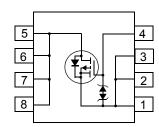


ON Semiconductor®

FDS6675BZ P-Channel PowerTrench[®] MOSFET -30V, -11A, 13mΩ


General Description

This P-Channel MOSFET is producted using ON Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance.

This device is well suited for Power Management and load switching applications common in Notebook Computers and Portable Battery Packs.

Features

r_{DS(on)}

RoHS Compliant

• Max $r_{DS(on)}$ = 13m Ω at V_{GS} = -10V, I_D = -11A

• Max $r_{DS(on)} = 21.8 m\Omega$ at $V_{GS} = -4.5 V$, $I_D = -9 A$

High power and current handing capability

■ Extended V_{GS} range (-25V) for battery applications

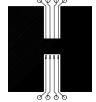
■ HBM ESD protection level of 5.4 KV typical (note 3)

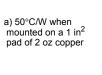
■ High performance trench technology for extremely low

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage		-30	V
V _{GS}	Gate to Source Voltage		±25	V
I _D	Drain Current -Continuous	(Note 1a)	-11	^
	-Pulsed		-55	Α
P _D	Power Dissipation for Single Operation	(Note 1a)	2.5	
		(Note 1b)	1.2	W
		(Note 1c)	1.0	
T _J , T _{STG}	Operating and Storage Temperature		-55 to 150	°C

Thermal Characteristics

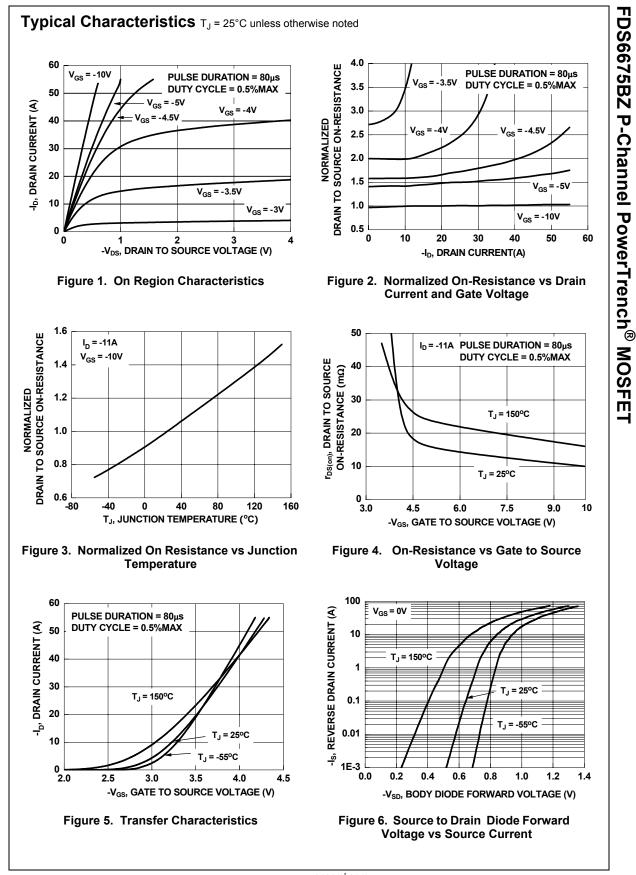

R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a)	50	°C/W
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case (Note 1)	25	°C/W


Package Marking and Ordering Information

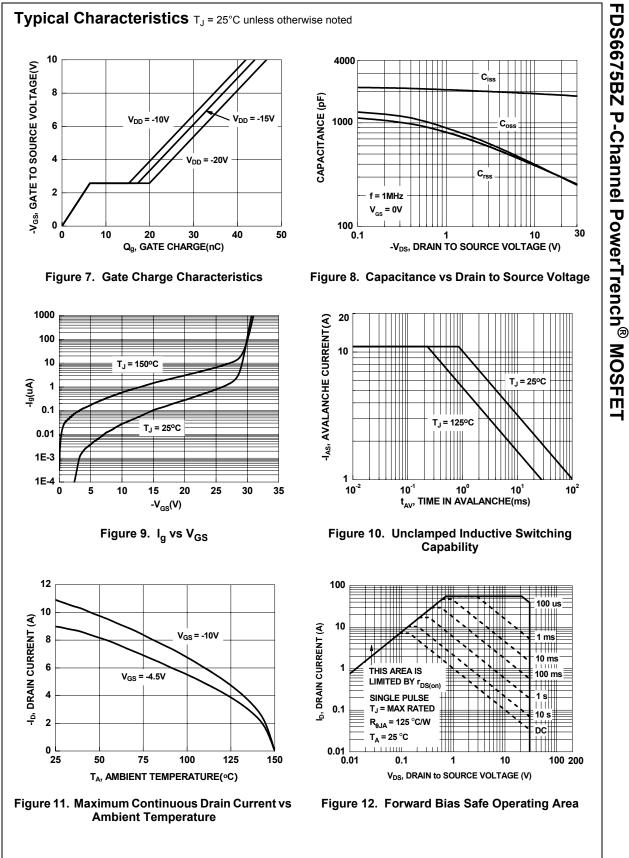
Device Marking	Device	Reel Size	Tape Width	Quantity
FDS6675BZ	FDS6675BZ	13"	12mm	2500 units

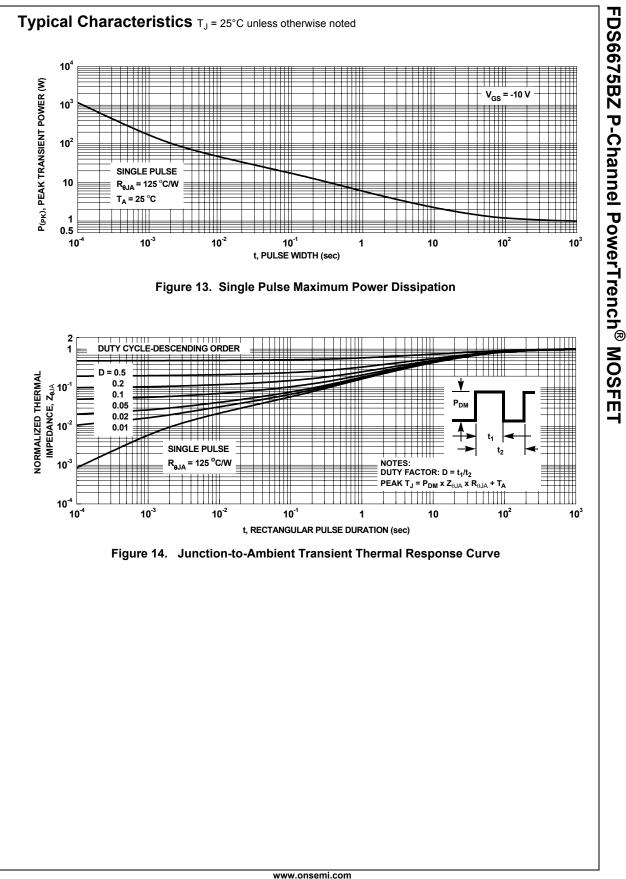
©2009 Semiconductor Components Industries, LLC. October-2017, Rev. 2

teristics		Min	Тур	Max	Units
Drain to Source Breakdown Voltage	I _D = -250μA, V _{GS} = 0V	-30			V
Breakdown Voltage Temperature Coefficient	I_D = -250µA, referenced to 25°C		-20		mV/°C
Zero Gate Voltage Drain Current	V _{DS} = -24V, V _{GS} = 0V			-1	μA
Gate to Source Leakage Current	V_{GS} = ±25V, V_{DS} = 0V			±10	μA
teristics (Note 2)					
	V _{CS} = V _{DS} . I _D = -250µA	-1	-2	-3	V
Gate to Source Threshold Voltage	$I_D = -250 \mu A$, referenced to $25^{\circ}C$		15.7	-	mV/°C
	V _{GS} = -10V , I _D = -11A		10.8	13.0	
Desis to Course On Desistance			17.4	21.8	mΩ
Drain to Source On Resistance	V _{GS} = -10V, I _D = -11A		15.0	18.8	
Forward Transconductance	V _{DS} = -5V, I _D = -11A		34		S
haracteristics	$V_{DS} = -15V_{CS} = 0V_{CS}$		1855	2470	pF
Output Capacitance			335	450	pF
Reverse Transfer Capacitance			330	500	pF
Characteristics (Note 2)					
Turn-On Delay Time			3.0	10	ns
Rise Time			7.8	16	ns
Turn-Off Delay Time	$V_{GS} = -10V, R_{GS} = 6\Omega$		120	200	ns
Fall Time			60	100	ns
Total Gate Charge	V _{DS} = -15V, V _{GS} = -10V, I _D = -11A		44	62	nC
Total Gate Charge			25	35	nC
Gate to Source Gate Charge			7.2		nC
Gate to Drain Charge			11.4		nC
	Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Drain to Source On Resistance Forward Transconductance haracteristics nput Capacitance Dutput Capacitance Reverse Transfer Capacitance Characteristics (Note 2) Furn-On Delay Time Rise Time Furn-Off Delay Time Fall Time Fotal Gate Charge Gate to Source Gate Charge	Coefficient 25° CZero Gate Voltage Drain Current $V_{DS} = -24V, V_{GS} = 0V$ Gate to Source Leakage Current $V_{GS} = \pm 25V, V_{DS} = 0V$ Gate to Source Threshold Voltage $V_{GS} = \pm 25V, V_{DS} = 0V$ Gate to Source Threshold Voltage $I_D = -250\mu$ A, referenced to 25° CDrain to Source On Resistance $V_{GS} = -10V, I_D = -11A$ Orain to Source On Resistance $V_{GS} = -4.5V, I_D = -9A$ VGS = -10V, I_D = -11A $V_{GS} = -10V, I_D = -11A$ T_J = 125^{\circ}C $V_{DS} = -5V, I_D = -9A$ Porain to Source On Resistance $V_{DS} = -5V, I_D = -11A$ Turacteristics $V_{DS} = -5V, I_D = -11A$ Nput Capacitance $V_{DS} = -15V, V_{GS} = 0V,$ Characteristics (Note 2) $V_{DD} = -15V, I_D = -11A$ Turn-On Delay Time $V_{DS} = -15V, V_{GS} = 6\Omega$ Fail Time $V_{DS} = -15V, V_{GS} = -10V,$ Total Gate Charge $V_{DS} = -15V, V_{GS} = -5V,$ Gate to Source Gate Charge $V_{DS} = -15V, V_{GS} = -5V,$ Gate to Source Gate Charge $V_{DS} = -15V, V_{GS} = -5V,$	Coefficient 25° CZero Gate Voltage Drain Current $V_{DS} = -24V, V_{GS} = 0V$ Gate to Source Leakage Current $V_{GS} = \pm 25V, V_{DS} = 0V$ Gate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = -250\mu$ A-1Gate to Source Threshold Voltage $I_D = -250\mu$ A, referenced to 25° C-1Gate to Source On Resistance $V_{GS} = -10V, I_D = -11A$ -1Drain to Source On Resistance $V_{GS} = -4.5V, I_D = -9A$ -1Forward Transconductance $V_{DS} = -5V, I_D = -11A$ -1haracteristics $V_{DS} = -5V, I_D = -11A$ -1nput Capacitance $V_{DS} = -5V, I_D = -11A$ -1Dutput Capacitance $V_{DS} = -15V, V_{GS} = 0V, f = 1MHz$ -1Characteristics (Note 2) $V_{DD} = -15V, I_D = -11A$ -1Furn-On Delay Time $V_{DS} = -15V, V_{GS} = 6\Omega$ -1Fall Time $V_{DS} = -15V, V_{GS} = -10V, I_D = -11A$ -1Fotal Gate Charge $V_{DS} = -15V, V_{GS} = -10V, I_D = -11A$ -1Total Gate Charge $V_{DS} = -15V, V_{GS} = -10V, I_D = -11A$ -1Total Gate Charge $V_{DS} = -15V, V_{GS} = -5V, I_D = -11A$ -1Total Gate Charge $V_{DS} = -15V, V_{GS} = -5V, I_D = -11A$ -1Total Gate Charge $V_{DS} = -15V, V_{GS} = -5V, I_D = -11A$ -1Total Gate Charge $V_{DS} = -15V, V_{GS} = -5V, I_D = -11A$ -1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


b)105°C/W when
mounted on a .04 in ²
pad of 2 oz copper

c) 125°C/W when mounted on a minimun pad


Scale 1 : 1 on letter size paper


Pulse Test:Pulse Width <300 us, Duty Cycle < 2.0%
 The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

www.onsemi.com

www.onsemi.com 3

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative