

Octal Sample-and-Hold with Multiplexed Input

SMP08*

FEATURES
Internal Hold Capacitors
Low Droop Rate
TTL/CMOS Compatible Logic Inputs
Single or Dual Supply Operation
Break-Before-Make Channel Addressing
Compatible With CD4051 Pinout
Low Cost

APPLICATIONS
Multiple Path Timing Deskew for A.T.E.
Memory Programmers
Mass Flow/Process Control Systems
Multichannel Data Acquisition Systems
Robotics and Control Systems
Medical and Analytical Instrumentation
Event Analysis
Stage Lighting Control

GENERAL DESCRIPTION

The SMP08 is a monolithic octal sample-and-hold; it has eight internal buffer amplifiers, input multiplexer, and internal hold capacitors. It is manufactured in an advanced oxide isolated CMOS technology to obtain high accuracy, low droop rate, and fast acquisition time. The SMP08 has a typical linearity error of only 0.01% and can accurately acquire a 10-bit input signal to $\pm 1/2$ LSB in less than 7 microseconds. The SMP08's output swing includes the negative supply in both single and dual supply operation.

The SMP08 was specifically designed for systems that use a calibration cycle to adjust a multiple of system parameters. The low cost and high level of integration make the SMP08 ideal for calibration requirements that have previously required an ASIC, or high cost multiple D/A converters.

The SMP08 is also ideally suited for a wide variety of sampleand-hold applications including amplifier offset or VCA gain adjustments. One or more SMP08s can be used with single or multiple DACs to provide multiple set points within a system.

The SMP08 offers significant cost and size reduction over discrete designs. It is available in a 16-pin hermetic or plastic DIP, or surface-mount SOIC package.

*Manufactured under the following U.S. patent: 4,739,281

FUNCTIONAL BLOCK DIAGRAM

PIN CONNECTION

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option*	
SMP08FQ	−40°C to +85°C	Cerdip	Q-16	
SMP08FP	-40°C to +85°C	Plastic DIP	N-16	
SMP08FS	-40°C to +85°C	SO-16	R-16A	

^{*}For outline information see Package Information section.

To obtain the most recent version or complete data sheet, call our fax retrieval system at 1-800-446-6212 or visit our World Wide Web site at http://www.analog.com.

SMP08-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_{DD} = +5 \text{ V}, V_{SS} = -5 \text{ V}, DGND = 0 \text{ V}, R_L = No Load, T_A = -40°C to +85°C for SMP08F, unless otherwise noted)$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Linearity Error		$3 \text{ V} \leq \text{V}_{\text{IN}} \leq +3 \text{ V}$		0.01		9%
Buffer Offset Voltage	V_{OS}	$T_A = +25^{\circ}C$		2.5	10	mV
		$40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		3.5	20	mV
Hold Step	$V_{\rm HS}$	$V_{IN} = 0 \text{ V}, T_A = +25 \text{ 'C to } +85 \text{ 'C}$		2.8	4	mV
		$V_{IN} = 0 \text{ V}, T_A = 40^{\circ}\text{C}$			5	mV
Droop Rate	$\Delta V_{CH}/\Delta t$	$T_A = +25^{\circ}C, V_{IN} = 0 \text{ V}$		2	20	mV/s
Output Source Current	Isource	$V_{IN} = 0 V^{I}$	1.2			mA
Output Sink Current	I_{SINK}	$V_{IN} = 0 V^{I}$	0.5			mA
Output Voltage Range		$R_{\rm L} = 20 \text{ k}\Omega$	3.0		+3.0	V
LOGIC CHARACTERISTICS	1					
Logic Input High Voltage	VINH		2.4			V
Logic Input Low Voltage	V _{INI}				0.8	V
Logic Input Current	I_{IN}	$V_{IN} = 2.4 \text{ V}$		0.5	1	μA
DYNAMIC PERFORMANCE ²	1					
Acquisition Time	LAO	$T_A = +25^{\circ}C$, 3 V to +3 V to 0.1%		3.6		μs
Hold Mode Settling Time	tH	To ±1 mV of Final Value		1		μs
Channel Select Time	teH			90		ns
Channel Deselect Time	tDCS			45		ns
Inhibit Recovery Time	tiR			90		ns
Slew Rate	SR			3		V/µs
Capacitive Load Stability		<30% Overshoot		500		pF
Analog Crosstalk		3 V to +3 V Step		72		dB
SUPPLY CHARACTERISTICS			Ī			
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5 \text{ V to } \pm 6 \text{ V}$	60	75		dB
Supply Current	I_{DD}	$T_A = +25 \text{ C}$		4	7.5	mA
THE RITE OF THE STATE OF THE ST		$40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		5	9.5	

NOTES

0.3 V. Visis

Specifications subject to change without notice. ABSOLUTE MAXIMUM RATINGS¹

AUOGIC to twitter and arrest and arrest	
V _{IN} to DGND	\dots V_{SS} , V_{DD}
Vot'r to DGND	\dots V_{SS} , V_{DD}
Analog Output Current	+ 20 mA
(Not s	hort-circuit protected)
Operating Temperature Range	
FP, FS	40°C to +85°C
Junction Temperature	+150"C
Storage Temperature	65°C to +150°C
Lead Temperature (Soldering, 60 sec)	+300°C

Package Type	θ_{JA}^2	θјс	Units
16-Pin Hermetic DIP (Q)	94	12	°C/W
16-Pin Plastic DIP (P)	76	33	°C/W
16-Pin SOIC (S)	92	27	°C/W

NOTES

Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

 $^{2}\theta_{JA}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for cerdip and plastic DIP packages; θ_{JA} is specified for device soldered to printed circuit board for SO package.

CAUTION

Version to DGND

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the SMP08 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Outputs are capable of sinking and sourcing over 20 mA but offset is guaranteed at specified load levels.

All input control signals are specified with $t_1 = t_1 = 5$ ins (10% to 90% of +5 V) and timed from a voltage level of 1.6 V.