

Manufacturer:

CRYSTAL SPECIFICATION

ECS Inc. International

Manufacturer P/N:	ECS-480-CDX-2301
Customer Approval :	

Tel: (913)-782-7787 Fax: (913)-782-6991 Website: www.ecsxtal.com
Sales: sales@ecsxtal.com

ECS Inc. International

Engineering: engineering@ecsxtal.com

06-02-2022 Date:

B. Slatten Approved By:

Checked By: D. Kelly

Designer: A. Anderson

Address: 15351 W. 109th Street Lenexa Kansas 66219

Rev.	Description of Revision History	Date	Designer	Checked By D. Kelly
1	New Publication	06-02-2022	A. Anderson	D. Kelly

CRYSTAL SPECIFICATION

1. Description : Quartz Crystal

2. Nominal Frequency : 48.0000000 MHz

3. Center Frequency : 48.0000000 MHz

4. Dimension & Drawing No. : ECS-33B

5. Oscillation Mode : Fundamental

6. Cutting Mode : AT cut

7. Packing Style : Tape & Reel

8. Measurement Instrument : S&A 250B (Measured FL)

9. Electrical Characteristics :

[1] Operating Conditions:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Operating Temperature Range	Topt	-40		85	°C	
Storage Temperature Range	Tstg	-40		125	°C	
Load Capacitance	CL		8		pF	
Drive Level	DL	0.01		200	μW	

[2] Frequency Stability:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Tolerance	dF/Fo	-10		10	ppm	Refer to Center Frequency @25±3°C
Stability Over Temperature	dF/F25	-15		15	ppm	-40 ~ +85°C
Aging @+25°C ±3°C	dF/F25	-1		1	ppm	One Year

dF/Fo: Frequency Deviation Refer to Center Frequency dF/F25: Frequency Deviation Refer to 25 °C Frequency

[3] Electrical Performance:

Item	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Equivalent Series Resistance	ESR			23	Ω	@Series
Shunt Capacitance	C0			2.0	pF	
Insulation Resistance	IR	500			ΜΩ	@DC 100 Volt

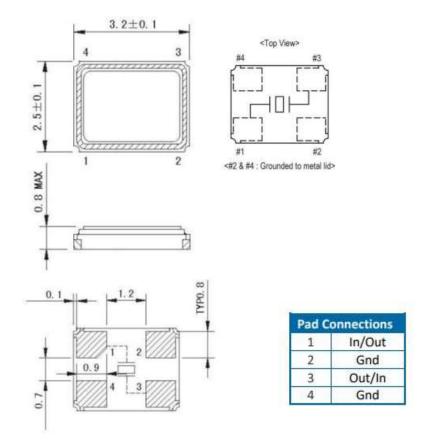
10. Marking: Laser

TBD	

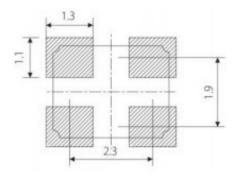
4	4	-			
п	1	ĸ	em	ar	k

*Compliant with EU RoHS 2015/863		
* MSL 1		

■Note


1. General cleaning solutions or ultrasonic cleaning method may be used to clean our products. However, under certain circumstances, ultrasonic cleaning machine could generate resonance at the oscillation frequency of our products and thus deteriorate the electrical characteristics in devices, and even damage the overall structure of devices. Therefore, verification test is recommended before cleaning.

2. Avoid mounting and processing by Ultrasonic welding this method has a possibility of an excessive vibration spreading inside the crystal products and becoming the cause of characteristic deterioration and not oscillating.



Dimensions: Top, Side and Bottom View

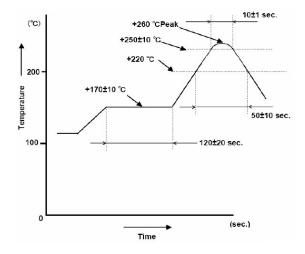
Unit: mm

Land Pattern: (Reference)

RELIABILITY SPECIFICATION

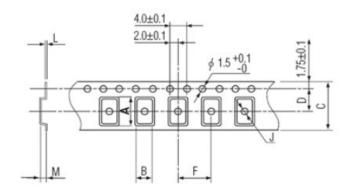
1. ENVIRONMENTAL PERFORMANCE

ITEM		CONDITION					
1. HIGH TEMPERATURE	STORED AT 85±2°C FOR 1000±12H. (If Customer's temperature request is						
STORAGE	higher than the standard, Temperature test must be done for customer						
	requirements.)						
	THEN 25±2°C OVER 2H BEFORE TESTING.						
2. LOW TEMPERATURE	STORED AT -40±2°C FO	R 500±12H. (If Customer's temperature request is					
STORAGE	lower than the standard, Temperature test must be done for customer						
	requirements.)						
	THEN 25±2°C OVER 2H BEFORE TESTING.						
3. HIGH TEMP. & HUMIDITY	STORED AT 60 ± 2 °C AND HUMIDITY $90 \sim 95\%$ FOR 500 ± 12 H.						
	THEN 25±2°C OVER 2H I	BEFORE TESTING.					
4. TEMPERATURE CYCLE	THE CRYSTAL UNIT SH	ALL BE SUBJECTED TO 1000 SUCCESSIVE					
	CHANGE OF TEMPERAT	TURE CYCLES, THEN 25 \pm 2°C OVER 2 H					
	BEFORE TESTING, EACI	H CYCLE AS BELLOW:					
	TEMPERATURE	DURATION					
	140+0/-6°C	$30 \pm 3 \text{ MINUTES}$					
	2. 25°C ± 2°C	2∼3 MINUTES					
	3. 125+4/-0°C	30 ± 3 MINUTES					
	4. 25°C ± 2°C	2∼3 MINUTES					


2. MECHANICAL PERFORMANCE

ITEM	CONDITION
5. SOLDERABILITY	THE LEAD IS IMMERSED IN A $260 \pm 5^{\circ}$ C SOLDER BATH WITHIN
	2±0.6 SECONDS.
6. RESISTANCE TO	REFLOW CHART AS ATTACH SHEET. TWICE PASS.
SOLDERING HEAT	
7. FREE FALL	FREE DROPPING FROM 75 cm HEIGHT 3 TIMES ON A HARD
	WOODEN BOARD.
8. VIBRATION	FREQUENCY: 10~55Hz,
	AMPLITUDE (TOTAL EXCURSION) : $1.5 \text{mm} \pm 15\%$,
	SWEEP TIME: 1MIN, 3 DIRECTION(X, Y, Z) EACH FOR 2 Hrs.
9. GROSS LEAK	STANDARD SAMPLE FOR AUTOMATIC GROSS LEAK DETECTOR,
	TEST PRESSURE: 0.2 Mpa
10. FINE LEAK	HELIUM BOMBING 5.0~5.5 Kgf / cm ²
	FOR 2 HOURS.

11. TERMINAL STRENGTH	SHALL BE PRESSURIZED AT A SPEED OF APPROX.0.5mm/sec IN THE DIRECTION INDICATED BY THE ARROW UNTIL THE BENDING WIDTH REACHES 3mm AND HELD FOR 5 SECONDS.
12. STICKING TENDENCY	A R0.5 JIG SHALL BE USED TO APPLY A 10N DEAD LOAD IN THE DIRECTION INDICATED BY THE ARROW TO THE ELEMENT AND RETAIN IT FOR 10 SECONDS.
13. ELEMENT ASSEMBLY	A R0.5 PRESSURIZED BAR SHALL BE USED TO APPLY A 10N
STRENGTH	LOAD IN THE CENTER OF ELEMENT AND RETAIN IT FOR 10
	SECONDS.


◆ SUGGESTED REFLOW PROFILE

◆ PACKING Unit: mm

1. CARRIER TYPE

Α	В	С	D	F	J	L	М	Reel Dia.	Qty/Reel
3.5	2.8	8.0	3.5	4.0	1.1	0.25	1.0	180	3000