LDMOS 3-stage integrated Doherty MMIC

Rev. 1 — 14 December 2020

1. Product profile

1.1 General description

The BLM10D3740-35AB is a 3-stage fully integrated asymmetrical Doherty MMIC solution using Ampleon's state of the art LDMOS technology. The carrier and peaking device, input splitter, output combiner and pre-match are integrated in a single package. This multiband device is perfectly suited as a final stage for small cells and massive MIMO applications in the frequency range from 3700 MHz to 4000 MHz. Available in PQFN outline.

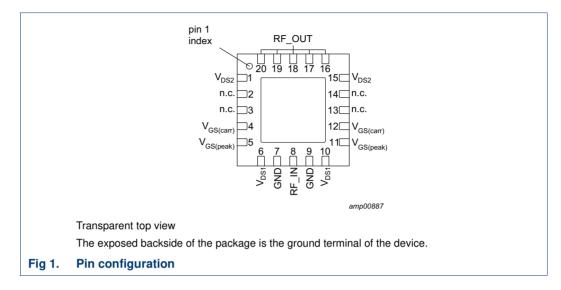
Table 1. Application performance

Typical RF performance at $T_{case} = 25 \ ^{\circ}C$; $I_{Dq} = 44 \ mA$ (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.5 \ V$. Test signal: 1-carrier LTE 20 MHz; PAR = 7.6 dB.

Test signal	f	V _{DS}	P _{L(AV)}	G _p	η
	(MHz)	(V)	(W)	(dB)	(%)
single carrier LTE	3900	28	5	33	39

1.2 Features and benefits

- Integrated input splitter
- Integrated output combiner
- **30** Ω output impedance thanks to integrated pre-match
- Very high efficiency thanks to asymmetry
- Designed for wideband operation (frequency 3700 MHz to 4000 MHz)
- Independent control of carrier and peaking bias
- Integrated ESD protection
- Source impedance 50 Ω ; high power gain
- For RoHS compliance see the product details on the Ampleon website


1.3 Applications

 RF power MMIC for multi-carrier and multi-standard 5G base stations in the 3700 MHz to 4000 MHz frequency range

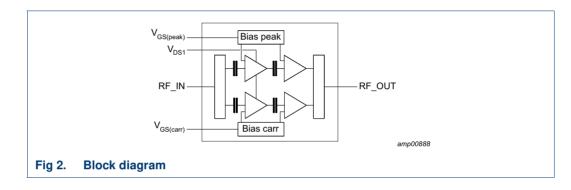
LDMOS 3-stage integrated Doherty MMIC

2. Pinning information

2.1 Pinning

2.2 Pin description

Table 2. Pin descri	Table 2. Pin description				
Symbol	Pin	Description			
V _{DS2}	1	drain-source voltage of final stages			
n.c.	2	not connected			
n.c.	3	not connected			
V _{GS(carr)}	4	gate-source voltage of carrier			
V _{GS(peak)}	5	gate-source voltage of peaking			
V _{DS1}	6	drain-source voltage of driver stages			
GND	7	RF ground			
RF_IN	8	RF input			
GND	9	RF ground			
V _{DS1}	10	drain-source voltage of driver stages			
V _{GS(peak)}	11	gate-source voltage of peaking			
V _{GS(carr)}	12	gate-source voltage of carrier			
n.c.	13	not connected			
n.c.	14	not connected			
V _{DS2}	15	drain-source voltage of final stages			
RF_OUT	16	RF output			
RF_OUT	17	RF output			
RF_OUT 18 RF output		RF output			
RF_OUT	RF_OUT 19 RF output				
RF_OUT	RF_OUT 20 RF output				
GND	flange	RF ground			


All information provided in this document is subject to legal disclaimers.

LDMOS 3-stage integrated Doherty MMIC

3. Ordering information

Table 3. Ordering i	nformation		
Type number	Package		
	Name	Description	Version
BLM10D3740-35AB	PQFN20	plastic thermal enhanced quad flat package; no leads; 20 terminals; body 8.0 x 8.0 x 2.1 mm	SOT1462-1

4. Block diagram

5. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage		-	65	V
V _{GS}	gate-source voltage		-0.5	+13	V
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature	[1]	-	200	°C

[1] Continuous use at maximum temperature will affect the reliability. For details refer to the online MTF calculator.

6. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Value	Unit
R _{th(j-c)}	thermal resistance from junction to case	$T_{case} = 90 \ ^{\circ}C; P_{L} = 2 \ W$ [1]	4	K/W
		$T_{case} = 90 \ ^{\circ}C; P_{L} = 5 \ W$ [1]	3.2	K/W

[1] When operated with a 1-carrier W-CDMA with PAR = 7.6 dB.

LDMOS 3-stage integrated Doherty MMIC

Characteristics 7.

Table 6. DC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Carrier						
V _{GSq}	gate-source quiescent voltage	$V_{DS} = 28 \text{ V}; I_D = 42 \text{ mA}$	1.65	2.0	2.6	V
I _{GSS}	gate leakage current	$V_{GS} = 1 V; V_{DS} = 0 V$	-	-	140	nA
Peaking		1				
I _{GSS}	gate leakage current	$V_{GS} = 1 V; V_{DS} = 0 V$	-	-	140	nA
Final st	ages	1				
I _{DSS}	drain leakage current	$V_{GS} = 0 V; V_{DS} = 28 V$	-	-	1.4	μA
Driver s	tages	1				
I _{DSS}	drain leakage current	$V_{GS} = 0 V; V_{DS} = 28 V$	-	-	1.4	μA

Table 7. **RF Characteristics**

Typical RF performance at $T_{case} = 25 \ ^{\circ}C$; $V_{DS} = 28 \ V$; $I_{Dq} = 42 \ mA$ (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.5 \ V$; $P_{L(AV)} = 5 \ W$; $f = 3850 \ MHz$ measured in an Ampleon production device interface board.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Test sigr	nal: single carrier pulsed CW [1]					
G _p	power gain	P _L = 5 W (37 dBm)	32.2	34.2	36.4	dB
η _D	drain efficiency	P _L = 5 W (37 dBm)	34	41	-	%
		$P_{L} = P_{L(3dB)}$	41	47	-	%
RL _{in}	input return loss		-	-	-10	dB
P _{L(3dB)}	output power at 3 dB gain compression		44.7	45.2	-	dBm

[1] Pulsed CW power sweep measurement (δ = 10 %, t_p = 100 µs).

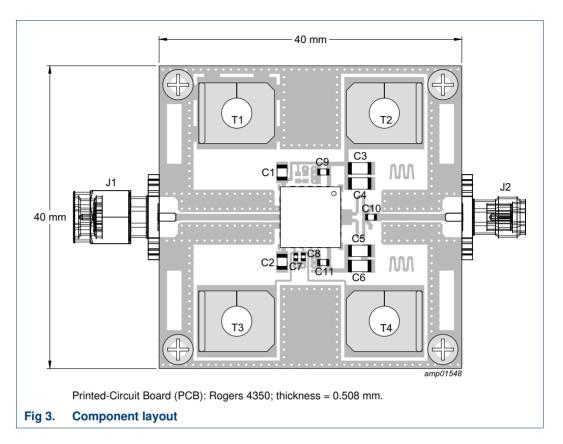
BLM10D3740-35AB

LDMOS 3-stage integrated Doherty MMIC

8. Application information

Table 8. Typical performance

 $T_{case} = 25 \text{ °C}; V_{DS} = 28 \text{ V}; I_{Dq} = 44 \text{ mA} (carrier); V_{GSq(peaking)} = V_{GSq(carrier)} - 0.5 \text{ V}.$ Test signal: 1-carrier LTE; PAR = 7.6 dB at 0.01 % probability CCDF; unless otherwise specified, typical performance in an Ampleon f = 3700 MHz to 4000 MHz frequency band application circuit.


Symbol	Parameter	Conditions		Min	Тур	Max	Unit
P _{L(3dB)}	output power at 3 dB gain compression	f = 3900 MHz	[1]	-	45.4	-	dBm
$\phi_{s21}/\phi_{s21(norm)}$	normalized phase response	at 3 dB compression point; f = 3900 MHz			-26	-	0
η _D	drain efficiency	8 dB OBO (P _{L(AV)} = 37 dBm); f = 3900 MHz			39	-	%
G _p	power gain	P _{L(AV)} = 37 dBm; f = 3900 MHz		-	33.1	-	dB
B _{video}	video bandwidth	P _{L(AV)} = 37 dBm; 2-tone CW; f = 3800 MHz		-	420	-	MHz
G _{flat}	gain flatness	P _{L(AV)} = 37 dBm; f = 3700 MHz to 4000 MHz		-	1.9	-	dB
ACPR _{20M}	adjacent channel power ratio (20 MHz)	P _{L(AV)} = 37 dBm; f = 3900 MHz		-	-31	-	dBc
$\Delta G / \Delta T$	gain variation with temperature	f = 3900 MHz	[3]	-	0.07	-	dB/°C
$\Delta P_{L(3dB)} / \Delta T$	output power at 3 dB gain compression variation with temperature	f = 3900 MHz [1]		-	0.016	-	dBm/°C
К	Rollett stability factor	$T_{case} = -30 \text{ °C}; f = 0.1 \text{ GHz to}$ 6.1 GHz	<u>[3]</u>	-	>1	-	

[1] Pulsed CW power sweep measurement (δ = 10 %, t_p = 100 µs).

[2] 25 ms CW power sweep measurement.

[3] S-parameters.

LDMOS 3-stage integrated Doherty MMIC

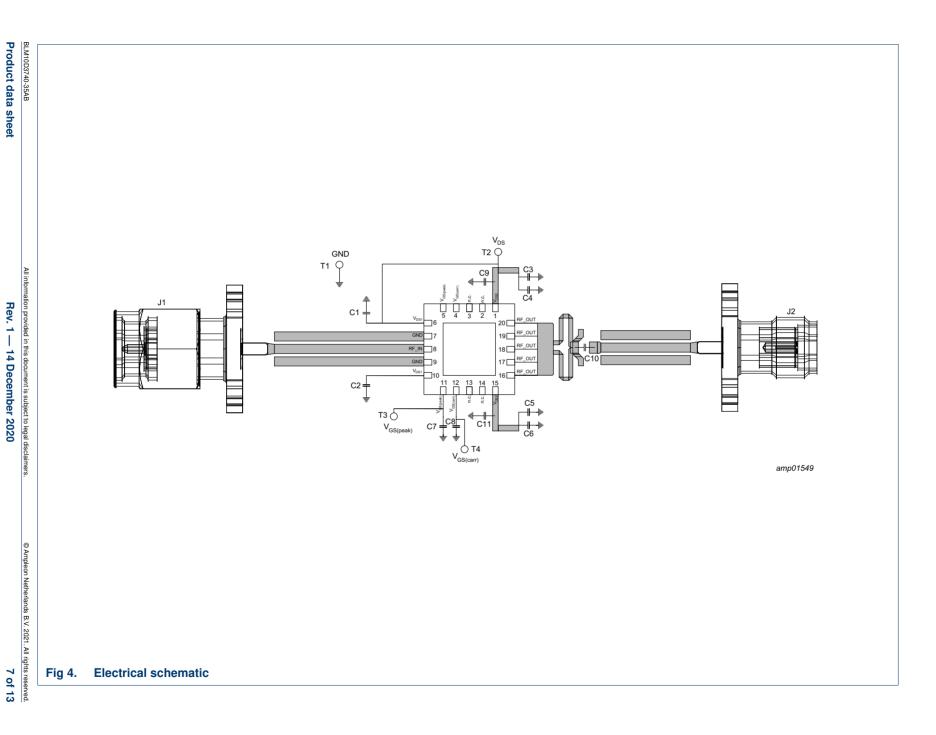


Table 9. Demo test circuit list of components

See Figure 3 for component layout.

Component	Description	Value	Remarks
C1, C2	multilayer ceramic chip capacitor	10 μF, 6.3 V	Murata: GRM21BR60J106KE01L
C3, C4, C5, C6	multilayer ceramic chip capacitor	10 μF, 50 V	Murata: GRM31CR61H106KA12L
C7, C8	multilayer ceramic chip capacitor	4.7 μF, 6.3 V	Murata: GRM155R60J475ME47D
C9	multilayer ceramic chip capacitor	3.3 pF ± 0.1 %	Murata: GQM1875C2E3R3BB12
C10	multilayer ceramic chip capacitor	3 pF ± 0.1 %	Murata: GQM1875C2E3R0BB12
C11	multilayer ceramic chip capacitor	3 pF ± 0.1 %	Murata: GQM1875C2E3R0BB12
J1	SMA Coaxial panel connector male		Huber & Suhner: 13_SMA-50-0-2/111_N
J2	SMA Coaxial panel connector female		Huber & Suhner: 23_SMA-50-0-2/111_N
T1, T2, T3, T4	PCB Terminal	6.35 mm × 0.81 mm, 4.1 mm	TE connectivity

LDMOS 3-stage integrated Doherty MMIC

LDMOS 3-stage integrated Doherty MMIC

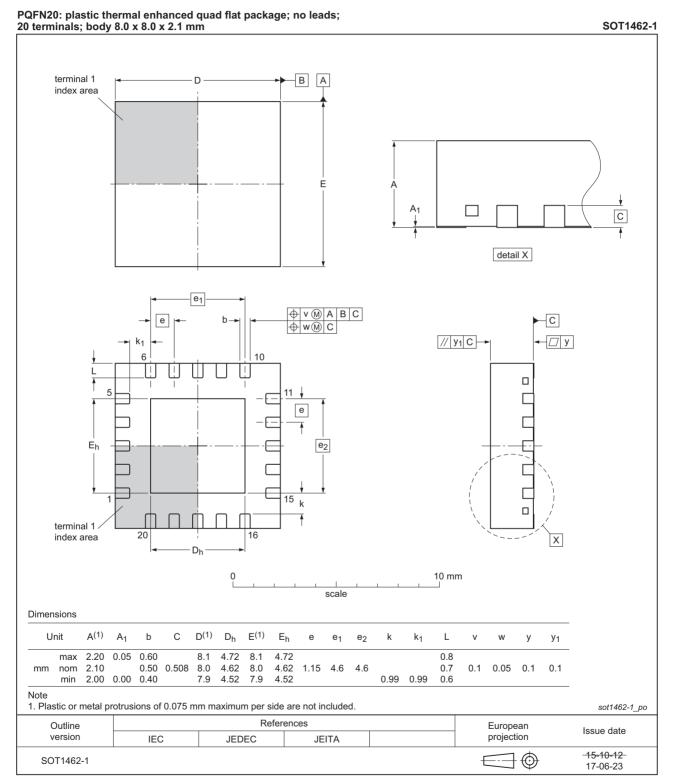
8.1 Ruggedness in a Doherty operation

The BLM10D3740-35AB is capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: V_{DS} = 32 V; I_{Dq} = 45 mA (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.5$ V; P_i corresponding to $P_{L(3dB)} - 5$ dB under Z_S = 50 Ω load; f = 3800 MHz (1-carrier W-CDMA; PAR = 9.9 dB); T_{case} = 25 °C.

8.2 Impedance information

Table 10. Typical impedance for optimum Doherty operation

Measured load-pull data; test signal: pulsed CW; $T_{case} = 25 \text{ °C}$; $V_{DS} = 28 \text{ V}$; $I_{Dq} = 42 \text{ mA}$ (carrier); $V_{GSq(peaking)} = V_{GSq(carrier)} - 0.5 \text{ V}$; $t_p = 100 \ \mu s$; $\delta = 10 \ \%$.


	tuned for optimum Doherty operation					
f	ZL	P _{L(3dB)}	G _{p(max)}	໗ add <mark>[1]</mark>	໗ add [2]	
(MHz)	(Ω)	(dBm)	(dB)	(%)	(%)	
3600	28.06 – j2.10	45.90	34.41	48.24	39.00	
3700	23.04 – j5.66	45.88	35.68	49.89	42.17	
3800	22.77 – j7.56	45.82	35.98	51.62	43.40	
3900	22.76 – j7.54	45.61	35.02	52.61	42.71	
4000	24.82 – j5.25	45.26	32.87	51.26	38.20	
4100	19.20 – j4.72	44.79	29.92	49.13	32.16	

[1] at P_{L(3dB)}.

[2] at 37 dBm.

LDMOS 3-stage integrated Doherty MMIC

9. Package outline

Fig 5. Package outline SOT1462-1 (PQFN20)

LDMOS 3-stage integrated Doherty MMIC

10. Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

Table 11.ESD sensitivity

I	ESD model	Class
(Charged Device Model (CDM); According to ANSI/ESDA/JEDEC standard JS-002	C2A [1]
ł	Human Body Model (HBM); According to ANSI/ESDA/JEDEC standard JS-001	1B 🛛

[1] CDM classification C2A is granted to any part that passes after exposure to an ESD pulse of 500 V.

[2] HBM classification 1B is granted to any part that passes after exposure to an ESD pulse of 500 V.

11. Abbreviations

Table 12. Abbreviations					
Acronym	Description				
CCDF	Complementary Cumulative Distribution Function				
CW	Continuous Wave				
ESD	ElectroStatic Discharge				
LDMOS	Laterally Diffused Metal Oxide Semiconductor				
LTE	Long Term Evolution				
MMIC	Monolithic Microwave Integrated Circuit				
MIMO	Multiple Input Multiple Output				
MTF	Median Time to Failure				
OBO	Output Back Off				
PAR	Peak-to-Average Ratio				
RoHS	Restriction of Hazardous Substances				
VSWR	Voltage Standing Wave Ratio				
W-CDMA	Wideband Code Division Multiple Access				

12. Revision history

Table 13.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BLM10D3740-35AB v.1	20201214	Product data sheet	-	-

13. Legal information

13.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.ampleon.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Ampleon sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Ampleon and its customer, unless Ampleon and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Ampleon product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 Disclaimers

Maturity — The information in this document can only be regarded as final once the relevant product(s) has passed the Release Gate in Ampleon's release process. Prior to such release this document should be regarded as a draft version.

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accept no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Ampleon products are sold subject to the general terms and conditions of commercial sale, as published at http://www.ampleon.com/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Ampleon hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Ampleon products by customer.

LDMOS 3-stage integrated Doherty MMIC

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Ampleon product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Ampleon accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Ampleon's warranty of the product for such

14. Contact information

automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Ampleon's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Ampleon for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Ampleon's standard warranty and Ampleon's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

For more information, please visit: <u>http://www.ampleon.com</u> For sales office addresses, please visit: <u>http://www.ampleon.com/sales</u>

LDMOS 3-stage integrated Doherty MMIC

15. Contents

1	Product profile 1
1.1	General description 1
1.2	Features and benefits 1
1.3	Applications 1
2	Pinning information 2
2.1	Pinning 2
2.2	Pin description 2
3	Ordering information 3
4	Block diagram 3
5	Limiting values 3
6	Thermal characteristics 3
7	Characteristics 4
8	Application information 5
8.1	Ruggedness in a Doherty operation 8
8.2	Impedance information 8
9	Package outline 9
10	Handling information 10
11	Abbreviations 10
12	Revision history 10
13	Legal information 11
13.1	Data sheet status 11
13.2	Definitions 11
13.3	Disclaimers
13.4	Trademarks 12
14	Contact information 12
15	Contents 13

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© Ampleon Netherlands B.V. 2021.

All rights reserved.

For more information, please visit: http://www.ampleon.com For sales office addresses, please visit: http://www.ampleon.com/sales

Date of release: 14 December 2020 Document identifier: BLM10D3740-35AB