

RMPA2455 2.4–2.5 GHz 1 Watt InGaP HBT Linear Power Amplifier

Features

- 30 dB small signal gain
- 30 dBm output power @ 1 dB compression
- 3% EVM at 22 dBm modulated power out
- 5.0 V positive collector supply operation
- Two power saving shutdown options (bias and logic control)
- Integrated power detector with 20 dB dynamic range
- Low profile 16 pin 3 x 3 x 0.9 mm leadless package
- Internally matched to 50Ω and DC blocked RF input/output
- Optimized for use in 802.11b/g Access Point applications

General Description

The RMPA2455 power amplifier is designed for high performance WLAN access point applications in the 2.4–2.5 GHz frequency band. The low profile 16 pin 3 x 3 x 0.9 mm package with internal matching on both input and output to 50Ω minimizes next level PCB space and allows for simplified integration. The on-chip detector provides power sensing capability while the logic control provides power saving shutdown options. The PA's low power consumption and excellent linearity are achieved using our InGaP Heterojunction Bipolar Transistor (HBT) technology.

Device

Electrical Characteristics 802.11g OFDM Modulation

(with 176 ms burst time, 100 ms idle time) 54 Mbps Data Rate, 16.7 MHz Bandwidth

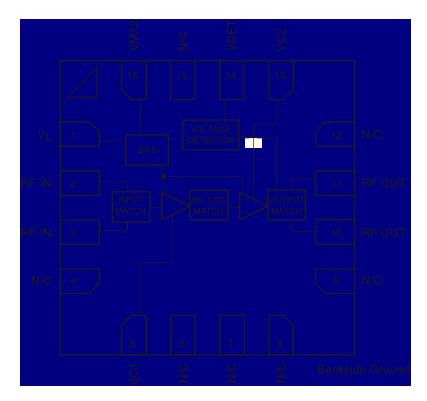
Parameter	Min	Тур	Max	Units
Frequency	2.4		2.5	GHz
Collector Supply Voltage	4.5	5.0	5.5	V
Mirror Supply Voltage	2.8	3.3	3.6	V
Gain		30		dB
Total Current @ 22dBm P _{OUT}		195		mA
EVM @ 22dBm P _{OUT} ²		3.0		%
Detector Output @ 22dBm P _{OUT}		960		mV
Detector Threshold ³		4		dBm

Notes

- 1. VC1, VC2 = 5.0 Volts, VM12 = 3.3V, T_A = 25°C, PA is constantly biased, 50Ω system.
- 2. Percentage includes system noise floor of EVM = 0.8%.
- 3. P_{OUT} measured at P_{IN} corresponding to power detection threshold.

Electrical Characteristics 1 Single Tone

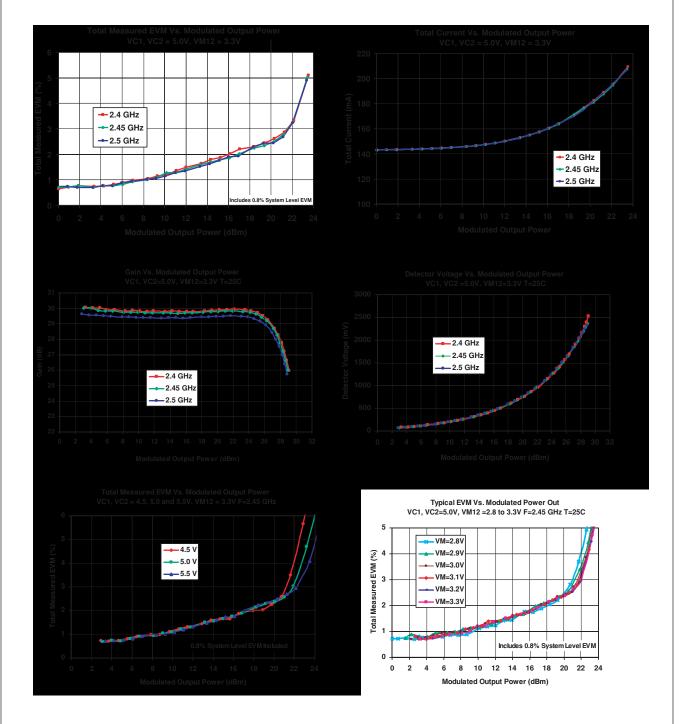
Parameter	Min	Тур	Max	Units
Frequency	2.4		2.5	GHz
Collector Supply Voltage	4.5	5.0	5.5	V
Mirror Supply Voltage	2.8	3.3	3.6	V
Gain		30		dB
Total Quiescent Current		140		mA
Bias Current at pin VM12 ²		17		mA
P1dB Compression		30		dBm
Standby Current ³		0.7		mA
Shutdown Current (VM12 = 0V)		<1.0		μΑ
Input Return Loss		12		dB
Output Return Loss		10		dB
Detector Output at P1dB Comp		4		V
Detector P _{OUT} Threshold ⁷		6		dBm
2nd Harmonic Output at P1dB		-40		dBc
3rd Harmonic Output at P1dB		-40		dBc
Logic				
Shutdown Control (V _L):				
Device Off, Logic High Input	2.0	2.4		V
Device On, Logic Low Input		0.0	0.8	V
Logic Current		150		μA
Turn-on Time ⁴		<1		μS
Turn-off Time		<1		μS
Spurious (Stability) ⁵		-65		dBc


Absolute Ratings⁶

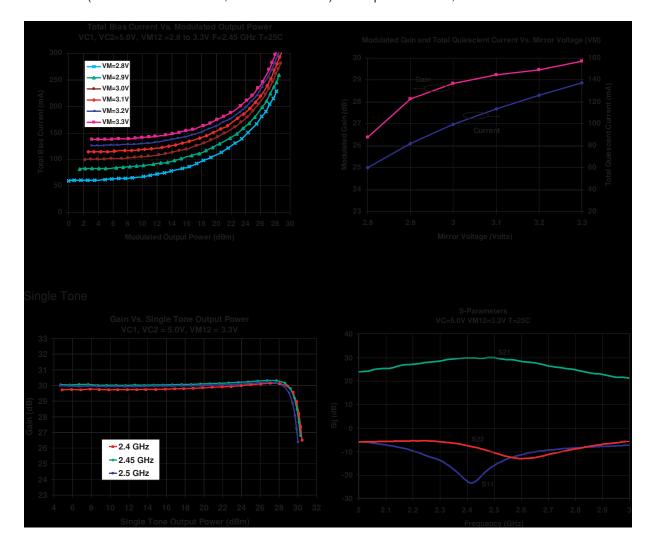
Symbol	Parameter	Ratings	Units
VC1, VC2	Positive Supply Voltage	6	V
IC1, IC2	Supply Current IC1 IC2	120 700	mA mA
VM12	Positive Bias Voltage	4.0	V
V_L	Logic Voltage	5	V
P _{IN}	RF Input Power	10	dBm
T _{CASE}	Case Operating Temperature	-40 to +85	°C
T _{STG}	Storage Temperature	-55 to +150	°C

Notes

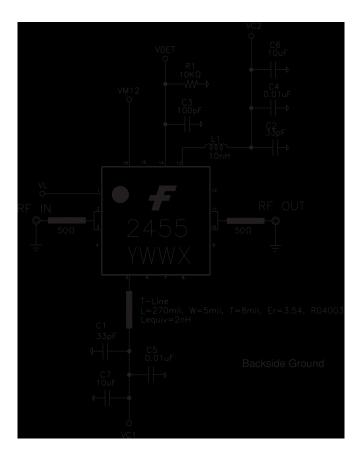
- 1. VC1,VC2 = 5.0V, VM12 = 3.3V, T_C = 25°C, 50Ω system.
- 2. Mirror bias current is included in the total quiescent current.
- 3. VL is set to Input Logic Level High for PA Off operation.
- 4. Measured from Device On signal turn on (Logic Low) to the point where RF P_{OUT} stabilizes to 0.5dB.
- 5. Load VSWR is set to 8:1 and the angle is varied 360 degrees. P_{OUT} = -30dBm to P1dB.
- 6. No permanent damage with only one parameter set at extreme limit. Other parameters set to typical values
- 7. $P_{\mbox{\scriptsize OUT}}$ measured at $P_{\mbox{\scriptsize IN}}$ corresponding to power detection threshold.


Functional Block Diagram

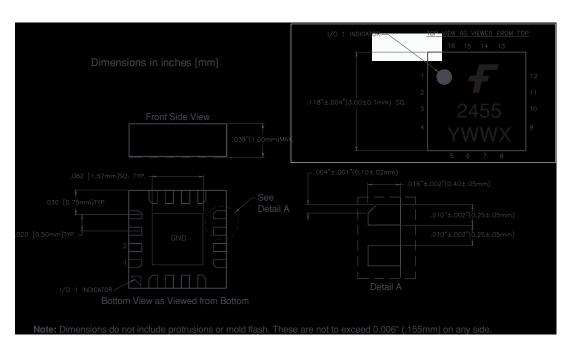
	1
Pin	Description
1	V _L (logic)
2	RF IN
3	RF IN
4	N/C
5	VC1
6	N/C
7	N/C
8	N/C
9	N/C
10	RF OUT
11	RF OUT
12	N/C
13	VC2
14	VDET
15	N/C
16	VM12


Performance Data 802.11g OFDM

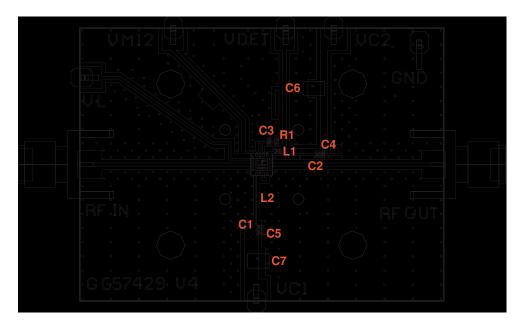
Modulation (with 176 ms burst time, 100 ms idle time) 54 Mbps Data Rate, 16.7 MHz Bandwidth



Performance Data 802.11g OFDM


Modulation (with 176 ms burst time, 100 ms idle time) 54 Mbps Data Rate, 16.7 MHz Bandwidth

Evaluation Board Schematic


Package Outline

Evaluation Board of Materials

	MATERIAL	S LIST	
QTY			VENDOR
1			FAIRCHILD
2			JOHNSON
6			DIGIKEY
REF			FAIRCHILD
2			MURATA
1			MURATA
2			MURATA
2			TDK
1			TOKO
1			IMS
A/R			INDIUM CORP
A/R			INDIUM CORP

Evaluation Board Layout

Actual Board Size = 2.0" X 1.5"

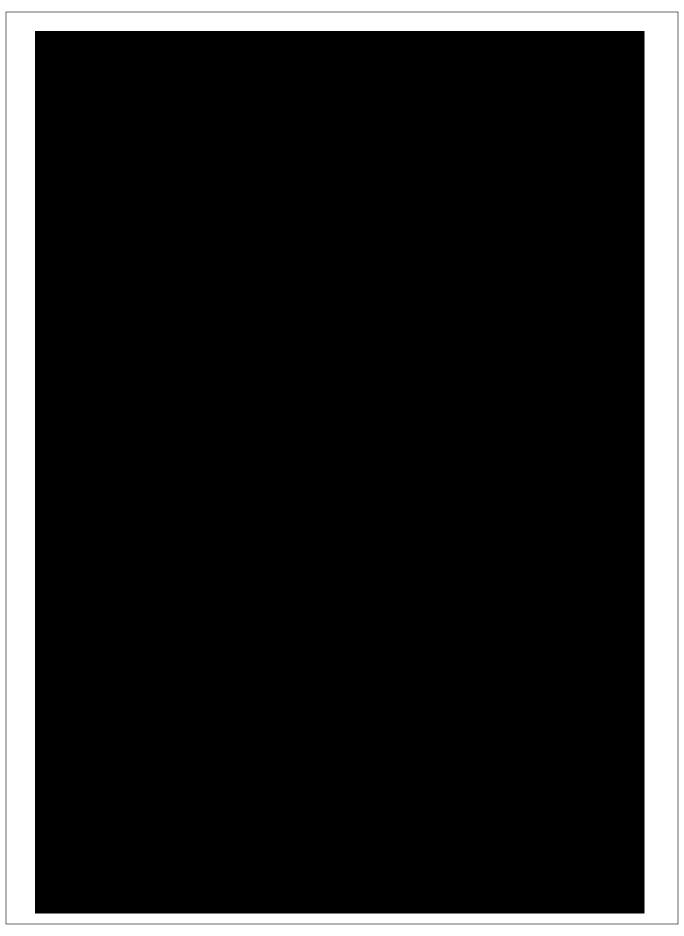
Evaluation Board Turn-On Sequence¹

Recommended turn-on sequence:

- 1) Connect common ground terminal to the Ground (GND) pin on the board.
- 2) Apply low voltage 0.0 to +1.0 V to pin V_L .
- 3) Apply positive supply voltage VC1 (= 5.0V) to pin VC1 (first stage collector).
- 4) Apply positive supply voltage VC2 (= 5.0V) to pin VC2 (second stage collector).
- 5) Apply positive bias voltage VM12 (= 3.3V) to pin VM12 (bias networks).
- 6) At this point, you should expect to observe the following positive currents flowing into the pins:

Pin	Current
VM12	15.0 – 20.0 mA
VC1	45.0 – 65.0 mA
VC2	60.0 – 80.0 mA
V _L	<1 nA

- 7) Apply input RF power to SMA connector pin RFIN. Currents in pins VC1 and VC2 will vary depending on the input drive level
- 8) Vary positive voltage V_L on pin VREG from +0.5V to +2.4V to shut down the amplifier or alter the power level. Shut down current flow into the pins:


Pin	Current
VM12	<0.7 mA
VC1	<1 nA
VC2	<1 nA
V_L	<0.25 mA

Recommended turn-off sequence:

Use reverse order described in the turn-on sequence above.

Note:

1. Turn on sequence is not critical and it is not necessary to sequence power supplies in actual system level design.

