# Rugged 3.3V, 20Mbps, 8 Channel Multiprotocol Transceiver with Programmable DCE/DTE and Termination Resistors

#### **FEATURES**

- Fast 20Mbps Differential Transmission Rates
- Internal Transceiver Termination Resistors for V.11 & V.35
- Interface Modes:
  - RS-232 (V.28) - EIA-530 (V.10 & V.11)
  - X.21 (V.11) — EIA-530A (V.10 & V.11)
  - RS-449/V.36 (V.10 & V.11)
- Protocols are Software Selectable with 3-Bit Word
- Eight (8) Drivers and Eight (8) Receivers
- Termination Network Disable Option
- Internal Line or Digital Loopback for Diagnostic Testing
- Certified conformance to NET1/NET2 and TBR-1 TBR-2 by TUV Rheinland (TBR2/30451940.001/04)
- Easy Flow-Through Pinout
- +3.3V Only Operation
- Individual Driver and Receiver Enable/Disable Controls
- •Operates in either DTE or DCE Mode

## Now Available in Lead Free Packaging

Refer to page 9 for pinout

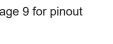
• PBX

Router

• CSU • DSU

Secure Communi-

**APPLICATIONS** 


Frame Relay

## DESCRIPTION

The SP3508 is a monolithic device that supports eight (8) popular serial interface standards for Wide Area Network (WAN) connectivity. The SP3508 is fabricated using a low power BiCMOS process technology, and incorporates a regulated charge pump allowing +3.3V only operation. Exar's patented charge pump provides a regulated output of ±5.5V, which will provide enough voltage for compliant operation in all modes. Eight (8) drivers and eight (8) receivers can be configured via software for any of the above interface modes at any time. The SP3508 requires no additional external components for compliant operation for all of the eight (8) modes of operation other than six capacitors used for the internal charge pump. All necessary termination is integrated within the SP3508 and is switchable when V.35 drivers and V.35 receivers, or when V.11 receivers are used. The SP3508 provides the controls and transceiver availability for operating as either a DTE or DCE.

Additional features with the SP3508 include internal loopback that can be initiated in any of the operating modes by use of the LOOPBACK pin. While in loopback mode, receiver outputs are internally connected to driver inputs creating an internal signal path bypassing the serial communications controller for diagnostic testing. The SP3508 also includes a latch enable pin with the driver and receiver address decoder. The internal V.11 or V.35 termination can be switched off using a control pin (TERM OFF) for monitoring applications. All eight (8) drivers and receivers in the SP3508 include separate enable pins for added convenience. The SP3508 is ideal for WAN serial ports in networking equipment such as routers, access concentrators, network muxes, DSU/CSU's, networking test equipment, and other access devices.





| ABSOL | UTE. | MAXIMUM | RATINGS |
|-------|------|---------|---------|
|-------|------|---------|---------|

| V <sub>cc</sub>                | +7V                             |
|--------------------------------|---------------------------------|
| Input Voltages:                |                                 |
| Logic                          | 0.3V to (V <sub>cc</sub> +0.5V) |
| Drivers                        | 0.3V to (V <sub>cc</sub> +0.5V) |
| Receivers                      | ±15.5V                          |
| Output Voltages:               |                                 |
| Logic                          | 0.3V to (V <sub>cc</sub> +0.5V) |
| Drivers                        | ±12V                            |
| Receivers                      | 0.3V to (V <sub>co</sub> +0.5V) |
| Storage Temperature            | 65°C to +150°Ć                  |
| Power Dissipation              | 1520mW                          |
| (derate 19.0mW/°C above +70°C) |                                 |
| Junction Temperature T         | +141°C                          |
| · J                            |                                 |
|                                |                                 |

Due to the relatively large package size of the 100-pin quad flat-pack, storage in a low humidity environment is preferred. Large high density plastic packages are moisture sensitive and should be stored in Dry Vapor Barrier Bags. Prior to usage, the parts should remain bagged and stored below 40°C and 60%RH. If the parts are removed from the bag, they should be

#### Package Derating:

| ອິ | D or calling.   |          |
|----|-----------------|----------|
|    | Ø ,,,           |          |
|    | Ø <sub>JC</sub> | 6.5 °C/W |

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

### STORAGE CONSIDERATIONS

used within 48 hours or stored in an environment at or below 20%RH. If the above conditions cannot be followed, the parts should be baked for four hours at 125°C in order to remove moisture prior to soldering. Exar ships the 100-pin LQFP in Dry Vapor Barrier Bags with a humidity indicator card and desiccant pack. The humidity indicator should be below 30%RH.

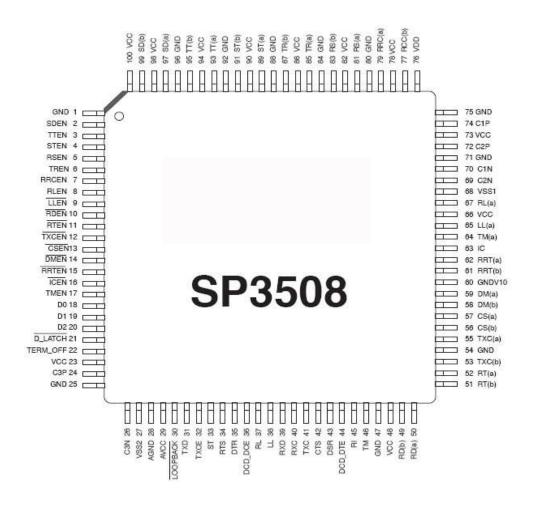
#### \_ELECTRICAL SPECIFICATIONS

| PARAMETER                           | MIN.                     | TYP.                     | MAX.   |   | UNITS | CONDITIONS                        |
|-------------------------------------|--------------------------|--------------------------|--------|---|-------|-----------------------------------|
| LOGIC INPUTS                        | ļ                        |                          |        |   |       |                                   |
| V <sub>IL</sub>                     |                          |                          | 0.8    | + | V     |                                   |
| V <sub>IH</sub>                     | 2.0                      |                          |        | • | V     |                                   |
| LOGIC OUTPUTS                       |                          |                          |        |   |       |                                   |
| V <sub>ol</sub>                     |                          |                          | 0.4    | • | V     | I <sub>оит</sub> = -3.2mA         |
| V <sub>OH</sub>                     | V <sub>cc</sub><br>- 0.6 | V <sub>cc</sub><br>- 0.3 |        | • | V     | I <sub>out</sub> = 1.0mA          |
| V.28 DRIVER DC Paramete             | rs (OUTPU                | TS)                      |        |   |       |                                   |
| Open Circuit Voltage                |                          |                          | +/-10  | • | V     | Per Figure 1                      |
| Loaded Voltage                      | +/-5.0                   |                          |        | • | V     | Per Figure 2                      |
| Short-Circuit Current               |                          |                          | +/-100 | • | mA    | Per Figure 4                      |
| Power-Off Impedance                 | 300                      |                          |        | • | Ω     | Per Figure 5                      |
| V.28 DRIVER AC Paramete             | rs (Output               | s)                       |        |   |       | $V_{cc}$ = 3.3V for AC parameters |
| Transition Time                     |                          |                          | 1.5    | • | μs    | Per Figure 6, +3V to -3V          |
| Instantaneous Slew Rate             |                          |                          | 30     |   | V/ µs | Per Figure 3                      |
| Propagation Delay: t <sub>PHL</sub> | 0.5                      | 1.0                      | 3.0    | • | μs    |                                   |
| Propagation Delay: t <sub>PLH</sub> | 0.5                      | 1.0                      | 3.0    | • | μs    |                                   |
| Max. Transmission Rate              | 120                      | 230                      |        | • | kbps  |                                   |

| PARAMETER                           | MIN.               | TYP.     | MAX.   |   | UNITS | CONDITIONS                        |
|-------------------------------------|--------------------|----------|--------|---|-------|-----------------------------------|
| V.28 RECEIVER DC Param              | eters (Inpu        | ts)      |        |   |       |                                   |
| Input Impedance                     | 3                  |          | 7      | • | kΩ    | Per Figure 7                      |
| Open-Circuit Bias                   |                    |          | +2.0   | ٠ | V     | Per Figure 8                      |
| HIGH Threshold                      |                    | 1.7      | 3.0    | ٠ | V     |                                   |
| LOW Threshold                       | 0.8                | 1.2      |        | ٠ | V     |                                   |
| V.28 RECEIVER AC Param              | eters              |          |        |   |       | $V_{cc}$ = 3.3V for AC parameters |
| Propagation Delay: t <sub>PHL</sub> |                    | 100      | 500    |   | ns    |                                   |
| Propagation Delay: t <sub>PLH</sub> |                    | 100      | 500    |   | ns    |                                   |
| Max. Transmission Rate              | 120                | 230      |        |   | kbps  |                                   |
| V.10 DRIVER DC Paramete             | ers (Output        | s)       |        |   |       |                                   |
| Open Circuit Voltage                | +/-4.0             |          | +/-6.0 | • | V     | Per Figure 9                      |
| Test-Terminated Voltage             | 0.9V <sub>cc</sub> |          |        |   | V     | Per Figure 10                     |
| Short-Circuit Current               |                    |          | +/-150 |   | mA    | Per Figure 11                     |
| Power-Off Current                   |                    |          | +/-100 | • | μA    | Per Figure 12                     |
| V.10 DRIVER AC Paramete             | rs (Output         | s)       |        |   |       | $V_{cc}$ = 3.3V for AC parameters |
| Transition Time                     |                    |          | 200    | • | ns    | Per Figure 13, 10% to 90%         |
| Propagation Delay: t <sub>PHL</sub> |                    | 100      | 500    | • | ns    |                                   |
| Propagation Delay: t <sub>PLH</sub> |                    | 100      | 500    | ٠ | ns    |                                   |
| Max. Transmission Rate              | 120                |          |        | ٠ | kbps  |                                   |
| V.10 RECEIVER DC Param              | eters (Inpu        | ts)      |        |   |       | <u>^</u>                          |
| Input Current                       | -3.25              |          | +3.25  |   | mA    | Per Figures 14 and 15             |
| Input Impedance                     | 4                  |          |        | ٠ | kΩ    |                                   |
| Sensitivity                         |                    |          | +/-0.3 | ٠ | V     |                                   |
| V.10 RECEIVER AC Param              | eters              | <u> </u> | ·      |   | ·     | $V_{cc}$ = 3.3V for AC parameters |
| Propagation Delay: t <sub>PHL</sub> |                    | 120      | 250    | • | ns    |                                   |
| Propagation Delay: t <sub>PLH</sub> |                    | 120      | 250    | • | ns    |                                   |
| Max. Transmission Rate              | 120                |          |        | • | kbps  |                                   |

| PARAMETER                               | MIN.                                                          | TYP. | MAX.   |   | UNITS | CONDITIONS                                                    |
|-----------------------------------------|---------------------------------------------------------------|------|--------|---|-------|---------------------------------------------------------------|
| V.11 DRIVER DC Parameter                | rs (Output                                                    | s)   | •      |   |       |                                                               |
| Open Circuit Voltage (V <sub>oc</sub> ) |                                                               |      | +/-6.0 | • | V     | Per Figure 16                                                 |
| Test Terminated Voltage                 | +/-2.0                                                        |      |        | ٠ | V     | Per Figure 17                                                 |
|                                         | 0.5(V <sub>oc</sub> )                                         |      |        | ٠ | V     |                                                               |
| Balance                                 | 1                                                             | İ    | +/-0.4 |   | V     | Per Figure 17                                                 |
| Offset                                  | 1                                                             |      | +3.0   | ٠ | V     | Per Figure 17                                                 |
| Short-Circuit Current                   | 1                                                             | 1    | +/-150 | ٠ | mA    | Per Figure 18                                                 |
| Power-Off Current                       | 1                                                             |      | +/-100 | ٠ | μA    | Per Figure 19                                                 |
| V.11 DRIVER AC Parameter                | s (Output                                                     | s)   |        |   |       | $V_{cc}$ = 3.3V for AC parameters                             |
| Transition Time                         |                                                               |      | 10     | * | ns    | Per Figures 21 and 35, 10% to 90% using C <sub>L</sub> = 50pF |
| Propagation Delay: t <sub>PHL</sub>     |                                                               | 30   | 85     | • | ns    | Per Figures 32 and 35                                         |
| Propagation Delay: t <sub>PLH</sub>     | 1                                                             | 30   | 85     | ٠ | ns    | Per Figures 32 and 35                                         |
| Differential Skew                       | 1                                                             | 5    | 10     | ٠ | ns    | Per Figures 32 and 35                                         |
| Max. Transmission Rate                  | 20                                                            |      |        | • | Mbps  |                                                               |
| V.11 RECEIVER DC Parame                 | eters (Inpu                                                   | its) | •      |   |       |                                                               |
| Common Mode Range                       | -7                                                            |      | +7     | + | V     |                                                               |
| Sensitivity                             | 1                                                             |      | +/-0.2 | ٠ | V     |                                                               |
| Input Current                           | -3.25                                                         |      | +3.25  |   | mA    | Per Figures 20 and 22; Power on or off                        |
| Current with 100Ω<br>Termination        |                                                               |      | +/-60  |   | mA    | Per Figures 23 and 24                                         |
| Input Impedance                         | 4                                                             |      |        | ٠ | kΩ    |                                                               |
| V.11 RECEIVER AC Parame                 | V <sub>cc</sub> = 3.3V for AC parameters us-<br>ing CL = 50pF |      |        |   |       |                                                               |
| Propagation Delay: t <sub>PHL</sub>     |                                                               | 30   | 85     |   | ns    | Per Figures 32 and 37                                         |
| Propagation Delay: t <sub>PLH</sub>     |                                                               | 30   | 85     |   | ns    | Per Figures 32 and 37                                         |
| Skew                                    |                                                               | 5    | 10     |   | ns    | Per Figure 32                                                 |
| Max. Transmission Rate                  | 20                                                            |      |        |   | Mbps  |                                                               |

| PARAMETER                           | MIN.                                | TYP.  | MAX.                |   | UNITS    | CONDITIONS                                          |  |  |  |
|-------------------------------------|-------------------------------------|-------|---------------------|---|----------|-----------------------------------------------------|--|--|--|
| V.35 DRIVER DC Parameter            | V.35 DRIVER DC Parameters (Outputs) |       |                     |   |          |                                                     |  |  |  |
| Open Circuit Voltage                |                                     |       | +/-1.20             |   | V        | Per Figure 16                                       |  |  |  |
| Test Terminated Voltage             | +/-0.44                             |       | +/-0.66             |   | V        | Per Figure 25                                       |  |  |  |
| Offset                              |                                     |       | +/-0.6              | ٠ | V        | Per Figure 25                                       |  |  |  |
| Output Overshoot                    | -0.2V <sub>ST</sub>                 |       | +0.2V <sub>ST</sub> | * | V        | Per Figure 25; V <sub>st</sub> = Steady State value |  |  |  |
| Source Impedance                    | 50                                  |       | 150                 | • | Ω        | Per Figure 26; $Z_s = V_2/V_1 \times 50$            |  |  |  |
| Short-Circuit Impedance             | 135                                 |       | 165                 |   | Ω        | Per Figure 27                                       |  |  |  |
| V.35 DRIVER AC Parameter            | s (Output                           | s)    |                     |   |          | $V_{cc}$ = 3.3V for AC parameters                   |  |  |  |
| Transition Time                     |                                     |       | 20                  | ٠ | ns       |                                                     |  |  |  |
| Propagation Delay: t <sub>PHL</sub> |                                     | 30    | 85                  | • | ns       | Per Figures 32 and 35; $C_{L} = 20 pF$              |  |  |  |
| Propagation Delay: t <sub>PLH</sub> |                                     | 30    | 85                  | • | ns       | Per Figures 32 and 35; $C_{L} = 20 pF$              |  |  |  |
| Differential Skew                   |                                     |       | 5                   | ٠ | ns       | Per Figures 32 and 35; $C_L = 20 pF$                |  |  |  |
| Max. Transmission Rate              | 20                                  |       |                     | ٠ | Mbps     |                                                     |  |  |  |
| V.35 RECEIVER DC Parame             | ters (Inpu                          | ts)   |                     |   | <u> </u> |                                                     |  |  |  |
| Sensitivity                         |                                     | +/-50 | +/-200              | • | mV       |                                                     |  |  |  |
| Source Impedance                    | 90                                  |       | 110                 |   | Ω        | Per Figure 29; $Z_s = V_2/V_1 \times 50\Omega$      |  |  |  |
| Short-Circuit Impedance             | 135                                 |       | 165                 |   | Ω        | Per Figure 30                                       |  |  |  |
| V.35 RECEIVER AC Parame             | ters                                |       | U                   |   |          | $V_{cc}$ = 3.3V for AC parameters                   |  |  |  |
| Propagation Delay: t <sub>PHL</sub> |                                     | 30    | 85                  |   | ns       | Per Figures 32 and 37; $C_{L} = 20 pF$              |  |  |  |
| Propagation Delay: t <sub>PLH</sub> |                                     | 30    | 85                  |   | ns       | Per Figures 32 and 37; $C_{L} = 20 pF$              |  |  |  |
| Skew                                |                                     | 5     | 10                  |   | ns       | Per Figure 32; C <sub>L</sub> = 20pF                |  |  |  |
| Max. Transmission Rate              | 20                                  |       |                     |   | Mbps     |                                                     |  |  |  |
| TRANSCEIVER LEAKAGE                 | CURRENT                             | S     |                     |   |          |                                                     |  |  |  |
| Driver Output 3-State Cur-<br>rent  |                                     |       | 200                 |   | μA       | Per Figure 31; Drivers Disabled                     |  |  |  |
| Receiver Output 3-State<br>Current  |                                     | 1     | 10                  |   | μA       | D <sub>x</sub> = 111                                |  |  |  |


| PARAMETER                          | MIN. | TYP. | MAX. |   | UNITS | CONDITIONS                                                           |
|------------------------------------|------|------|------|---|-------|----------------------------------------------------------------------|
| POWER REQUIREMENTS                 |      | •    | •    |   | ·     |                                                                      |
| V <sub>cc</sub>                    | 3.15 | 3.3  | 3.45 |   | V     |                                                                      |
| I <sub>cc</sub> (No Mode Selected) |      | 1    |      | • | μA    | All I <sub>cc</sub> values are with V <sub>cc</sub> = +3.3V          |
| (V.28 / RS-232)                    |      | 95   |      | • | mA    | f <sub>IN</sub> = 230kbps; Drivers active and<br>loaded              |
| (V.11 / RS-422)                    |      | 230  |      | • | mA    | f <sub>IN</sub> = 20Mbps; Drivers active and loaded                  |
| (EIA-530 & RS-449)                 |      | 270  |      | • | mA    | f <sub>IN</sub> = 20Mbps; Drivers active and<br>loaded               |
| (V.35)                             |      | 170  |      | • | mA    | V.35 @ f <sub>IN</sub> = 20Mbps, V.28 @ f <sub>IN</sub> =<br>230kbps |

 $\rm T_{_A}$  = 0 to 70°C and  $\rm V_{_{CC}}$  = 3.3V ± 5% unless otherwise noted.

| PARAMETER                                     | MIN.    | TYP.    | MAX.    | Units   | CONDITIONS                                                              |
|-----------------------------------------------|---------|---------|---------|---------|-------------------------------------------------------------------------|
| DRIVER DELAY TIME BETWE                       |         | E MODE  |         | I-STATE | MODE                                                                    |
| RS-232/V.28                                   |         |         |         |         |                                                                         |
| t <sub>PZL</sub> ; Tri-state to Output LOW    |         | 0.70    | 5.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 39</b> ; S <sub>1</sub> closed |
| t <sub>PZH</sub> ; Tri-state to Output HIGH   |         | 0.40    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 39</b> ; S <sub>2</sub> closed |
| t <sub>PLZ</sub> ; Output LOW to Tri-state    |         | 0.20    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 39</b> ; S <sub>1</sub> closed |
| t <sub>PHZ</sub> ; Output HIGH to Tri-state   |         | 0.40    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 39</b> ; S <sub>2</sub> closed |
| RS-423/V.10                                   |         |         |         |         |                                                                         |
| t <sub>PZL</sub> ; Tri-state to Output LOW    |         | 0.15    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 39</b> ; S <sub>1</sub> closed |
| t <sub>PZH</sub> ; Tri-state to Output HIGH   |         | 0.20    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 39</b> ; S <sub>2</sub> closed |
| $t_{_{PLZ}}$ ; Output LOW to Tri-state        |         | 0.20    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 39</b> ; S <sub>1</sub> closed |
| t <sub>PHZ</sub> ; Output HIGH to Tri-state   |         | 0.15    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 39</b> ; S <sub>2</sub> closed |
| RS-422/V.11                                   |         |         |         |         |                                                                         |
| t <sub>PZL</sub> ; Tri-state to Output LOW    |         | 2.80    | 10.0    | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 36</b> ; S <sub>1</sub> closed |
| t <sub>PZH</sub> ; Tri-state to Output HIGH   |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 36</b> ; S <sub>2</sub> closed |
| t <sub>PLZ</sub> ; Output LOW to Tri-state    |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 15pF, <b>Fig. 33 &amp; 36</b> ; S <sub>1</sub> closed  |
| t <sub>PHZ</sub> ; Output HIGH to Tri-state   |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 15pF, <b>Fig. 33 &amp; 36</b> ; S <sub>2</sub> closed  |
| V.35                                          |         |         |         |         |                                                                         |
| $t_{_{PZL}}$ ; Tri-state to Output LOW        |         | 2.60    | 10.0    | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 36</b> ; S <sub>1</sub> closed |
| t <sub>pzH</sub> ; Tri-state to Output HIGH   |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 33 &amp; 36</b> ; S <sub>2</sub> closed |
| t <sub>PLZ</sub> ; Output LOW to Tri-state    |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 15pF, <b>Fig. 33 &amp; 36</b> ; S <sub>1</sub> closed  |
| t <sub>PHZ</sub> ; Output HIGH to Tri-state   |         | 0.15    | 2.0     | μs      | C <sub>L</sub> = 15pF, <b>Fig. 33 &amp; 36</b> ; S <sub>2</sub> closed  |
| RECEIVER DELAY TIME BETW                      | VEEN AC | TIVE MO | DDE AND | TRI-STA | TE MODE                                                                 |
| RS-232/V.28                                   |         |         |         |         |                                                                         |
| t <sub>PZL</sub> ; Tri-state to Output LOW    |         | 0.12    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 34 &amp; 37</b> ; S <sub>1</sub> closed |
| t <sub>PZH</sub> ; Tri-state to Output HIGH   |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 34 &amp; 37</b> ; S <sub>2</sub> closed |
| $t_{_{\text{PLZ}}}$ ; Output LOW to Tri-state |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 34 &amp; 37</b> ; S <sub>1</sub> closed |
| t <sub>PHZ</sub> ; Output HIGH to Tri-state   |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 34 &amp; 37</b> ; S <sub>2</sub> closed |
| RS-423/V.10                                   |         |         |         |         |                                                                         |
| t <sub>PZL</sub> ; Tri-state to Output LOW    |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 34 &amp; 37</b> ; S <sub>1</sub> closed |
| t <sub>PZH</sub> ; Tri-state to Output HIGH   |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 34 &amp; 37</b> ; S <sub>2</sub> closed |
| $t_{_{PLZ}}$ ; Output LOW to Tri-state        |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 34 &amp; 37</b> ; S <sub>1</sub> closed |
| t <sub>PHZ</sub> ; Output HIGH to Tri-state   |         | 0.10    | 2.0     | μs      | C <sub>L</sub> = 100pF, <b>Fig. 34 &amp; 37</b> ; S <sub>2</sub> closed |

 $\rm T_{_A}$  = 0 to 70°C and  $\rm V_{_{CC}}$  = +3.3V unless otherwise noted.

| PARAMETER                                   | MIN.  | TYP. | MAX. | UNITS | CONDITIONS                                                                    |
|---------------------------------------------|-------|------|------|-------|-------------------------------------------------------------------------------|
| RS-422/V.11                                 |       |      |      |       |                                                                               |
| $t_{PZL}$ ; Tri-state to Output LOW         |       | 0.10 | 2.0  | μs    | C <sub>L</sub> = 100pF, <b>Fig. 34</b> &<br><b>38</b> ; S₁ closed             |
| $t_{_{\rm PZH}}$ ; Tri-state to Output HIGH |       | 0.10 | 2.0  | μs    | C <sub>L</sub> = 100pF, <b>Fig. 34</b> & <b>38</b> ; S <sub>2</sub> closed    |
| $t_{_{PLZ}}$ ; Output LOW to Tri-state      |       | 0.10 | 2.0  | μs    | C <sub>L</sub> = 15pF, <b>Fig. 34</b> &<br><b>38</b> ; S <sub>1</sub> closed  |
| $t_{_{PHZ}}$ ; Output HIGH to Tri-state     |       | 0.10 | 2.0  | μs    | C <sub>L</sub> = 15pF, <b>Fig. 34</b> &<br><b>38</b> ; S <sub>2</sub> closed  |
| V.35                                        |       |      |      |       |                                                                               |
| $t_{_{PZL}}$ ; Tri-state to Output LOW      |       | 0.10 | 2.0  | μs    | C <sub>L</sub> = 100pF, <b>Fig. 34</b> &<br><b>38</b> ; S <sub>1</sub> closed |
| t <sub>pzH</sub> ; Tri-state to Output HIGH |       | 0.10 | 2.0  | μs    | C <sub>L</sub> = 100pF, <b>Fig. 34</b> & <b>38</b> ; S <sub>2</sub> closed    |
| $t_{_{PLZ}}$ ; Output LOW to Tri-state      |       | 0.10 | 2.0  | μs    | C <sub>L</sub> = 15pF, <b>Fig. 34</b> &<br><b>38</b> ; S <sub>1</sub> closed  |
| $t_{_{PHZ}}$ ; Output HIGH to Tri-state     |       | 0.10 | 2.0  | μs    | C <sub>L</sub> = 15pF, <b>Fig. 34</b> &<br><b>38</b> ; S <sub>2</sub> closed  |
| TRANSCEIVER TO TRANSC                       | EIVER | SKEW | 0    | ()    | per Figures 32, 35, 37)                                                       |
| RS-232 Driver                               |       | 100  |      | ns    | [ (t <sub>PHL</sub> )Tx1 – (t <sub>PHL</sub> )Txn ]                           |
|                                             |       | 100  |      | ns    | $[(t_{_{PLH}})Tx1 - (t_{_{PLH}})Txn]$                                         |
| RS-232 Receiver                             |       | 20   |      | ns    | [ (t <sub>PHL</sub> )Rx1 – (t <sub>PHL</sub> )Rxn ]                           |
|                                             |       | 20   |      | ns    | [ (t <sub>PLH</sub> )Rx1 – (t <sub>PLH</sub> )Rxn ]                           |
| RS-422 Driver                               |       | 2    |      | ns    | [ (t <sub>PHL</sub> )Tx1 – (t <sub>PHL</sub> )Txn ]                           |
|                                             |       | 2    |      | ns    | [ (t <sub>PLH</sub> )Tx1 – (t <sub>PLH</sub> )Txn ]                           |
| RS-422 Receiver                             |       | 3    |      | ns    | [ (t <sub>PHL</sub> )Rx1 – (t <sub>PHL:</sub> )Rxn ]                          |
|                                             |       | 3    |      | ns    | [ (t <sub>PLH</sub> )Rx1 – (t <sub>PLH</sub> )Rxn ]                           |
| RS-423 Driver                               |       | 5    |      | ns    | [ ( $t_{_{PHL}}$ )Tx2 – ( $t_{_{PHL}}$ )Txn ]                                 |
|                                             |       | 5    |      | ns    | [ ( $t_{_{PLH}}$ )Tx2 – ( $t_{_{PLH}}$ )Txn ]                                 |
| RS-423 Receiver                             |       | 5    |      | ns    | [ (t <sub>PHL</sub> )Rx2 – (t <sub>PHL</sub> )Rxn ]                           |
|                                             |       | 5    |      | ns    | [ (t <sub>PLH</sub> )Rx2 – (t <sub>PLH</sub> )Rxn ]                           |
| V.35 Driver                                 |       | 4    |      | ns    | [ (t <sub>PHL</sub> )Tx1 – (t <sub>PHL</sub> )Txn ]                           |
|                                             |       | 4    |      | ns    | [ (t <sub>PLH</sub> )Tx1 – (t <sub>PLH</sub> )Txn ]                           |
| V.35 Receiver                               |       | 6    |      | ns    | [ (t <sub>PHL</sub> )Rx1 – (t <sub>PHL</sub> )Rxn ]                           |
|                                             |       | 6    |      | ns    | [ (t <sub>PLH</sub> )Rx1 – (t <sub>PLH</sub> )Rxn]                            |



| SP3508 Pin Designation |          |                                          |  |  |  |  |
|------------------------|----------|------------------------------------------|--|--|--|--|
| Pin Number             | Pin Name | Description                              |  |  |  |  |
| 1                      | GND      | Signal Ground                            |  |  |  |  |
| 2                      | SDEN     | TxD Driver Enable Input                  |  |  |  |  |
| 3                      | TTEN     | TxCE Driver Enable Input                 |  |  |  |  |
| 4                      | STEN     | ST Driver Enabe Input                    |  |  |  |  |
| 5                      | RSEN     | RTS Driver Enable Input                  |  |  |  |  |
| 6                      | TREN     | DTR Driver Enable Input                  |  |  |  |  |
| 7                      | RRCEN    | DCD Driver Enable Input                  |  |  |  |  |
| 8                      | RLEN     | RL Driver Enable Input                   |  |  |  |  |
| 9                      | LLEN#    | LL Driver Enable Input                   |  |  |  |  |
| 10                     | RDEN#    | RxD Receiver Enabe Input                 |  |  |  |  |
| 11                     | RTEN#    | RxC Receiver Enable Input                |  |  |  |  |
| 12                     | TxCEN#   | TxC Receiver Enable Input                |  |  |  |  |
| 13                     | CSEN#    | CTS Receiver Enable Input                |  |  |  |  |
| 14                     | DMEN#    | DSR Receiver Enable Input                |  |  |  |  |
| 15                     | RRTEN#   | DCD <sub>DTE</sub> Receiver Enable Input |  |  |  |  |
| 16                     | ICEN#    | RI Receiver Enable Input                 |  |  |  |  |
| 17                     | TMEN     | TM Receiver Enable Input                 |  |  |  |  |
| 18                     | D0       | Mode Select Input                        |  |  |  |  |
| 19                     | D1       | Mode Select Input                        |  |  |  |  |
| 20                     | D2       | Mode Select Input                        |  |  |  |  |
| 21                     | DLATCH#  | Decoder Latch Input                      |  |  |  |  |
| 22                     | TERM_OFF | Termination Disable Input                |  |  |  |  |
| 23                     | VCC      | Power Supply Input                       |  |  |  |  |
| 24                     | C3P      | Charge Pump Capacitor                    |  |  |  |  |
| 25                     | GND      | Signal Ground                            |  |  |  |  |

| SP3508 Pin Designation |           |                                        |  |  |  |  |
|------------------------|-----------|----------------------------------------|--|--|--|--|
| Pin Number             | Pin Name  | Description                            |  |  |  |  |
| 26                     | C3N       | Charge Pump Capacitor                  |  |  |  |  |
| 27                     | VSS2      | Minus VCC                              |  |  |  |  |
| 28                     | AGND      | Signal Ground                          |  |  |  |  |
| 29                     | AVCC      | Power Supply Input                     |  |  |  |  |
| 30                     | LOOPBACK# | Loopback Mode Enable Input             |  |  |  |  |
| 31                     | TxD       | TxD Driver TTL Input                   |  |  |  |  |
| 32                     | TxCE      | TxCE Driver TTL input                  |  |  |  |  |
| 33                     | ST        | ST Driver TTL Input                    |  |  |  |  |
| 34                     | RTS       | RTS Driver TTL Input                   |  |  |  |  |
| 35                     | DTR       | DTR Driver TTL Input                   |  |  |  |  |
| 36                     | DCD_DCE   | DCD <sub>DCE</sub> Driver TTL Input    |  |  |  |  |
| 37                     | RL        | RL Driver TTL Input                    |  |  |  |  |
| 38                     | LL        | LL Driver TTL Input                    |  |  |  |  |
| 39                     | RxD       | RxD Receiver TTL Output                |  |  |  |  |
| 40                     | RxC       | RxC Receiver TTL Output                |  |  |  |  |
| 41                     | TxC       | TxC Receiver TTL Output                |  |  |  |  |
| 42                     | CTS       | CTS Receiver TTL Output                |  |  |  |  |
| 43                     | DSR       | DSR Receiver TTL Output                |  |  |  |  |
| 44                     | DCD_DTE   | DCD <sub>DTE</sub> Receiver TTL Output |  |  |  |  |
| 45                     | RI        | RI Receiver TTL Output                 |  |  |  |  |
| 46                     | ТМ        | TM Receiver TTL Output                 |  |  |  |  |
| 47                     | GND       | Signal Ground                          |  |  |  |  |
| 48                     | VCC       | Power Supply Input                     |  |  |  |  |
| 49                     | RD(B)     | RxD Non-Inverting Input                |  |  |  |  |
| 50                     | RD(A)     | RxD Inverting Input                    |  |  |  |  |

Pin Number Pin Name Description 51 RT(B) RxC Non-Inverting Input 52 RT(A) RxC Inverting Input 53 TxC Non-Inverting Input TxC(B) 54 GND Signal Ground 55 TxC(A) TxC Inverting Input CS(B) CTS Non-Inverting Input 56 57 CS(A) CTS Inverting Input 58 DM(B) DSR Non-Inverting Input 59 DM(A) DSR Inverting Input 60 GNDV10 V.10 RX Reference Node DCD<sub>DTE</sub> Non-Inverting Input 61 RRT(B) 62 RRT(A) DCD<sub>DTF</sub> Inverting Input 63 IC RI Receiver Input 64 TM(A) TM Receiver Input 65 LL(A) LL Driver Output VCC 66 Power Supply Input RL(A) RL Driver Output 67 VSS1 68 -2xVCC Charge Pump Output 69 C2N Charge Pump Capacitor 70 C1N Charge Pump Capacitor 71 GND Signal Ground C2P 72 Charge Pump Capacitor VCC 73 Power Supply Input

Charge Pump Capacitor

Signal Ground

SP3508 Pin Designation

74

75

C1P

GND

| Pin Number | Pin Name | Description                             |
|------------|----------|-----------------------------------------|
| 76         | VDD      | 2xVCC Charge Pump Output                |
| 77         | RRC(B)   | DCD <sub>DCE</sub> Non-Inverting Output |
| 78         | VCC      | Power Supply Input                      |
| 79         | RRC(A)   | DCD <sub>DCE</sub> Inverting Output     |
| 80         | GND      | Signal Ground                           |
| 81         | RS(A)    | RTS Inverting Output                    |
| 82         | VCC      | Power Supply Input                      |
| 83         | RS(B)    | RTS Non-Inverting Output                |
| 84         | GND      | Signal Ground                           |
| 85         | TR(A)    | DTR Inverting Output                    |
| 86         | VCC      | Power Supply Input                      |
| 87         | TR(B)    | DTR Non-Inverting Output                |
| 88         | GND      | Signal Ground                           |
| 89         | ST(A)    | ST Inverting Output                     |
| 90         | VCC      | Power Supply Input                      |
| 91         | ST(B)    | ST Non-Inverting Output                 |
| 92         | GND      | Signal Ground                           |
| 93         | TT(A)    | TxCE Inverting Output                   |
| 94         | VCC      | Power Supply Input                      |
| 95         | TT(B)    | TxCE Non-Inverting Output               |
| 96         | GND      | Signal Ground                           |
| 97         | SD(A)    | TxD Inverting Output                    |
| 98         | VCC      | Power Supply Input                      |
| 99         | SD(B)    | TxD Non-Inverting Output                |
| 100        | VCC      | Power Supply Input                      |

SP3508 Pin Designation

## SP3508 Driver Table

| Driver Output<br>Pin  | V.35 Mode | EIA-530<br>Mode | RS-232<br>Mode<br>(V.28) | EIA-530A<br>Mode | RS-449<br>Mode<br>(V.36) | X.21 Mode<br>(V.11) | Shutdown | Suggested<br>Signal |
|-----------------------|-----------|-----------------|--------------------------|------------------|--------------------------|---------------------|----------|---------------------|
| MODE (D0, D1, D2)     | 001       | 010             | 011                      | 100              | 101                      | 110                 | 111      |                     |
| T <sub>1</sub> OUT(a) | V.35      | V.11            | V.28                     | V.11             | V.11                     | V.11                | High-Z   | TxD(a)              |
| T <sub>1</sub> OUT(b) | V.35      | V.11            | High-Z                   | V.11             | V.11                     | V.11                | High-Z   | TxD(b)              |
| T <sub>2</sub> OUT(a) | V.35      | V.11            | V.28                     | V.11             | V.11                     | V.11                | High-Z   | TxCE(a)             |
| T <sub>2</sub> OUT(b) | V.35      | V.11            | High-Z                   | V.11             | V.11                     | V.11                | High-Z   | TxCE(b)             |
| T <sub>3</sub> OUT(a) | V.35      | V.11            | V.28                     | V.11             | V.11                     | V.11                | High-Z   | TxC_DCE(a)          |
| T <sub>3</sub> OUT(b) | V.35      | V.11            | High-Z                   | V.11             | V.11                     | V.11                | High-Z   | TxC_DCE(b)          |
| T <sub>4</sub> OUT(a) | V.28      | V.11            | V.28                     | V.11             | V.11                     | V.11                | High-Z   | RTS(a)              |
| T <sub>4</sub> OUT(b) | High-Z    | V.11            | High-Z                   | V.11             | V.11                     | V.11                | High-Z   | RTS(b)              |
| T₅OUT(a)              | V.28      | V.11            | V.28                     | V.10             | V.11                     | V.11                | High-Z   | DTR(a)              |
| T₅OUT(b)              | High-Z    | V.11            | High-Z                   | High-Z           | V.11                     | V.11                | High-Z   | DTR(b)              |
| T <sub>6</sub> OUT(a) | V.28      | V.11            | V.28                     | V.11             | V.11                     | V.11                | High-Z   | DCD_DCE(a)          |
| T <sub>6</sub> OUT(b) | High-Z    | V.11            | High-Z                   | V.11             | V.11                     | V.11                | High-Z   | DCD_DCE(b)          |
| T <sub>7</sub> OUT(a) | V.28      | V.10            | V.28                     | V.10             | V.10                     | High-Z              | High-Z   | RL                  |
| T <sub>8</sub> OUT(a) | V.28      | V.10            | V.28                     | V.10             | V.10                     | High-Z              | High-Z   | LL                  |

Table 1. Driver Mode Selection

# SP3508 Receiver Table

| Receiver Input<br>Pin | V.35 Mode | EIA-530<br>Mode | RS-232<br>Mode<br>(V.28) | EIA-530A<br>Mode | RS-449<br>Mode<br>(V.36) | X.21 Mode<br>(V.11) | Shutdown | Suggested<br>Signal |
|-----------------------|-----------|-----------------|--------------------------|------------------|--------------------------|---------------------|----------|---------------------|
| MODE (D0, D1, D2)     | 001       | 010             | 011                      | 100              | 101                      | 110                 | 111      |                     |
| R <sub>1</sub> IN(a)  | V.35      | V.11            | V.28                     | V.11             | V.11                     | V.11                | High-Z   | RxD(a)              |
| R <sub>1</sub> IN(b)  | V.35      | V.11            | High-Z                   | V.11             | V.11                     | V.11                | High-Z   | RxD(b)              |
| R <sub>2</sub> IN(a)  | V.35      | V.11            | V.28                     | V.11             | V.11                     | V.11                | High-Z   | RxC(a)              |
| R <sub>2</sub> IN(b)  | V.35      | V.11            | High-Z                   | V.11             | V.11                     | V.11                | High-Z   | RxC(b)              |
| R ₃IN(a)              | V.35      | V.11            | V.28                     | V.11             | V.11                     | V.11                | High-Z   | TxC_DTE(a)          |
| R <sub>3</sub> IN(b)  | V.35      | V.11            | High-Z                   | V.11             | V.11                     | V.11                | High-Z   | TxC_DTE(b)          |
| R ₄IN(a)              | V.28      | V.11            | V.28                     | V.11             | V.11                     | V.11                | High-Z   | CTS(a)              |
| R <sub>4</sub> IN(b)  | High-Z    | V.11            | High-Z                   | V.11             | V.11                     | V.11                | High-Z   | CTS(b)              |
| R ₅IN(a)              | V.28      | V.11            | V.28                     | V.10             | V.11                     | V.11                | High-Z   | DSR(a)              |
| R <sub>s</sub> IN(b)  | High-Z    | V.11            | High-Z                   | High-Z           | V.11                     | V.11                | High-Z   | DSR(b)              |
| R <sub>6</sub> IN(a)  | V.28      | V.11            | V.28                     | V.11             | V.11                     | V.11                | High-Z   | DCD_DTE(a)          |
| R <sub>6</sub> IN(b)  | High-Z    | V.11            | High-Z                   | V.11             | V.11                     | V.11                | High-Z   | DCD_DTE(b)          |
| R <sub>7</sub> IN(a)  | V.28      | V.10            | V.28                     | V.10             | V.10                     | High-Z              | High-Z   | RI                  |
| R <sub>8</sub> IN(a)  | V.28      | V.10            | V.28                     | V.10             | V.10                     | High-Z              | High-Z   | ТМ                  |

Table 2. Receiver Mode Selection

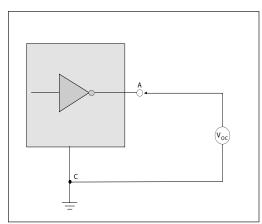



Figure 1. V.28 Driver Output Open Circuit Voltage

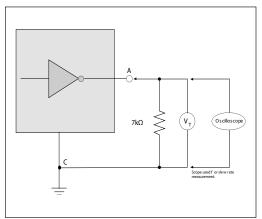



Figure 3. V.28 Driver Output Slew Rate

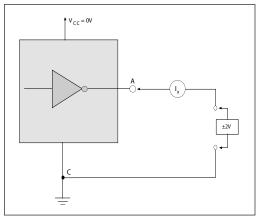



Figure 5. V.28 Driver Output Power-Off Impedance

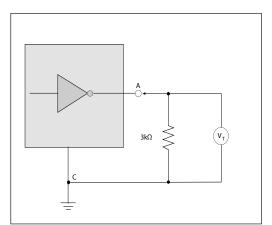



Figure 2. V.28 Driver Output Loaded Voltage

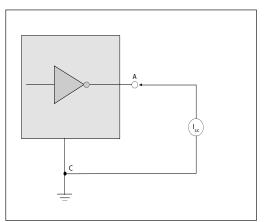
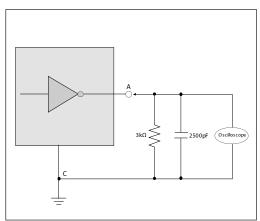
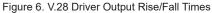





Figure 4. V.28 Driver Output Short-Circuit Current





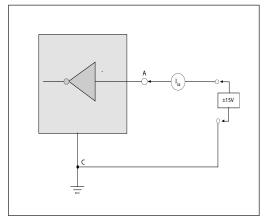



Figure 7. V.28 Receiver Input Impedance

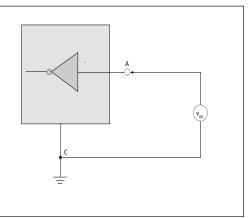



Figure 8. V.28 Receiver Input Open Circuit Bias

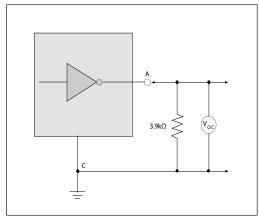



Figure 9. V.10 Driver Output Open-Circuit Voltage

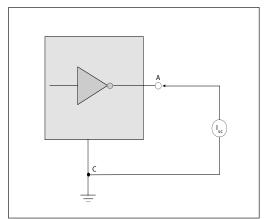



Figure 11. V.10 Driver Output Short-Circuit Current

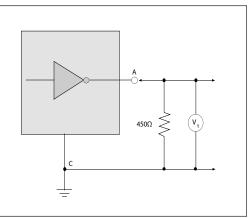



Figure 10. V.10 Driver Output Test Terminated Voltage

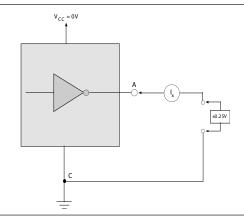



Figure 12. V.10 Driver Output Power-Off Current

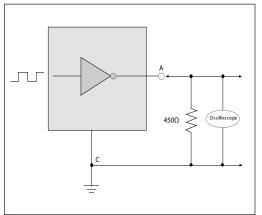



Figure 13. V.10 Driver Output Transition Time

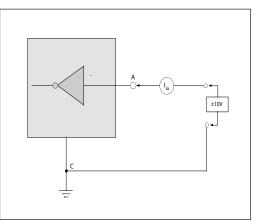



Figure 14. V.10 Receiver Input Current

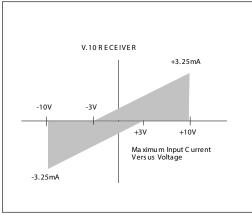



Figure 15. V.10 Receiver Input IV Graph

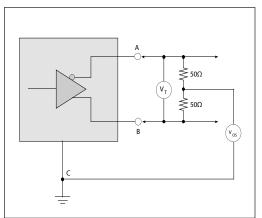



Figure 17. V.11 Driver Output Test Terminated Voltage

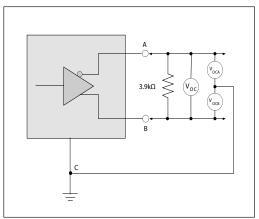



Figure 16. V.11 Driver Output Open-Circuit Voltage

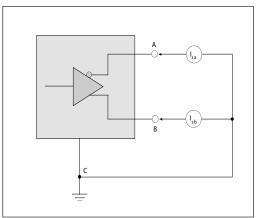



Figure 18. V.11 Driver Output Short-Circuit Current

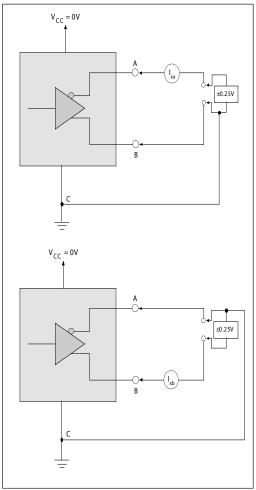



Figure 19. V.11 Driver Output Power-Off Current

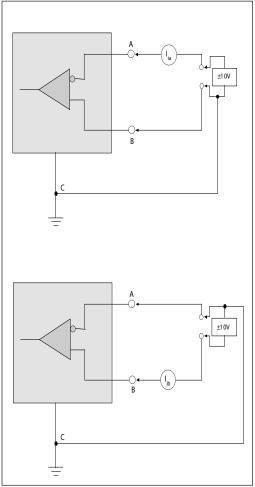



Figure 20. V.11 Receiver Input Current

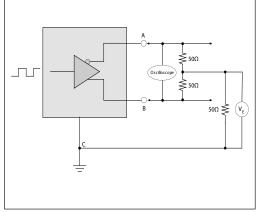



Figure 21. V.11 Driver Output Rise/Fall Time

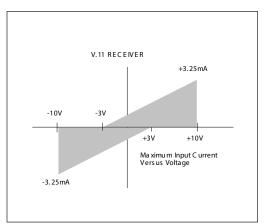



Figure 22. V.11 Receiver Input IV Graph

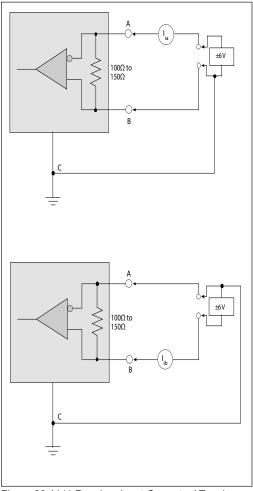



Figure 23. V.11 Receiver Input Current w/ Termination

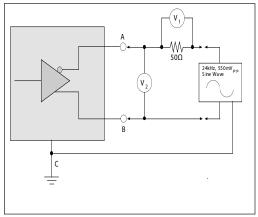



Figure 26. V.35 Driver Output Source Impedance

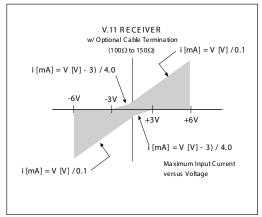



Figure 24. V.11 Receiver Input Graph with Termination

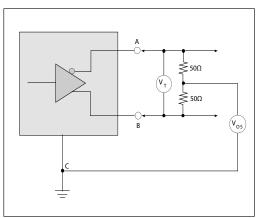



Figure 25. V.35 Driver Output Test Terminated Voltage

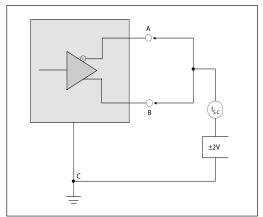



Figure 27. V.35 Driver Output Short-Circuit Impedance

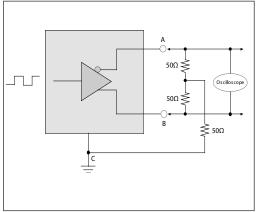



Figure 28. V.35 Driver Output Rise/Fall Time

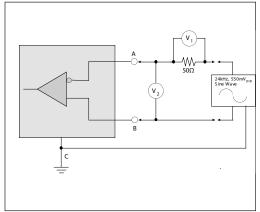



Figure 29. V.35 Receiver Input Source Impedance

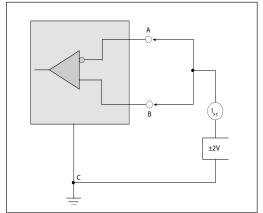



Figure 30. V.35 Receiver Input Short-Circuit Impedance

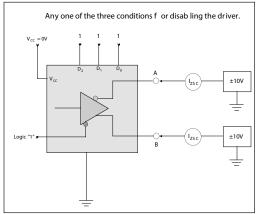



Figure 31. Driver Output Leakage Current Test

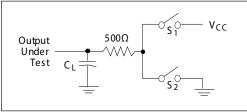




Figure 32. Driver/Receiver Timing Test Circuit



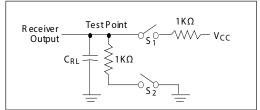



Figure 33. Driver Timing Test Load Circuit

Figure 34. Receiver Timing Test Load Circuit

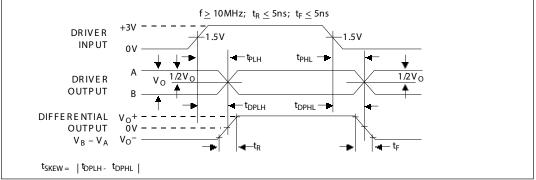



Figure 35. Driver Propagation Delays

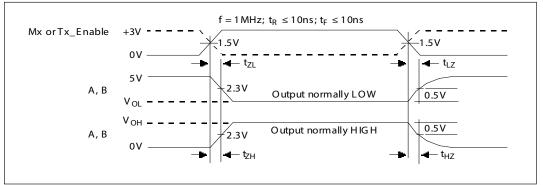



Figure 36. Driver Enable and Disable Times

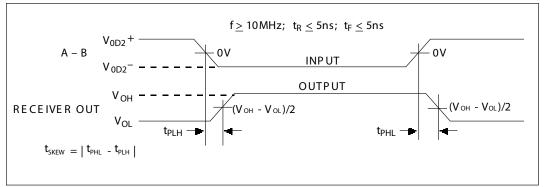



Figure 37. Receiver Propagation Delays

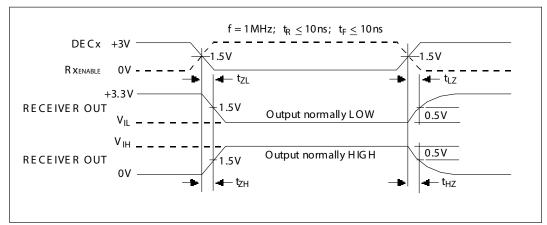



Figure 38. Receiver Enable and Disable Times

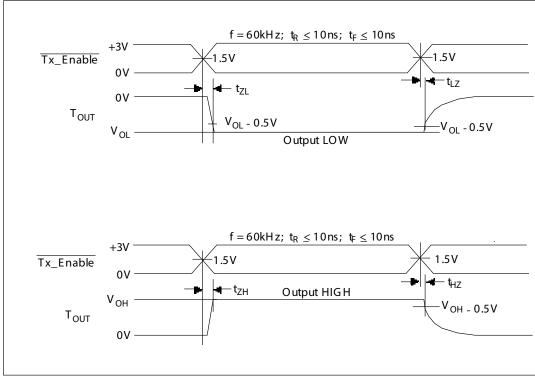



Figure 39. V.28 (RS-232) and V.10 (RS-423) Driver Enable and Disable Times

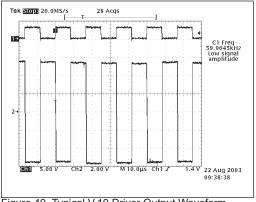



Figure 40. Typical V.10 Driver Output Waveform.

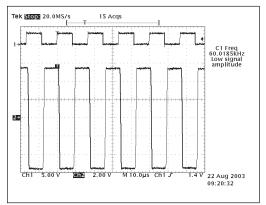



Figure 42. Typical V.28 Driver Output Waveform.

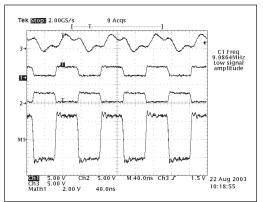



Figure 41. Typical V.11 Driver Output Waveform.

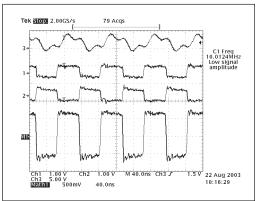



Figure 43. Typical V.35 Driver Output Waveform.

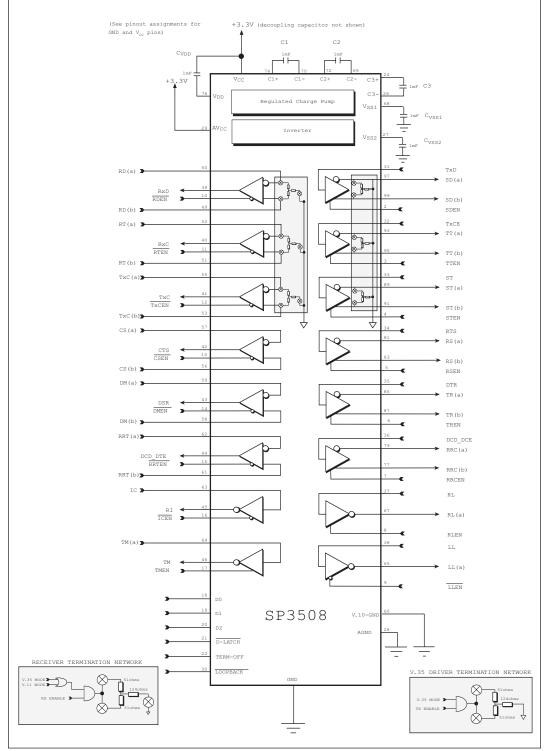



Figure 44. Functional Diagram

The SP3508 contains highly integrated serial transceivers that offer programmability between interface modes through software control. The SP3508 offers the hardware interface modes for RS-232 (V.28), RS-449/V.36 (V.11 and V.10), EIA-530 (V.11 and V.10), EIA-530A (V.11 and V.10), V.35 (V.35 and V.28) and X.21(V.11). The interface mode selection is done via three control pins, which can be latched via microprocessor control.

The SP3508 has eight drivers, eight receivers, and a patented on-board charge pump (5,306,954) that is ideally suited for wide area network connectivity and other multiprotocol applications. Other features include digital and line loopback modes, individual enable/disable control lines for each driver and receiver, fail-safe when inputs are either open or shorted.

## THEORY OF OPERATION

The SP3508 device is made up of

- 1) the drivers
- 2) the receivers
- 3) charge pumps
- 4) DTE/DCE switching algorithm
- 5) control logic.

## Drivers

The SP3508 has eight enhanced independent drivers. Control for the mode selection is done via a three-bit control word into D0, D1, and D2. The drivers are prearranged such that for each mode of operation, the relative position and functionality of the drivers are set up to accommodate the selected interface mode. As the mode of the drivers is changed, the electrical characteristics will change to support the required signal levels. The mode of each driver in the different interface modes that can be selected is shown in Table 1. There are four basic types of driver circuits – ITU-T-V.28 (RS-232), ITU-T-V.10 (RS-423), ITU-T-V.11 (RS-422), and CCITT-V.35.

The V.28 (RS-232) drivers output singleended signals with a minimum of  $\pm$ 5V (with 3k $\Omega$ &2500pF loading), and can operate over 120kbps. Since the SP3508 uses a charge pump to generate the RS-232 output rails, the driver outputs will never exceed  $\pm$ 10V. The V.28 driver architecture is similar to Sipex's standard line of RS-232 transceivers.

The RS-423 (V.10) drivers are also singleended signals which produce open circuit  $V_{OL}$ and  $V_{OH}$  measurements of ±4.0V to ±6.0V. When terminated with a 450 $\Omega$  load to ground, the driver output will not deviate more than 10% of the open circuit value. This is in compliance of the ITU V.10 specification. The V.10 (RS-423) drivers are used in RS-449/V.36, EIA-530, and EIA-530A modes as Category II signals from each of their corresponding specifications. The V.10 driver can transmit over 120Kbps if necessary.

The third type of drivers are V.11 (RS-422) differential drivers. Due to the nature of differential signaling, the drivers are more immune to noise as opposed to single-ended transmission methods. The advantage is evident over high speeds and long transmission lines. The strength of the driver outputs can produce differential signals that can maintain +2V differential output levels with a load of  $100\Omega$ . The strength allows the SP3508 differential driver to drive over long cable lengths with minimal signal degradation. The V.11 drivers are used in RS-449, EIA-530, EIA-530A and V.36 modes as Category I signals which are used for clock and data. Exar's new driver design over its predecessors allow the SP3508 to operate over 20Mbps for differential transmission.

The fourth type of drivers are V.35 differential drivers. There are only three available on the SP3508 for data and clock (TxD, TxCE, and TxC in DCE mode).

These drivers are current sources that drive loop current through a differential pair resulting in a 550mV differential voltage at the receiver. These drivers also incorporate fixed termination networks for each driver in order to set the  $V_{OH}$  and  $V_{OL}$  depending on load conditions. This termination network is basically a "Y" configuration consisting of two 51 $\Omega$  resistors connected in series and a 124 $\Omega$  resistor stored between the two 50 $\Omega$  resistors to GND. Filtering can be done on these pins to reduce common mode noise transmitted over the transmission line by connecting a capacitor to ground.

The drivers also have separate enable pins which simplifies half-duplex configurations for some applications, especially programmable DTE/DCE. The enable pins will either enable or disable the output of the drivers according to the appropriate active logic illustrated on Figure 44. The enable pins have internal pull-up and pull-down devices, depending on the active polarity of the receiver, that enable the driver upon power-on if the enable lines are left floating. During disabled conditions, the driver outputs will be at a high impedance 3-state.

The driver inputs are both TTL or CMOS compatible. All driver inputs have an internal pull-up resistor so that the output will be at a defined state at logic LOW ("0"). Unused driver inputs can be left floating. The internal pull-up resistor value is approximately  $500k\Omega$ .

### Receivers

The SP3508 has eight enhanced independent receivers. Control for the mode selection is done via a three-bit control word that is the same as the driver control word. Therefore, the modes for the drivers and receivers are identical in the application. Like the drivers, the receivers are prearranged for the specific requirements of the synchronous serial interface. As the operating mode of the receivers is changed, the electrical characteristics will change to support the required serial interface protocols of the receivers. Table 1 shows the mode of each receiver in the different interface modes that can be selected. There are two basic types of receiver circuits—ITU-T-V.28 (RS-232) and ITU-T-V.11, (RS-422).

The RS-232 (V.28) receiver is single-ended and accepts RS-232 signals from the RS-232 driver. The RS-232 receiver has an operating input voltage range of +15V and can receive signals downs to +3V. The input sensitivity complies with RS-232 and V.28 at +3V. The input impedance is  $3k\Omega$  to  $7k\Omega$ in accordance to RS-232 and V.28. The receiver output produces a TTL/CMOS signal with a +2.4V minimum for a logic "1" and a +0.4V maximum for a logic "0". The RS-232 (V.28) protocol uses these receivers for all data, clock and control signals. They are also used in V.35 mode for control line signals: CTS, DSR, LL, and RL. The RS-232 receivers can operate over 120kbps.

The second type of receiver is a differential type that can be configured internally to support ITU-T-V.10 and CCITT-V.35 depending on its input conditions. This receiver has a typical input impedance of  $10k\Omega$  and a differential threshold of less than  $\pm 200$ mV, which complies with the ITU-T-V.11 (RS-422) specifications. V.11 receivers are used in RS-449/V.36, EIA-530, EIA-530A and X.21 as Category I signals for receiving clock, data, and some control line signals not covered by Category II V.10 circuits. The differential V.11 transceiver has improved architecture that allows over 20Mbps transmission rates.

Receivers dedicated for data and clock (RxD, RxC, TxC) incorporate internal termination for V.11. The termination resistor is typically 120 $\Omega$  connected between the A and B inputs. The termination is essential for minimizing crosstalk and signal reflection over the transmission line . The minimum value is guaranteed to exceed 100 $\Omega$ , thus complying with the V.11 and RS-422 specifications. This resistor is invoked when the receiver is operating as a V.11 receiver, in modes EIA-530, EIA-530A, RS-449/V.36, and X.21. The same receivers also incorporate a termination network internally for V.35 applications. For V.35, the receiver input termination is a "Y" termination consisting of two 51 $\Omega$ resistors connected in series and a 124 $\Omega$ resistor connected between the two 50 $\Omega$ resistors and GND. The receiver itself is identical to the V.11 receiver.

The differential receivers can be configured to be ITU-T-V.10 single-ended receivers by internally connecting the non-inverting input to ground. This is internally done by default from the decoder. The non-inverting input is rerouted to V10GND and can be grounded separately. The ITU-T-V.10 receivers can operate over 120Kbps and are used in RS-449/V.36, E1A-530, E1A-530A and X.21 modes as Category II signals as indicated by their corresponding specifications. All receivers include an enable/disable line for disabling the receiver output allowing convenient half-duplex configurations. The enable pins will either enable or disable the output of the receivers according to the appropriate active logic illustrated on Figure 44. The receiver's enable lines include an internal pull-up or pull-down device, depending on the active polarity of the receiver, that enables the receiver upon power up if the enable lines are left floating. During disabled conditions, the receiver outputs will be at a high impedance state. If the receiver is disabled any associated termination is also disconnected from the inputs.

All receivers include a fail-safe feature that outputs a logic high when the receiver inputs

are open, terminated but open, or shorted together. For single-ended V.28 and V.10 receivers, there are internal  $5k\Omega$  pull-down resistors on the inputs which produces a logic high ("1") at the receiver outputs. The differential receivers have a proprietary circuit that detect open or shorted inputs and if so, will produce a logic HIGH ("1") at the receiver output.

#### CHARGE PUMP

SP3508 uses an internal capacitive charge pump to generate Vdd and Vss. The design is a patented (5,306,954) four-phased voltage shifting charge pump converters that converts the input voltage of 3.3V to nominal output voltages of +/-6V (Vdd & Vss1). SP3508 also includes an inverter block that inverts Vcc to -Vcc (Vss2). There is a free-running oscillator that controls the four phases of the voltage shifting. A description of each phase follows.

### 4-phased doubler pump

### Phase 1

 $-V_{ss1}$  charge storage -During this phase of the clock cycle, the positive side of capacitors C1 and C2 are initially charged to V<sub>cc</sub>. C1+ is then switched to ground and the charge in C1- is transferred to C2-. Since C2+ is connected to V<sub>cc</sub>, the voltage potential across capacitor C2 is now 2xV<sub>cc</sub>.

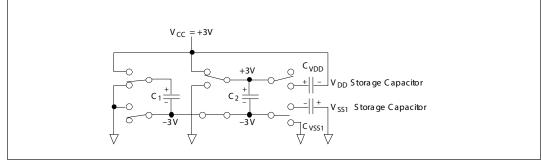



Figure 45. Charge Pump - Phase 1.

### Phase 2

 $-V_{ss1}$  transfer -Phase two of the clock connects the negative terminal of C2 to the  $V_{ss1}$  storage capacitor and the positive terminal of C2 to ground, and transfers the negative generated voltage to  $C_{vss1}$ . This generated voltage is regulated to -5.5V. Simultaneously, the positive side of the capacitor C1 is switched to  $V_{cc}$  and the negative side is connected to ground.

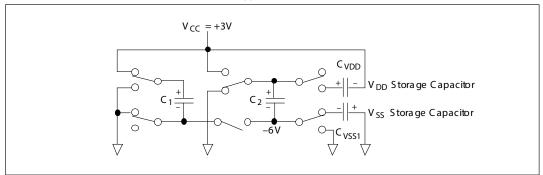



Figure 46. Charge Pump - Phase 2. **Phase 3** 

 $-V_{DD}$  charge storage -The third phase of the clock is identical to the first phase-the charge transferred in C1 produces  $-V_{cc}$  in the negative terminal of C1 which is applied to the negative side of the capacitor C2. Since C2+ is at  $V_{cc}$ , the voltage potential across C2 is  $2xV_{cc}$ .

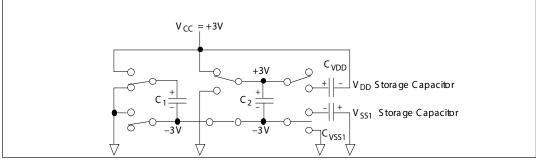



Figure 47.Charge Pump - Phase 3.

## Phase 4

-V<sub>DD</sub> transfer -The fourth phase of the clock connects the negative terminal of C2 to ground, and transfers the generated 5.5V across C2 to C<sub>VDD</sub>, the V<sub>DD</sub> storage capacitor. This voltage is regulated to +5.5V. At the regulated voltage, the internal oscillator is disabled and simultaneously with this, the positive side of capacitor C1 is switched to V<sub>CC</sub> and the negative side is connected to ground, and the cycle begins again. The charge pump cycle will continue as long as the operational conditions for the internal oscillator are present. Since both V+ and V- are separately generated from V<sub>CC</sub>; in a no-load condition V+ and V- will be symmetrical. Older charge pump approaches that generate V- from V+ will show a decrease in the magnitude of V- compared to V+ due to the inherent inefficiencies in the design. The clock rate for the charge pump typically operates at 250kHz. The external capacitors can be as low as 1µF with a 16V breakdown voltage rating.

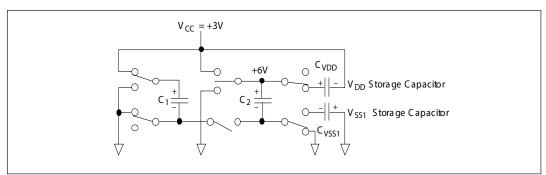



Figure 48. Charge Pump - Phase 4.

## 2-phased inverter pump

### Phase 1

Please refer to figure below: In the first phase of the clock cycle, switches S2 and S4 are opened and S1 and S3 closed. This connects the flying capacitor, C3, from Vin to ground. C3 charge up to the input voltage applied at Vcc.

## Phase 2

In the second phase of the clock cycle, switches S2 and S4 are closed and S1 and S3 are opened. This connects the flying capacitor, C3, in parallel with the output capacitor,  $C_{_{VSS2}}$ . The Charge stored in C3 is now transferred to  $C_{_{VSS2}}$ . Simultaneously, the negative side of  $C_{_{VSS2}}$  is connected to  $V_{_{SS2}}$  and the positive side is connected to ground. With the voltage across  $C_{_{VSS2}}$  smaller than the voltage across C3, the charge flows from C3 to  $C_{_{VSS2}}$  until the voltage at the  $V_{_{SS2}}$  equals - $V_{_{CC}}$ .

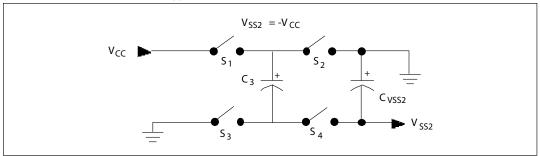



Figure 49. Circuit for an Ideal Voltage Inverter.

| re driv                                                                                | 17   | 46         | 16    | 45         | 15     | 44         | 14    | 43         | 13    | 42         | 12     | 41         | 11     | 40         | 39         | 9     | 38       | 8    | 37       | 7      | 36       | 6     | 35       | л 34       | 4     | 33       | ω             | 3 22          | 31       | Number       | Interface t               |                    |                                              |               |
|----------------------------------------------------------------------------------------|------|------------|-------|------------|--------|------------|-------|------------|-------|------------|--------|------------|--------|------------|------------|-------|----------|------|----------|--------|----------|-------|----------|------------|-------|----------|---------------|---------------|----------|--------------|---------------------------|--------------------|----------------------------------------------|---------------|
| ers and receiver                                                                       | TMEN | TM         | ICEN# | R          | RRTEN# | DCD DTE    | DMEN# | DSR        | CSEN# | CTS        | TxCEN# | TxC        | RTEN#  | RXC.       | RxD        | LLEN# |          | RLEN | ₽        | RRCEN  | DCD DCE  | TREN  | DTR      |            | STEN  | ST       | TTEN          | SDEN          | TxD      | Pin Mnemonic | Interface to System Logic |                    | SP3508 Mul                                   |               |
| Spare drivers and receivers may be used for optional signals (Signal                   |      | Receiver_8 |       | Receiver 7 |        | Receiver_6 |       | Receiver_5 |       | Receiver_4 |        | Receiver_3 |        | Receiver 2 | Receiver_1 |       | Driver_8 | 1    | Driver 7 |        | Driver 6 |       | Driver 5 | Driver_4   |       | Driver_3 |               |               | Driver_1 | Circuit      |                           |                    | SP3508 Multiprotocol Configured as DCE       |               |
| optional signals                                                                       |      | TM(A)      |       | IC         | RRT(B) | RRT(A)     | DM(B) | DM(A)      | CS(B) | CS(A)      | TxC(B) | TxC(A)     | RT(B)  | RT(A)      | RD(A)      |       | LL(A)    |      | RL(A)    | RRC(B) | RRC(A)   | TR(B) | TR(A)    | RS(A)      | ST(B) | ST(A)    | TT(B)         | SD(B)         | SD(A)    | Pin Mnemonic | Connector                 | Interface to Port- | red as DCE                                   |               |
| (Signal                                                                                |      | 64         |       | 63         | 61     | 62         | 58    | 59         | 56    | 57         | 53     | 55         | 51     | 49<br>52   | 50         |       | 65       |      | 67       | 77     | 79       | 87    | 85       | 83         | 91    | 68       | 95<br>95      | 66<br>66      | 97       | Number       |                           | o Port-            |                                              |               |
| Pin assignments and signal functions are s                                             |      | V.28       |       | V.28       |        |            |       | V.28       |       | V.28       |        |            |        | N 28       | V.28       |       | V.28     |      | V.28     |        | V.28     |       | 8C /     | V.28       |       | V.28     | V.20          | 100           | V.28     | Туре         | RS                        |                    | Recom                                        |               |
| Pin assignments and signal functions are subject to national or regional variation and |      |            |       | RL         |        |            |       | G          |       | CA         |        |            | ų,     | ΠA         | ΒA         |       | TM       |      | ĥ        | 9      | ନ        | 0     | 00       | СВ         | 9     | DB       |               | 3             | BB       | nic          | RS-232 or V.24            |                    | Recommended Signals and Port Pin Assignments |               |
| and sigr                                                                               |      | 18         |       | 21         |        |            |       | 20         |       | 4          |        |            | !<br>- | 24         | 2          |       | 25       |      | 22       | •      | œ        | ¢     | D        | σ          | 1     | 15       | -             | 44            | ω        | Pin(F)       | ວ<br>ກ                    |                    | Signals a                                    |               |
| nal functi                                                                             |      | V.10       |       | V.10       |        |            | V.11  | V.11       | V.11  | V.11       |        |            | <.11   | < 11       | V.11       |       | V.10     |      |          | <.11   | V.11     | V.11  | < 11     | V.11       | V.11  | V.11     | < <u>.</u> 11 | < <u>.</u> 11 | V.11     | Туре         | -                         |                    | nd Port I                                    |               |
| ons are                                                                                |      |            |       | RL         |        |            | CD(B) | CD(A)      | CA(B) | CA(A)      |        |            | DA(B)  | DA(A)      | BA(A)      |       | TM       |      | ,        | CF(B)  | CF(A)    | CC(B) |          |            | DB(B) | DB(A)    | DD(B)         | BB(B)         | BB(A)    | nic          | EIA-530                   |                    | Pin Assiç                                    |               |
| subject t                                                                              |      | 18         |       | 21         |        |            | 23    | 20         | 19    | 4          |        |            | 11     | 24         | 20         |       | 25       |      |          | 10     | ∞        | 22    | 57 2     | 13 U       | 12    | 15       | 9             | 16            | ω        | Pin(F)       | קנ פר                     |                    | Inments                                      |               |
| o nationa                                                                              |      | V.10       |       | V.10       |        |            | V.11  | V.11       | V.11  | V.11       |        |            | <.11   | < 11       | V.11       |       | V.10     |      |          | <.11   | <.11     | V.11  | < 11     | V.11       | V.11  | V.11     | < <u>.</u> 11 | V.11          | V.11     | Туре         | _                         |                    |                                              |               |
| al or regio                                                                            |      | L          |       | RL         |        |            | TR(B) | TR(A)      | RS(B) | RS(A)      |        | , ,        | TT(B)  |            | SD(A)      |       | TM       |      |          | RR(B)  | RR(A)    | DM(B) |          | CS(A)      | ST(B) | ST(A)    | RT(B)         | RD(B)         | RD(A)    | nic          | RS-449                    |                    |                                              |               |
| onal varia                                                                             |      | 10         |       | 14         |        |            | 30    | 12         | 25    | 7          |        |            | 35     | 17         | 4          |       | 18       |      |          | 31     | 13       | 29    | 11       | 52<br>6    | 23    | 5        | 26            | °             | 6        | Pin(F)       | 25 91                     |                    |                                              |               |
| ation and                                                                              |      | V.28       |       | V.28       |        |            |       | V.28       |       | V.28       |        |            | V.35   | < 35       | V.35       |       | V.28     |      | V.28     |        | V.28     |       | 80 \     | V.28       | V.35  | V.35     | V.35          | V.35          | V.35     | Туре         | Ciapol                    |                    |                                              |               |
|                                                                                        |      | 141        |       | 140        |        |            |       | 108        |       | 105        |        |            | 113    | 113        | 103        |       | 142      |      | 125      |        | 109      |       | 107      | 106        | 114   | 114      | 115           | 104           | 104      | nic          | V.35                      |                    |                                              |               |
| _                                                                                      |      | L          |       | Z          |        |            |       | т          |       | ဂ          |        |            | ≤      | = u        | סי         |       | NN       |      | د        |        | Π        | ſ     | Π        | C          | A     | Y        | ×<            | < -           | תו       | Pin(F)       | VCW                       |                    |                                              |               |
| ** X.21                                                                                |      |            |       |            |        |            |       |            | V.11  | V.11       |        |            | V.11   | V 11       | V.11       |       |          |      |          |        |          |       | <        | V.11       | V.11  | V.11     | V.11          | V.11          | V.11     | Туре         |                           |                    |                                              |               |
| ** X.21 use either B() or                                                              |      |            |       |            |        |            |       |            | C(B)  | C(A)       |        |            | X(B)   | (В)        | T(A)       |       |          |      |          |        |          |       | (0)      | I(A)       | S(B)  | S(A)     | B(B)          | R(B)          | R(A)     | nic          |                           |                    |                                              |               |
| r B() or                                                                               |      |            |       |            |        |            |       |            | 10    | з          |        |            | 14**   | 9<br>7**   | 2          |       |          |      |          |        |          |       | -        | <u>3</u> σ | 13    | 6        | ,<br>14**     | 11            | 4        | Pin(F)       |                           |                    |                                              |               |
|                                                                                        |      |            |       |            |        |            |       |            |       |            |        |            |        |            |            |       |          |      |          |        |          |       |          |            |       |          |               |               |          |              |                           |                    |                                              | P3508_101_012 |

| Spare drive<br>Quality, Ra<br>enable pin:                                                                                                                                              | - | 17   | 46         | 16    | 45         | 15     | 44         | 14    | 43         | 13    | 42         | 12     | 41         | 11    | 40         | 10    | 39         | 9     | 38       | 8    | 37       | 7      | 36       | <b>о</b> | 35       | თ     | 34       | 4     | 33       | з     | 32       | 2     | 31       | Number       | Pin          | Interface t                     |                                              |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|------------|-------|------------|--------|------------|-------|------------|-------|------------|--------|------------|-------|------------|-------|------------|-------|----------|------|----------|--------|----------|----------|----------|-------|----------|-------|----------|-------|----------|-------|----------|--------------|--------------|---------------------------------|----------------------------------------------|-------------|
| Spare drivers and receivers may be use Quality, Rate Detect, Standby) or may be enable pins for each driver and receiver                                                               |   | TMEN | TM         | ICEN# | 면          | RRTEN# | DCD DTE    | DMEN# | DSR        | CSEN# | CTS        | TxCEN# | TxC        | RTEN# | RxC        | RDEN# | RxD        | LLEN# | L        | RLEN | RL       | RRCEN  | DCD DCE  | TREN     | DTR      | RSEN  | RTS      | STEN  | ST       | TTEN  | TXCE     | SDEN  | TxD      | Pin Mnemonic |              | Interface to System Logic       | SP3508 Mult                                  |             |
| Spare drivers and receivers may be used for optional signals (Signal<br>Quality, Rate Detect, Standby) or may be disabled using individual<br>enable pins for each driver and receiver |   | ļ    | Receiver 8 |       | Receiver_7 |        | Receiver_6 |       | Receiver_5 |       | Receiver_4 |        | Receiver_3 |       | Receiver_2 |       | Receiver_1 |       | Driver_8 |      | Driver_7 |        | Driver_6 |          | Driver_5 |       | Driver_4 | 1     | Driver 3 | 1     | Driver 2 |       | Driver_1 | Circuit      |              |                                 | SP3508 Multiprotocol Configured as DTE       |             |
| r optional signals<br>sabled using indi                                                                                                                                                |   |      | TM(A)      |       | Ю          | RRT(B) | RRT(A)     | DM(B) | DM(A)      | CS(B) | CS(A)      | TxC(B) | TxC(A)     | RT(B) | RT(A)      | RD(B) | RD(A)      |       | LL(A)    |      | RL(A)    | RRC(B) | RRC(A)   | TR(B)    | TR(A)    | RS(B) | RS(A)    | ST(B) | ST(A)    | TT(B) | TT(A)    | SD(B) | SD(A)    | Pin Mnemonic |              | Interface to Port-<br>Connector | red as DIE                                   |             |
| (Signal<br>vidual                                                                                                                                                                      |   |      | 64         |       | 63         | 61     | 62         | 58    | 59         | 56    | 57         | 53     | 55         | 51    | 52         | 49    | 50         |       | 65       |      | 67       | 77     | 79       | 87       | 85       | 83    | 81       | 91    | 68       | 95    | 93       | 99    | 97       | Number       | Pin          | ctor                            |                                              |             |
| Pin ass<br>proprie                                                                                                                                                                     |   |      | V.28       |       | V.28       |        | V.28       |       | V.28       |       | V.28       |        | V.28       |       | V.28       |       | V.28       |       | V.28     |      | V.28     |        |          |          | V.28     |       | V.28     |       |          |       | V.28     |       | V.28     | Type         | Signal       | R                               | Recom                                        | ,           |
| Pin assignments and signal functions are s<br>proprietary / non-standard implementations                                                                                               |   |      | TM         |       | ĥ          |        | СĽ         |       | ĉ          |       | ß          |        | 묘          |       | B          |       | BB         |       | F        |      | RL       |        |          |          | CD       |       | CA       |       |          |       | DA       |       | BA       | nic          | Signal Mnemo | RS-232 or V.24                  | Recommended Signals and Port Pin Assignments |             |
| s and sig<br>า-standar                                                                                                                                                                 |   |      | 25         |       | 22         |        | ∞          |       | 6          |       | ы          |        | 15         |       | 17         |       | ω          |       | 18       |      | 21       |        |          |          | 20       |       | 4        |       |          |       | 24       |       | 2        |              | DB-25        | V.24                            | Signals                                      | ?           |
| nal funct<br>d implen                                                                                                                                                                  |   |      | V.10       |       |            | V.11   | V.11       | V.11  | V.11       | V.11  | V.11       | V.11   | V.11       | V.11  | V.11       | V.11  | V.11       |       | V.10     |      | V.10     |        |          | V.11     | V.11     | V.11  | V.11     |       |          | V.11  | V.11     | V.11  | V.11     | Type         | Signal       |                                 | and Port                                     | j           |
| ions are<br>nentation                                                                                                                                                                  |   |      | Μ          |       |            | CF(B)  | CF(A)      | CC(B) | CC(A)      | CB(B) | CB(A)      | DB(B)  | DB(A)      | DD(B) | DD(A)      | BB(B) | BB(A)      |       | F        |      | RL       |        |          | CD(B)    | CD(A)    | CA(B) | CA(A)    |       |          | DA(B) | DA(A)    | BA(B) | BA(A)    | nic          | Mnemo        | EIA-530                         | Pin Assig                                    | !<br>•<br>• |
| subject to<br>s                                                                                                                                                                        |   |      | 25         |       |            | 10     | 8          | 22    | ი          | 13    | σı         | 12     | 15         | 9     | 17         | 16    | ω          |       | 18       |      | 21       |        |          | 23       | 20       | 19    | 4        |       |          | 11    | 24       | 12    | 2        | Pin(M)       | DB-25        |                                 | Inments                                      |             |
| o nationa                                                                                                                                                                              |   |      | V.10       |       |            | V.11   | V.11       | V.11  | V.11       | V.11  | V.11       | V.11   | V.11       | V.11  | V.11       | V.11  | V.11       |       | V.10     |      | V.10     |        |          | V.11     | V.11     | V.11  | V.11     |       |          | V.11  | V.11     | V.11  | V.11     | Type         | Signal       |                                 |                                              |             |
| Pin assignments and signal functions are subject to national or regional variation<br>proprietary / non-standard implementations                                                       |   |      | TM         |       |            | RR(B)  | RR(A)      | DM(B) | DM(A)      | CS(B) | CS(A)      | ST(B)  | ST(A)      | RT(B) | RT(A)      | RD(B) | RD(A)      |       | F        |      | 몬        |        |          | TR(B)    | TR(A)    | RS(B) | RS(A)    |       |          | TT(B) | TT(A)    | SD(B) | SD(A)    | nic          | Mnemo        | RS-449                          |                                              |             |
| nal variat                                                                                                                                                                             |   |      | 18         |       |            | 31     | 13         | 29    | 1          | 27    | 9          | 23     | თ          | 26    | œ          | 24    | <u>б</u>   |       | 10       |      | 14       |        |          | 30       | 12       | 25    | 7        |       |          |       |          | 22    | 4        |              | DB-37        |                                 |                                              |             |
| ion and                                                                                                                                                                                |   |      | V.28       |       | V.28       |        | V.28       |       | V.28       |       | V.28       | V.35   | V.35       | V.35  | V.35       | V.35  | V.35       |       | V.28     |      | V.28     |        |          |          | V.28     |       | V.28     |       |          | 25.V  | V.35     | V.35  | V.35     |              |              |                                 |                                              |             |
|                                                                                                                                                                                        |   |      | 142        |       | 125        |        | 109        |       | 107        |       | 106        | 114    | 114        | 115   | 115        | 104   | 104        |       | 141      |      | 140      |        |          |          | 108      |       | 105      |       |          | 113   | 113      | 103   |          | _            | Mnemo        | V.35                            |                                              |             |
|                                                                                                                                                                                        |   | -    | NN         |       | ے          |        | п          |       | ш          |       | 0          | AA     | ~          | ×     |            |       | ת          |       | -        |      | z        |        |          |          | т        |       | ဂ        |       |          | V     |          |       |          | )            | M34          |                                 |                                              |             |
| ** X.21 use either B() or<br>X(), not both                                                                                                                                             |   |      |            |       |            |        |            |       |            | V.11  | -          | V.11   | V.11       | V.11  |            |       | V.11       |       |          |      |          |        |          |          |          | V.11  | V.11     |       |          | V.11  | V.11     | V.11  | V.11     | Type         |              |                                 |                                              |             |
| se either<br>oth                                                                                                                                                                       |   |      |            |       |            |        |            |       |            | I(B)  | I(A)       | S(B)   | S(A)       | B(B)  | B(A)       | R(B)  | R(A)       |       |          |      |          |        |          |          |          | C(B)  | C(A)     |       |          | X(B)  | X(A)     | T(B)  |          |              | Mnemo I      | X.21                            |                                              |             |
| B() or                                                                                                                                                                                 |   |      |            |       |            |        |            |       |            | 12    | თ          | 13     | თ          | 14**  | 7**        | 11    | 4          |       |          |      |          |        |          |          |          | 10    | ω        |       |          | 14**  | 7**      | 9     | 2        | Pin(M)       | DB-15        |                                 |                                              |             |

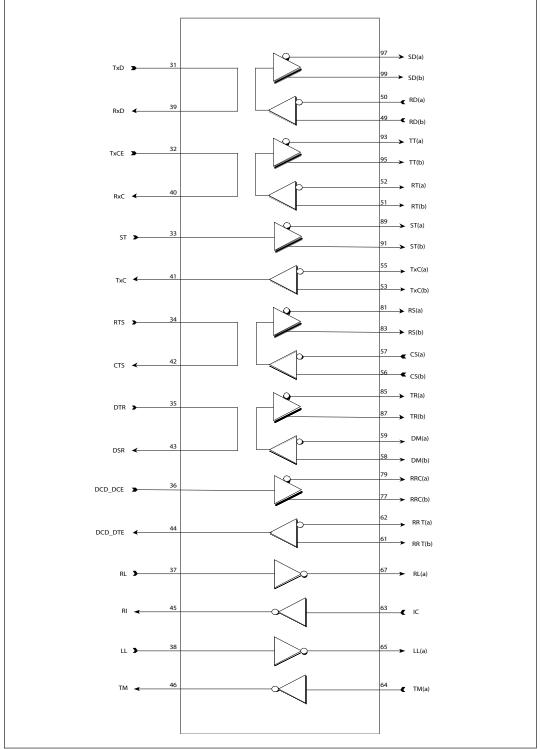
DTE CONFIGURATION

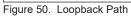
## **TERM\_OFF FUNCTION**

The SP3508 contains a TERM\_OFF pin that disables all three receiver input termination networks regardless of mode. This allows the device to be used in monitor mode applications typically found in networking test equipment.

The TERM\_OFF pin internally contains a pull-down device with an impedance of over  $500k\Omega$ , which will default in a "ON" condition during power-up if V.35 receivers enable line and the SHUTDOWN mode from the decoder will disable the termination regardless of TERM\_OFF.

## LOOPBACK FUNCTION


The SP3508 contains a LOOPBACK pin that invokes a loopback path. This loopback path is illustrated in Figure 50. LOOPBACK has an internal pull-up resistor that defaults to normal mode during power up or if the pin is left floating. During loopback, the driver output and receiver input characteristics will still adhere to its appropriate specifications.


## DECODER AND D\_LATCH FUNCTION

The SP3508 contains a D\_LATCH pin that latches the data into the D0, D1 and D2 decoder inputs. If tied to a logic LOW ("0"), the latch is transparent, allowing the data at the decoder inputs to propagate through and program the SP3508 accordingly. If tied to a logic HIGH ("1"), the latch locks out the data and prevents the mode from changing until this pin is brought to a logic LOW. There are internal pull-up devices on D0, D1 and D2, which allow the device to be in SHUTDOWN mode ("111") upon power up. However, if the device is powered-up with the D\_LATCH at a logic HIGH, the decoder state of the SP3508 will be undefined.

## CTR1/CTR2 EUROPEAN COMPLIANCY

As with all of Exar's previous multi-protocol serial transceiver IC's the drivers and receivers have been designed to meet all the requirements to NET1/NET2 and TBR2 in order to meet CTR1/CTR2 compliancy. The SP3508 is also tested in-house at Exar and adheres to all the NET1/2 physical layer testing and the ITU Series V specifications before shipment. Please note that although the SP3508, as with its predecessors, adhere to CRT1/CTR2 compliancy testing, any complex or usual configuration should be double-checked to ensure CTR1/CTR2 compliance. Consult the factory for details.





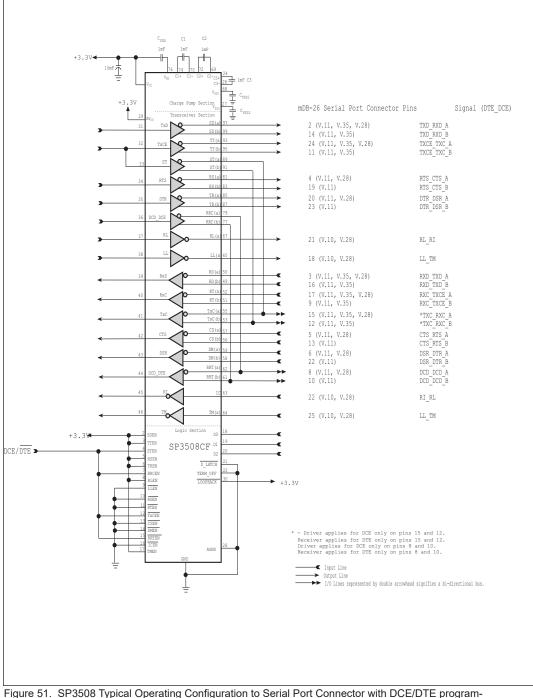
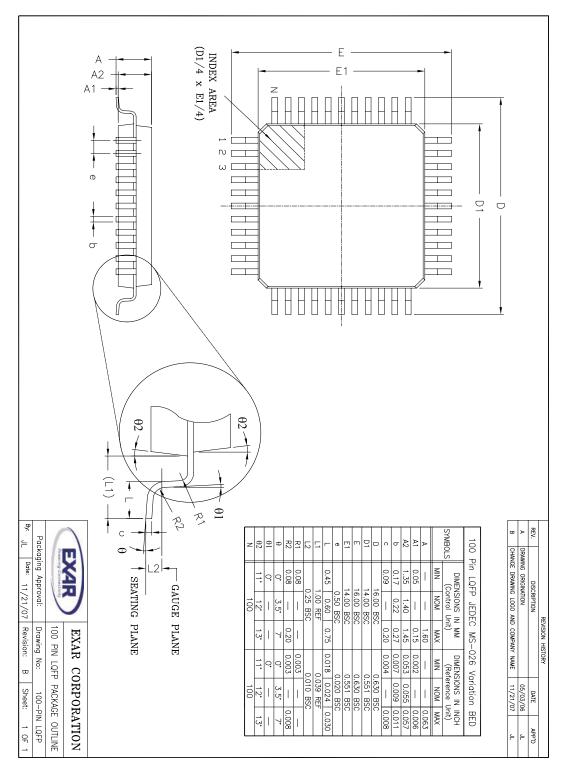




Figure 51. SP3508 Typical Operating Configuration to Serial Port Connector with DCE/DTE programmability



#### - ORDERING INFORMATION<sup>(1)</sup>

| Part Number | Temp. Range   | Package      | Packaging Method | Lead-Free <sup>(2)</sup> |
|-------------|---------------|--------------|------------------|--------------------------|
| SP3508CF-L  | 0°C to +70°C  | 100-pin LQFP | Tray             | Yes                      |
| SP3508EF-L  | -40°C to 85°C | 100-pin LQFP | Tray             | Yes                      |
| SP3058EB    |               | SP3508 Eva   | aluation Board   |                          |

NOTES:

Refer to <u>www.maxlinear.com/SP3508</u> for most up to date Ordering Information.
Visit <u>www.maxlinear.com</u> for additional information on Environmental Rating.

## **REVISION HISTORY**

| Date     | Revision | Description                                                                                                                                                                                                                                                                                                                                                                            |
|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1/12/04  | А        | Implemented Tracking revision                                                                                                                                                                                                                                                                                                                                                          |
| 2/27/04  | В        | Included Diamond column in spec table inidcating which specs apply over full operating temperature range. Correct typo to Fig. 51 pin 61 and 62.                                                                                                                                                                                                                                       |
| 3/31/04  | С        | Corrected max dimension for symbol c on LQFP package outline                                                                                                                                                                                                                                                                                                                           |
| 6/03/04  | D        | Added table to page 27 and 28                                                                                                                                                                                                                                                                                                                                                          |
| 10/12/04 | E        | Certified conformance to NET1/NET2 and TBR-1/TBR-2 TUV by TUV Rheinland (Test report # TBR2/30451940.001/04)                                                                                                                                                                                                                                                                           |
| 10/29/04 | F        | Corrected V.28 Driver Open circuit values, pages 27 and 28 both for DCE and DTE that BA(B) should connect to pin 14.                                                                                                                                                                                                                                                                   |
| 7/17/08  | 1.0.0    | Change Revision format from letter code to number code. Change Logo,<br>footnote and notice statement from Sipex to Exar. Add T <sub>J</sub> limits to Absolute<br>Maximum Ratings. Change propagation delay limit specification for V.11 and<br>V.35 Driver/Receiver from 60ns Maximum to 85ns Maximum. Update ordering<br>information to show only RoHS packaging (-L) is available. |
| 1/29/20  | 1.0.1    | Update to MaxLinear logo. Update ordering information.                                                                                                                                                                                                                                                                                                                                 |



MaxLinear, Inc. 5966 La Place Court, Suite 100 Carlsbad, CA 92008 760.444.8598 f. www.maxlinear.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

MaxLinear, the MaxLinear logo, and any MaxLinear trademarks, MxL, Full-Spectrum Capture, FSC, G.now, AirPHY and the MaxLinear logo are all on the products sold, are all trademarks of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved. Other company trademarks and product names appearing herein are the property of their respective owners.

© 2004 - 2020 MaxLinear, Inc. All rights reserved.