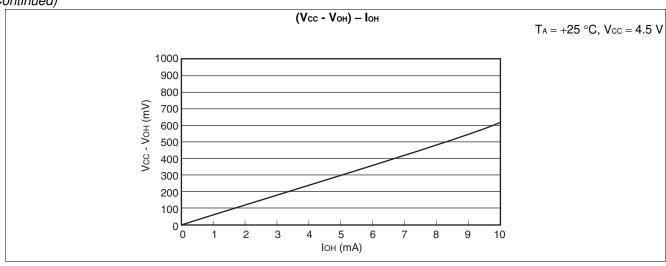


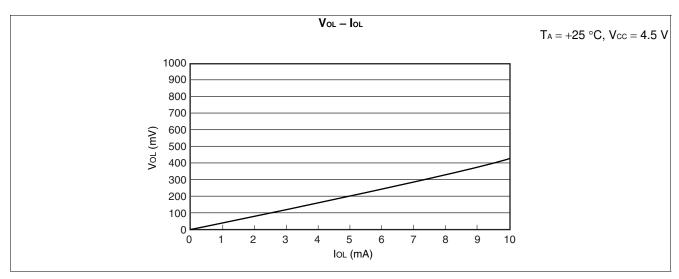


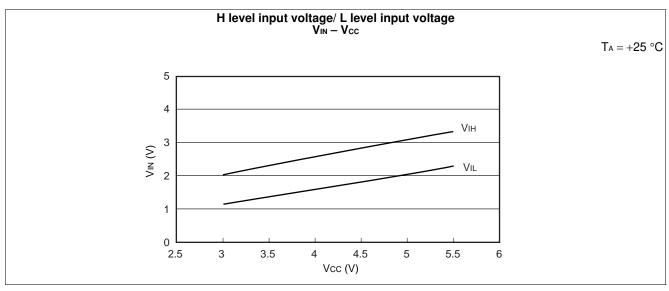

MB90387

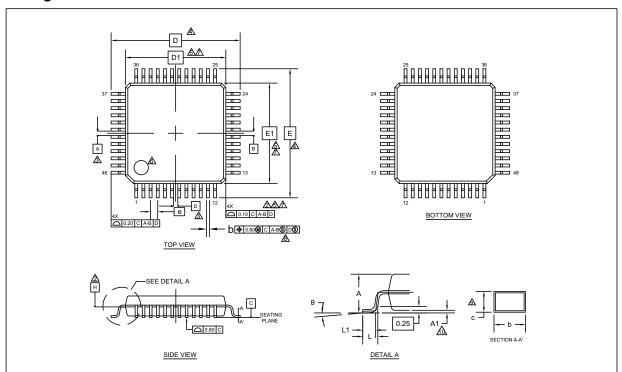












15. Ordering Information

Part Number	Package	Remarks
MB90F387PMT MB90387PMT MB90F387SPMT MB90387SPMT	48-pin plastic LQFP (LQA048)	

16. Package Dimension

SYMBOL	DIN	MENSIO	NS
STIMBOL	MIN.	NOM.	MAX.
A	_		1.70
A1	0.00	1	0.20
b	0.15		0.27
С	0.09	_	0.20
D	9.00 BSC		
D1	7	.00 BS0	0
е	0	.50 BS0	0
E	9	.00 BS	0
E1	7	.00 BS0	0
L	0.45	0.75	
L1	0.30	0.50	0.70
θ	0°	_	8°

NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- ⚠TO BE DETERMINED AT SEATING PLANE C.
- ⚠DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-13731 **

PACKAGE OUTLINE, 48 LEAD LQFP 7.0X7.0X1.7 MM LQA048 REV**

17. Major Changes

Spansion Publication Number: DS07-13717-5E

Page	Section	Change Results
4	■ PRODUCT LINEUP	Changed the number of channel of 8/16 bit PPG timer. or one 16-bit channel \rightarrow or two 16-bit channels
13	■ BLOCK DIAGRAM	Changed the direction of arrow of TIN0, TIN1 signals of 16-bit reload timer. right arrow (output) → left arrow (input)
67	■ ELECTRIC CHARACTERISTICS 4. AC Characteristics (4) UART timing	Changed the value of Serial clock. Serial clock "H" pulse width: 4tcp→2tcp Serial clock "L" pulse width: 4tcp→2tcp

NOTE: Please see "Document History" about later revised information.

Document Number: 002-07765 Rev. *A Page 79 of 81

Document History

	Document Title: MB90387/387S/F387S, MB90V495G, 16-bit Microcontrollers F2MC-16LX MB90385 Series Document Number:002-07765					
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
**	_	AKIH	12/19/2008	Migrated to Cypress and assigned document number 002-07765. No change to document contents or format.		
*A	6059071	SSAS	02/05/2018	Updated to Cypress template Package: FPT-48P-M26> LQA048		

Document Number: 002-07765 Rev. *A Page 80 of 81

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Wireless Connectivity

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb

cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2004-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not l

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-07765 Rev. *A Revised February 5, 2018 Page 81 of 81