ON Semiconductor

Is Now

Onsemí

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

IGBT

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss.

Features

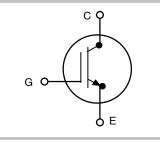
- Optimized for Very Low V_{CEsat}
- Low Switching Loss Reduces System Power Dissipation
- 5 µs Short–Circuit Capability
- These are Pb–Free Devices

Typical Applications

• Power Factor Correction

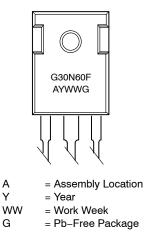
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V _{CES}	600	V
Collector current @ Tc = 25°C @ Tc = 100°C	Ι _C	60 30	A
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	120	A
Short–circuit withstand time V_{GE} = 15 V, V_{CE} = 300 V, $T_J \le +150^{\circ}C$	$V_{GE} = 15 \text{ V}, \text{ V}_{CE} = 300 \text{ V},$		μS
Gate-emitter voltage Transient Gate Emitter Voltage ($t_p = 5 \ \mu s, D < 0.010$)	V _{GE}	±20 ±30	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	167 67	W
Operating junction temperature range	TJ	-55 to +150	°C
Storage temperature range	T _{stg}	–55 to +150	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®


http://onsemi.com

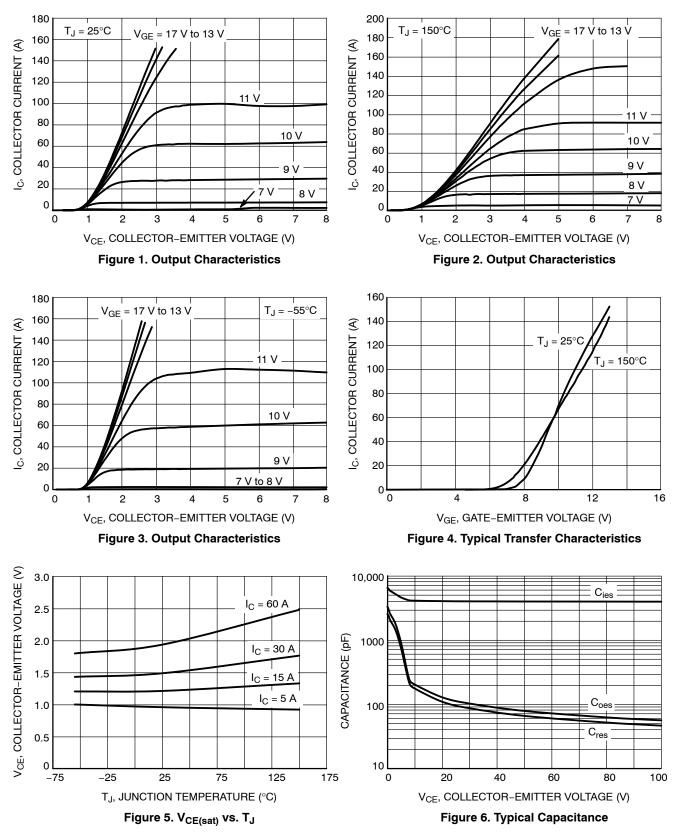
30 A, 600 V V_{CEsat} = 1.5 V

MARKING DIAGRAM

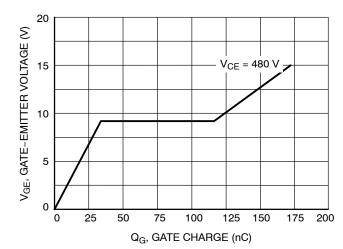
ORDERING INFORMATION

Device	Package	Shipping
NGTG30N60FWG	TO-247 (Pb-Free)	30 Units / Rail

THERMAL CHARACTERISTICS

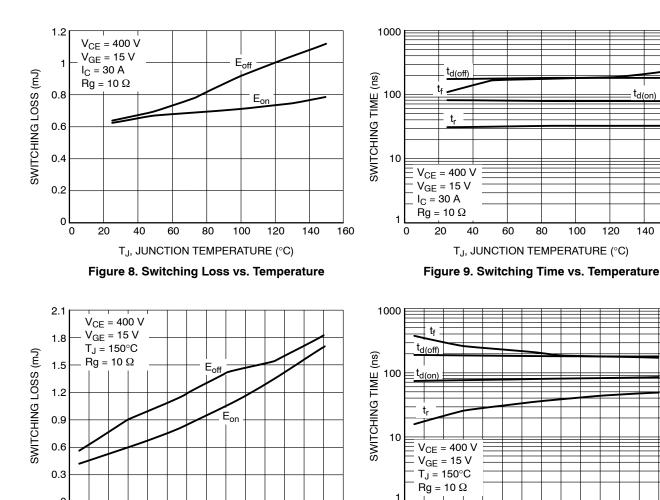

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ ext{ heta}JC}$	0.75	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC						
Collector-emitter breakdown voltage, gate-emitter short-circuited	V_{GE} = 0 V, I _C = 500 µA	V _{(BR)CES}	600	-	-	V
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 30 A V_{GE} = 15 V, I _C = 30 A, T _J = 150°C	V _{CEsat}	1.25 -	1.45 1.75	1.70 -	V
Gate-emitter threshold voltage	V_{GE} = V_{CE} , I_C = 200 μ A	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}$ $V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}, T_{J} = 150^{\circ}\text{C}$	I _{CES}	-	_ _	0.2 2	mA
Gate leakage current, collector-emitter short-circuited	V_{GE} = 20 V , V_{CE} = 0 V	I _{GES}	-	-	100	nA
DYNAMIC CHARACTERISTIC						
Input capacitance		C _{ies}	-	4100	-	pF
Output capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	115	-	
Reverse transfer capacitance		C _{res}	-	95	-	I
Gate charge total		Qg		170		nC
Gate to emitter charge	V _{CE} = 480 V, I _C = 30 A, V _{GE} = 15 V	Q _{ge}		34		
Gate to collector charge		Q _{gc}		83		
SWITCHING CHARACTERISTIC, INDUC		•				
Turn-on delay time		t _{d(on)}		81		ns
Rise time	1	tr		31		
Turn-off delay time	T _J = 25°C	t _{d(off)}		190		
Fall time	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 30 \text{ A}$ B ₋ - 10 Q	t _f		110		
Turn-on switching loss	R _g = 10 Ω V _{GE} = 0 V/ 15 V*	E _{on}		0.65		mJ
Turn-off switching loss	1	E _{off}		0.65		
Total switching loss	1	E _{ts}		1.30		
Turn-on delay time		t _{d(on)}		80		ns
Rise time	1	t _r		32		
Turn-off delay time	− T _J = 150°C	t _{d(off)}		200		
Fall time	$V_{CC} = 400 \text{ V}, I_{C} = 30 \text{ A}$	t _f		230		
Turn-on switching loss	$R_g = 10 \Omega$ $V_{GE} = 0 V/15 V*$	E _{on}		0.80		mJ
Turn-off switching loss	1	E _{off}		1.1		
Total switching loss	1	E _{ts}		1.90		

*Includes diode reverse recovery loss using NGTB30N60FWG.

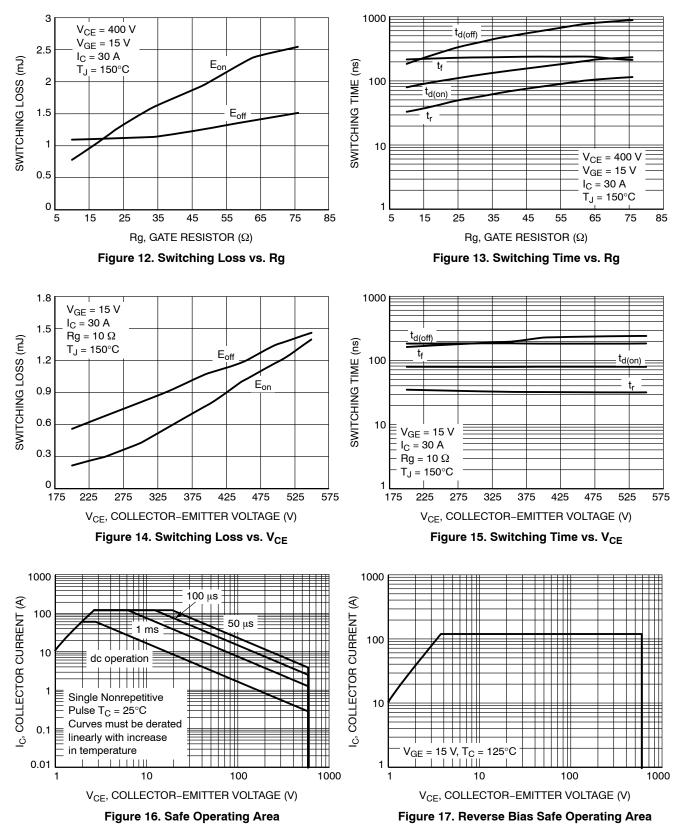
TYPICAL CHARACTERISTICS



t_{d(on)}

140 160

I_C, COLLECTOR CURRENT (A)


Figure 11. Switching Time vs. I_C

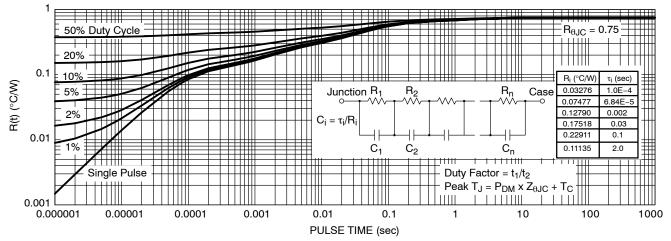

IC, COLLECTOR CURRENT (A)

Figure 10. Switching Loss vs. I_C

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

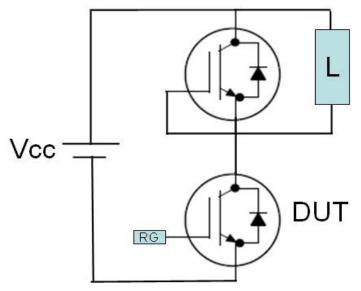
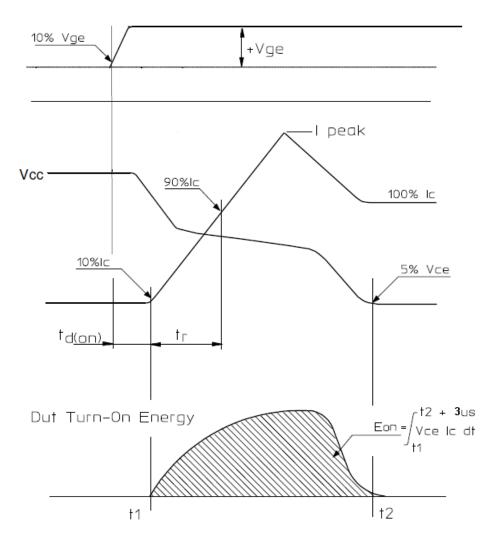
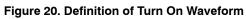




Figure 19. Test Circuit for Switching Characteristics

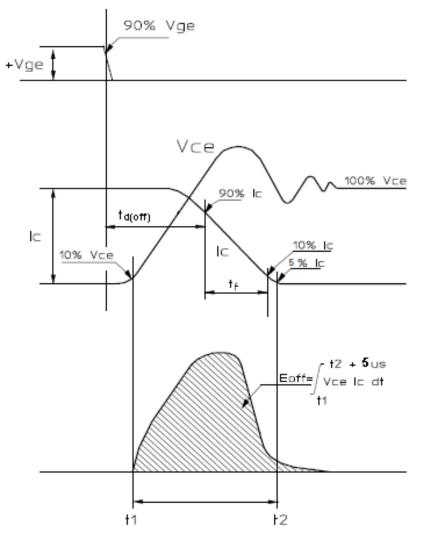
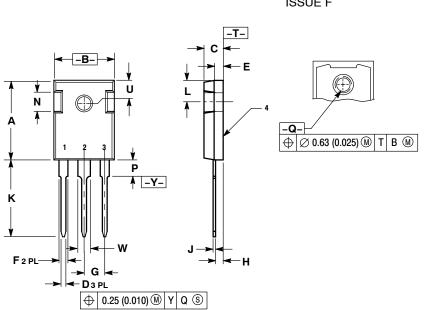



Figure 21. Definition of Turn Off Waveform

PACKAGE DIMENSIONS

TO-247 CASE 340L-02 ISSUE F

OTES: 1. DIMENSIONING AND TOLERANCING PER AI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.							
		MILLIN	MILLIMETERS INCHES				
D	DIM	MIN	MAX	MIN	MAX		
	Α	20.32	21.08	0.800	8.30		
	В	15.75	16.26	0.620	0.640		
	С	4.70	5.30	0.185	0.209		
	D	1.00	1.40	0.040	0.055		
	E	1.90	2.60	0.075	0.102		
	F	1.65	2.13	0.065	0.084		
	G	5.45 BSC 0.215 BSC			BSC		
	H	1.50	2.49	0.059	0.098		
	J	0.40	0.80	0.016	0.031		
	Κ	19.81	20.83	0.780	0.820		
	L	5.40	6.20	0.212	0.244		
	Ν	4.32	5.49	0.170	0.216		
	Ρ		4.50		0.177		
	Q	3.55	3.65	0.140	0.144		
	U	6.15	BSC	0.242	BSC		
1	W	2.87	3.12	0.113	0.123		

STYLE 4:

PIN 1. GATE 2. COLLECTOR 3. EMITTER

4. COLLECTOR

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any dark associated with such unintended or unauthorized applicable copyright as medigine regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative