

SN5433, SN54LS33, SN7433, SN74LS33

Quadruple 2-Input Positive-NOR Buffers With Open-Collector Outputs

These devices contain four independent 2-input NOR buffer gates with open-collector outputs. Open-collector outputs require resistive pull-up to perform logically but can deliver higher V_{OH} levels and are commonly used in wired-AND applications.

The SN5433 and SN54LS33 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN7433 and SN74LS33 are characterized for operation from 0°C to 70°C.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

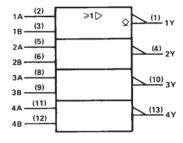
- ISO-9001
- · AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

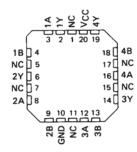

These devices contain four independent 2-input NOR buffer gates with open-collector outputs. Open-collector outputs require resistive pull-up to perform logically but can deliver higher VOH levels and are commonly used in wired-AND applications.

The SN5433 and SN54LS33 are characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$. The SN7433, and SN74LS33 are characterized for operation from 0 $^{\circ}\text{C}$ to 70 $^{\circ}\text{C}$.

FUNCTION TABLE (each gate)

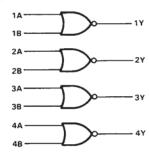
INP	UTS	ОИТРИТ
Α	В	Y
Н	х	L
×	н	L
L	, Ł	н

logic symbol†


 $^{^\}dagger$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

SN5433, SN54LS33...J OR W PACKAGE SN7433...N PACKAGE SN74LS33...D OR N PACKAGE (TOP VIEW)

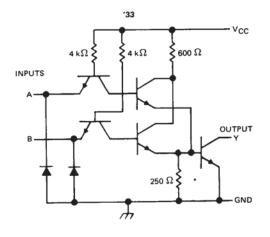

17 □	U14D Vcc
1A 🗆 2	13 4Y
1 B □3	12 AB
2Y 🗆 4	11 🗖 4A
2A □ 5	10 3Y
28 □6	9 🕽 3B
GND 7	8 3A

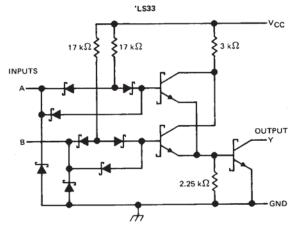
SN54LS33 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram

positive logic


 $Y = \overline{A + B}$ or $Y = \overline{A} \cdot \overline{B}$


TTL Devices

1

SN5433, SN54LS33, SN7433, SN74LS33 QUADRUPLE 2-INPUT POSITIVE-NOR BUFFERS WITH OPEN-COLLECTOR OUTPUTS

schematics (each gate)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	V
Input voltage: '33	V
'LS33	V
L533	v
Off-state output voltage	č
Operating free-air temperature: SN54'55°C to 125°	-
SN74'	u
Storage temperature range	С

NOTE 1: Voltage values are with respect to network ground terminal.

SN5433, SN7433 QUADRUPLE 2-INPUT POSITIVE-NOR BUFFERS WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

			SN5433	3	SN7433		UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	ONIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage	2			2			٧
VIL	Low-level input voltage			0.8			0.8	٧
Vон	High-level output voltage			5.5			5.5	V
IOL	Low-level output current			48	l		48	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	The construction	SN5433	SN7433	UNIT
PARAMETER	TEST CONDITIONS†	MIN TYP [‡] MAX	MIN TYP [‡] MAX	ONL
VIK	V _{CC} = MIN, i ₁ = -12 mA	-1.5	~ 1.5	٧
	V _{CC} = MIN, V _{IL} = 0.8 V, V _{OH} = 5.5 V		0.25	mA
loн	V _{CC} = MIN, V _{IL} = 0.7 V, V _{OH} = 5.5 V	0.25		
VOL	V _{CC} = MIN, V _{IH} = 2 V, I _{OL} = 16 mA	0.2 0.4	0.2 0.4	V
lı .	V _{CC} = MAX, V _I = 5.5 V	1	1	mA
чн	V _{CC} = MAX, V ₁ = 2.4 V	40	40	μА
IIL.	V _{CC} = MAX, V _I = 0.4 V	-1.6	- 1.6	mA
Іссн	VCC = MAX, VI = 0	3 6	3 6	mA
ICCL	V _{CC} = MAX, See Note 2	9 16.5	9 16.5	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 \text{ °C}$. NOTE 2: One input at 4.5 V, all others at 0 V.

switching characteristics, VCC = 5 V, TA = 25 °C (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH			5 10010 0 50-5		10	15	ns
tPHL	_		$R_L = 133 \text{ k}\Omega$, $C_L = 50 \text{ pF}$		12	18	ns
tPLH	A or B	Y			15	22	ns
tPHL			$R_L = 133 \text{ k}\Omega, C_L = 150 \text{ pF}$		16	24	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS33, SN74LS33 QUADRUPLE 2-INPUT POSITIVE-NOR BUFFERS WITH OPEN-COLLECTOR OUTPUTS

recommended operating conditions

		S	N54LS	33	SN74LS3			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	ONT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	٧
	High-level input voltage	2			2			V
VIL	Low-level input voltage		3.4	0.7	7.0		8.0	٧
	High-level output voltage			5.5			5.5	V
IOL	Low-level output current			12			24	mA
TA	Operating free-air temperature	- 55	100	125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

The contract of the contract o	RAMETER TEST CONDITIONS †			SN54LS33			SN74LS33			UNIT	
PARAMETER				MIN	TYP#	MAX	MIN	TYP\$	MAX	UNIT	
VIK	VCC = MIN,	I ₁ = - 18 mA					- 1.5			- 1.5	V
ГОН	VCC = MIN,	V _{IH} = 2 V,	VIL = MAX,	V _{OH} = 5.5 V			0.25			0.25	mA
	V _{CC} = MIN,	V _{1H} = 2 V,	VIL = MAX,	IOL = 12 mA		0.25	0.4		0.25	0.4	٧
VOL	V _{CC} = MIN,	VIL = MAX,	IOL = 24 mA						0.35	0.5	
T ₁	VCC = MAX,	V ₁ = 7 V		33			0.1			0.1	mA
Чн	VCC " MAX,	V1 = 2.7 V					20			20	μА
IIL.	VCC - MAX,	V ₁ = 0.4 V	1 (2000)			MilS:	- 0.4			- 0.4	mA
Іссн	VCC - MAX,	V ₁ = 0				1.8	3.6		1.8	3.6	mA
Icci	VCC - MAX,	See Note 2	135.23			6.9	13.8		6.9	13.8	mA

¹For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ²All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25 ^{\circ}\text{C}$. NOTE 2: One input at 4.5 V, all others at 0 V.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	IDITIONS	MIN TYP	MAX	UNIT
Tours			17/00/2015 COMPANY - 14/15-0		20	32	ns
tPLH .	A or B	Y	$R_L = 667 \Omega$,	C _L = 45 pF	18	28	ns
tpHI	A 01 D		(A) - ((A) A) (A) A)		18	28	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.