High-Current Complementary Silicon Power Transistors

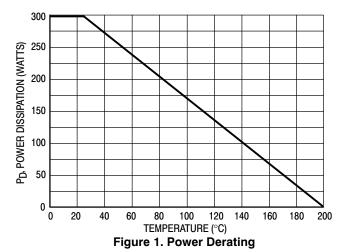
These packages are designed for use in high-power amplifier and switching circuit applications.

Features

- High Current Capability I_C Continuous = 50 Amperes
- DC Current Gain h_{FE} = 15 60 @ I_C = 25 Adc
- Low Collector-Emitter Saturation Voltage -V_{CE(sat)} = 1.0 Vdc (Max) @ I_C = 25 Adc
- Pb-Free Packages are Available*

MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Collector-Base Voltage	V _{CB}	80	Vdc
Emitter-Base Voltage	V _{EB}	5.0	Vdc
Collector Current - Continuous	I _C	50	Adc
Base Current	I _B	15	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	300 1.715	mW mW/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +200	°C


THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	θЈС	0.584	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Indicates JEDEC Registered Data.

October, 2007 - Rev. 12

ON

ON Semiconductor®

http://onsemi.com

50 AMPERE COMPLEMENTARY SILICON POWER TRANSISTORS 60-80 VOLTS, 300 WATTS

MARKING DIAGRAM

TO-204 (TO-3) CASE 197A STYLE 1

2N568x = Device Code

x = 4 or 6

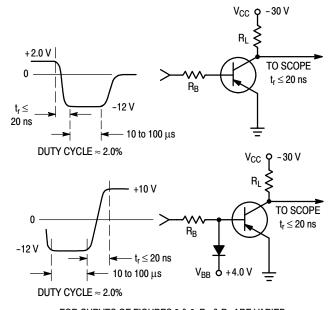
G = Pb-Free Package A = Location Code YY = Year

WW = Work Week
MEX = Country of Orgin

ORDERING INFORMATION

Device	Package	Shipping
2N5684G	TO-3 (Pb-Free)	100 Units/Tray
2N5686	TO-3	100 Units/Tray
2N5686G	TO-3 (Pb-Free)	100 Units/Tray

Safe Area Curves are indicated by Figure 5. All limits are applicable and must be observed.


^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) (Note 2)

Characte	ristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS		•	•	•	
Collector-Emitter Sustaining Voltage (Note 3)	$(I_C = 0.2 \text{ Adc}, I_B = 0)$	V _{CEO(sus)}	80	-	Vdc
Collector Cutoff Current	(V _{CE} = 40 Vdc, I _B = 0)	I _{CEO}	-	1.0	mAdc
Collector Cutoff Current $(V_{CE} = 8$	(V _{CE} = 80 Vdc, V _{EB(off)} = 1.5 Vdc) 30 Vdc, V _{EB(off)} = 1.5 Vdc, T _C = 150°C)	I _{CEX}	- -	2.0 10	mAdc
Collector Cutoff Current	(V _{CB} = 80 Vdc, I _E = 0)	I _{CBO}	-	2.0	mAdc
Emitter Cutoff Current	$(V_{BE} = 5.0 \text{ Vdc}, I_{C} = 0)$	I _{EBO}	-	5.0	mAdc
ON CHARACTERISTICS					
DC Current Gain (Note 3)	(I _C = 25 Adc, V _{CE} = 2.0 Vdc) (I _C = 50 Adc, V _{CE} = 5.0 Vdc)	h _{FE}	15 5.0	60 -	-
Collector-Emitter Saturation Voltage (Note 3)	(I _C = 25 Adc, I _B = 2.5 Adc) (I _C = 50 Adc, I _B = 10 Adc)	V _{CE(sat)}	- -	1.0 5.0	Vdc
Base-Emitter Saturation Voltage (Note 2)	(I _C = 25 Adc, I _B = 2.5 Adc)	V _{BE(sat)}	-	2.0	Vdc
Base-Emitter On Voltage (Note 2)	(I _C = 25 Adc, V _{CE} = 2.0 Vdc)	V _{BE(on)}	-	2.0	Vdc
DYNAMIC CHARACTERISTICS					
Current-Gain - Bandwidth Product (I _C	= 5.0 Adc, V _{CE} = 10 Vdc, f = 1.0 MHz)	f _T	2.0	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz)	2N5684 2N5686	C _{ob}	- -	2000 1200	pF
Small-Signal Current Gain (Id	C = 10 Adc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	h _{fe}	15	-	

^{2.} Indicates JEDEC Registered Data.

^{3.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

FOR CURVES OF FIGURES 3 & 6, $\rm R_B$ & $\rm R_L$ ARE VARIED. INPUT LEVELS ARE APPROXIMATELY AS SHOWN. FOR NPN CIRCUITS, REVERSE ALL POLARITIES.

Figure 2. Switching Time Test Circuit

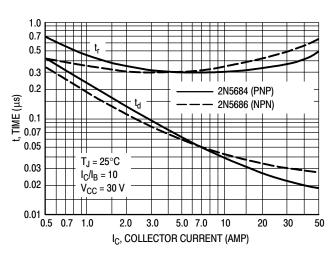


Figure 3. Turn-On Time

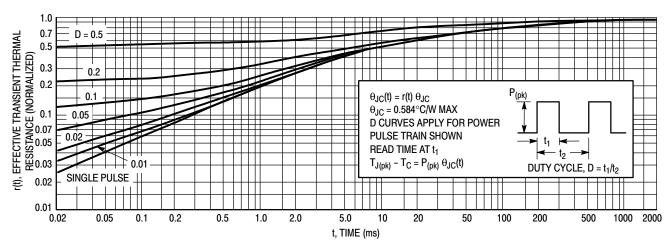


Figure 4. Thermal Response

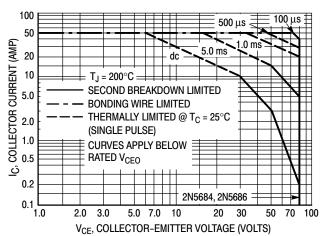


Figure 5. Active-Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 5 is based on $T_{J(pk)} = 200^{\circ}C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 200^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

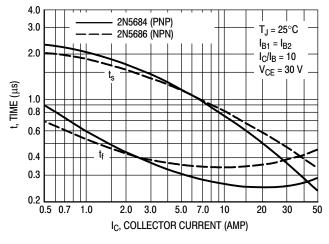


Figure 6. Turn-Off Time

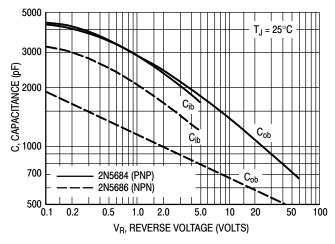


Figure 7. Capacitance

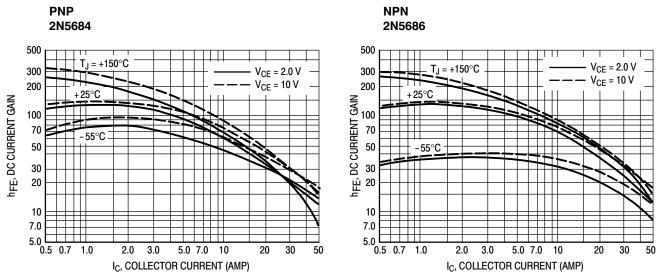


Figure 8. DC Current Gain

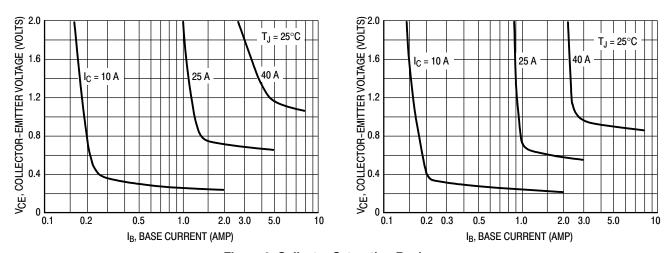


Figure 9. Collector Saturation Region

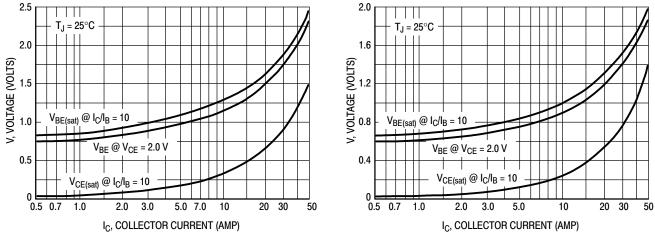
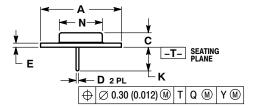
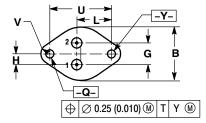


Figure 10. "On" Voltages





TO-204 (TO-3) **CASE 197A-05 ISSUE K**

DATE 21 FEB 2000

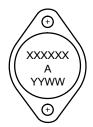
SCALE 1:1

STYLE 1: PIN 1. BASE 2. EMITTER CASE: COLLECTOR

STYLE 2: PIN 1. EMITTER 2. BASE CASE: COLLECTOR STYLE 3:

PIN 1. GATE 2. SOURCE CASE: DRAIN

STYLE 4: PIN 1. ANODE = 1 2. ANODE = 2 CASE: CATHODES


- NOTES:

 1. DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	1.530 REF		38.86 REF	
В	0.990	1.050	25.15	26.67
С	0.250	0.335	6.35	8.51
D	0.057	0.063	1.45	1.60
Е	0.060	0.070	1.53	1.77
G	0.430	BSC	10.92 BSC	
Н	0.215 BSC		5.46 BSC	
K	0.440	0.480	11.18	12.19
L	0.665 BSC		16.89 BSC	
N	0.760	0.830	19.31	21.08
Q	0.151	0.165	3.84	4.19
U	1.187 BSC		30.15 BSC	
٧	0.131	0.188	3.33	4.77

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Locationa Α

YY = Year WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking.

DOCUMENT NUMBER:	98ASB42128B	Electronic versions are uncontrolle	'
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Versions are uncontrolled except when stamp	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TO-204 (TO-3)		PAGE 1 OF 2

DOCUMENT	NUMBER:
98ASR42128	R

PAGE 2 OF 2

ISSUE	REVISION	DATE
K	LEGALLY CHANGED TO ON	21 FEB 2000
_		

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales