

www.vishay.com

Vishay Vitramon

Surface Mount Multilayer Ceramic Capacitors for Pulse Current Applications

FEATURES

 Low electrostrictive ceramic formulation for repeated charge and discharge cycles

• High pulse discharge currents

· Excellent reliability and high voltage performance

HALOGEN

• Available with tin / lead barrier termination (code "L")

· Wet built process

Reliable Noble Metal Electrode (NME) system

 Made with a combination of design, materials and tight process control to achieve very high field reliability

 Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

APPLICATIONS

- Power supplies
- Converters
- Voltage multipliers

ELECTRICAL SPECIFICATIONS

Note

• Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +125 °C

Capacitance Range: 4.7 nF to 560 nF

Voltage Range: 1000 V_{DC}, 1500 V_{DC}

Temperature Coefficient of Capacitance (TCC):

X7R: \pm 15 % from -55 °C to +125 °C, with 0 V_{DC} applied

Dissipation Factor (DF):

2.5 % max. at 1.0 V_{RMS} and 1 kHz

Aging Rate: 1 % maximum per decade

Insulation Resistance (IR):

at +25 °C and rated voltage: 100 000 $M\Omega$ minimum or

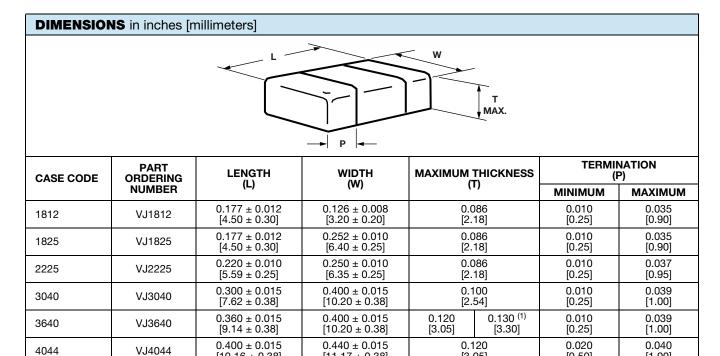
1000 Ω F, whichever is less

at +125 °C and rated voltage: 10 000 M Ω minimum or

100 Ω F, whichever is less

Dielectric Strength Test:

performed per method 103 of EIA 198-2-E.


Applied test voltages:

1000 V_{DC} / 1500 V_{DC} -rated: min. 120 % of rated voltage

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

www.vishay.com

Vishay Vitramon

Note

 $[10.16 \pm 0.38]$

QUICK REFERENCE DATA								
DIELECTRIC	CASE	MAXIMUM VOLTAGE	CAPACITANCE					
		(V)	MINIMUM	MAXIMUM				
X7R (X5P)	1812	1500	4.7 nF	27 nF				
	1825	1500	10 nF	56 nF				
	2225	1500	18 nF	100 nF				
	3040	1500	33 nF	220 nF				
	3640	1500	47 nF	330 nF				
	4044	1500	100 nF	560 nF				

 $[11.17 \pm 0.38]$

[3.05]

[0.50]

[1.00]

Note

· Detail ratings see "Selection Chart"

ORDE	ORDERING INFORMATION								
VJ3640	Y	184	K	Х	R	Α	Т	SE	
CASE CODE 1 1812 1825 2225 3040 3640 4044	DIELECTRIC Y = X7R	CAPACITANCE NOMINAL CODE Expressed in picofarads (pF). The first two digits are significant, the third is a multiplier. Examples: 184 = 180 000 pF	CAPACITANCE TOLERANCE $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	X = Ni barrier 100 % tin matte plated L = Ni barrier with tin lead plated finish min. 4 % lead	DC VOLTAGE RATING (1) G = 1000 V R = 1500 V	MARKING A = unmarked	PACKAGING (3) T = 7" reel / plastic tape J = 7" reel / plastic tape (low quantity)	PROCESS CODE (2)	

Notes

- (1) DC voltage rating should not be exceeded in application.
- (2) Process code with 2 digits has to be added.
- (3) All types of packaging may not be available for all case sizes, see table end of this datasheet.

⁽¹⁾ Thickness used for 3640 - 1500 V - 220 nF and 270 nF

VJ Source Energy Capacitor (SEC)

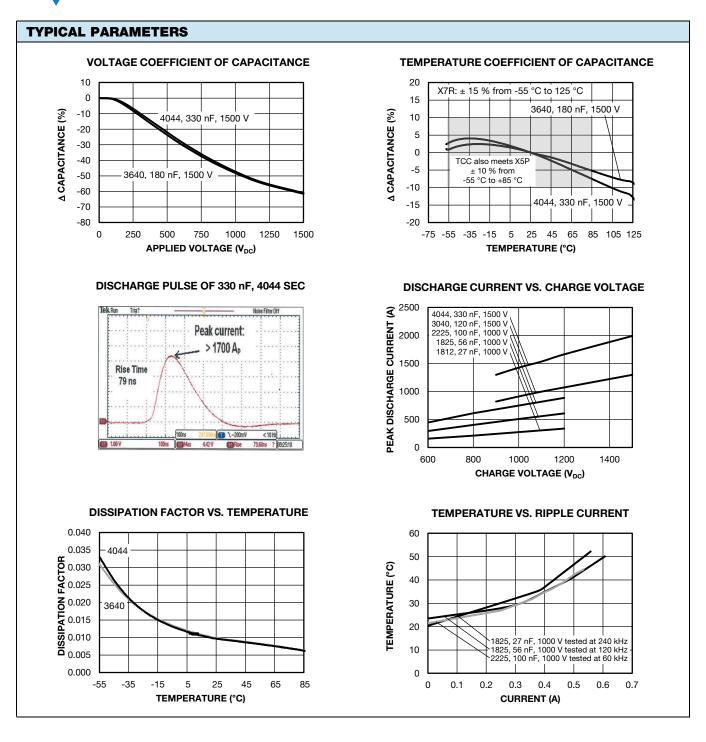
Vishay Vitramon

SELECTIO	ON CHAR	T											
DIELECTRIC		X7R											
STYLE VJ1812		312 ⁽¹⁾	VJ1825 ⁽¹⁾		VJ2225 ⁽¹⁾		VJ3040 ⁽¹⁾		VJ36	40 ⁽¹⁾	VJ4044 ⁽¹⁾		
CASE CODE 1812		12	1825		2225		3040		3640		4044		
VOLTAGE (V _{DC})		1000	1500	1000	1500	1000	1500	1000	1500	1000	1500	1000	1500
VOLTAGE CODE		G	R	G	R	G	R	G	R	G	R	G	R
CAP. CODE	CAP.												
332	3.3 nF												
392	3.9 nF												
472	4.7 nF		•										
562	5.6 nF		•										
682	6.8 nF	•	•										
822	8.2 nF	•	•										
103	10 nF	•	•		•								
123	12 nF	•	•		•								
153	15 nF	•	•	•	•								
183	18 nF	•	•	•	•		•						
223	22 nF	•		•	•		•						
273	27 nF	•		•	•	•	•						
333	33 nF			•	•	•	•		•				
393	39 nF			•	•	•	•		•				
473	47 nF			•		•	•		•		•		
563	56 nF			•		•	•	•	•		•		
683	68 nF					•	•	•	•		•		
823	82 nF					•		•	•		•		
104	100 nF					•		•	•	•	•		•
124	120 nF							•	•	•	•		•
154	150 nF							•		•	•	•	•
184	180 nF							•		•	•	•	•
224	220 nF							•		•	•	•	•
274	270 nF									•	•	•	•
334	330 nF									•		•	•
394	390 nF											•	
474	470 nF											•	
564	560 nF											•	
684	680 nF												
824	820 nF												
105	1000 nF												

Notes

RoHS-compliant except when supplied with lead (Pb)-containing termination, code "L"

[•] Plastic tape


⁽¹⁾ See soldering recommendations within this data book, or visit www.vishay.com/doc?45034

www.vishay.com

Vishay Vitramon

VJ Source Energy Capacitor (SEC)

Vishay Vitramon

STANDARD PACKAGING QUANTITIES							
		7" REEL QUANTITIES					
CASE CODE	TAPE SIZE	PLASTIC TAPE PACKAGING CODE "T"	LOW QUANTITY PACKAGING CODE "J"				
1812	12 mm	1000	500				
1825	12 mm	1000	500				
2225	12 mm	500	250				
3040	16 mm	500	n/a				
3640	16 mm	350	n/a				
4044	24 mm	300	n/a				

Notes

- Reference: EIA standard RS 481 "Taping of Surface Mount Components for Automatic Placement"
- n/a = not available

STORAGE AND HANDLING CONDITIONS

- (1) Store the components at 5 $^{\circ}$ C to 40 $^{\circ}$ C ambient temperature and \leq 70 % relative humidity conditions.
- (2) The product is recommended to be used within a time-frame of 2 years after shipment. Check solderability in case extended shelf life beyond the expiry date is needed.

Precautions

- a. Do not store products in an environment containing corrosive elements, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. This may cause corrosion or oxidization of the terminations, which can easily lead to poor soldering.
- b. Store products on the shelf and avoid exposure to moisture or dust.
- c. Do not expose products to excessive shock, vibration, direct sunlight and so on.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.