MOSFET – N-Channel, UniFET™

75 V, 210 A, 5.5 m Ω

FDH210N08

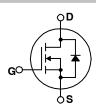
Description

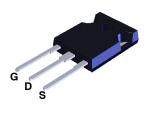
UniFET [™] MOSFET is ON Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

Features

- $R_{DS(ON)} = 4.65 \text{ m}\Omega$ (Typ.), $V_{GS} = 10 \text{ V}$, $I_D = 125 \text{ A}$
- Low Gate Charge (Typ. 232 nC)
- Low C_{rss} (Typ. 262 pF)
- 100% Avalanche Tested
- Improved dv/dt Capability
- This Device is Pb-Free and is RoHS Compliant

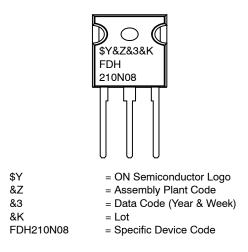
Applications


- Synchronous Rectification for ATX / Server / Telecom PSU
- Battery Protection Circuit
- Motor Drives and Uninterruptible Power Supplies



ON Semiconductor®

www.onsemi.com


V _{DSS}	R _{DS(ON)} MAX	I _D MAX		
75 V	$5.5~\mathrm{m}\Omega$	210 A		

TO-247-3 CASE 340CK

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

Symbol	Parameter	Value	Unit	
V _{DSS}	Drain-Source Voltage		75	V
ID	Drain Current	Continuous (T _C = 25°C)		А
		Continuous (T _C = 100°C)	132	
I _{DM}	Drain Current	Pulsed (Note 1)	840	А
V _{GSS}	Gate-Source Voltage		±20	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		9375	mJ
I _{AR}	Avalanche Current (Note 1)		210	А
E _{AR}	Repetitive Avalanche Energy (Note 1)		46.2	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		4.5	V/ns
PD	Power Dissipation	(T _C = 25°C)	462	W
		Derate Above 25°C	3.7	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C
ΤL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C, Unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality shresses exceeding mose listed in the maximum Ratings table may damage t should not be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse width limited by maximum junction temperature. 2. L = 0.4 mH, I_{AS} = 125 A, V_{DD} = 50 V, R_G = 25 Ω , starting T_J = 25°C. 3. I_{SD} ≤ 125 A, di/dt ≤ 260 A/µs, V_{DD} ≤ BV_{DSS}, starting T_J = 25°C.

THERMAL CHARACTERISTICS

Symbol	Parameter	FDH210N08	Unit	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.27	°C/W	
$R_{ hetaJA}$	R _{0JA} Thermal Resistance, Junction to Ambient, Max.		°C/W	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FDH210N08	FDH210N08	TO-247	Tube	N/A	N/A	30 Units

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
FF CHARACT	ERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I_D = 250 μ A	75			V
$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		0.1		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 75 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			20 μA	
		$V_{DS} = 60 \text{ V}, \text{ TJ} = 150^{\circ}\text{C}$			250	
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			200	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-200	nA
ON CHARACTE	RISTICS					
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS}=V_{GS},\ I_{D}=250\ \mu A$	2.0		4.0	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 125 A		4.65	5.5	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 25 V, I _D = 125 A		200		S
YNAMIC CHA	RACTERISTICS					
C _{ISS}	Input Capacitance	V_{DS} = 25 V, V_{GS} = 0 V, f = 1 MHz		8743	11340	pF
C _{OSS}	Output Capacitance			2134	2778	pF
C _{RSS}	Reverse Transfer Capacitance			262	393	pF
WITCHING CH	IARACTERISTICS					
t _{d(ON)}	Turn-On Delay Time	V_{DD} = 37.5 V, I _D = 69 A, R _G = 25 Ω		100	210	ns
t _r	Turn–On Rise Time	(Note 4)		410	830	ns
t _{d(OFF)}	Turn-Off Delay Time			630	1270	ns
t _f	Turn-Off Fall Time			290	590	ns
Qg	Total Gate Charge	V_{DS} = 60 V, I _D = 125 A, V _{GS} = 10 V (Note 4)		232	301	nC
Q _{gs}	Gate-Source Charge			58		nC
Q _{gd}	Gate-Drain Charge	1		77		nC
RAIN-SOURC	E DIODE CHARACTERISTICS AND M	AXIMUM RATINGS				
۱ _S	Maximum Continuous Drain-Source D	iode Forward Current			210	Α
I _{SM}	Maximum Pulsed Drain-Source Diode	Forward Current			840	Α
			1	1		

.314					0.0	
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = 125 \text{ A}$			1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_S = 125 A,$		123		ns
Q _{RR}	Reverse Recovered Charge	dl _F /dt = 100 A/µs		420		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Essentially independent of operating temperature typical characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS

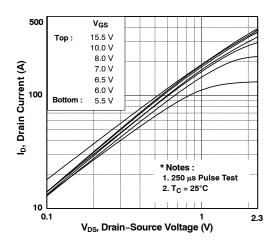


Figure 1. On-Region Characteristics

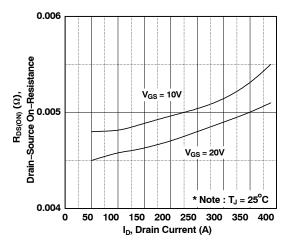


Figure 3. On–Resistance Variation vs. Drain Current and Gate Voltage

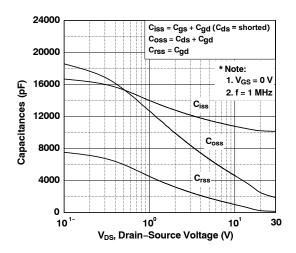


Figure 5. Capacitance Characteristics

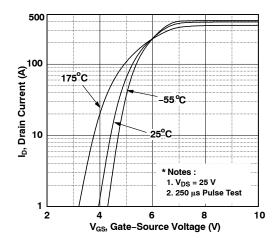


Figure 2. Transfer Characteristics

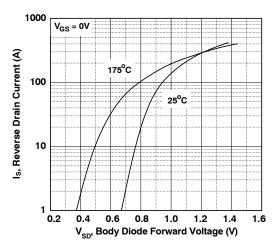


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

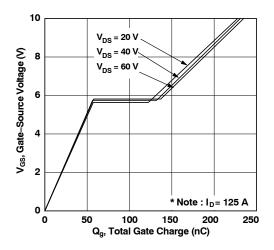
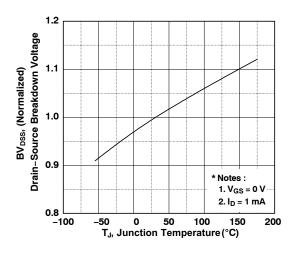



Figure 6. Gate Charge Characteristics

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

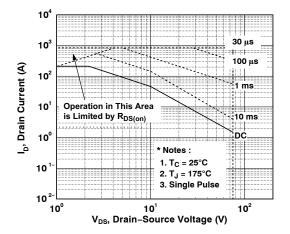


Figure 9. Maximum Safe Operating Area

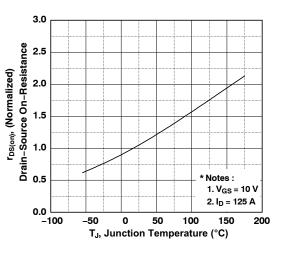


Figure 8. On– Resistance Variation vs. Temperature

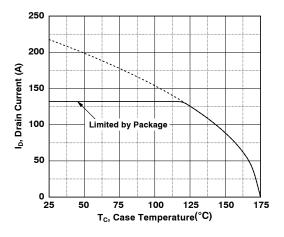


Figure 10. Maximum Drain Current vs. Case Temperature

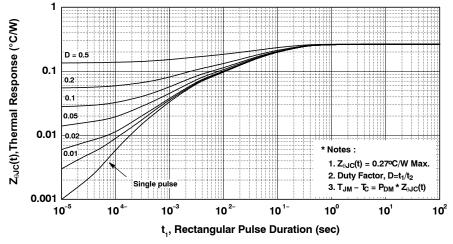


Figure 11. Transient Thermal Response Curve

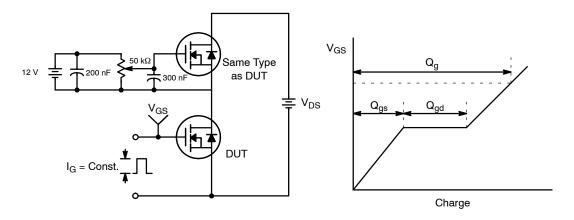


Figure 12. Gate Charge Test Circuit & Waveform

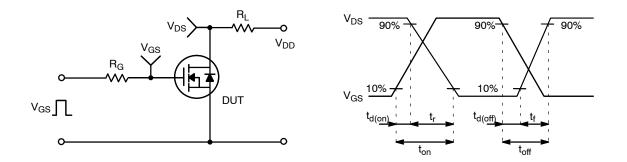
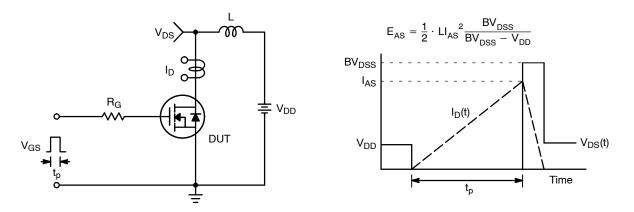



Figure 13. Resistive Switching Test Circuit & Waveforms

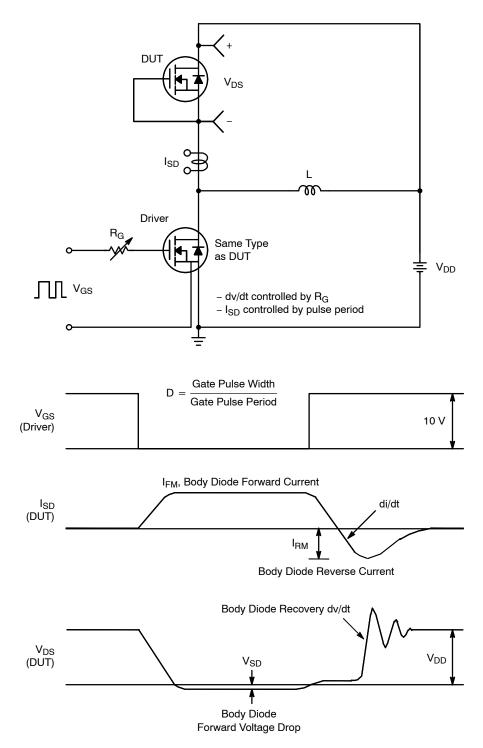
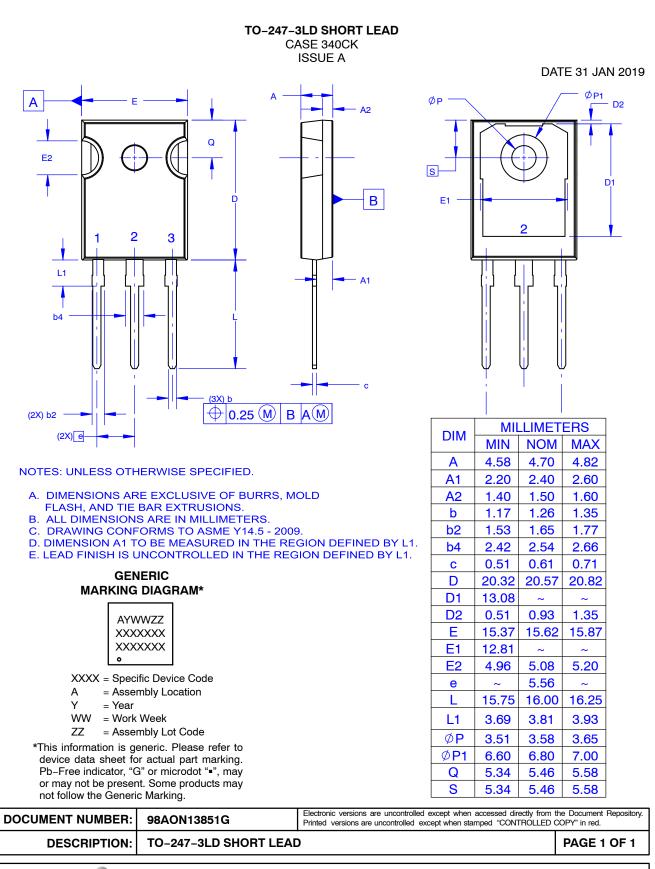



Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

UniFET is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales