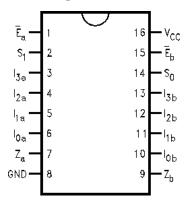


74VHC153 Dual 4-Input Multiplexer

Features

- High Speed: t_{PD} = 5.0ns at T_A = 25°C
- Low power dissipation: $I_{CC} = 4\mu A$ (Max.) at $T_A = 25^{\circ}C$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (Min.)
- Power down protection is provided on all inputs
- Pin and function compatible with 74HC153

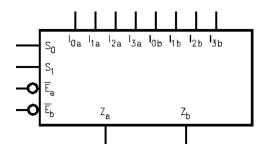
General Description

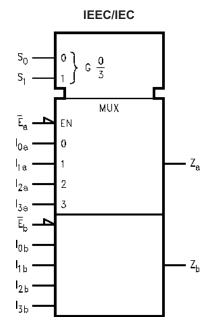

The VHC153 is an advanced high-speed CMOS device fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The VHC153 is a high-speed Dual 4-Input Multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the VHC153 can act as a function generator and generate any two functions of three variables. An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Ordering Information

Order Number	Package Number	Package Description
74VHC153M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74VHC153SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHC153MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering number.


Connection Diagram



Pin Description

Pin Names	Description					
I _{0a} –I _{3a}	Side A Data Inputs					
I _{0b} –I _{3b}	Side B Data Inputs					
S ₀ , S ₁	Common Select Inputs					
Ēa	Side A Enable Input					
Ē _b	Side B Enable Input					
Z _a	Side A Output					
Z _b	Side B Output					

Logic Symbols

Functional Description

The VHC153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs $(S_0,\ S_1).$ The two 4-input multiplexer circuits have individual active-LOW Enables $(\overline{E}_a,\overline{E}_b)$ which can be used to strobe the outputs independently. When the Enables $(\overline{E}_a,\overline{E}_b)$ are HIGH, the corresponding outputs (Z_a,Z_b) are forced LOW. The VHC153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the Select inputs. The logic equations for the outputs are shown below.

$$\begin{split} Z_a &= \overline{\mathsf{E}}_a \bullet (\mathsf{I}_{0a} \bullet \overline{\mathsf{S}}_1 \bullet \overline{\mathsf{S}}_0 + \mathsf{I}_{1a} \bullet \overline{\mathsf{S}}_1 \bullet \mathsf{S}_0 + \mathsf{I}_{2a} \bullet \mathsf{S}_1 \bullet \mathsf{S}_0 \\ &+ \mathsf{I}_{3a} \bullet \mathsf{S}_1 \bullet \mathsf{S}_0) \end{split}$$

$$\begin{split} Z_b &= \overline{E}_b \bullet (I_{0b} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1b} \bullet \overline{S}_1 \bullet S_0 + I_{2b} \bullet S_1 \bullet S_0 \\ &+ I_{3b} \bullet S_1 \bullet S_0) \end{split}$$

Truth Table

Select								
Inputs			Output					
S ₀	S ₁	Ē	I ₀	I ₁	l ₂	l ₃	Z	
Х	Х	Н	Х	Х	Х	Х	L	
L	L	L	L	Х	Х	Х	L	
L	L	L	Н	Х	Х	Х	Н	
Н	L	L	Х	L	Х	Х	L	
Н	L	L	Х	Н	Х	Х	Н	
L	Н	L	Х	Х	L	Х	L	
L	Н	L	Х	Х	Н	Х	Н	
Н	Н	L	Х	Х	Х	L	L	
Н	Н	L	Х	Х	Х	Н	Н	

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
V _{IN}	DC Input Voltage	-0.5V to +7.0V
V _{OUT}	DC Output Voltage	-0.5V to V _{CC} + 0.5V
I _{IK}	Input Diode Current	–20mA
I _{OK}	Output Diode Current	±20mA
I _{OUT}	DC Output Current	±25mA
I _{CC}	DC V _{CC} / GND Current	±50mA
T _{STG}	Storage Temperature	−65°C to +150°C
T _L	Lead Temperature (Soldering, 10 seconds)	260°C

Recommended Operating Conditions⁽¹⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating			
V _{CC}	Supply Voltage	2.0V to +5.5V			
V _{IN}	Input Voltage	0V to +5.5V			
V _{OUT}	Output Voltage	0V to V _{CC}			
T _{OPR}	Operating Temperature	-40°C to +85°C			
t _r , t _f	Input Rise and Fall Time,				
	$V_{CC} = 3.3V \pm 0.3V$	0ns/V ~ 100ns/V			
	$V_{CC} = 5.0V \pm 0.5V$	0ns/V ~ 20ns/V			

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

			Conditions		T _A = 25°C			T _A = -40°C to +85°C		
Symbol	Parameter	V _{CC} (V)			Min.	Тур.	Max.	Min.	Max.	Units
V _{IH}	HIGH Level Input Voltage	2.0			1.50			1.50		V
		3.0-5.5			0.7 x V _{CC}			0.7 x V _{CC}		
V _{IL}	LOW Level Input	2.0					0.50		0.50	V
	Voltage	3.0-5.5					0.3 x V _{CC}		0.3 x V _{CC}	
V _{OH}	HIGH Level Output Voltage	2.0		$I_{OH} = -50\mu A$	1.9	2.0		1.9		V
		3.0	or V _{IL}		2.9	3.0		2.9		
		4.5			4.4	4.5		4.4		
		3.0		$I_{OH} = -4mA$	2.58			2.48		
		4.5		$I_{OH} = -8mA$	3.94			3.80		
V _{OL}	LOW Level Output Voltage	2.0	$V_{IN} = V_{IH}$	$I_{OL} = 50\mu A$		0.0	0.1		0.1	V
		3.0	or V _{IL}			0.0	0.1		0.1]
		4.5				0.0	0.1		0.1	
		3.0		I _{OL} = 4mA			0.36		0.44	
		4.5		I _{OL} = 8mA			0.36		0.44	
I _{IN}	Input Leakage Current	0–5.5	V _{IN} = 5.5V	or GND			±0.1		±1.0	μA
Icc	Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND				4.0		40.0	μA

AC Electrical Characteristics

				T _A = 25°C		T _A = -40°C to +85°C			
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay,	3.3 ± 0.3	$C_L = 15pF$		7.7	11.9	1.0	14.0	ns
	I_n to Z_n		$C_L = 50pF$		10.2	15.4	1.0	17.5	
		5.0 ± 0.5	$C_L = 15pF$		5.0	7.7	1.0	9.0	ns
			$C_L = 50pF$		6.5	9.7	1.0	11.0	
t _{PLH} , t _{PHL}	Propagation Delay, S_n to Z_n	3.3 ± 0.3	$C_L = 15pF$		10.8	16.7	1.0	19.5	ns
			$C_L = 50pF$		13.3	20.2	1.0	23.0	
		5.0 ± 0.5	$C_L = 15pF$		6.8	9.9	1.0	11.5	ns
			$C_L = 50pF$		8.3	11.9	1.0	13.5	
t _{PLH} , t _{PHL}	Propagation Delay,	3.3 ± 0.3	$C_L = 15pF$		6.3	10.1	1.0	12.0	ns
	$\overline{\mathbb{E}}_n$ to Z_n		$C_L = 50pF$		8.8	13.6	1.0	15.5	
		5.0 ± 0.5	$C_L = 15pF$		4.4	6.4	1.0	7.5	ns
			$C_L = 50pF$		5.9	8.4	1.0	9.5	
C _{IN}	Input Capacitance		V _{CC} = Open		4	10		10	pF
C _{PD}	Power Dissipation Capacitance		(2)		20				pF

Note:

2. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

Figure 1. 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions (Continued) Dimensions are in millimeters unless otherwise noted.

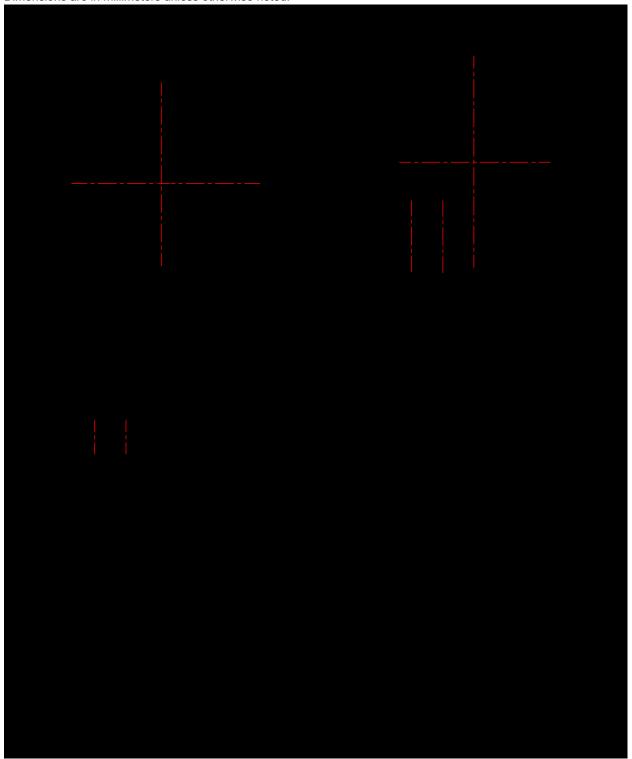


Figure 2. 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

Physical Dimensions (Continued) Dimensions are in millimeters unless otherwise noted.

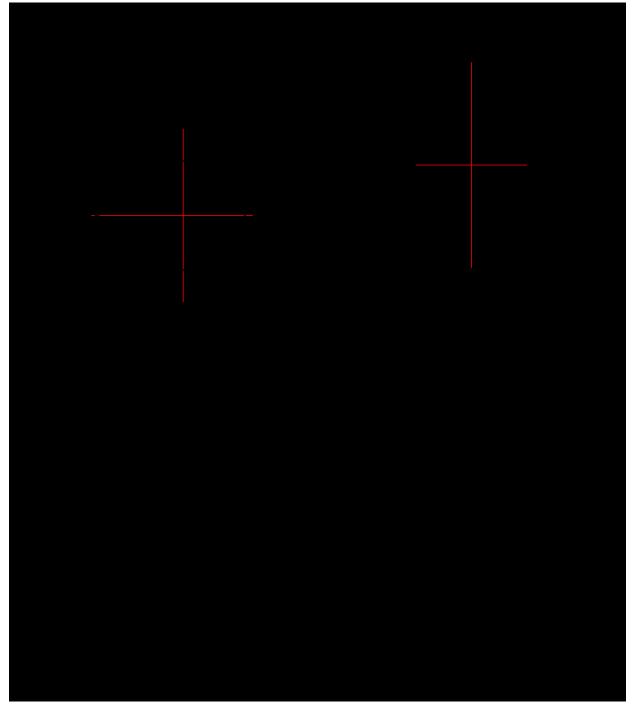
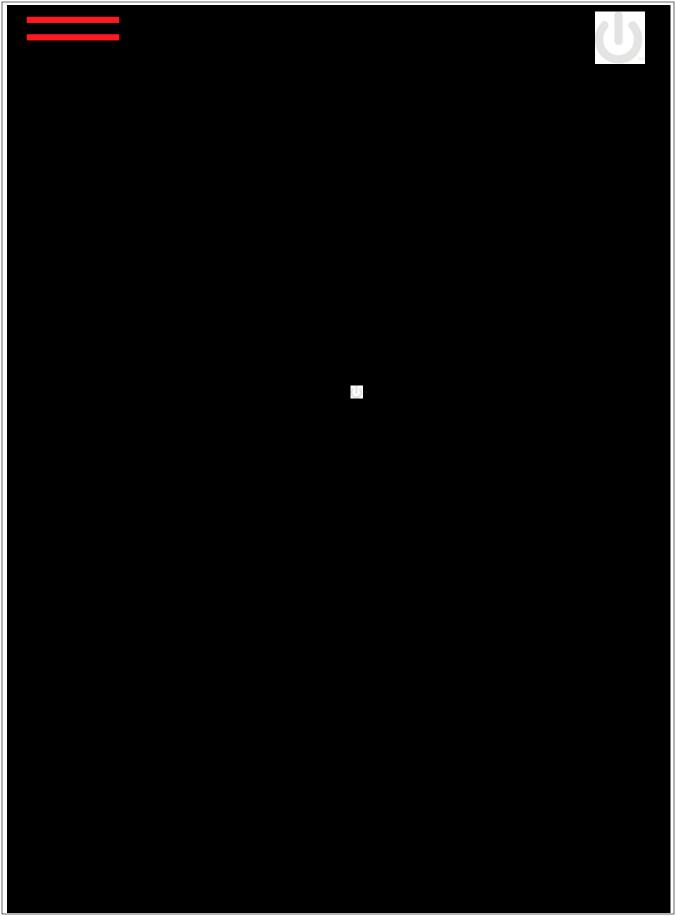



Figure 3. 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

