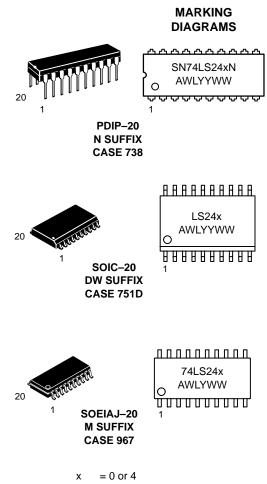
Octal Buffer/Line Driver with 3-State Outputs

The SN74LS240 and SN74LS244 are Octal Buffers and Line Drivers designed to be employed as memory address drivers, clock drivers and bus-oriented transmitters/receivers which provide improved PC board density.

- Hysteresis at Inputs to Improve Noise Margins
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Input Clamp Diodes Limit High-Speed Termination Effects

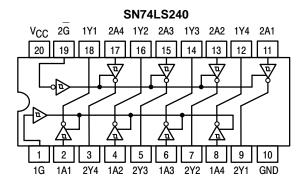
GUARANTEED OPERATING RANGES

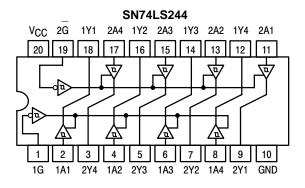

Symbol	Parameter	Min	Тур	Max	Unit
VCC	Supply Voltage	4.75	5.0	5.25	V
TA	Operating Ambient Temperature Range	0	25	70	°C
ЮН	Output Current – High			-3.0	mA
				-15	mA
IOL	Output Current – Low			24	mA

ON Semiconductor

http://onsemi.com

LOW POWER SCHOTTKY




- A = Assembly Location
- WL = Wafer Lot
- YY = Year WW = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

LOGIC AND CONNECTION DIAGRAMS DIP (TOP VIEW)

TRUTH TABLES

SN74LS240

INP			
1G, 2G	D	OUTPUT	
L	L	Н	
L	н	L	
Н	Х	(Z)	

 $H = HIGH \ Voltage \ Level \\ L = LOW \ Voltage \ Level \\ X = Immaterial \\ Z = HIGH \ Impedance$

SN74LS244

INP		
1G, 2G	OUTPUT	
L	L	L
L	Н	Н
Н	Х	(Z)

http://onsemi.com 2

			Limits						
Symbol	Paramete		Min	Тур	Max	Unit	Test	Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
VIL	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage for All Inputs		
V _{T+} -V _{T-}	Hysteresis		0.2	0.4		V	$V_{CC} = MIN$	V _{CC} = MIN	
VIK	Input Clamp Diode Volta	ige		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} =$	–18 mA	
Veri	Output HIGH Voltage		2.4	3.4		V	V_{CC} = MIN, I _{OH} = -3.0 mA		
VOH	Oulput HIGH voltage		2.0			V	$V_{CC} = MIN, I_{OH} = MAX$		
V _{OL} Ou	Output LOW Voltage			0.25	0.4	V	I _{OL} = 12 mA	$V_{CC} = V_{CC} MIN,$	
				0.35	0.5	V	I _{OL} = 24 mA	VIN = VIL or VIH per Truth Table	
IOZH	Output Off Current HIG	ł			20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V		
IOZL	Output Off Current LOW	1			-20	μΑ	V _{CC} = MAX, V _{OUT} = 0.4 V		
I	Input HIGH Current				20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V	
ЧН					0.1	mA	$V_{CC} = MAX, V_{IN}$	= 7.0 V	
۱ _{IL}	Input LOW Current				-0.2	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$		
IOS	Output Short Circuit Cur	rent (Note 1)	-40		-225	mA	$V_{CC} = MAX$		
	Power Supply Current Total, Output HIGH				27				
ICC	Total, Output LOW	LS240			44	1			
	LS244 Total at HIGH Z LS240	LS244			46	mA	V _{CC} = MAX		
		LS240			50	1			
	LS244				54	1			

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

1. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
^t PLH ^t PHL	Propagation Delay, Data to Output LS240		9.0 12	14 18	ns	
^t PLH ^t PHL	Propagation Delay, Data to Output LS244		12 12	18 18	ns	C _L = 45 pF, R _L = 667 Ω
^t PZH	Output Enable Time to HIGH Level		15	23	ns	
^t PZL	Output Enable Time to LOW Level		20	30	ns	
^t PLZ	Output Disable Time from LOW Level		15	25	ns	С _L = 5.0 рF,
^t PHZ	Output Disable Time from HIGH Level		10	18	ns	$R_{L} = 667 \Omega$

AC WAVEFORMS

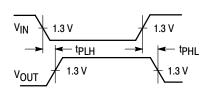


Figure 1.

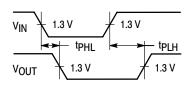
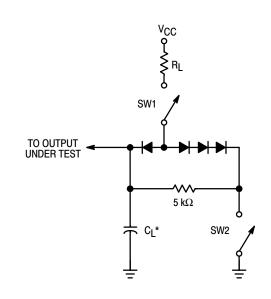



Figure 2.

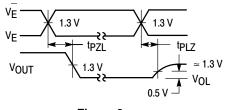


Figure 3.

 V_{E}

 V_{E}

VOUT

SYMBOL	SW1	SW2
^t PZH	Open	Closed
^t PZL	Closed	Open
^t PLZ	Closed	Closed
^t PHZ	Closed	Closed

Figure 5.

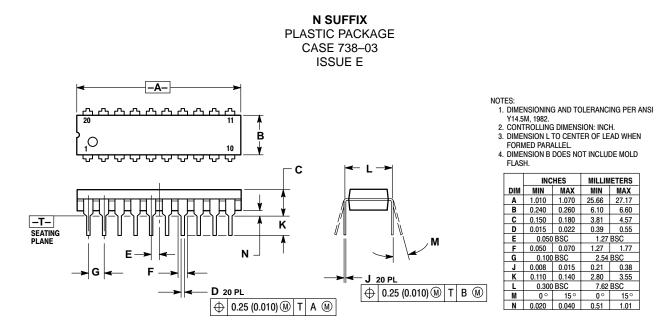
1.3 V

^tPZH

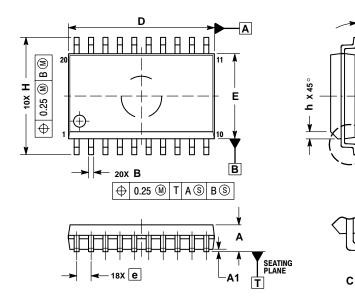
1.3 V

1.3 V

^tPHZ <u>_</u> ≥VOH _ ≈ 1.3 V


0.5 V

DEVICE ORDERING INFORMATION


Device Order Number	Package Type	Tape and Reel Size
SN74LS240N	PDIP-20	1440 Units/Box
SN74LS240DW	SOIC-WIDE	38 Units/Rail
SN74LS240DWR2	SOIC-WIDE	2500/Tape and Reel
SN74LS240M	SOEIAJ-20	See Note 2
SN74LS240MEL	SOEIAJ-20	See Note 2
SN74LS244N	PDIP-20	1440 Units/Box
SN74LS244DW	SOIC-WIDE	38 Units/Rail
SN74LS244DWR2	SOIC-WIDE	2500/Tape and Reel
SN74LS244M	SOEIAJ-20	See Note 2
SN74LS244MEL	SOEIAJ-20	See Note 2

2. For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

PACKAGE DIMENSIONS

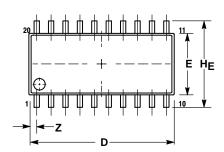
D SUFFIX PLASTIC SOIC PACKAGE CASE 751D-05 **ISSUE F**

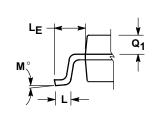
NOTES:

- I. DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD

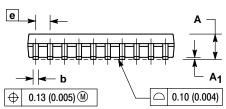
4.57

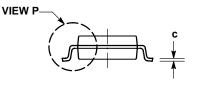
15°


1.01


- PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- 4 5.
- MAXIMUM MOLD FRO INDIANO (1.5 PER SIDE) DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
С	0.23	0.32		
D	12.65	12.95		
Ε	7.40	7.60		
e	1.27	BSC		
Н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
θ	0 °	7 °		


PACKAGE DIMENSIONS


M SUFFIX SOEIAJ PACKAGE CASE 967-01 ISSUE O

DETAIL P

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) DED CIDE
- 4.
- PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR COATED ON THE LOWER 5. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT, MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α		2.05		0.081	
A ₁	0.05	0.20	0.002	0.008	
b	0.35	0.50	0.014	0.020	
C	0.18	0.27	0.007	0.011	
D	12.35	12.80	0.486	0.504	
Е	5.10	5.45	0.201	0.215	
e	1.27	BSC	0.050 BSC		
HE	7.40	8.20	0.291	0.323	
L	0.50	0.85	0.020	0.033	
LE	1.10	1.50	0.043	0.059	
Μ	0 °	10 °	0 °	10 °	
Q ₁	0.70	0.90	0.028	0.035	
Z		0.81		0.032	

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.