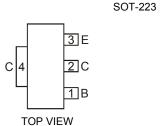
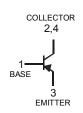

PNP SURFACE MOUNT TRANSISTOR


Features


- **Epitaxial Planar Die Construction**
- Complementary NPN Type Available (DZT491)
- Ideally Suited for Automated Assembly Processes
- Ideal for Medium Power Switching or Amplification Applications
- Lead Free By Design/RoHS Compliant (Note 1)
- "Green" Device (Note 3)

Mechanical Data

- Case: SOT-223
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Finish Matte Tin annealed over Copper Leadframe (Lead Free Plating). Solderable per MIL-STD-202, Method 208
- Marking & Type Code Information: See Page 3
- Ordering Information: See Page 3
- Weight: 0.115 grams (approximate)

Schematic and Pin Configuration

Maximum Ratings @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	-80	V
Collector-Emitter Voltage	V _{CEO}	-60	V
Emitter-Base Voltage	V_{EBO}	-5	V
Collector Continuous Current (Note 3)	Ic	-1	Α
Peak Collector Current	I _{CM}	-2	Α
Base Current	I _B	-200	mA
Power Dissipation (Note 3)	Pd	1	W
Operating and Storage Temperature Range	T _j , T _{STG}	-55 to +150	°C

Electrical Characteristics @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Conditions	
OFF CHARACTERISTICS (Note 4)							
Collector-Base Cutoff Current	I _{CBO}			-100	nΑ	V _{CB} = -60V	
Emitter-Base Cutoff Current	I _{EBO}			-100	nA	V _{EB} = -4V	
Collector-Emitter Cutoff Current	I _{CES}			-100	nA	V _{CES} = -60V	
Collector-Base Breakdown Voltage	V _{(BR)CBO}	-80		_	V	$I_{C} = 100 \mu A$	
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	-60	_		V	I _C = 10mA	
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	-5		_	V	$I_E = 100 \mu A$	
ON CHARACTERISTICS (Note 4)							
Collector-Emitter Saturation Voltage	V _{CE(SAT)}			-0.3	٧	$I_C = -500 \text{mA}, I_B = -50 \text{mA}$	
Collector-Emitter Saturation Voltage				-0.6	V	$I_C = -1A$, $I_B = -100mA$	
	h _{FE}	100		1		$V_{CE} = -5V$, $I_C = -1mA$	
DC Current Gain		100		300	_	$V_{CE} = -5V, I_{C} = -500mA$	
DC Current Gain		80			_	$V_{CE} = -5V, I_{C} = -1A$	
		15			_	$V_{CE} = -5V, I_{C} = -2A$	
Base-Emitter Saturation Voltage	V _{BE(SAT)}			-1.2	V	$I_C = -1A$, $I_B = -100mA$	
Base-Emitter Turn-On Voltage	$V_{BE(on)}$			-1	V	$I_C = -1A$, $V_{CE} = -5V$	
SMALL SIGNAL CHARACTERISTICS							
Current Gain-Bandwidth Product	f_{T}	150	_		MHz	$V_{CE} = -10V$, $I_{C} = -50$ mA, $f = 100$ MHz	
Output Capacitance	C _{obo}	_	13	_	pF	V _{CB} = -10V, f =1MHz	

Notes:

- No purposefully added lead.
- Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- Device mounted on FR-4 PCB, pad layout as shown on page 4 or in Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.
- Measured under pulsed conditions. Pulse width = 300ms. Duty cycle ≤ 2%.

Typical Characteristics @TA = 25°C unless otherwise specified

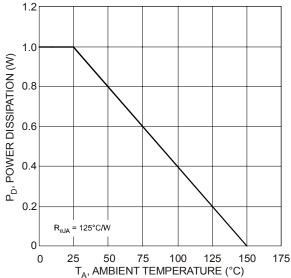


Fig. 1 Power Dissipation vs. Ambient Temperature (Note 3)

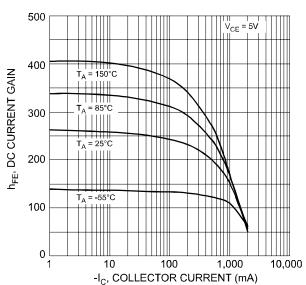


Fig. 3 Typical DC Current Gain vs. Collector Current

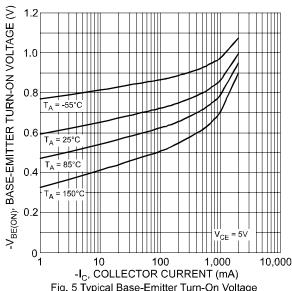
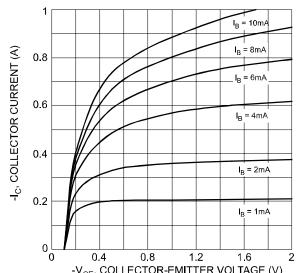
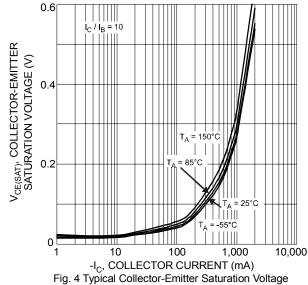
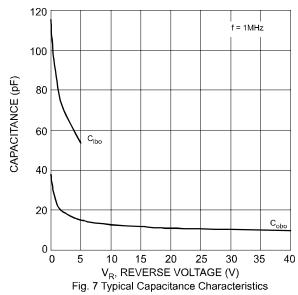




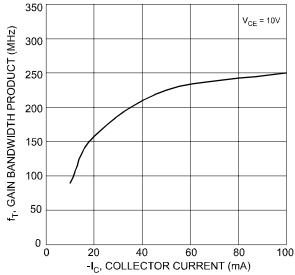
Fig. 5 Typical Base-Emitter Turn-On Voltage vs. Collector Current

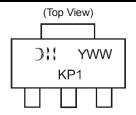
-V_{CE}, COLLECTOR-EMITTER VOLTAGE (V) Fig. 2 Typical Collector Current vs. Collector-Emitter Voltage



vs. Collector Current

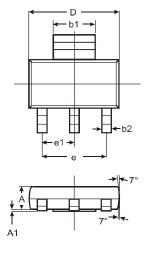
Fig. 6 Typical Base-Emitter Saturation Voltage vs. Collector Current

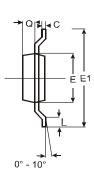



Fig. 8 Typical Gain-Bandwidth Product vs. Collector Current

Ordering Information (Note 5)

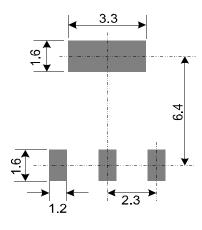
Device	Packaging	Shipping
DZT591C-13	SOT-223	2500/Tape & Reel


Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.


Marking Information

OH = Manufacturer's code marking KP1 = Product type marking code YWW = Date code marking Y = Last digit of year ex: 7 = 2007 WW = Week code 01 - 52

Package Outline Dimensions



	SOT-223					
Dim	Min	Max	Тур			
Α	1.55	1.65	1.60			
A1	0.010	0.15	0.05			
b1	2.90	3.10	3.00			
b2	0.60	0.80	0.70			
С	0.20	0.30	0.25			
D	6.45	6.55	6.50			
Е	3.45	3.55	3.50			
E1	6.90	7.10	7.00			
е	_	_	4.60			
e1	_	_	2.30			
L	0.85	1.05	0.95			
Q	0.84	0.94	0.89			
All [All Dimensions in mm					

Suggested Pad Layout: (Based on IPC-SM-782)

(Unit: mm)

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.