

# STGW30NC120HD

N-channel 1200V - 30A - TO-247 very fast PowerMESH™ IGBT

### Features

| Туре          | V <sub>CES</sub> | V <sub>CE(sat)</sub><br>@25°C | I <sub>C</sub><br>@100°С |
|---------------|------------------|-------------------------------|--------------------------|
| STGW30NC120HD | 1200V            | < 2.75V                       | 30A                      |

- Low on-losses
- Low on-voltage drop (V<sub>cesat</sub>)
- High current capability
- High input impedance (voltage driven)
- Low gate charge
- Ideal for soft switching application

### Application

Induction heating

### Description

Using the latest high voltage technology based on its patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, with outstanding performances. The suffix "H" identifies a family optimized for high frequency application in order to achieve very high switching performances (reduced tfall) maintaining a low voltage drop.

| Table 1. | Device su | Immary |
|----------|-----------|--------|

| Order code    | Marking     | Package | Packaging |
|---------------|-------------|---------|-----------|
| STGW30NC120HD | GW30NC120HD | TO-247  | Tube      |

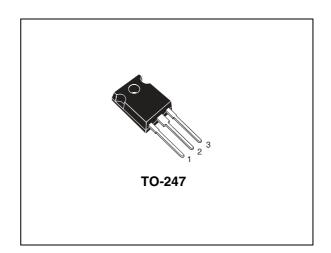
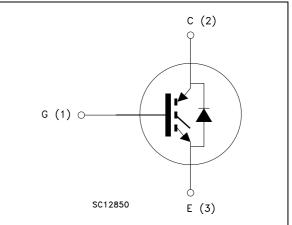




Figure 1. Internal schematic diagram



## Contents

| 1 | Electrical ratings                      | 3 |
|---|-----------------------------------------|---|
| 2 | Electrical characteristics              | 4 |
|   | 2.1 Electrical characteristics (curves) | 6 |
| 3 | Test circuit                            | 9 |
| 4 | Package mechanical data 1               | 0 |
| 5 | Revision history1                       | 2 |



# 1 Electrical ratings

| Symbol                         | Parameter                                          | Value      | Unit |
|--------------------------------|----------------------------------------------------|------------|------|
| V <sub>CES</sub>               | Collector-emitter voltage ( $V_{GS} = 0$ )         | 1200       | V    |
| $I_{C}^{(1)}$                  | Collector current (continuous) at 25°C             | 60         | А    |
| I <sub>C</sub> <sup>(1)</sup>  | Collector current (continuous) at 100°C            | 30         | Α    |
| I <sub>CL</sub> <sup>(2)</sup> | Collector current (pulsed)                         | 135        | Α    |
| V <sub>GE</sub>                | Gate-emitter voltage                               | ±25        | V    |
| P <sub>TOT</sub>               | Total dissipation at $T_{C} = 25^{\circ}C$         | 220        | W    |
| ۱ <sub>f</sub>                 | Diode RMS forward current at $T_{C} = 25^{\circ}C$ | 30         | А    |
| Тj                             | Operating junction temperature                     | -55 to 150 | °C   |

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{JMAX}^{-T}C}{R_{THJ-C}^{\times V}CESAT(MAX)^{(T_{C}, I_{C})}}$$

2. Vclamp=80% of BVces, Tj=150°C,  $R_G$ =10 $\Omega$  V\_{GE}=15V

Table 3.Thermal resistance

| Symbol    | Parameter                                   | Value | Unit |
|-----------|---------------------------------------------|-------|------|
| Rthj-case | Thermal resistance junction-case            | 0.57  | °C/W |
| Rthj-amb  | Thermal resistance junction-ambient (diode) | 1.6   | °C/W |
| Rthj-amb  | Thermal resistance junction-ambient (IGBT)  | 30    | °C/W |

## 2 Electrical characteristics

(T<sub>CASE</sub>=25°C unless otherwise specified)

| Table 4. | Static |
|----------|--------|

| Symbol               | Parameter                                                  | Test conditions                                                                                                | Min. | Тур.       | Max.      | Unit     |
|----------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------|------------|-----------|----------|
| V <sub>BR(CES)</sub> | Collector-emitter<br>breakdown voltage                     | I <sub>C</sub> = 1mA, V <sub>GE</sub> = 0                                                                      | 1200 |            |           | V        |
| V <sub>CE(SAT)</sub> | Collector-emitter saturation voltage                       | V <sub>GE</sub> = 15V, I <sub>C</sub> = 20A, Tj= 25°C<br>V <sub>GE</sub> = 15V, I <sub>C</sub> = 20A, Tj=125°C |      | 2.2<br>2.0 | 2.75      | V<br>V   |
| V <sub>GE(th)</sub>  | Gate threshold voltage                                     | $V_{CE} = V_{GE}$ , $I_C = 250 \mu A$                                                                          | 3.75 |            | 5.75      | V        |
| I <sub>CES</sub>     | Collector-emitter leakage<br>current (V <sub>GE</sub> = 0) | V <sub>CE</sub> =Max rating,Tc=25°C<br>V <sub>CE</sub> =Max rating, Tc=125°C                                   |      |            | 500<br>10 | μA<br>mA |
| I <sub>GES</sub>     | Gate-emitter leakage<br>current (V <sub>CE</sub> = 0)      | $V_{GE} = \pm 20V, V_{CE} = 0$                                                                                 |      |            | ± 100     | nA       |
| 9 <sub>fs</sub>      | Forward transconductance                                   | $V_{CE} = 25V_{,} I_{C} = 20A$                                                                                 |      | 14         |           | S        |

### Table 5. Dynamic

| Symbol                                                   | Parameter                                                                  | Test conditions                                                      | Min. | Тур.              | Max. | Unit           |
|----------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|------|-------------------|------|----------------|
| C <sub>ies</sub><br>C <sub>oes</sub><br>C <sub>res</sub> | Input capacitance<br>Output capacitance<br>Reverse transfer<br>capacitance | V <sub>CE</sub> = 25V, f = 1 MHz, V <sub>GE</sub> =0                 |      | 2510<br>175<br>30 |      | pF<br>pF<br>pF |
| Q <sub>g</sub><br>Q <sub>ge</sub><br>Q <sub>gc</sub>     | Total gate charge<br>Gate-emitter charge<br>Gate-collector charge          | V <sub>CE</sub> = 960V,<br>I <sub>C</sub> = 20A,V <sub>GE</sub> =15V |      | 110<br>16<br>49   |      | nC<br>nC<br>nC |



| Symbol                                                                                    | Parameter                                                         | Test conditions                                                                                             | Min. | Тур.              | Max. | Unit             |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------|-------------------|------|------------------|
| t <sub>d(on)</sub><br>t <sub>r</sub><br>(di/dt) <sub>on</sub>                             | Turn-on delay time<br>Current rise time<br>Turn-on current slope  | $V_{CC} = 960V, I_C = 20A$<br>$R_G = 10\Omega, V_{GE} = 15V,$<br>$Tj=25^{\circ}C$ <i>(see Figure 17)</i>    |      | 29<br>11<br>1820  |      | ns<br>ns<br>A/µs |
| t <sub>d(on)</sub><br>t <sub>r</sub><br>(di/dt) <sub>on</sub>                             | Turn-on delay time<br>Current rise time<br>Turn-on current slope  | $V_{CC} = 960V, I_C = 20A$<br>$R_G = 10\Omega, V_{GE} = 15V,$<br>$Tj = 125^{\circ}C$ <i>(see Figure 17)</i> |      | 27<br>14<br>1580  |      | ns<br>ns<br>A/µs |
| t <sub>r</sub> (V <sub>off</sub> )<br>t <sub>d</sub> ( <sub>off</sub> )<br>t <sub>f</sub> | Off voltage rise time<br>Turn-off delay time<br>Current fall time | $V_{CC} = 960V, I_C = 20A$<br>$R_G = 10\Omega, V_{GE} = 15V,$<br>$Tj = 25^{\circ}C$ <i>(see Figure 17)</i>  |      | 90<br>275<br>312  |      | ns<br>ns<br>ns   |
| t <sub>r</sub> (V <sub>off</sub> )<br>t <sub>d</sub> ( <sub>off</sub> )<br>t <sub>f</sub> | Off voltage rise time<br>Turn-off delay time<br>Current fall time | $V_{CC} = 960V, I_C = 20A$<br>$R_G = 10\Omega, V_{GE} = 15V,$<br>$Tj = 125^{\circ}C$ <i>(see Figure 17)</i> |      | 150<br>336<br>592 |      | ns<br>ns<br>ns   |

 Table 6.
 Switching on/off (inductive load)

Table 7. Switching energy (inductive load)

| Symbol                                                                   | Parameter                                                                       | Test conditions                                                                                                | Min. | Тур.                 | Max. | Unit           |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------|----------------------|------|----------------|
| Eon <sup>(1)</sup><br>E <sub>off</sub> <sup>(2)</sup><br>E <sub>ts</sub> | Turn-on switching losses<br>Turn-off switching losses<br>Total switching losses | $V_{CC} = 960V, I_C = 20A$<br>$R_G = 10\Omega, V_{GE} = 15V,$<br>$Tj = 25^{\circ}C$ <i>(see Figure 17)</i>     |      | 1660<br>4438<br>6098 |      | μJ<br>μJ<br>μJ |
| Eon <sup>(1)</sup><br>E <sub>off</sub> <sup>(2)</sup><br>E <sub>ts</sub> | Turn-on switching losses<br>Turn-off switching losses<br>Total switching losses | $V_{CC} = 960V, I_C = 20A$<br>$R_G = 10\Omega, V_{GE} = 15V,$<br>$T_{J} = 125^{\circ}C$ <i>(see Figure 17)</i> |      | 3015<br>6900<br>9915 |      | μJ<br>μJ<br>μJ |

 Eon is the turn-on losses when a typical diode is used in the test circuit in figure 2. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same temperature (25°C and 125°C)

2. Turn-off losses include also the tail of the collector current

| Symbol           | Parameter                | Test conditions                         | Min. | Тур. | Max. | Unit |
|------------------|--------------------------|-----------------------------------------|------|------|------|------|
| V <sub>f</sub>   | Forward on-voltage       | If = 20A, Tj = 25°C                     |      | 1.9  | 2.5  | V    |
| vţ               | Forward on-voltage       | If = 20A, Tj = 125°C                    |      | 1.7  |      | V    |
| t <sub>rr</sub>  | Reverse recovery time    | If = 20A, V <sub>R</sub> = 27V,         |      | 152  |      | ns   |
| Q <sub>rr</sub>  | Reverse recovery charge  | T <sub>i</sub> = 125°C, di/dt = 100A/μs |      | 722  |      | nC   |
| I <sub>rrm</sub> | Reverse recovery current | (see Figure 20)                         |      | 9    |      | А    |

 Table 8.
 Collector-emitter diode



lc(A)

200

150

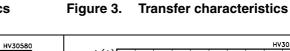
100

50

0

#### **Electrical characteristics (curves)** 2.1

 $V_{GE} = 15V$ 14V


120

11V

10V

13V





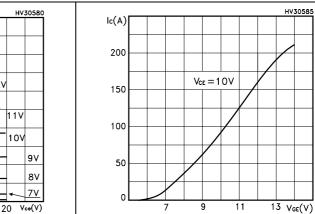



Figure 4. Transconductance

10

15

5

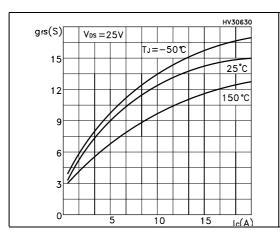



Figure 5. Collector-emitter on voltage vs. temperature

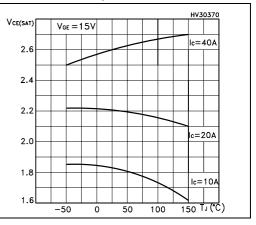



Figure 6. Gate charge vs. gate-source voltage

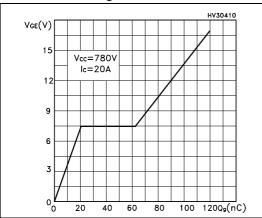
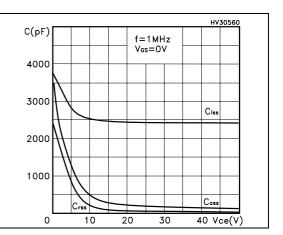
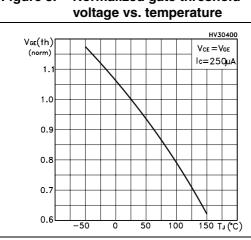





Figure 7. **Capacitance variations** 





#### Figure 8. Normalized gate threshold

Figure 9. Collector-emitter on voltage vs. collector current

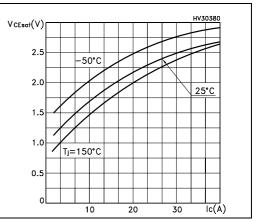
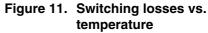
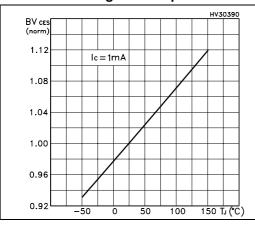
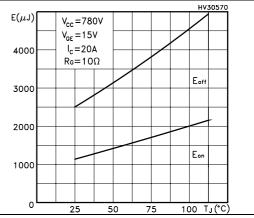
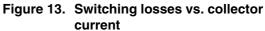
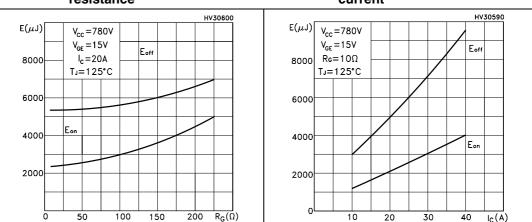
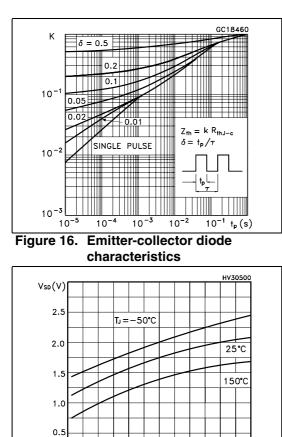





Figure 10. Normalized breakdown voltage vs. temperature





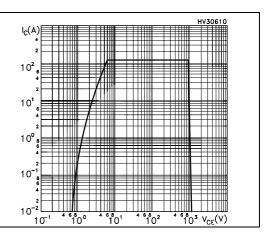


Figure 12. Switching losses vs. gate resistance





### Figure 14. Thermal Impedance

Figure 15. Turn-off SOA




10

15

lsd(A)

5





## 3 Test circuit

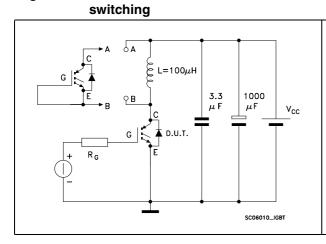
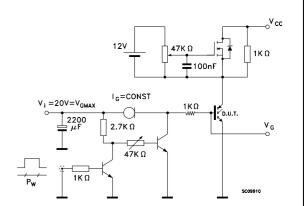




Figure 17. Test circuit for inductive load

Figure 19. Switching waveform





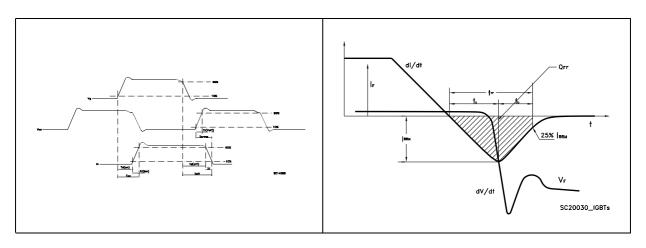
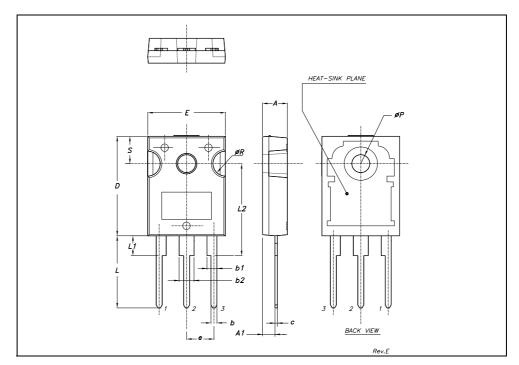



Figure 18. Gate charge test circuit


## 4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: *www.st.com* 



| DIM. | mm.   |       |       | inch  |       |       |
|------|-------|-------|-------|-------|-------|-------|
|      | MIN.  | ТҮР   | MAX.  | MIN.  | TYP.  | MAX.  |
| А    | 4.85  |       | 5.15  | 0.19  |       | 0.20  |
| A1   | 2.20  |       | 2.60  | 0.086 |       | 0.102 |
| b    | 1.0   |       | 1.40  | 0.039 |       | 0.055 |
| b1   | 2.0   |       | 2.40  | 0.079 |       | 0.094 |
| b2   | 3.0   |       | 3.40  | 0.118 |       | 0.134 |
| С    | 0.40  |       | 0.80  | 0.015 |       | 0.03  |
| D    | 19.85 |       | 20.15 | 0.781 |       | 0.793 |
| Е    | 15.45 |       | 15.75 | 0.608 |       | 0.620 |
| е    |       | 5.45  |       |       | 0.214 |       |
| L    | 14.20 |       | 14.80 | 0.560 |       | 0.582 |
| L1   | 3.70  |       | 4.30  | 0.14  |       | 0.17  |
| L2   |       | 18.50 |       |       | 0.728 |       |
| øР   | 3.55  |       | 3.65  | 0.140 |       | 0.143 |
| øR   | 4.50  |       | 5.50  | 0.177 |       | 0.216 |
| S    |       | 5.50  |       |       | 0.216 |       |

### **TO-247 MECHANICAL DATA**





# 5 Revision history

| Table 9. | Document | revision | history |
|----------|----------|----------|---------|
|          |          |          |         |

| Date        | Revision | Changes                                                                                            |
|-------------|----------|----------------------------------------------------------------------------------------------------|
| 23-Nov-2005 | 1        | First issue.                                                                                       |
| 17-Mar-2006 | 2        | Complete version                                                                                   |
| 05-May-2006 | 3        | Modified value on Table 2.: Absolute maximum ratings                                               |
| 30-May-2006 | 4        | New values on Table 3: Thermal resistance                                                          |
| 23-Jun-2006 | 5        | Modified value on Table 4.: Static                                                                 |
| 07-Sep-2006 | 6        | Modified T <sub>J</sub> temperature range to 150°C in<br><i>Table 2.: Absolute maximum ratings</i> |
| 14-Nov-2006 | 7        | Modified Figure 5. and Figure 9.                                                                   |
| 26-Jan-2007 | 8        | Typing error on first page.                                                                        |
| 04-Oct-2007 | 9        | Modified test conditions in Table 4.: Static                                                       |



#### **Please Read Carefully:**

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

