

# STL60N3LLH5

### N-channel 30 V, 0.0063 Ω, 17 A PowerFLAT™ (5x6) STripFET™ V Power MOSFET

### Features

| Туре        | V <sub>DSS</sub> | R <sub>DS(on)</sub><br>max | I <sub>D</sub>      |
|-------------|------------------|----------------------------|---------------------|
| STL60N3LLH5 | 30 V             | <0.0071 Ω                  | 17 A <sup>(1)</sup> |

- 1. The value is rated according  ${\rm R}_{\rm thj\text{-}pcb}$
- R<sub>DS(on)</sub> \* Q<sub>g</sub> industry benchmark
- Extremely low on-resistance R<sub>DS(on)</sub>
- Very low switching gate charge
- High avalanche ruggedness
- Low gate drive power losses

### Application

Switching applications

### Description

This STripFET<sup>™</sup>V Power MOSFET technology is among the latest improvements, which have been especially tailored to achieve very low on-state resistance providing also one of the best-in-class figure of merit (FOM).

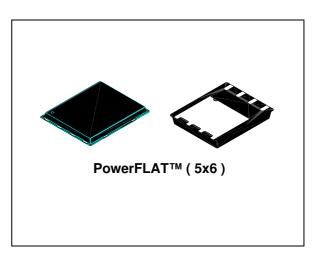
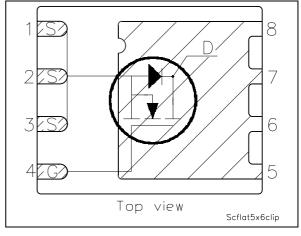




Figure 1. Internal schematic diagram



#### Table 1.Device summary

| Orde  | er code | Marking  | Package          | Packaging     |
|-------|---------|----------|------------------|---------------|
| STL60 | N3LLH5  | 60N3LLH5 | PowerFLAT™ (5x6) | Tape and reel |

# Contents

| 1 | Electrical ratings                      | 3 |
|---|-----------------------------------------|---|
| 2 | Electrical characteristics              | 4 |
|   | 2.1 Electrical characteristics (curves) | 6 |
| 3 | Test circuits                           | 8 |
| 4 | Package mechanical data                 | 9 |
| 5 | Revision history1                       | 1 |



# 1 Electrical ratings

| Table 2. Absolute maximum rat |
|-------------------------------|
|-------------------------------|

| Symbol                             | Parameter                                             | Value      | Unit |
|------------------------------------|-------------------------------------------------------|------------|------|
| V <sub>DS</sub>                    | Drain-source voltage (V <sub>GS</sub> = 0)            | 30         | V    |
| V <sub>GS</sub>                    | Gate-source voltage                                   | ± 22       | V    |
| I <sub>D</sub> <sup>(1)</sup>      | Drain current (continuous) at T <sub>C</sub> = 25 °C  | 60         | А    |
| I <sub>D</sub> <sup>(1)</sup>      | Drain current (continuous) at T <sub>C</sub> = 100 °C | 37.5       | А    |
| I <sub>D</sub> <sup>(2)</sup>      | Drain current (continuous) at T <sub>C</sub> = 25 °C  | 17         | А    |
| I <sub>D</sub> <sup>(2)</sup>      | Drain current (continuous) at T <sub>C</sub> =100°C   | 10.6       | А    |
| I <sub>DM</sub> <sup>(3)</sup>     | Drain current (pulsed)                                | 68         | А    |
| P <sub>TOT</sub> <sup>(1)</sup>    | Total dissipation at $T_C = 25^{\circ}C$              | 60         | W    |
| P <sub>TOT</sub> <sup>(2)</sup>    | Total dissipation at $T_C = 25^{\circ}C$              | 4          | W    |
|                                    | Derating factor                                       | 0.03       | W/°C |
| T <sub>J</sub><br>T <sub>stg</sub> | Operating junction temperature<br>Storage temperature | -55 to 150 | °C   |

1. The value is rated according  $\rm R_{\rm thj-c}$ 

2. The value is rated according  $\mathsf{R}_{thj\text{-pcb}}$ 

3. Pulse width limited by safe operating area

|  | Table 3. | Thermal resistance |
|--|----------|--------------------|
|--|----------|--------------------|

| Symbol                              | Parameter                                               | Value | Unit |
|-------------------------------------|---------------------------------------------------------|-------|------|
| R <sub>thj-case</sub>               | Thermal resistance junction-case (Drain) (steady state) | 2.08  | °C/W |
| R <sub>thj-pcb</sub> <sup>(1)</sup> | Thermal resistance junction-ambient                     | 31.3  | °C/W |

1. When mounted on FR-4 board of 1inch<sup>2</sup>, 2oz Cu, t < 10 sec

| Symbol          | Parameter                                                                                             | Value | Unit |
|-----------------|-------------------------------------------------------------------------------------------------------|-------|------|
| I <sub>AV</sub> | Not-repetitive avalanche current<br>(pulse width limited by Tj Max)                                   | 12.5  | А    |
| E <sub>AS</sub> | Single pulse avalanche energy (starting $T_J = 25 \ ^{\circ}C$ , $I_D = I_{AV}$ , $V_{DD} = 21 \ V$ ) | 120   | mJ   |



# 2 Electrical characteristics

 $(T_{CASE} = 25^{\circ}C \text{ unless otherwise specified})$ 

| Symbol               | Parameter                                          | Test conditions                                                                            | Min. | Тур.             | Max.             | Unit     |
|----------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|------|------------------|------------------|----------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown<br>voltage                  | $I_{D} = 250 \ \mu A, \ V_{GS} = 0$                                                        | 30   |                  |                  | V        |
| I <sub>DSS</sub>     | Zero gate voltage drain current ( $V_{GS} = 0$ )   | V <sub>DS</sub> = max rating,<br>V <sub>DS</sub> = max rating @125 °C                      |      |                  | 1<br>10          | μΑ<br>μΑ |
| I <sub>GSS</sub>     | Gate body leakage current<br>(V <sub>DS</sub> = 0) | V <sub>GS</sub> = ± 22 V                                                                   |      |                  | ±100             | nA       |
| V <sub>GS(th)</sub>  | Gate threshold voltage                             | $V_{DS}$ = $V_{GS}$ , $I_D$ = 250 $\mu$ A                                                  | 1    |                  |                  | V        |
| R <sub>DS(on)</sub>  | Static drain-source on resistance                  | $V_{GS}$ = 10 V, I <sub>D</sub> = 8.5 A<br>V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 8.5 A |      | 0.0063<br>0.0086 | 0.0071<br>0.0095 | Ω<br>Ω   |

#### Table 5. On/off states

#### Table 6. Dynamic

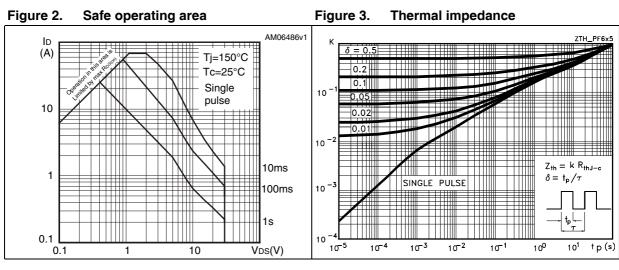
| Symbol                                                   | Parameter                                                                  | Test conditions                                                             | Min. | Тур.              | Max. | Unit           |
|----------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|------|-------------------|------|----------------|
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input capacitance<br>Output capacitance<br>Reverse transfer<br>capacitance | V <sub>DS</sub> =25 V, f=1 MHz,<br>V <sub>GS</sub> =0                       | -    | 1290<br>240<br>32 | -    | pF<br>pF<br>pF |
| Q <sub>g</sub><br>Q <sub>gs</sub><br>Q <sub>gd</sub>     | Total gate charge<br>Gate-source charge<br>Gate-drain charge               | $V_{DD}$ =15 V, I <sub>D</sub> = 17 A<br>$V_{GS}$ =4.5 V<br>(see Figure 14) | -    | 8<br>3.6<br>3.4   | -    | nC<br>nC<br>nC |

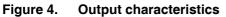
### Table 7. Switching times

| Symbol                                                                        | Parameter                                                           | Test conditions                                                                                     | Min. | Тур.                     | Max. | Unit                 |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------|--------------------------|------|----------------------|
| t <sub>d(on)</sub><br>t <sub>r</sub><br>t <sub>d(off)</sub><br>t <sub>f</sub> | Turn-on delay time<br>Rise time<br>Turn-off delay time<br>Fall time | $V_{DD}=15 \text{ V}, I_{D}=8.5 \text{ A},$ $R_{G}=4.7 \Omega, V_{GS}=10 \text{ V}$ (see Figure 13) | -    | 8.6<br>11.2<br>32.4<br>6 | -    | ns<br>ns<br>ns<br>ns |



| Symbol                                                 | Parameter                                                                    | Test conditions                                                                  | Min | Тур.            | Max | Unit          |
|--------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----|-----------------|-----|---------------|
| I <sub>SD</sub>                                        | Source-drain current                                                         |                                                                                  | -   |                 | 17  | А             |
| I <sub>SDM</sub> <sup>(1)</sup>                        | Source-drain current (pulsed)                                                |                                                                                  | -   |                 | 68  | А             |
| V <sub>SD</sub> <sup>(2)</sup>                         | Forward on voltage                                                           | I <sub>SD</sub> = 17 A, V <sub>GS</sub> =0                                       | -   |                 | 1.1 | V             |
| t <sub>rr</sub><br>Q <sub>rr</sub><br>I <sub>RRM</sub> | Reverse recovery time<br>Reverse recovery charge<br>Reverse recovery current | I <sub>SD</sub> = 17 A,<br>di/dt = 100 A/μs,<br>V <sub>DD</sub> =25 V, Tj=150 °C | -   | 22<br>15<br>1.4 |     | ns<br>nC<br>A |


Table 8.Source drain diode


1. Pulse width limited by safe operating area

2. Pulsed: pulse duration= 300  $\mu s,$  duty cycle 1.5%

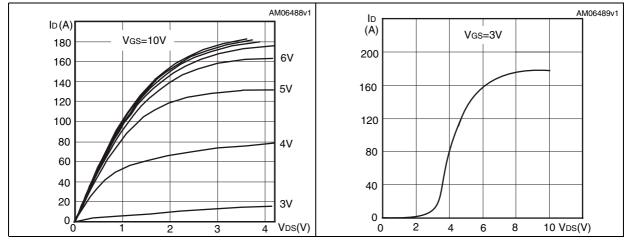
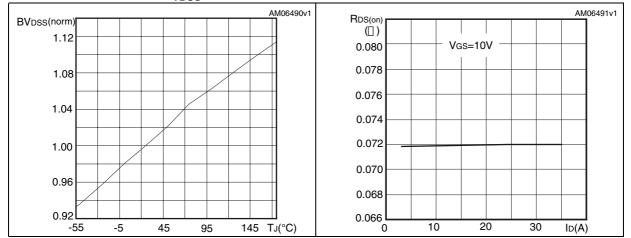


### 2.1 Electrical characteristics (curves)







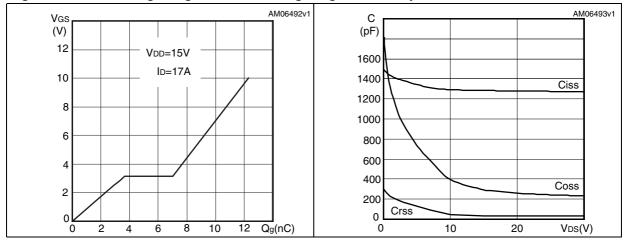
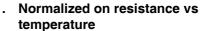




Figure 7. Static drain-source on resistance




Doc ID 17268 Rev 1

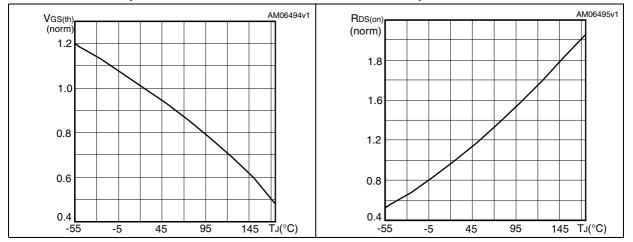
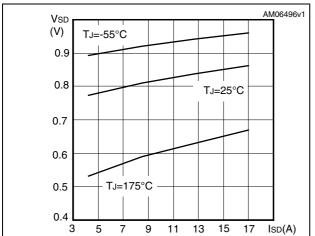


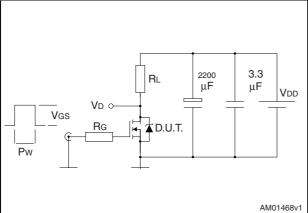


#### Gate charge vs gate-source voltage Figure 9. **Capacitance variations** Figure 8.

Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature





Figure 12. Source-drain diode forward characteristics

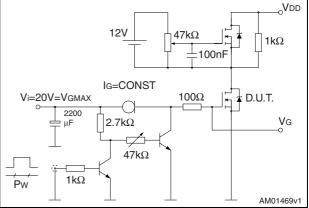
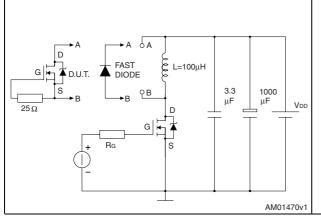


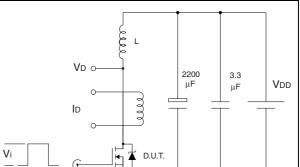
57

### 3 Test circuits

Figure 13. Switching times test circuit for resistive load





Figure 16. Unclamped inductive load test

circuit

Figure 15. Test circuit for inductive load switching and diode recovery times







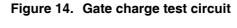
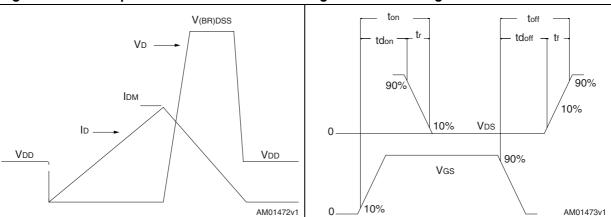




Figure 18. Switching time waveform



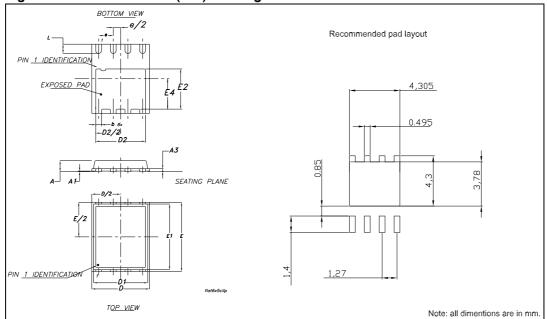
Pw





AM01471v1

## 4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.



| Dim. | mm.  |      |      | inch. |        |        |  |
|------|------|------|------|-------|--------|--------|--|
|      | Min. | Тур. | Max. | Min.  | Тур.   | Max.   |  |
| А    | 0.80 | 0.83 | 0.93 | 0.031 | 0.32   | 0.036  |  |
| A1   |      | 0.02 | 0.05 |       | 0.0007 | 0.0019 |  |
| A3   |      | 0.20 |      |       | 0.007  |        |  |
| b    | 0.35 | 0.40 | 0.47 | 0.013 | 0.015  | 0.018  |  |
| D    |      | 5.00 |      |       | 0.196  |        |  |
| D1   |      | 4.75 |      |       | 0.187  |        |  |
| D2   | 4.15 | 4.20 | 4.25 | 0.163 | 0.165  | 0.167  |  |
| E    |      | 6.00 |      |       | 0.236  |        |  |
| E1   |      | 5.75 |      |       | 0.226  |        |  |
| E2   | 3.43 | 3.48 | 3.53 | 0.135 | 0.137  | 0.139  |  |
| E4   | 2.58 | 2.63 | 2.68 |       | 0.103  | 0.105  |  |
| е    |      | 1.27 |      |       | 0.050  |        |  |
| L    | 0.70 | 0.80 | 0.90 | 0.027 | 0.031  | 0.035  |  |

 Table 9.
 Power FLAT™ (5x6) mechanical data







# 5 Revision history

### Table 10. Document revision history

| Date        | Revision | Changes       |
|-------------|----------|---------------|
| 16-Mar-2010 | 1        | First release |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 17268 Rev 1

