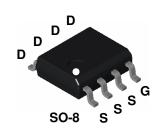
February 2006

General Description

FAIRCHILD Semiconductor

This N-Channel UltraFET device has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$ and fast switching speed.

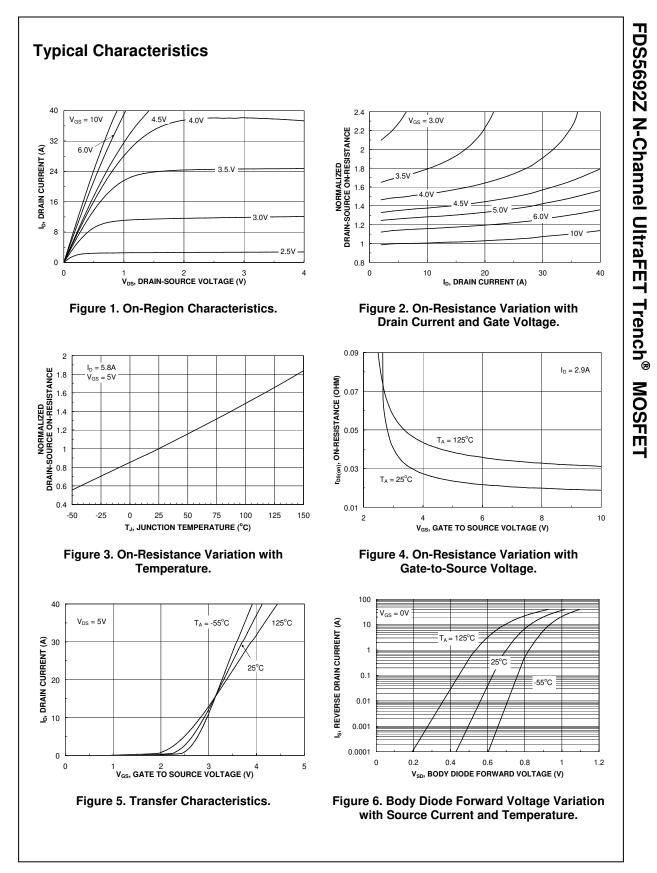

Applications

Features

- Max $r_{DS(on)} = 24m\Omega$ at $V_{GS} = 10V$, $I_D = 5.8A$
- Max $r_{DS(on)} = 33m\Omega$ at $V_{GS} = 4.5V$, $I_D = 5.6A$
- ESD protection diode (note 3)
- Low Qgd
- Fast switching speed

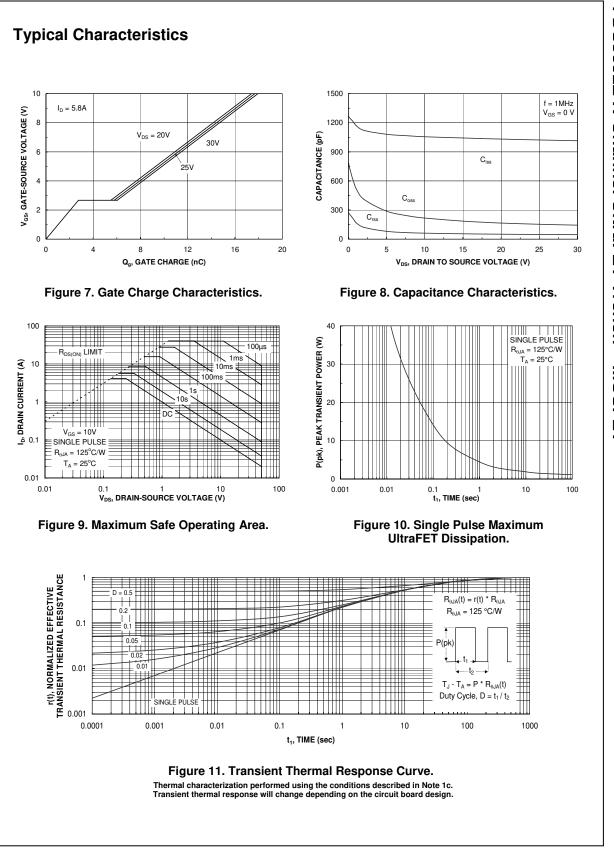
MOSFET Maximum Ratings T_{A=25°C} unless otherwise noted

	Parameter			Ratings	Units
Drain-Sour	ce Voltage			50	V
Gate-Source	e Voltage			± 20	V
Drain Curre	ent – Continuous	(Note	1a)	5.8	А
	– Pulsed			40	
Single Puls	e Avalanche Energy			72	mJ
UltraFET D	UltraFET Dissipation for Single Operation (Note 1a)			2.5	W
		(Note 1	lb)	1.2	
		(Note	1c)	1.1	
Operating a	and Storage Junction Te	mperature Rang	je	-55 to 150	°C
I Charac	teristics				
Thermal Re	Resistance, Junction-to-Ambient (Note 1a)		la)	50	°C/W
Thermal Re	esistance, Junction-to-Ar	nbient (Note	1c)	125	
Thermal Re	esistance, Junction-to-Ca	ASE (Note	1)	25	
e Markin	g and Ordering	Informati	on		•
Marking	Device	Package	Reel Size	Tape width	Quantity
	Gate-Source Drain Curree Single Puls UltraFET D Operating a I Charace Thermal Ree Thermal Ree	Drain-Source Voltage Gate-Source Voltage Drain Current – Continuous – Pulsed Single Pulse Avalanche Energy UltraFET Dissipation for Single Ope Operating and Storage Junction Te I Characteristics Thermal Resistance, Junction-to-Ar Thermal Resistance, Junction-to-Ca	Drain-Source Voltage Gate-Source Voltage Drain Current – Continuous - Pulsed Single Pulse Avalanche Energy UltraFET Dissipation for Single Operation (Note 1) (Note 2) Operating and Storage Junction Temperature Range I Characteristics Thermal Resistance, Junction-to-Ambient (Note 2) Unction-to-Ambient (Note 2) Operating Resistance, Junction-to-Case (Note 2)	Drain-Source Voltage Gate-Source Voltage Drain Current – Continuous (Note 1a) – Pulsed Single Pulse Avalanche Energy UltraFET Dissipation for Single Operation (Note 1a) (Note 1b) (Note 1c) Operating and Storage Junction Temperature Range I Characteristics Thermal Resistance, Junction-to-Ambient (Note 1a) Thermal Resistance, Junction-to-Ambient (Note 1c)	Drain-Source Voltage50Gate-Source Voltage± 20Drain Current – Continuous(Note 1a)- Pulsed40Single Pulse Avalanche Energy72UltraFET Dissipation for Single Operation (Note 1b) (Note 1c)2.5(Note 1b)1.2(Note 1c)1.1Operating and Storage Junction Temperature Range-55 to 150CharacteristicsThermal Resistance, Junction-to-Ambient (Note 1c)Thermal Resistance, Junction-to-Ambient (Note 1c)125Thermal Resistance, Junction-to-Case (Note 1)25


©2006 Fairchild Semiconductor Corporation FDS5692Z Rev C(W)

www.fairchildsemi.com

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	ource Avalanche Ratings			•		•
AS	Drain-Source Avalanche Energy	$V_{DD} = 50 \text{ V}, I_{D} = 12 \text{ A}, L = 1 \text{ mH}$			72	mJ
AS	(Single Pulse) Drain-Source Avalanche Current			12		А
-				12		Λ
	acteristics		50	1		V
BV _{DSS}	Drain–Source Breakdown Voltage Breakdown Voltage Temperature	$V_{GS} = 0 V,$ $I_{D} = 250 \ \mu A$	50			V
ΔT_{J}	Coefficient	$I_D = 250 \ \mu A$, Referenced to $25^{\circ}C$		48		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 40 \text{ V}$ $V_{GS} = 0 \text{ V}$			1	μA
GSS	Gate-Body Leakage	$V_{GS} = \pm 20V, \qquad V_{DS} = 0 V$			± 10	μA
On Char	acteristics (Note 4)	•				
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.6	3	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage	$I_D = 250 \ \mu$ A, Referenced to 25°C		-6		mV/°C
ΔT_{J}	Temperature Coefficient					IIIV/ C
	Static Drain-Source			20	24 33	
DS(on)	On-Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 5.8 \text{ A}, V_{GS} = 10 \text{ V}, I_D = 5.8 \text{ A}, T_J = 125^{\circ}\text{C}$		26 32	33 41	mΩ
Dynamic	Characteristics					1
Dynamic C _{iss}	Input Capacitance	$V_{DS} = 25 V$, $V_{GS} = 0 V$,	1	1025	1	pF
Coss	Output Capacitance	f = 1.0 MHz		150		pF
Crss	Reverse Transfer Capacitance			50		pF
7 _G	Gate Resistance	f = 1.0 MHz		0.79		Ω
	Total Gate Charge, V _{GS} = 10V			18	25	nC
Q _{g(TOT)}	Total Gate Charge, $V_{GS} = 5V$	$V_{DS} = 25V, I_{D} = 5.8A$		10	14	nC
Q _{gs}	Gate-Source Gate Charge			2.8		nC
J _{gd}	Gate-Drain Gate Charge			3.0		nC
Switchin	g Characteristics (Note 4)					
d(on)	Turn-On Delay Time	$V_{\text{DD}} = 25 \text{ V}, \qquad I_{\text{D}} = 5.8 \text{A},$		9	18	ns
	Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		5	10	ns
d(off)	Turn-Off Delay Time	-		27	43	ns
	Fall Time	-		6	12	ns


FDS5692Z N-Channel UltraFET Trench[®] MOSFET

VoltageVGS = 0 V,IS = 2.9 A0.751.0VReverse Recovery TimeIF = 6A,dIF/dt = 100A/us24ns	Symbol	Parameter	Test Cor	nditions	Min	Тур	Max	Units
SD Drain–Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = 5.8 A$ 0.79 1.25 V Reverse Recovery Time rr Reverse Recovery Time Reverse Recovery Charge $I_F = 6A$, $dI_F/dt = 100A/\mu s$ 24 ns Reverse Recovery Charge $I_F = 6A$, $dI_F/dt = 100A/\mu s$ 16 nC And the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{aJC} is guaranteed by design while R_{eCA} is determined by the user's board design. 0.75×100 $I_F = 6A$, $dI_F/dt = 100A/\mu s$ 0.75×100 0.75×100 0.75×100 0.75×100 $I_F = 6A$, $dI_F/dt = 100A/\mu s$ 0.75×100 0.75×100 0.75×100 0.75×100 $I_F = 6A$, 0.75×100 $I_F = 6A$ 0.75×100 $I_F = 6A$ $I_F = 6A$ $I_F = 6A$ $I_F = 6A$ 0.75×100 0.75×100 0.75×100 </th <th>Drain-S</th> <th>ource Diode Characteri</th> <th>stics</th> <th></th> <th>1</th> <th>l</th> <th>L</th> <th>I</th>	Drain-S	ource Diode Characteri	stics		1	l	L	I
Is 2.9 A 0.75 1.0 V Reverse Recovery Time IF 6A, dIF/dt 100 / μ s V rr Reverse Recovery Charge IF 6A, dIF/dt 100 / μ s 24 ns ntes: Rough is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. Rough is guaranteed by design while RocA is determined by the user's board design. 0 105°C/W when mounted on a .04 in ² pad of 2 oz copper 0 125°C/W when mounted on a minimum pad. a) 50°C/W when mounted on a 11n ² pad of 2 oz copper b) 105°C/W when mounted on a .04 in ² pad of 2 oz copper c) 125°C/W when mounted on a minimum pad.	SD	Drain–Source Diode Forward		$I_{\rm S} = 5.8 \ A$		0.79	1.25	V
r_r Reverse Recovery Charge $I_F = 6A$, $dI_F/dI = 100A/\mu S$ 16 nC otes: R_{oJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{oJC} is guaranteed by design while R_{oCA} is determined by the user's board design. 000000000000000000000000000000000000		Voltage	$\mathbf{v}_{GS} = 0 \mathbf{v},$	I _S = 2.9 A		0.75	1.0	V
rr Heverse Recovery Charge 16 nC thes: R _{aux} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R _{auc} is guaranteed by design while R _{acA} is determined by the user's board design. Image: Comparison of the provide the drain pins. R _{auc} is guaranteed by design while R _{acA} is determined by the user's board design. Image: Comparison of the provide the drain pins. R _{auc} is guaranteed by design while R _{acA} is determined by the user's board design. Image: Comparison of the provide the drain pins. R _{auc} is guaranteed by design while R _{acA} is determined by the user's board design. Image: Comparison of the provide the drain pins. R _{auc} is guaranteed by design while R _{acA} is determined by the user's board design. Image: Comparison of the provide the drain pins. R _{auc} is guaranteed by design while R _{acA} is determined by the user's board design. Image: Comparison of the provide the drain pins. R _{auc} is guaranteed by design while R _{acA} is determined by the user's board design. Image: Comparison of the pins of the drain pins of the d	r		I⊧ = 6A, dI⊧/dt =	100A/us				
R _{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R _{0JC} is guaranteed by design while R _{0CA} is determined by the user's board design. a) 50°C/W when mounted on a 1in² pad of 2 oz copper b) 105°C/W when mounted on a .04 in² pad of 2 oz copper c) 125°C/W when mounted on a minimum pad.) ^u	Reverse Recovery Charge	1 -) - 1			16		nC
ale 1 : 1 on letter size paper		mounted on a 1in ² pad of 2 oz copper	b) 105°C/W when mounted on a .04	4 in ² ler	c)			ited on a
	Pulse Test:	Pulse Width < 300us. Duty Cycle < 2.0%						
Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0% The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.								

FDS5692Z Rev C(W)

www.fairchildsemi.com

FDS5692Z N-Channel UltraFET Trench[®] MOSFET

www.fairchildsemi.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™]	FAST [®]	ISOPLANAR [™]	PowerSaver [™]	SuperSOT [™] -6
ActiveArray [™]	FASTr [™]	LittleFET [™]	PowerTrench [®]	SuperSOT [™] -8
Bottomless [™]	FPS [™]	MICROCOUPLER [™]	QFET [®]	SyncFET [™]
Build it Now [™]	FRFET [™]	MicroFET [™]	QS [™]	TCM [™]
CoolFET [™]	GlobalOptoisolator [™]	MicroPak [™]	QT Optoelectronics [™]	TinyLogic [®]
CROSSVOLT [™]	GTO [™]	MICROWIRE [™]	Quiet Series [™]	TINYOPTO [™]
DOME [™]	HiSeC [™]	MSX [™]	RapidConfigure [™]	TruTranslation [™]
EcoSPARK [™]	I ² C [™]	MSXPro [™]	RapidConnect [™]	UHC [™]
E ² CMOS [™]	<i>i</i> -Lo [™]	OCX [™]	µSerDes [™]	UltraFET [®]
EnSigna [™]	ImpliedDisconnect [™]	OCX [™]	ScalarPump [™]	UniFET [™]
FACT™ FACT Quiet Serie	. Around the world.™ chise [®]	OCXPro [™] OPTOLOGIC [®] OPTOPLANAR [™] PACMAN [™] POP [™] Power247 [™] PowerEdge [™]	ScalarPump [™] SILENT SWITCHER [®] SMART START [™] SPM [™] Stealth [™] SuperFET [™] SuperSOT [™] -3	UniFET™ VCX™ Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. 118