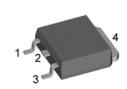
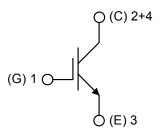
XPT IGBT

IXA4I1200UC

preliminary


V_{CES}	=	1200 V
_{C25}	=	9A
$V_{\text{CE(sat)}}$	=	1.8V

Single IGBT


Part number

IXA4I1200UC

Marking on Product: X4TAU

Backside: collector

Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
 - short circuit rated for 10 µsec.
 - very low gate charge
- low EMI
- square RBSOA @ 3x lc
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
 Switched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: TO-252 (DPak)

- · Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

IXYS reserves the right to change limits, conditions and dimensions.

LIXYS

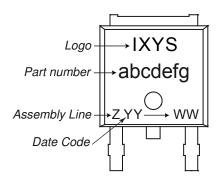
IXA4I1200UC

preliminary

IGBT				Ratings				
Symbol	Definition		Conditions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage			$T_{vJ} = 25^{\circ}C$			1200	V
V _{GES}	max. DC gate voltage						±20	V
V _{GEM}	max. transient gate emitter voltage						±30	V
I _{C25}	collector current			$T_c = 25^{\circ}C$			9	A
I _{C 100}				$T_c = 100^{\circ}C$			5	A
Ptot	total power dissipation			$T_c = 25^{\circ}C$			45	W
V _{CE(sat)}	collector emitter saturation voltage		I _c = 3A; V _{GE} = 15 V	$T_{vJ} = 25^{\circ}C$		1.8	2.1	V
				T _{vJ} = 125°C		2.1		V
V _{GE(th)}	gate emitter threshold voltage		I_{c} = 0.1mA; V_{GE} = V_{CE}	$T_{VJ} = 25^{\circ}C$	5.4	5.9	6.5	V
I _{CES}	collector emitter leakage current		$V_{CE} = V_{CES}; V_{GE} = 0 V$	$T_{VJ} = 25^{\circ}C$			0.1	mA
				T _{vJ} = 125°C		0.1		mA
I _{GES}	gate emitter leakage current		$V_{GE} = \pm 20 V$				500	nA
Q _{G(on)}	total gate charge		V_{CE} = 600 V; V_{GE} = 15 V; I_{C} =	3 A		12		nC
t _{d(on)}	turn-on delay time	٦				70		ns
t,	current rise time		in durations. In a d	T 405%0		40		ns
t _{d(off)}	turn-off delay time	l	inductive load	T _{vJ} = 125°C		250		ns
t _f	current fall time	ſ	$V_{CE} = 600 \text{ V}; I_C = 3 \text{ A}$			100		ns
Eon	turn-on energy per pulse		V_{GE} = ±15 V; R_G =330 Ω			0.4		mJ
E _{off}	turn-off energy per pulse	J				0.3		mJ
RBSOA	reverse bias safe operating area	٦	V_{GE} = ±15 V; R_G =330 Ω	T _{vJ} = 125°C				
I _{CM}		ſ	$V_{CEmax} = 1200 V$				9	A
SCSOA	short circuit safe operating area	٦	V _{CEmax} = 900 V					
t _{sc}	short circuit duration	}	V_{CE} = 900 V; V_{GE} = ±15 V	$T_{vJ} = 125^{\circ}C$			10	μs
l _{sc}	short circuit current	J	R_{G} = 330 Ω ; non-repetitive			12		A
R _{thJC}	thermal resistance junction to case						2.7	K/W
R _{thCH}	thermal resistance case to heatsink					0.50		K/W

IXYS reserves the right to change limits, conditions and dimensions.

20120917



IXA4I1200UC

preliminary

Package TO-252 (DPak)			Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal			20	Α
T _{vj}	virtual junction temperature		-40		150	°C
T _{op}	operation temperature		-40		125	°C
T _{stg}	storage temperature		-40		150	°C
Weight				0.3		g
Fc	mounting force with clip		20		60	Ν

Product Marking

Part number

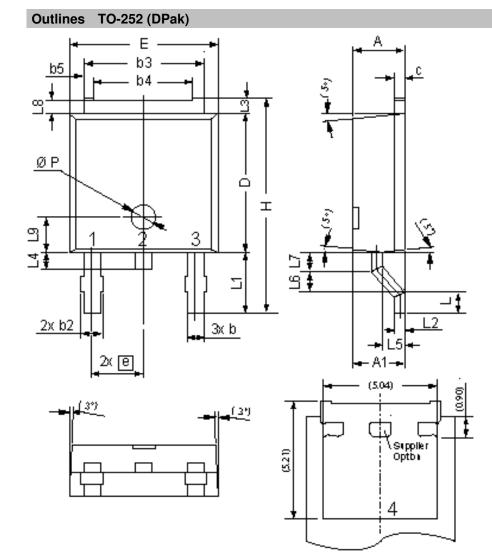
I = IGBI

X = XPT IGBT A = Gen 1 / std

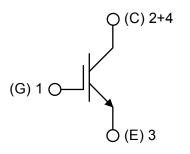
4 = Current Rating [A]

I = Single IGBT

1200 = Reverse Voltage [V] UC = TO-252AA (DPak)


Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	IXA4I1200UC	X4TAU			

Equiva	alent Circuits for Simulation	* on die level	T _{vj} = 150 °C
) <u>R</u>	IGBT	
V _{0 max}	threshold voltage	1.1	V
$R_{0 max}$	slope resistance *	460	mΩ


LIXYS

IXA4I1200UC

preliminary

Dim.	Millin	neters	Inches		
Dim.	min	max	min	max	
A	2.20	2.40	0.087	0.094	
A1	2.10	2.50	0.083	0.098	
b	0.66	0.86	0.026	0.034	
b2	-	0.96	-	0.038	
b3	5.04	5.64	0.198	0.222	
b4	4.34	BSC	0.171	BSC	
b5	0.50	BSC	0.020	BSC	
С	0.40	0.86	0.016	0.034	
D	5.90	6.30	0.232	0.248	
E	6.40	6.80	0.252	0.268	
е	2.10	2.50	0.083	0.098	
Η	9.20	10.10	0.362	0.398	
L	0.55	1.28	0.022	0.050	
L1	2.50	2.90	0.098	0.114	
L2	0.40	0.60	0.016	0.024	
L3	0.50	0.90	0.020	0.035	
L4	0.60	1.00	0.024	0.039	
L5	0.82	1.22	0.032	0.048	
L6	0.79	0.99	0.031	0.039	
L7	0.81	1.01	0.032	0.040	
L8	0.40	0.80	0.016	0.031	
L9	1.50	BSC	0.059	BSC	
ØР	1.00	BSC	0.039	BSC	

IXYS reserves the right to change limits, conditions and dimensions.