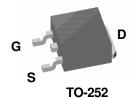


FDD3670

100V N-Channel PowerTrench® MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.


These MOSFETs f eature faster switching and lower gate charge than other MOSFETs with comparable $R_{\text{DS(ON)}}$ specifications.

The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

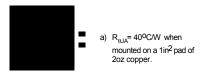
- 34 A, 100 V. $R_{DS(ON)} = 32 \text{ m}\Omega$ @ $V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 35 \text{ m}\Omega$ @ $V_{GS} = 6 \text{ V}$
- Low gate charge (57 nC typical)
- · Fast switching speed
- High performance trench technology for extremely low R_{DS(ON)}
- · High power and current handling capability

Absolute Maximum Ratings TA=25°C unless otherwise noted

	<u> </u>				
Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage	100		V	
V _{GSS}	Gate-Source Voltage		±20	V	
I _D	Drain Current - Continuous	(Note 1)	34	А	
	Drain Current - Pulsed	(Note 3)	100		
P _D	Maximum Power Dissipation @ T _C = 25°C	(Note 1)	83	W	
	@ T _A = 25°C	(Note 1a)	3.8		
	@ T _A = 25°C	(Note 1b)	1.6		
T _J , T _{STG}	Operating and Storage Junction Temperature	re Range	-55 to +175	°C	

Thermal Characteristics

R ₀ JC	Thermal Resistance, Junction-to-Case	(Note 1)	1.8	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W


Package Marking and Ordering Information

Device Marking Device		Reel Size	Tape width	Quantity	
	FDD3670	FDD3670	13"	16mm	2500 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	ource Avalanche Ratings (Note	2)	ı	I	ı	I
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = 50 \text{ V}, \qquad I_D = 7.3 \text{ A}$			360	mJ
lar	Maximum Drain-Source Avalanche Current				7.3	Α
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	100			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C		92		mV/°C
loss	Zero Gate Voltage Drain Current	$V_{DS} = 80 \text{ V}, V_{GS} = 0 \text{ V}$			10	μΑ
GSSF	Gate–Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate–Body Leakage, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
On Char	acteristics (Note 2)					•
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	2.5	4	V
$\Delta V_{GS(th)} \over \Delta T_{,J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C		-7.2		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 10 \text{ V}, I_D = 7.3 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 7.3 \text{ A}, T_J = 125^{\circ}\text{C}$ $V_{GS} = 6 \text{ V}, I_D = 7.0 \text{ A}$		22 39 24	32 56 35	mΩ
I _{D(on)}	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	25			Α
g FS	Forward Transconductance	$V_{DS} = 5 \text{ V}, \qquad I_D = 7.3 \text{ A}$	15	31		S
Dvnamic	Characteristics					
Ciss	Input Capacitance	$V_{DS} = 50 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		2490		pF
Coss	Output Capacitance	f = 1.0 MHz		265		pF
C _{rss}	Reverse Transfer Capacitance			80		pF
Switchin	g Characteristics (Note 2)			•		•
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 50 \text{ V}, \qquad I_D = 1 \text{ A},$		16	26	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		10	18	ns
$t_{\text{d(off)}}$	Turn-Off Delay Time			56	84	ns
t _f	Turn–Off Fall Time			25	40	ns
Qg	Total Gate Charge	$V_{DS} = 50 \text{ V}, \qquad I_{D} = 7.3 \text{ A},$		57	80	nC
Q _{gs}	Gate–Source Charge	V _{GS} = 10 V		11		nC
Q_{gd}	Gate-Drain Charge			15		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain-Source	Ţ Ţ			2.7	Α
V _{SD}	Drain–Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.7 A (Note 2)		0.72	1.2	V

Notes

 R_{BIA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{BIC} is guaranteed by design while R_{BCA} is determined by the user's board design.

b) R_{0JA}= 96°C/W on a minimum mounting pad.

Scale 1: 1 on letter size paper

- 2. Pulse Test: Pulse Width < 300 μs , Duty Cycle < 2.0%
- ${\bf 3.}$ Pulse Id refers to Figure.9 Forward Bias Safe Operation Area.

Typical Characteristics

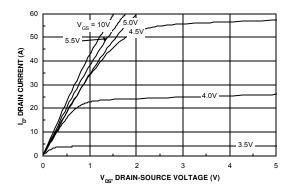


Figure 1. On-Region Characteristics.

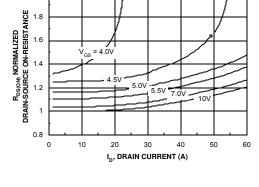


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

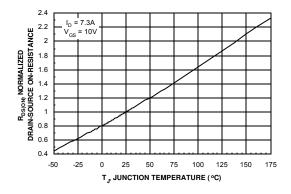


Figure 3. On-Resistance Variation with Temperature.

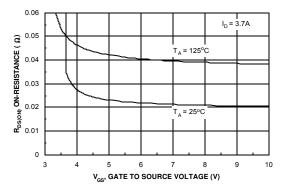


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

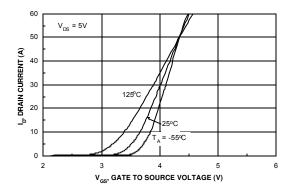


Figure 5. Transfer Characteristics.

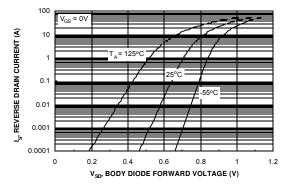
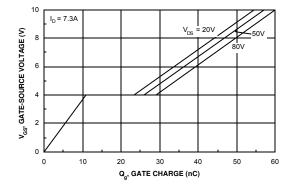



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

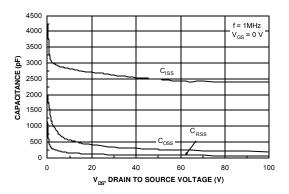


Figure 7. Gate Charge Characteristics.

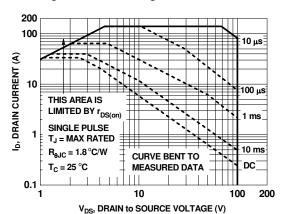


Figure 8. Capacitance Characteristics.

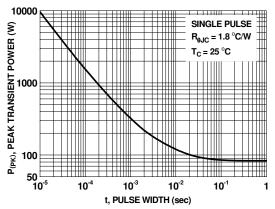


Figure 9. Forward Bias Safe Operating Area.

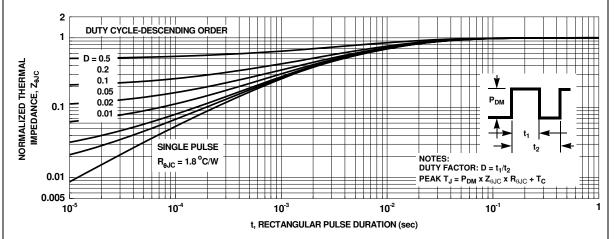
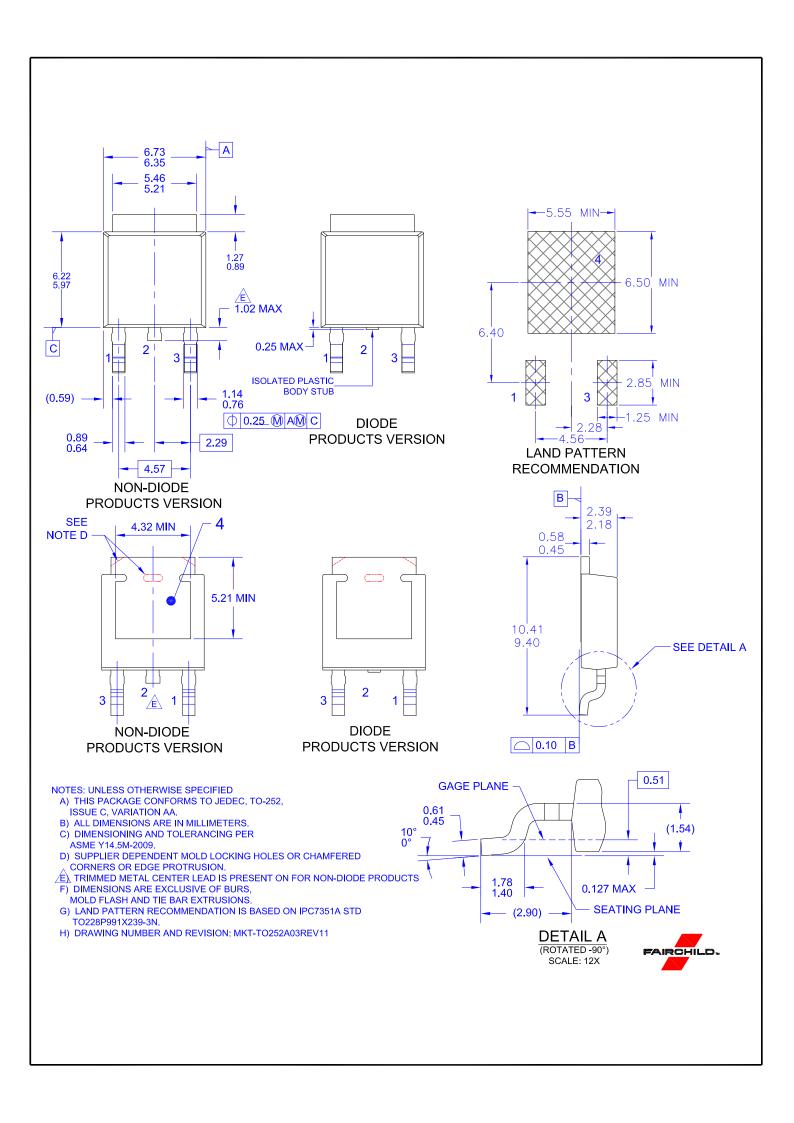



Figure 11. Junction-to-Case Transient Thermal Response Curve

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\texttt{®}} \end{array}$

Awinda® Global Power Resource SM AX-CAP®* GreenBridge™

BitSiC™ Green FPS™
Build it Now™ Green FPS™ e-Series™

 $\begin{array}{cccc} \mathsf{CorePLUS^{\mathsf{TM}}} & \mathsf{G} \textit{max}^{\mathsf{TM}} \\ \mathsf{CorePOWER^{\mathsf{TM}}} & \mathsf{GTO^{\mathsf{TM}}} \\ \textit{CROSSVOLT^{\mathsf{TM}}} & \mathsf{IntelliMAX^{\mathsf{TM}}} \\ \mathsf{CTL^{\mathsf{TM}}} & \mathsf{ISOPLANAR^{\mathsf{TM}}} \\ \end{array}$

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

MicroPak™

#

FACT Quiet Series™ MotionGrid®
FACT® MTi®
FastvCore™ MTx®
FETBench™ mWSaver®
FPS™ OptoHiT™

OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™

QS™ Quiet Series™ RapidConfigure™

OFFT

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TinyPopto™
TinyPower™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™
TRUECURRENT®**
uSerDes™

《SerDes" UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ Xsens™ 仙童®

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms					
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. 177