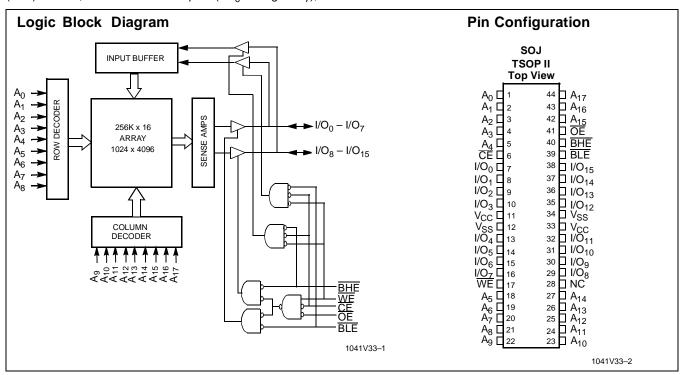


256K x 16 Static RAM

Features

- High speed
 - $-t_{AA} = 15 \text{ ns}$
- Low active power
 - 612 mW (max.)
- Low CMOS standby power (Commercial L version)
 - 1.8 mW (max.)
- 2.0V Data Retention (600 µW at 2.0V retention)
- Automatic power-down when deselected
- . TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features

Functional Description


The CY7C1041V33 is a high-performance CMOS Static RAM organized as 262,144 words by 16 bits.

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (An through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A_0 through A_{17}).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O_0 to I/O_7 . If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and \overline{WE} LOW).

The CY7C1041V33 is available in a standard 44-pin 400-mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout.

Selection Guide

			1041V33-12	1041V33-15	1041V33-17	1041V33-20	1041V33-25
Maximum Access Time (ns)			12	15	17	20	25
Maximum Operating Current (mA)			190	170	160	150	130
Maximum CMOS Standby Current (mA)	Com'l/Ind'l		8	8	8	8	8
	Com'l	L	0.5	0.5	0.5	0.5	0.5

Shaded areas contain preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C Supply Voltage on V_{CC} to Relative $GND^{[1]}$ -0.5V to +4.6V

DC Voltage Applied to Outputs in High Z State $^{[1]}$-0.5V to V CC + 0.5V

DC Input Voltage ^[1]	0.5V to V _{CC} + 0.5V
Current into Outputs (LOW).	20 mA

Operating Range

Range	Ambient Temperature ^[2]	v _{cc}
Commercial	0°C to +70°C	$3.3V \pm 0.3V$
Industrial	–40°C to +85°C	

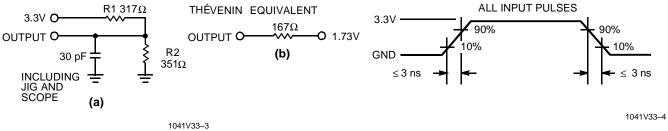
Electrical Characteristics Over the Operating Range

		Test Conditions			7C1041V33-15		
			Min.	Max.	Min.	Max.	Unit
Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$	2.4		2.4		V	
Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA			0.4		0.4	V
Input HIGH Voltage		2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	V	
Input LOW Voltage[1]			-0.5	0.8	-0.5	0.8	V
Input Load Current	$GND \le V_I \le V_{CC}$		-1	+1	-1	+1	μΑ
Output Leakage Current	GND ≤ V _{OUT} ≤ V _{CC} , Ou	utput Disabled	-1	+1	-1	+1	μΑ
V _{CC} Operating Supply Current	$V_{CC} = Max., f = f_{MAX} =$	1/t _{RC}		190		170	mA
Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{CC}, \overline{CE} \geq \text{V}_{IH} \\ &\text{V}_{IN} \geq \text{V}_{IH} \text{ or} \\ &\text{V}_{IN} \leq \text{V}_{IL}, f = \text{f}_{MAX} \end{aligned}$		40		40	mA	
Automatic CE	Max. V _{CC} ,	Com'l/Ind'l		8		8	mA
Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V,$ or $V_{IN} \le 0.3V,$ f=0	Com'l L		0.5		0.5	mA
	Output LOW Voltage Input HIGH Voltage Input LOW Voltage ^[1] Input Load Current Output Leakage Current V _{CC} Operating Supply Current Automatic CE Power-Down Current —TTL Inputs Automatic CE Power-Down Current	$\begin{array}{c c} & I_{OH} = -4.0 \text{ mA} \\ \hline \\ \text{Output LOW Voltage} & V_{CC} = \text{Min.,} \\ I_{OL} = 8.0 \text{ mA} \\ \hline \\ \text{Input HIGH Voltage} \\ \hline \\ \text{Input Low Voltage}^{[1]} \\ \hline \\ \text{Input Load Current} & \text{GND} \leq \text{V}_{I} \leq \text{V}_{CC} \\ \hline \\ \text{Output Leakage Current} & \text{GND} \leq \text{V}_{OUT} \leq \text{V}_{CC}, \text{Output Leakage Current} \\ \hline \\ \text{V}_{CC} \text{ Operating} & \text{V}_{CC} = \text{Max., } \text{f} = \text{f}_{\text{MAX}} = \text{max} \\ \hline \\ \text{Automatic CE} & \text{Max. V}_{CC}, \overline{\text{CE}} \geq \text{V}_{IH} \\ \hline \\ \text{-TTL Inputs} & \text{V}_{IN} \leq \text{V}_{IL}, \text{f} = \text{f}_{\text{MAX}} \\ \hline \\ \text{Automatic CE} & \text{Max. V}_{CC}, \hline \\ \hline \\ \text{Power-Down Current} & \text{Max. V}_{CC}, \hline \\ \hline \\ \text{CE} \geq \text{V}_{CC} - 0.3 \text{V}, \\ \hline \\ \text{V}_{IN} \geq \text{V}_{IC} - 0.3 \text{V}, \\ \hline \\ \text{V}_{IN} \geq \text{V}_{CC} - 0.3 \text{V}, \\ \hline \\ \text{V}_{IN} \geq \text{V}_{CC} - 0.3 \text{V}, \\ \hline \\ \text{V}_{IN} \geq \text{V}_{CC} - 0.3 \text{V}, \\ \hline \\ \text{V}_{IN} \geq \text{V}_{CC} - 0.3 \text{V}, \\ \hline \\ \text{V}_{IN} \geq \text{V}_{CC} - 0.3 \text{V}, \\ \hline \\ \end{array}$	$\begin{array}{c c} & I_{OH} = -4.0 \text{ mA} \\ \hline \\ \text{Output LOW Voltage} & V_{CC} = \text{Min.,} \\ I_{OL} = 8.0 \text{ mA} \\ \hline \\ \text{Input HIGH Voltage} \\ \hline \\ \text{Input Load Current} & \text{GND} \leq V_{I} \leq V_{CC} \\ \hline \\ \text{Output Leakage Current} & \text{GND} \leq V_{OUT} \leq V_{CC}, \text{Output Disabled} \\ \hline \\ V_{CC} \text{ Operating} & V_{CC} = \text{Max., } f = f_{MAX} = 1/t_{RC} \\ \hline \\ \text{Automatic CE} & \text{Max. } V_{CC}, \overline{CE} \geq V_{IH} \\ \hline \\ \text{-TTL Inputs} & V_{IN} \geq V_{IH} \text{ or} \\ \hline \\ \text{-TTL Inputs} & V_{IN} \leq V_{IC}, \overline{CE} \geq V_{CC}, \overline{CE} \\ \hline \\ \text{-Dower-Down Current} & \overline{CE} \geq V_{CC}, \overline{CE} \geq V_{C$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Shaded areas contain preliminary information.

V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
 T_A is the "Instant On" case temperature.

Electrical Characteristics Over the Operating Range (continued)


		Test Condition	Test Conditions 1041V33-17		V33-17	1041V33-20		1041V33-25		
Parameter	Description			Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0$	mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 r$	nΑ		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage				V _{CC} + 0.5	2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage ^[1]			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_1 \leq V_{CC}$		-1	+1	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$		-1	+1	-1	+1	-1	+1	μΑ
Icc	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $f = f_{MAX} = 1/t_{RC}$			160		150		130	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, f = f_{\text{MAX}} \end{aligned}$			40		40		40	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l/Ind	'	8		8		8	mA
	Power-Down Current —CMOS Inputs	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.3\text{V},$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.3\text{V},$ or $\text{V}_{\text{IN}} \le 0.3\text{V},$ f=0	Com'l	L	0.5		0.5		0.5	mA

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, f = 1 MHz, $V_{CC} = 3.3$ V	8	pF
C _{OUT}	I/O Capacitance		8	pF

Note:

AC Test Loads and Waveforms

^{3.} Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics^[4] Over the Operating Range

		1041	V33-12	1041V33-15		1041V33-17			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
READ CYCLE	=				•				
t _{RC}	Read Cycle Time	12		15		17		ns	
t _{AA}	Address to Data Valid		12		15		17	ns	
t _{OHA}	Data Hold from Address Change	3		3		3		ns	
t _{ACE}	CE LOW to Data Valid		12		15		17	ns	
t _{DOE}	OE LOW to Data Valid		6		7		8	ns	
t _{LZOE}	OE LOW to Low Z	0		0		0		ns	
t _{HZOE}	OE HIGH to High Z ^[5, 6]		6		7		7	ns	
t _{LZCE}	CE LOW to Low Z ^[6]	3		3		3		ns	
t _{HZCE}	CE HIGH to High Z ^[5, 6]		6		7		7	ns	
t _{PU}	CE LOW to Power-Up	0		0		0		ns	
t _{PD}	CE HIGH to Power-Down		12		15		17	ns	
t _{DBE}	Byte Enable to Data Valid		6		7		7	ns	
t _{LZBE}	Byte Enable to Low Z	0		0		0		ns	
t _{HZBE}	Byte Disable to High Z		6		7		8	ns	
WRITE CYCL	E ^[7, 8]		•			•			
t _{WC}	Write Cycle Time	12		15		17		ns	
t _{SCE}	CE LOW to Write End	10		12		12		ns	
t _{AW}	Address Set-Up to Write End	10		12		12		ns	
t _{HA}	Address Hold from Write End	0		0		0		ns	
t _{SA}	Address Set-Up to Write Start	0		0		0		ns	
t _{PWE}	WE Pulse Width	10		12		12		ns	
t _{SD}	Data Set-Up to Write End	7		8		9		ns	
t _{HD}	Data Hold from Write End	0		0		0		ns	
t _{LZWE}	WE HIGH to Low Z ^[6]	3		3		3		ns	
t _{HZWE}	WE LOW to High Z ^[5, 6]		6		7		8	ns	
t _{BW}	Byte Enable to End of Write	10		12		12		ns	

Shaded areas contain preliminary information.

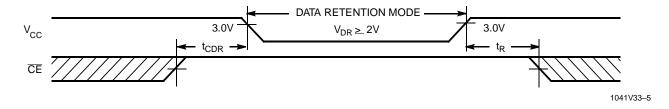
Notes:

<sup>Notes:
4. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified loL/loH and 30-pF load capacitance.
5. that are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
6. At any given temperature and voltage condition, that is less than that it less than that less</sup>

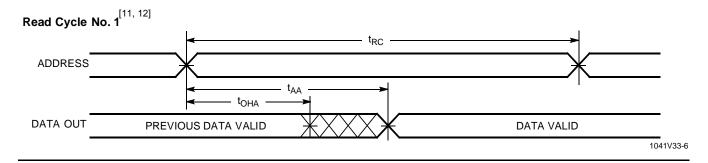
$\textbf{Switching Characteristics}^{[4]} \ \text{Over the Operating Range (continued)}$

		1041\	/33-20	1041\		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYC	LE	<u>.</u>				
t _{RC}	Read Cycle Time	20		25		ns
t _{AA}	Address to Data Valid		20		25	ns
t _{OHA}	Data Hold from Address Change	3		5		ns
t _{ACE}	CE LOW to Data Valid		20		25	ns
t _{DOE}	OE LOW to Data Valid		8		10	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[5, 6]		8		10	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		5		ns
t _{HZCE}	CE HIGH to High Z ^[5, 6]		8		10	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		20		25	ns
t _{DBE}	Byte Enable to Data Valid		8		10	ns
t _{LZBE}	Byte Enable to Low Z	0		0		ns
t _{HZBE}	Byte Disable to High Z		8		10	ns
WRITE CYC	LE ^[7,8]	<u>.</u>				
t _{WC}	Write Cycle Time	20		25		ns
t _{SCE}	CE LOW to Write End	13		15		ns
t _{AW}	Address Set-Up to Write End	13		15		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	13		15		ns
t _{SD}	Data Set-Up to Write End	9		10		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		5		ns
t _{HZWE}	WE LOW to High Z ^[5, 6]		8		10	ns
t _{BW}	Byte Enable to End of Write	13		15		ns

Data Retention Characteristics Over the Operating Range (For L version only)


Parameter	Description	Conditions ^[10]	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	$V_{CC} = V_{DR} = 2.0V,$ $CE \ge V_{CC} - 0.3V,$		330	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$	0		ns
t _R ^[9]	Operation Recovery Time		t _{RC}		ns

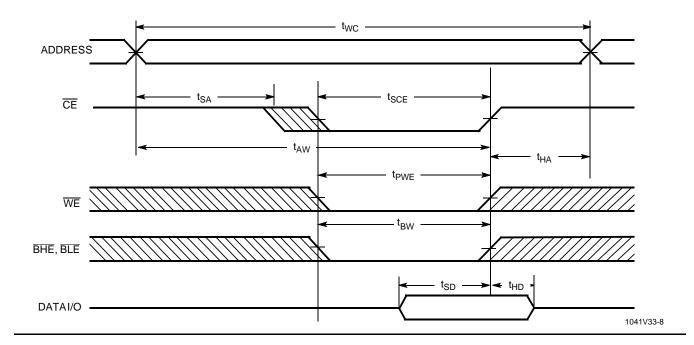
Notes:


^{9.} $t_r \le 3$ ns for the -12 and -15 speeds. $t_r \le 5$ ns for the -20 and slower speeds. 10. No input may exceed $V_{CC} + 0.5V$.

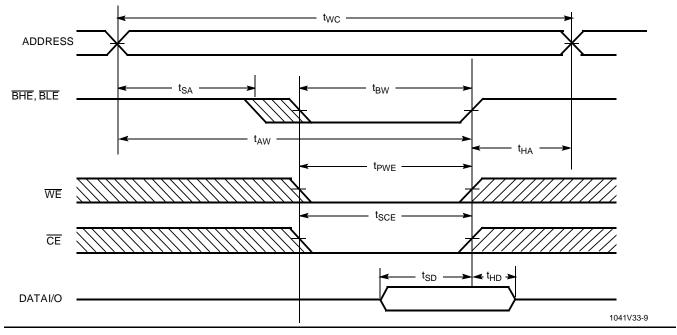
Data Retention Waveform

Switching Waveforms

Read Cycle No. 2 ($\overline{\text{OE}}$ Controlled) [12, 13]



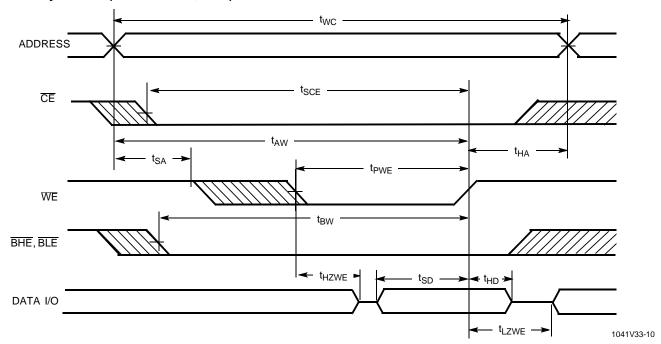
- 11. Device is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} and/or $\overline{BHE} = V_{\parallel}$.
- WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled) $^{[14, 15]}$

Write Cycle No. 2 (BLE or BHE Controlled)


Notes:

- 14. Data I/O is high impedance if OE or BHE and/or BLE= V_{IH}.
 15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

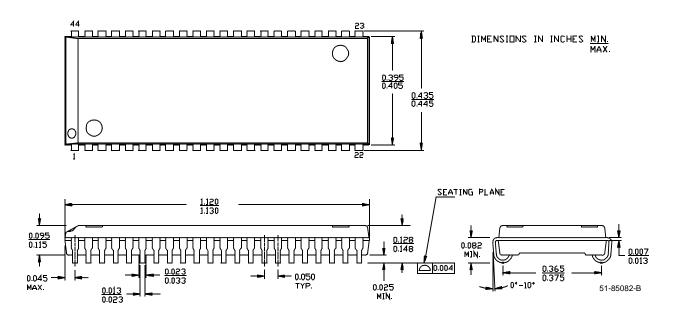
Switching Waveforms (continued)

Write Cycle No.3 (WE Controlled, LOW)

Truth Table

CE	ŌĒ	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Х	Χ	Χ	Х	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All Bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High Z	Read Lower Bits Only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read Upper Bits Only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write All Bits	Active (I _{CC})
L	Χ	L	L	Н	Data In	High Z	Write Lower Bits Only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data In	Write Upper Bits Only	Active (I _{CC})
L	Н	Н	Χ	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

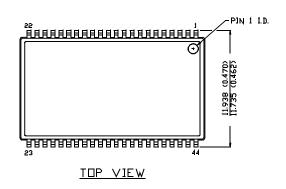
Ordering Information

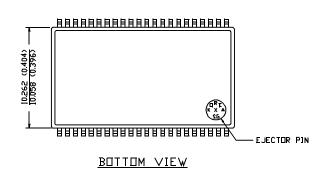

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1041V33 -12VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1041V33L-12VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33 - 12ZC	Z44	44-Pin TSOP II Z44	
	CY7C1041V33L-12ZC	Z44	44-Pin TSOP II Z44	
15	CY7C1041V33 -15VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33L-15VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33 - 15ZC	Z44	44-Pin TSOP II Z44	
	CY7C1041V33L-15ZC	Z44	44-Pin TSOP II Z44	
17	CY7C1041V33 - 17VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33L-17VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33 - 17ZC	Z44	44-Pin TSOP II Z44	
	CY7C1041V33L-17ZC	Z44	44-Pin TSOP II Z44	
20	CY7C1041V33 - 20VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33L-20VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33 - 20ZC	Z44	44-Pin TSOP II Z44	
	CY7C1041V33L-20ZC	Z44	44-Pin TSOP II Z44	
25	CY7C1041V33 - 25VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33L-25VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041V33 - 25ZC	Z44	44-Pin TSOP II Z44	
	CY7C1041V33L-25ZC	Z44	44-Pin TSOP II Z44	

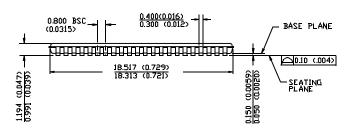
Document #: 38-00645-B

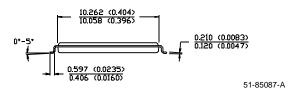
Package Diagrams

44-Lead (400-Mil) Molded SOJ V34




44-Pin TSOP II Z44


CHOMENSION IN MM (INCH)


MAX

MIN.

[©] Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.