

# 4 strings WLED Controller With 80V Return Evaluation Board

#### The Future of Analog IC Technology DESCRIPTION

The MP3398E is a step-up controller with four current channels designed to drive WLED arrays for large size LCD panel backlighting applications. The MP3398E is able to expand the number of LED channels with two or more ICs in parallel sharing a single power source.

The MP3398E employs peak-current mode with a fixed switching frequency. The frequency is programmable through an external setting resistor. The MP3398E drives an external MOSFET to boost up the output voltage from a 4.5V to 33V input supply and regulates the current in each LED string to the value set by an external current-setting resistor.

The MP3398E applies four internal current sources for current balancing. The current matching achieves 2.3% regulation accuracy between strings. The low regulation voltage on the LED current sources reduces power loss.

The MP3398E supports direct PWM dimming and analog dimming with PWM input. Full protection features include over-current protection (OCP), Over-temperature protection (OTP), Under-voltage protection (UVP), overvoltage protection (OVP), LED short/open protection, and inductor/diode short protection.

The MP3398E is available in TSSOP-16EP and PDIP-16 packages.

## **ELECTRICAL SPECIFICATIONS**

| Parameter        | Symbol           | Value                           | Units |
|------------------|------------------|---------------------------------|-------|
| Input<br>Voltage | V <sub>IN</sub>  | 13 – 33                         | V     |
| LEDs #           |                  | 4 LED strings<br>20 LEDs/string |       |
| LED Current      | I <sub>LED</sub> | 120/string                      | mA    |

#### FEATURES

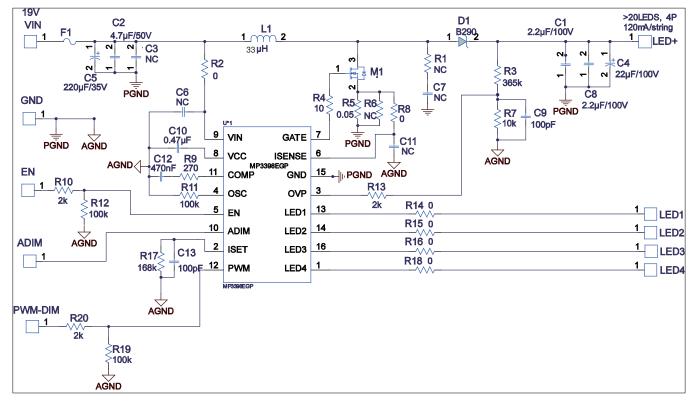
- 4-String, Max 400mA/String WLED Driver
- 4.5V to 33V Input Voltage Range
- 80V ABS. Rating for Each String
- 2.3% Current Matching Accuracy Between Each String
- Direct PWM Dimming Mode
- Analog Dimming Mode with PWM Input
- Cascading Capability with a Single Power Source
- LED Open and Short Protection
- Programmable Recoverable Over-Voltage Protection (OVP)
- 202mV Latch-off Cycle-by-Cycle Current Limit Threshold
- Recoverable Thermal Shutdown Protection
- Available in TSSOP-16EP and PDIP-16 Packages

### **APPLICATIONS**

- Desktop LCD Flat Panel Displays
- All-in-one PCs
- 2D/3D LCD TVs

All MPS parts are lead-free and adhere to the RoHS directive. For MPS green status, please visit MPS website under Products, Quality Assurance page. "MPS" and "The Future of Analog IC Technology" are registered trademarks of Monolithic Power Systems, Inc.




#### **EV3398E-F-00A EVALUATION BOARD**



(L x W x H) 7.75cm x 4.88cm x 1.1cm

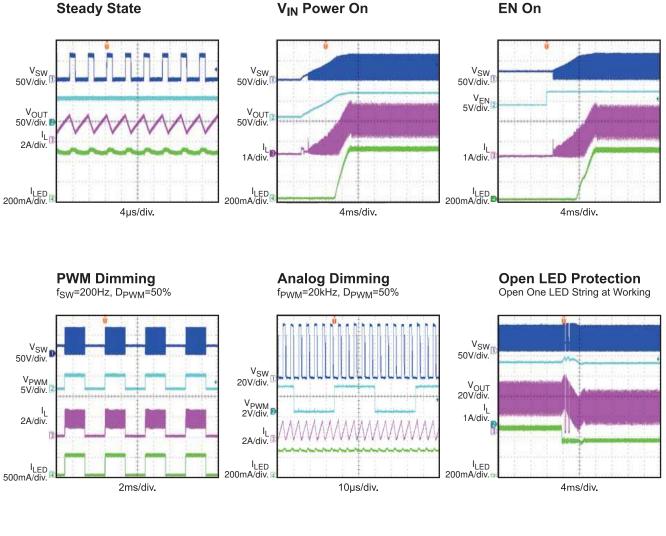
| Board Number  | MPS IC Number |  |  |
|---------------|---------------|--|--|
| EV3398E-F-00A | MP3398EGF     |  |  |

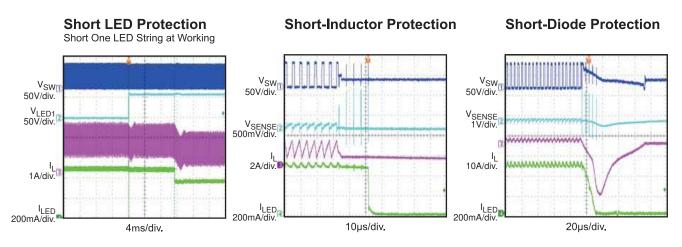
#### **EVALUATION BOARD SCHEMATIC**





# EV3398E-F-00A BILL OF MATERIALS


| Qty | Ref                           | Value         | Description                     | Package        | Manufacturer    | Part Number        |
|-----|-------------------------------|---------------|---------------------------------|----------------|-----------------|--------------------|
| 1   | C1                            | 220µF         | Electrolytic Capacitor,<br>35V  | DIP            |                 |                    |
| 2   | C2,C3                         | 2.2µF         | Ceramic Capacitor,<br>100V, X7R | 1210           | Murata          | GRM32ER72A225KA35L |
| 1   | C4                            | 4.7μF         | Ceramic Capacitor,<br>50V, X7R  | 1210           | Murata          | GRM32ER71H475KA88L |
| 1   | C5                            | NC            |                                 | 1210           |                 |                    |
| 1   | C6                            | 22µF          | Electrolytic Capacitor,<br>100V | DIP            |                 |                    |
| 4   | C7,C11,<br>C13,C12            | NC            |                                 | 0603           |                 |                    |
| 1   | C8                            | 100pF         | Ceramic<br>Capacitor,50V, COG   | 0603           | Murata          | GRM1885C1H101JA01D |
| 1   | C9                            | 470nF         | Ceramic Capacitor,<br>16V, X7R  | 0805           | Murata          | GRM219R71C474KA01D |
| 2   | C10                           | 470nF         | Ceramic Capacitor,<br>16V, X7R  | 0603           | Murata          | GRM18R7C474KA88D   |
| 1   | D1                            |               | Diode Schottky, 90V,<br>2A      | SMB            | Diodes Inc      | B290               |
| 1   | F1                            | 0Ω            | Resistor, 1%                    | 1206           | Yageo           | RC1206FR-070RL     |
| 1   | L1                            | 33µH          | Inductor,5.5A,45mohm            | SMD            | Wurth           | 7447709330         |
| 1   | M1                            |               | N- channel MOSFET               | SO8            | Analog<br>Power | AM4490N            |
| 1   | R1                            | NC            |                                 | 0603           |                 |                    |
| 1   | R2                            | $316 k\Omega$ | Resistor, 1%                    | 0603           | Yageo           | RC0603FR-07316KL   |
| 2   | R5                            | 10Ω           | Resistor, 1%                    | 0603           | Yageo           | RC0603FR-0710RL    |
| 1   | R4                            | 10kΩ          | Resistor, 1%                    | 0603           | Yageo           | RC0603FR-0710KL    |
| 6   | R3,R9,R<br>12,R13,R<br>15,R19 | 0Ω            | Resistor, 1%                    | 0603           | Yageo           | RC0603JR-070RL     |
| 1   | R7                            | 270Ω          | Resistor, 1%                    | 0603           | Yageo           | RC0603FR-07270RL   |
| 1   | R6                            | 0.05Ω         | Current Resistor, 1%            | 1206           | Yageo           | RC1206FR-070R05L   |
| 4   | R8,R16,<br>R18,R20            | 2kΩ           | Resistor, 1%                    | 0603           | Yageo           | RC0603FR-072KL     |
| 4   | R10,R11,<br>R14, R21          | 100k $\Omega$ | Resistor, 1%                    | 0603           | Yageo           | RC0603FR-07100KL   |
| 1   | R17                           | 165k $\Omega$ | Resistor, 1%                    | 0603           | Yageo           | RC0603FR-07165KL   |
| 1   | U1                            |               | LED Driver IC                   | TSSOP-<br>16EP | MPS             | MP3398E            |




#### **EVB TEST RESULTS**

Performance waveforms are tested on the evaluation board.

 $V_{\text{IN}}$  = 19V,  $V_{\text{EN}}$  =3.3V, 120mA/string, 4 strings, 20 LEDs in series,  $T_{\text{A}}$  = 25°C, unless otherwise noted.





r.1.0 www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2016 MPS. All Rights Reserved.



### PRINTED CIRCUIT BOARD LAYOUT

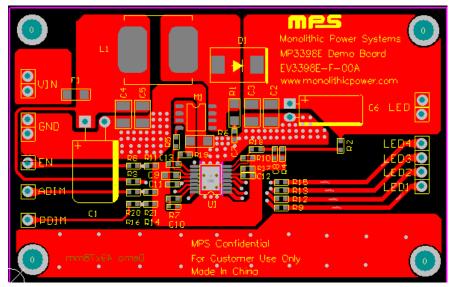



Figure 1—Top Layer

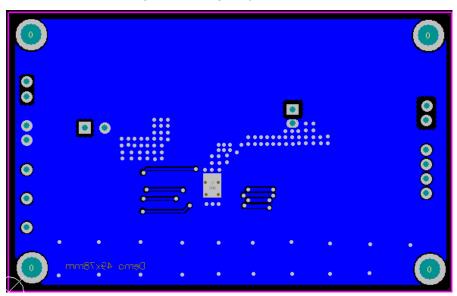



Figure 2—Bottom Layer



# QUICK START GUIDE

- 1. Connect the positive and negative terminals of the load panel (20 white LEDs in series, 4 stings) to the LED+ and LED1~4 pins on the EV board, respectively.
- 2. Connect the positive and negative terminals of the power supply  $(13V \sim 33V)$  to the VIN and GND pins on the EV board, respectively.
- 3. Drive EN pin high (5V) to enable the MP3398E.
- 4. For PWM dimming, apply a PWM rectangular waveform with a minimum voltage less than 0.4V and a maximum greater than 1.5V on PDIM pin. The frequency of the PWM signal is recommended between 200Hz to 2kHz.
- 5. For analog dimming, apply a PWM rectangular waveform with a minimum voltage less than 0.4V and a maximum greater than 1.5V on ADIM pin. The frequency of the PWM signal is recommended between >20kHz.

**NOTICE:** The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.