

Vishay Semiconductors

Optocoupler, Phototransistor Output, with Base Connection

DESCRIPTION

Each optocoupler consists of gallium arsenide infrared LED and a silicon NPN phototransistor.

AGENCY APPROVALS

- Underwriters laboratory file no. E52744
- BSI: EN 60065:2002, EN 60950:2000
- FIMKO; EN 60065, EN 60335, EN 60950 certificate no. 25156

FEATURES

- Isolation test voltage 5000 V_{RMS}
- Interfaces with common logic families
- Input-output coupling capacitance < 0.5 pF
- Industry standard dual-in-line 6 pin package
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

ROHS

APPLICATIONS

- AC mains detection
- · Reed relay driving
- Switch mode power supply feedback
- Telephone ring detection
- Logic ground isolation
- Logic coupling with high frequency noise rejection

ORDER INFORMATION	
PART	REMARKS
4N35	CTR > 100 %, DIP-6
4N36	CTR > 100 %, DIP-6
4N37	CTR > 100 %, DIP-6

ABSOLUTE MAXIMUM RATINGS (1)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
INPUT							
Reverse voltage		V_{R}	6	V			
Forward current		I _F	50	mA			
Surge current	t ≤ 10 µs	I _{FSM}	1	А			
Power dissipation		P _{diss}	70	mW			
OUTPUT							
Collector emitter breakdown voltage		V _{CEO}	70	V			
Emitter base breakdown voltage		V _{EBO}	7	V			
Collector current		I _C	50	mA			
Collector current	$t \leq 1 \ ms$	Ic	100	mA			
Power dissipation		P _{diss}	70	mW			
COUPLER							
Isolation test voltage		V _{ISO}	5000	V_{RMS}			
Creepage			≥ 7	mm			
Clearance			≥ 7	mm			
Isolation thickness between emitter and detector			≥ 0.4	mm			

Vishay Semiconductors Optocoupler, Phototransistor Output, with Base Connection

ABSOLUTE MAXIMUM RATINGS (1)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
COUPLER							
Comparative tracking index	DIN IEC 112/VDE 0303, part 1		175				
Isolation resistance	$V_{IO} = 500 \text{ V}, T_{amb} = 25 ^{\circ}\text{C}$	R _{IO}	10 ¹²	Ω			
	$V_{IO} = 500 \text{ V}, T_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	10 ¹¹	Ω			
Storage temperature		T _{stg}	- 55 to + 150	°C			
Operating temperature		T _{amb}	- 55 to + 100	°C			
Junction temperature		Tj	100	°C			
Soldering temperature (2)	max.10 s dip soldering: distance to seating plane ≥ 1.5 mm	T _{sld}	260	°C			

Notes

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

(2) Refer to wave profile for soldering condditions for through hole devices (DIP).

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT					•	•	
Junction capacitance	$V_R = 0 V, f = 1 MHz$		C _j		50		pF
Forward voltage (2)	I _F = 10 mA		V_{F}		1.3	1.5	V
Forward voitage (=)	$I_F = 10 \text{ mA}, T_{amb} = -55 ^{\circ}\text{C}$		V_{F}	0.9	1.3	1.7	V
Reverse current (2)	V _R = 6 V		I _R		0.1	10	μΑ
Capacitance	V _R = 0 V, f = 1 MHz		Co		25		pF
OUTPUT							
		4N35	BV _{CEO}	30			V
Collector emitter breakdown voltage ⁽²⁾	I _C = 1 mA	4N36	BV _{CEO}	30			V
vollage		4N37	BV _{CEO}	30			V
Emitter collector breakdown voltage ⁽²⁾	I _E = 100 μA		BV _{ECO}	7			V
OUTPUT							
	I _C = 100 μA, I _B = 1 μA	4N35	BV _{CBO}	70			V
Collector base breakdown voltage ⁽²⁾		4N36	BV _{CBO}	70			V
Vollage		4N37	BV _{CBO}	70			V
Collector emitter leakage current (2)	V _{CE} = 10 V, I _F = 0	4N35	I _{CEO}		5	50	nA
		4N36	I _{CEO}		5	50	nA
	$V_{CE} = 10 \text{ V}, I_F = 0$	4N37	I _{CEO}		5	50	nA
	V _{CE} = 30 V, I _F = 0, T _{amb} = 100 °C	4N35	I _{CEO}			500	μΑ
		4N36	I _{CEO}			500	μΑ
		4N37	I _{CEO}			500	μΑ
Collector emitter capacitance	$V_{CE} = 0$		C _{CE}		6		pF
COUPLER							
Resistance, input output (2)	V _{IO} = 500 V		R _{IO}	10 ¹¹			Ω
Capacitance, input output	f = 1 MHz		C _{IO}		0.6		pF

Notes

Document Number: 81181 Rev. 1.2, 07-Jan-10

 $^{^{(1)}}$ $T_{amb} = 25$ °C, unless otherwise specified.

 T_{amb} = 25 °C, unless otherwise specified.

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

⁽²⁾ Indicates JEDEC registered value.

Optocoupler, Phototransistor Output, Vishay Semiconductors with Base Connection

CURRENT TRANSFER RATIO							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN	TYP.	MAX	UNIT
DC current transfer ratio (1)	V _{CE} = 10 V, I _F = 10 mA	4N35	CTR _{DC}	100			%
		4N36	CTR _{DC}	100			%
		4N37	CTR _{DC}	100			%
	V _{CE} = 10 V, I _F = 10 mA, T _A = -55 °C to + 100 °C	4N35	CTR _{DC}	40	50		%
		4N36	CTR _{DC}	40	50		%
		4N37	CTR _{DC}	40	50		%

Note

(1) Indicates JEDEC registered values.

SWITCHING CHARACTERISTICS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Switching time (1)	$V_{CC} = 10 \text{ V}, I_{C} = 2 \text{ mA}, R_{L} = 100 \Omega$	t _{on} , t _{off}		10		μs	

Note

(1) Indicates JEDEC registered values.

TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specied

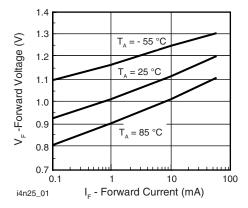


Fig. 1 - Forward Voltage vs. Forward Current

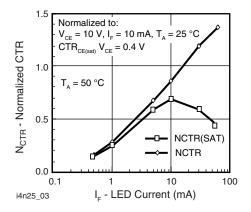


Fig. 3 - Normalized Non-Saturated and Saturated CTR vs. LED Current

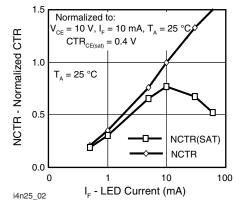


Fig. 2 - Normalized Non-Saturated and Saturated CTR vs. LED Current

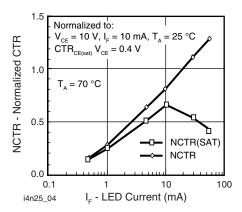


Fig. 4 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Vishay Semiconductors Optocoupler, Phototransistor Output, with Base Connection

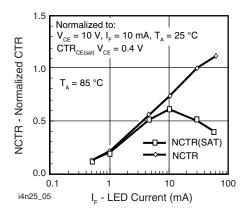


Fig. 5 - Normalized Non-Saturated and Saturated CTR vs. LED Current

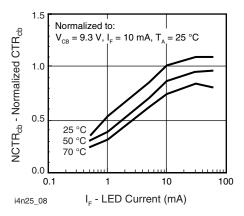


Fig. 8 - Normalized CTR_{cb} vs. LED Current and Temperature

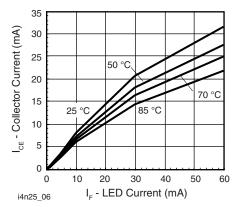


Fig. 6 - Collector Emitter Current vs. Temperature and LED Current

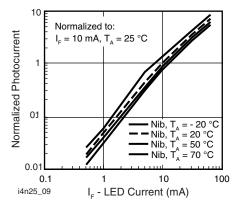


Fig. 9 - Normalized Photocurrent vs. I_{F} and Temperature

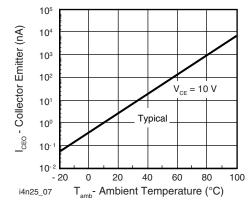


Fig. 7 - Collector Emitter Leakage Current vs. Temperature

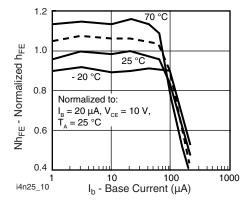


Fig. 10 - Normalized Non-Saturated h_{FE} vs. Base Current and Temperature

Optocoupler, Phototransistor Output, Vishay Semiconductors with Base Connection

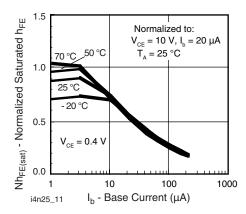


Fig. 11 - Normalized h_{FE} vs. Base Current and Temperature

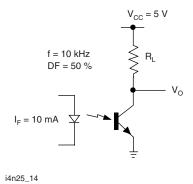


Fig. 14 - Switching Schematic

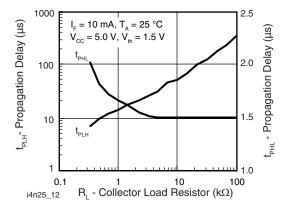


Fig. 12 - Propagation Delay vs. Collector Load Resistor

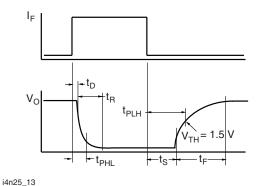
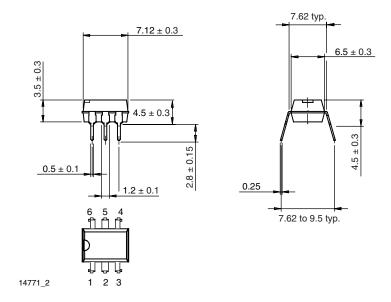



Fig. 13 - Switching Timing

Vishay Semiconductors Optocoupler, Phototransistor Output, with Base Connection

PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.