

COMPACT POWER RELAY FOR INDUCTIVE LOAD

JM RELAYS

Slim TMP type

ideas for life

mm inch

Flat TMP type

FEATURES

· Compact, high-capacity, and resistant to inductive loads

The relay is a compact 16×30.4×26.5 mm .630×1.197×1.043 inch. It can control an inductive load ($\cos \phi = 0.7$) with inrush current of 70 A and steady state current of 20 A.

SPECIFICATIONS

Contact

				1			
Arrangeme	ent			1 Form A			
Initial contact resistance, max.				30 mΩ			
(By voltage drop 6 V DC 1 A)				(Cd free type: 100 m Ω)			
Contact material				Silver alloy			
	Nominal swi	20 A 250 V AC					
Rating	Rating Max. switching power			5,000 VA			
(resistive Max. switching voltage				250 V AC			
load)	Max. switchi	ng current		20 A			
	Min. switchir	ng capacity	#1	100 mA, 5 V DC			
	Mechanical	(at 180 cpr	n)	106			
Expected life (min. ope.)	Electrical Life (at 20 cpm)	Resistive load 20 A, 250 V AC ($\cos \varphi = 1$)		105			
		Inductive load	Inrush 70 A, Steady 20 A (250 V AC cosφ = 0.7)	105			
			Inrush 80 A, Cut-off 80 A (When the motor is locked) (250 V AC $\cos\varphi = 0.7$)	1.5×10 ³			

Coil

Nominal operating power

#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

900 mW

Remarks

- Specifications will vary with foreign standards certification ratings.
- *1 Measurement at same location as "Initial breakdown voltage" section
- *2 Detection current: 10mA
- \star_3 Wave is standard shock voltage of $\pm 1.2 \times 50 \mu s$ according to JEC-212-1981
- *4 Excluding contact bounce time
- $^{\star 5}$ Half-wave pulse of sine wave: 11ms; detection time: 10 μs *6 Half-wave pulse of sine wave: 6ms
- *7 Detection time: 10µs

AMBIENT ENVIRONMENT

*8 Refer to 6. Conditions for operation, transport and storage mentioned in

Excellent contact welding resistance High contact pressure, a forced opening

mechanism, and a forced wiping mechanism realizes an excellent contact welding resistance.

High breakdown voltage and surge resistant relay

More than 6.4 mm .252 inch maintained for the insulation distance between contacts and coil. and the breakdown voltage between contacts and coil is 5,000 V for 1 minute. In addition, the surge resistance between contacts and coil is greater than 10,000 V.

· Resistant to external force An absorber mechanism is used on the load terminals, giving a large improvement in characteristics variations caused by the external force during FASTON placement/removal.

Flux resistance mechanism

The terminal area is plugged with resin to prevent flux seepage during PCB mounting. (TMP type)

· Conforms to the various safety standards

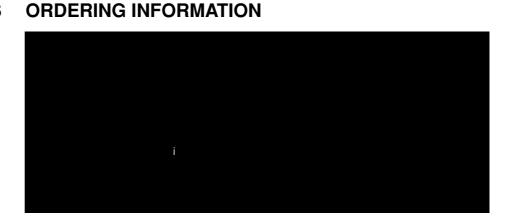
UL, CSA approved.

TÜV, VDE under application.

• The line up can support economical mounting methods.

The relay are equipped with a drive terminal (coil terminal) on one side for PCBs, and a load terminal (tab terminal #250) on the reverse side. The line up includes the TM type which can be attached directly to the PCB composing a drive circuit, and the TMP type which supports economical wiring. The TMP type can also be directly attached, and a high capacity load can be wired to the tab terminal.

Characteristics

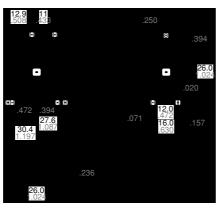

Characteris	sucs					
Max. operating speed			180 cpm			
Initial insulation resistance*1			Min. 100 MΩ (at 500 V DC)			
Initial breakdown	Between open contacts		1,000 Vrms for 1 min.			
voltage*2	Between contacts and coil		5,000 Vrms for 1 min.			
Surge voltage between contact and coil*3			Min. 10,000 V			
Operate time*4 (at nominal voltage)(at 20°C)			Max. 20ms (Approx. 8 ms)			
Release time (without diode)*4 (at nominal voltage)(at 20°C)			Max. 10ms (Approx. 3 ms)			
Temperature rise (at 60°C)		t 60°C)	Max. 55°C (Contact switching current: 20 A/voltage applied to coil: 100%V)			
Shock resistance	Functional*5		Min. 98 m/s ² {10 G}			
	Destructive*6		Min. 980 m/s ² {100 G}			
Vibration	Functional*7		10 to 55 Hz at double amplitude of 1.6 mm			
resistance	Destructive		10 to 55 Hz at double amplitude of 2 mm			
Conditions for opera- tion, transport and		Ambient temp.	−40°C to +60°C −40°F to +140°F			
storage*8 (Not freezing a condensing at temperature)	low Humidity		5 to 85% R.H.			
	Slim TMP		Approx. 28 g .99 oz			
Unit weight	Flat TMP		Approx. 32 g 1.13 oz			
	Flat TM		Approx. 33 g 1.16 oz			

All Rights Reserved © COPYRIGHT Matsushita Electric Works, Ltd.

TYPICAL APPLICATIONS

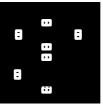
Compressor and heater control in air conditioners

- · Power control in hot air type heaters
- Magnetron control in microwave ovens
- · Lamp and motor control in OA equipment such as copiers and facsimiles.


TYPES AND COIL DATA (at 20°C 68°F)

Slir	n	Flat		Voltade	Pick-up voltage		Nominal operating current,	Coil resistance, Ω (±10%)	Nominal operating power,	Max. allowable voltage,
TMP	PCB	TMP	ТМ	100			mA	S2 (±1076)	mW	V DC
JM1aN-TMP-DC5V (-F)	JM1aN-P-DC5V (-F)	JM1aN-ZTMP-DC5V (-F)	JM1aN-ZTM-DC5V (-F)	5	3.5	0.5	180	27.8	900	5.5
JM1aN-TMP-DC6V (-F)	JM1aN-P-DC6V (-F)	JM1aN-ZTMP-DC6V (-F)	JM1aN-ZTM-DC6V (-F)	6	4.2	0.6	150	40	900	6.6
JM1aN-TMP-DC9V (-F)	JM1aN-P-DC9V (-F)	JM1aN-ZTMP-DC9V (-F)	JM1aN-ZTM-DC9V (-F)	9	6.3	0.9	100	90	900	9.9
JM1aN-TMP-DC12V (-F)	JM1aN-P-DC12V (-F)	JM1aN-ZTMP-DC12V (-F)	JM1aN-ZTM-DC12V (-F)	12	8.4	1.2	75	160	900	13.2
JM1aN-TMP-DC24V (-F)	JM1aN-P-DC24V (-F)	JM1aN-ZTMP-DC24V (-F)	JM1aN-ZTM-DC24V (-F)	24	16.8	2.4	37.5	640	900	26.4
JM1aN-TMP-DC48V (-F)	JM1aN-P-DC48V (-F)	JM1aN-ZTMP-DC48V (-F)	JM1aN-ZTM-DC48V (-F)	48	33.6	4.8	18.75	2,560	900	52.8

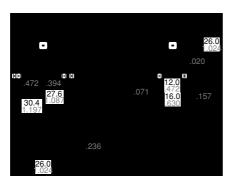
DIMENSIONS


Slim TMP type

General tolerance: ±0.4 ±.016

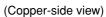
Schematic

PC board pattern


(Copper-side view)

mm inch

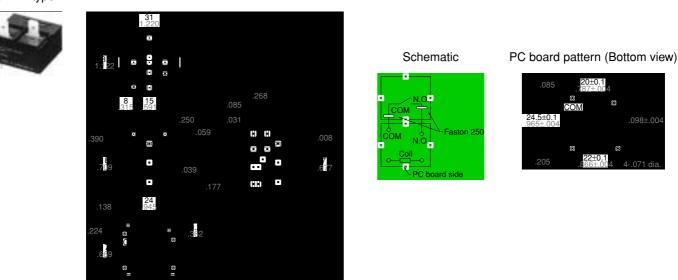
Slim PCB type

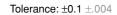



Schematic ••

: (řř

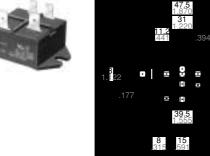
PC board pattern

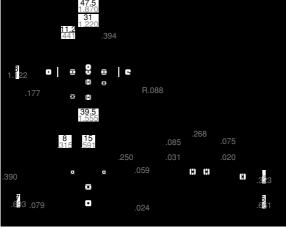


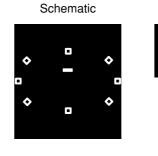

Tolerance: ±0.1 ±.004

JM

Flat TMP type



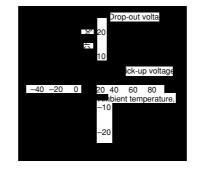

General tolerance: $\pm 0.4 \pm .016$



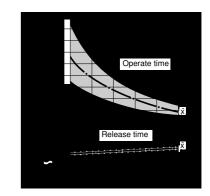
mm inch

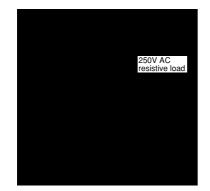
Flat TM type

Panel cutout

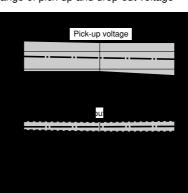

General tolerance: $\pm 0.4 \pm .016$

REFERENCE DATA


1. Coil temperature rise Place to be measured: Inside of coil Ambient temperature: 25°C 77


2. Ambient temperature characteristics Sample: JM1aN-TMP-DC24V, 5 pcs.

3. Operate/release time Sample: JM1aN-TMP-DC24V, 5 pcs.


4. Life curve

5-(1). 200 V AC electrical life test (200 V AC inverter dummy load) Sample: JM1aN-TMP-DC12V, 6 pcs. Change of pick-up and drop-out voltage

Load: Inrush 108 A, Steady 15 A, Inverter dummy 200 V AC Switching frequency: ON 5 s, OFF 5 s Circuit

Detection of welding and miscontact
--

Contact welding: 0 time Miscontact: 0 time

5-(2). 100 V AC electrical life test (100 V AC inverter dummy load) Sample: JM1aN-TMP-DC12V, 20 pcs. Load: Inrush 224 A, Steady 20A,

Inverter dummy 100 V AC Switching frequency: ON 10 s, OFF 10 s Circuit

Pick-up voltage

Contact welding: 0 time Miscontact: 0 time

5-(3). Inrush 70 A, Steady 20 A, 250 V AC compressor dummy load Sample: JM1aN-TMP-DC12V, 6 pcs. Load: (Endurance) inrush 70 A $\cos\varphi = 0.7$ (0.3 s), Change of pick-up and drop-out voltage steady 20A pf = 0.9, 250V AC compressor dummy (Overload) 80Å $\cos\varphi = 0.7$, 250 V AC No. of operations: (Endurance) 10⁵ times (Overload) 1,000 times (after Pick-up voltage endurance test) Switching frequency: (Endurance) ON 1.5 s, OFF 1.5 s (Overload) ON 3 s, bu OFF 2 min., 57 s Circuit (endurance) ۷

Contact welding: 0 time Miscontact: 0 time

For Cautions for Use, see Relay Technical Information