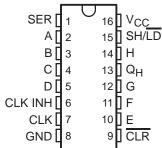

SCLS538A - AUGUST 2003 - REVISED APRIL 2008


- **Qualified for Automotive Applications**
- **ESD Protection Exceeds 2000 V Per** MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Wide Operating Voltage Range of 2 V to 6 V
- **Outputs Can Drive Up To 10 LSTTL Loads**
- Low Power Consumption, 80-μA Max I_{CC}
- Typical $t_{pd} = 13 \text{ ns}$
- ±4-mA Output Drive at 5 V

description/ordering information

This parallel-in or serial-in, serial-out register features gated clock (CLK, CLK INH) inputs and an overriding clear (CLR) input. The parallel-in or serial-in modes are established by the shift/load

- Low Input Current of 1 µA Max
- **Synchronous Load**
- **Direct Overriding Clear**
- **Parallel-to-Serial Conversion**

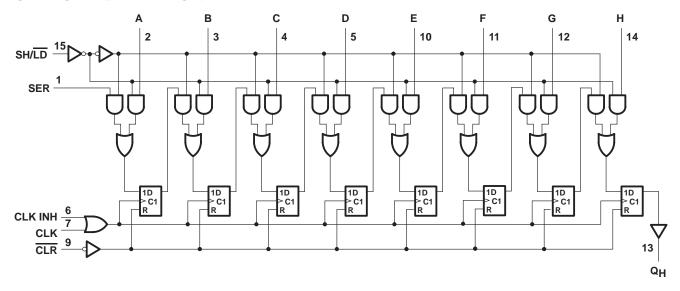
 (SH/\overline{LD}) input. When high, SH/\overline{LD} enables the serial (SER) data input and couples the eight flip-flops for serial shifting with each clock (CLK) pulse. When low, the parallel (broadside) data inputs are enabled, and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of CLK through a 2-input positive-NOR gate, permitting one input to be used as a clock-enable or clock-inhibit function. Holding either CLK or CLK INH high inhibits clocking; holding either low enables the other clock input. This allows the system clock to be free running, and the register can be stopped on command with the other clock input. CLK INH should be changed to the high level only when CLK is high. CLR overrides all other inputs, including CLK, and resets all flip-flops to zero.

ORDERING INFORMATION[†]

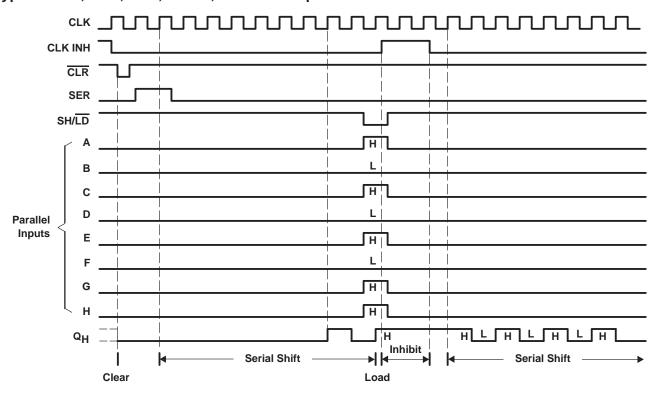
TA	T _A PACKAGE‡		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	SOIC - D	Tape and reel	SN74HC166AIDRQ1	HC166AI
	TSSOP - PW	Tape and reel	SN74HC166AIPWRQ1	HC166AI

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at http://www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


[‡] Package drawings, thermal data, and symbolization are available at http://www.ti.com/packaging.

SCLS538A - AUGUST 2003 - REVISED APRIL 2008


FUNCTION TABLE

			C	UTPUT	S			
		INF	PUTS			INTE	RNAL	
CLR	SH/LD	CLK INH	CLK	SER	PARALLEL AH	Q _A	QB	QH
L	Х	Χ	Χ	Χ	Χ	L	L	L
Н	Χ	L	L	Χ	Χ	Q _{A0}	Q_{B0}	Q _{H0}
Н	L	L	\uparrow	Χ	ah	а	b	h
Н	Н	L	\uparrow	Н	X	Н	Q_{An}	QGn
Н	Н	L	\uparrow	L	Χ	L	Q_{An}	Q_{Gn}
Н	X	Н	\uparrow	X	X	Q_{A0}	Q_{B0}	Q _{H0}

logic diagram (positive logic)

typical clear, shift, load, inhibit, and shift sequence

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see Note 1)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) (see Note 1)	±20 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ _{JA} (see Note 2): D package	73°C/W
PW package	108°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74HC166A-Q1 8-BIT PARALLEL-LOAD SHIFT REGISTER

SCLS538A - AUGUST 2003 - REVISED APRIL 2008

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT
Vcc	Supply voltage		2	5	6	V
		V _{CC} = 2 V	1.5			
V _{IH}	High-level input voltage	V _{CC} = 4.5 V	3.15			V
		V _{CC} = 6 V	4.2			
		V _{CC} = 2 V			0.5	
٧ _{IL}	Low-level input voltage	V _{CC} = 4.5 V			1.35	V
		V _{CC} = 6 V			1.8	
٧ _I	Input voltage		0		VCC	V
VO	Output voltage		0		VCC	V
		V _{CC} = 2 V			1000	
Δt/Δv†	Input transition rise/fall time	V _{CC} = 4.5 V			500	ns
		V _{CC} = 6 V			400	
TA	Operating free-air temperature		-40		85	°C

[†] If this device is used in the threshold region (from $V_{IL}max = 0.5 \text{ V}$ to $V_{IH}min = 1.5 \text{ V}$), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_t = 1000$ ns and $V_{CC} = 2 \text{ V}$ does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEGT CONDITI	.,	T	A = 25°C	;		MAY		
PARAMETER	TEST CONDITION	UNS	VCC	MIN	TYP	MAX	MIN	MAX	UNIT
			2 V	1.9	1.998		1.9		
^V ОН		$I_{OH} = -20 \mu A$	4.5 V	4.4	4.499		4.4		
	VI = VIH or VIL		6 V	5.9	5.999		5.9		V
		$I_{OH} = -4 \text{ mA}$	4.5 V	3.98	4.3		3.84		
		$I_{OH} = -5.2 \text{ mA}$	6 V	5.48	5.8		5.34		
	VI = VIH or VIL		2 V		0.002	0.1		0.1	
		$I_{OL} = 20 \mu A$	4.5 V		0.001	0.1		0.1	
V_{OL}			6 V		0.001	0.1		0.1	V
		$I_{OL} = 4 \text{ mA}$	4.5 V		0.17	0.26		0.33	
		$I_{OL} = 5.2 \text{ mA}$	6 V		0.15	0.26		0.33	
lį	VI = VCC or 0		6 V		±0.1	±100	4	±1000	nA
ICC	$V_I = V_{CC}$ or 0,	IO = 0	6 V			8		80	μΑ
Ci			2 V to 6 V		3	10		10	рF

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74HC166A-Q1 8-BIT PARALLEL-LOAD SHIFT REGISTER

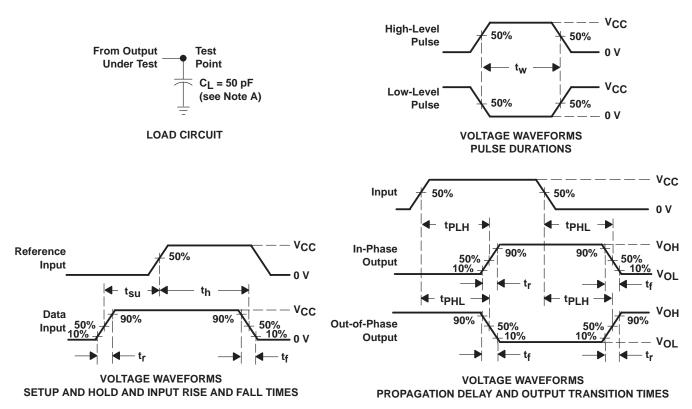
SCLS538A - AUGUST 2003 - REVISED APRIL 2008

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

				T _A =	25°C			
			VCC	MIN	MAX	MIN	MAX	UNIT
			2 V		6		5	
fclock	Clock frequency		4.5 V		31		25	MHz
			6 V		36		29	
			2 V	100		125		
		CLR low	4.5 V	20		25		
	Pulse duration		6 V	17		21		20
t_W	ruise duration		2 V	80		100		ns
		CLK high or low	4.5 V	16		20		
			6 V	14		17		
			2 V	145		180		
		SH/LD high before CLK↑	4.5 V	29		36		
			6 V	25		31		
			2 V	80		100		
		SER before CLK↑	4.5 V	16		20		
				14		17		
				100		125		
t _{su}	Setup time	CLK INH low before CLK↑	4.5 V	20		25		ns
			6 V	17		21		
		Data before CLK↑		80		100		
				16		20		
			6 V	14		17		
				40		50		1 1
		CLR inactive before CLK↑	4.5 V	8		10		
			6 V	7		9		
			2 V	0		0		
		SH/LD high after CLK↑	4.5 V	0		0		
			6 V	0		0		
			2 V	5		5		
		SER after CLK↑	4.5 V	5		5		
			6 V	5		5		
th	Hold time		2 V	0		0		ns
		CLK INH high after CLK↑	4.5 V	0		0		
			6 V	0		0		
			2 V	5		5		1 1
		Data after CLK↑	4.5 V	5		5		
			6 V	5		5		

SN74HC166A-Q1 8-BIT PARALLEL-LOAD SHIFT REGISTER

SCLS538A - AUGUST 2003 - REVISED APRIL 2008


switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	.,	T,	Վ = 25° C	;		MAY	
PARAMETER	(INPUT)	(OUTPUT)	vcc	MIN	TYP	MAX	MIN	MAX	UNIT
			2 V	6	11		5		
fmax			4.5 V	31	36		25		MHz
			6 V	36	45		29		
			2 V		62	120		150	
tPHL	CLR	Q _H	4.5 V		18	24		30	ns
			6 V		13	20		26	
			2 V		75	150		190	
^t pd	CLK	QH	4.5 V		15	30		38	ns
'			6 V		13	26		32	
			2 V		38	75		95	-
t _t		Any	4.5 V		8	15		19	
			6 V		6	13		16	

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load	50	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and test-fixture capacitance.

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_f = 6 \ ns$, $t_f = 6 \ ns$.
- C. For clock inputs, f_{max} is measured when the input duty cycle is 50%.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74HC166AIDRQ1	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC166AI	Samples
SN74HC166AIPWRG4Q1	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	HC166AI	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

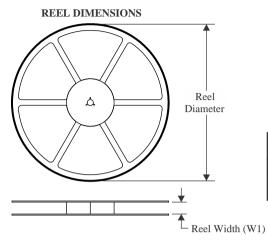
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

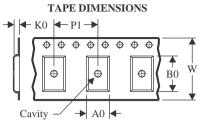
PACKAGE OPTION ADDENDUM

10-Dec-2020

OTHER QUALIFIED VERSIONS OF SN74HC166A-Q1:

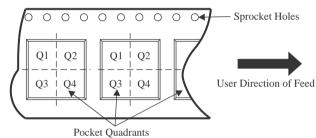
● Enhanced Product: SN74HC166A-EP


NOTE: Qualified Version Definitions:


• Enhanced Product - Supports Defense, Aerospace and Medical Applications

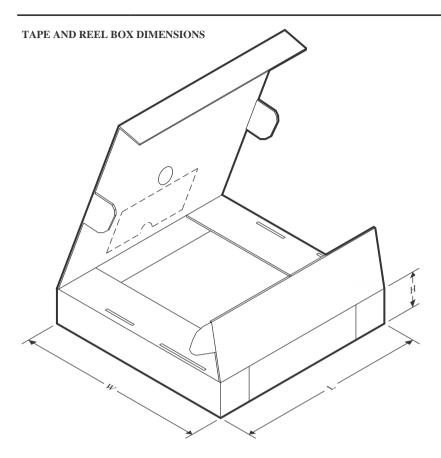
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

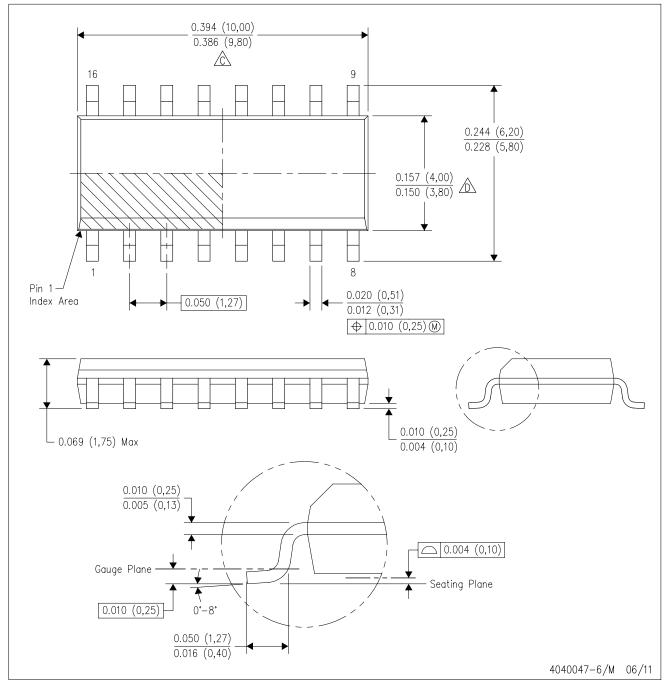


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HC166AIPWRG4Q1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC166AIPWRG4Q1	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

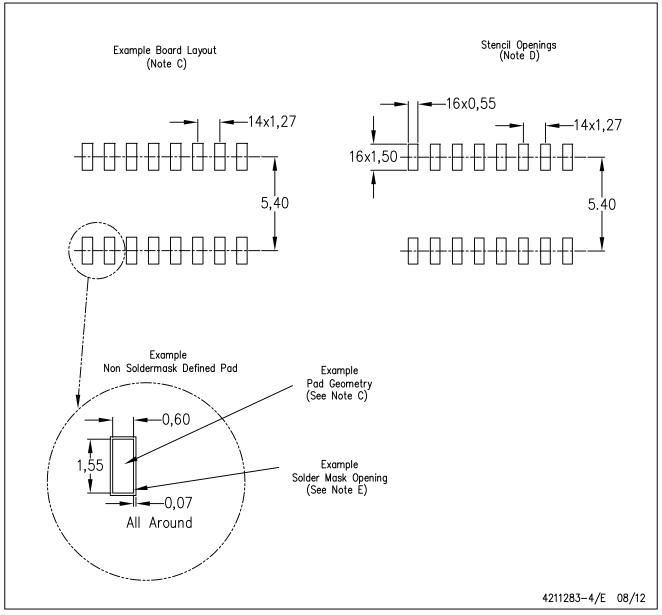


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC166AIPWRG4Q1	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74HC166AIPWRG4Q1	TSSOP	PW	16	2000	356.0	356.0	35.0

D (R-PDS0-G16)

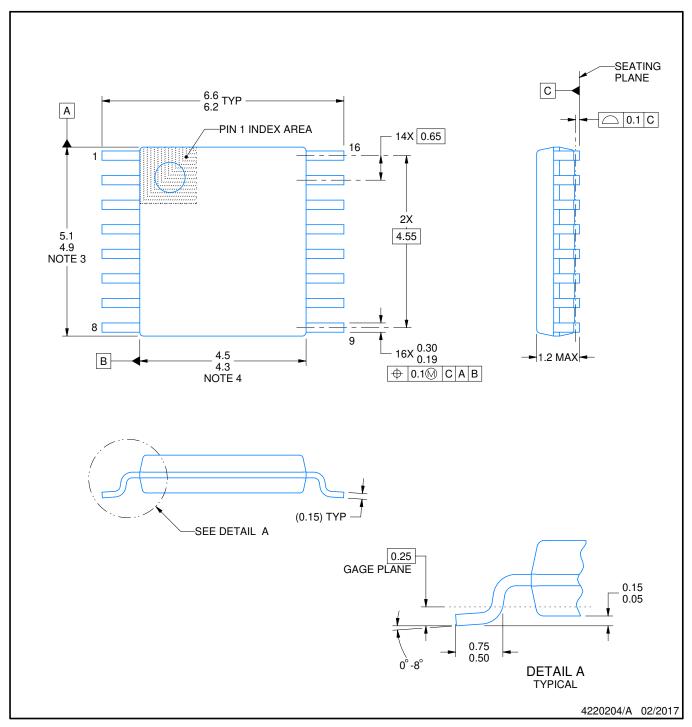
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

SMALL OUTLINE PACKAGE

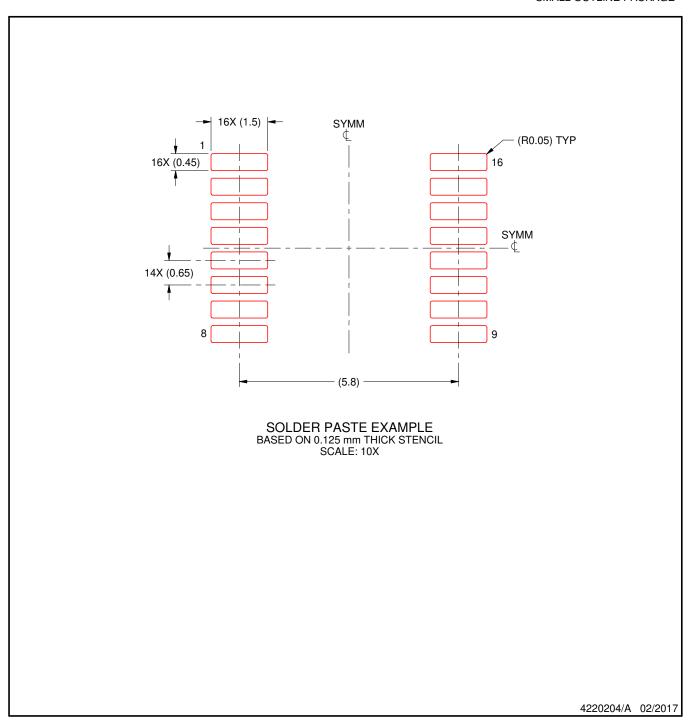
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated