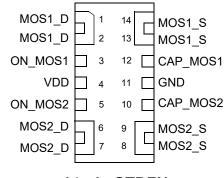


Dual 4.5A GreenFET Load Switch

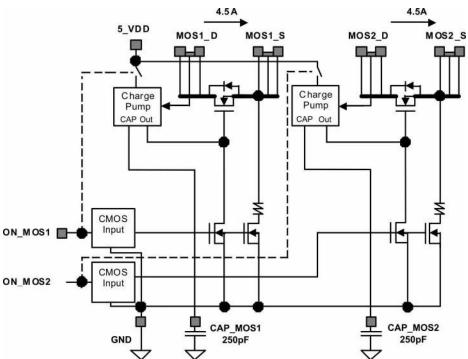

General Description

The SLG59M1804V is designed for load switching application. The part comes with two 4.5 A rated MOSFETs switched on by two ON control pins. Each MOSFETs turn on time is independently adjusted by an external capacitor.

Features

- UL2367 Certified File Number E497808
- Two 4.5A independent MOSFETs
- Two Integrated VGS Charge Pumps
- · Two internal discharges per channel for gate and source
- · Independent Ramp Control
- · Protected by thermal shutdown with current limit
- · Pb-Free / RoHS Compliant
- · Halogen-Free
- STDFN 14L, 1 x 3 x 0.55 mm

Pin Configuration



14-pin STDFN (Top View)

Applications

- · Ideal for switching ON and OFF S0 +5.0 and 3.3V power rails with associated support circuitry discharges.
- · Ideal for switching ON and OFF power rails 5V or less.
- Can use either channel up to 4.5A with combined maximum current of 8.5A
- Maximum load capacitance of 1000 μF for each Channel Source terminal.

Block Diagram

Do not probe CAP_MOS1 (PIN 12) or CAP_MOS2 (PIN 10) with low impedance probe.

Pin Description

Pin #	Pin Name	Туре	Pin Description
1	MOS1_D	MOSFET	Drain of MOSFET1
2	MOS1_D	MOSFET	Drain of MOSFET1 (fused with pin 1)
3	ON_MOS1	Input	Turns on MOS1 (4 MΩ pull down resistor)
4	VDD	VDD	+5VDD Power
5	ON_MOS2	Input	Turns on MOS2 (4 MΩ pull down resistor)
6	MOS2_D	MOSFET	Drain of MOSFET2
7	MOS2_D	MOSFET	Drain of MOSFET2 (fused with pin 6)
8	MOS2_S	MOSFET	Source of MOSFET2 (fused with pin 9)
9	MOS2_S	MOSFET	Source of MOSFET2
10	CAP_MOS2	Input	Sets ramp and turn on time for MOSFET2
11	GND	GND	Ground
12	CAP_MOS1	Input	Sets ramp and turn on time for MOSFET1
13	MOS1_S	MOSFET	Source of MOSFET1 (fused with pin 14)
14	MOS1_S	MOSFET	Source of MOSFET1

Ordering Information

Part Number	Туре	Production Flow
SLG59M1804V	STDFN 14L	Industrial, -40 °C to 85 °C
SLG59M1804VTR	STDFN 14L (Tape and Reel)	Industrial, -40 °C to 85 °C

000-0059M1804-103 Page 2 of 11

Absolute Maximum Ratings

Parameter	Description	scription Conditions		Тур.	Max.	Unit
V _D	Power Supply				6	V
T _S	Storage Temperature		-65		150	°C
ESD _{HBM}	ESD Protection	Human Body Model	2000	-		V
W _{DIS}	Package Power Dissipation			-	1.2	W
IDS _{MAX}	Max Operating Current				4.5	Α
MOSFET IDS _{PK}	Peak Current from Drain to Source	Maximum pulsed switch current, pulse width < 1 ms, 1% duty cycle		-	8	Α

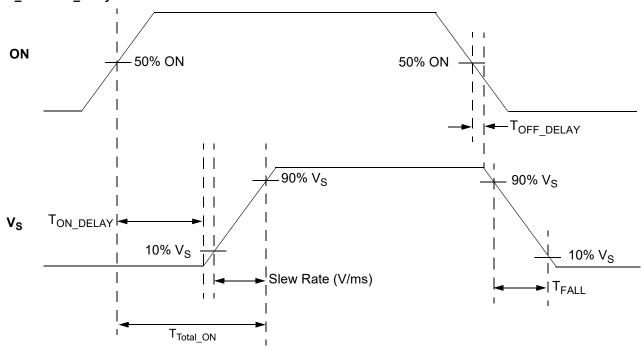
Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

 T_A = -40 °C to 85 °C (unless otherwise stated)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V_{DD}	Power Supply Voltage		2.5		5.0	V
	Power Supply Current when OFF			0.1	1	μΑ
I _{DD}	Power Supply Current ON_MOS_1 & ON_MOS_2 (Steady State)			50	75	μА
		T _A 25°C MOSFET1 @100 mA		14.5	18	mΩ
		T _A 70°C MOSFET1 @100 mA		17	22	mΩ
		T _A 85°C MOSFET1 @100 mA		18	23	mΩ
PDS.	ON Resistance	T _A 85°C MOSFET1 @ 4.5 A		19.3	25.1	mΩ
RDS _{ON}	ON Resistance	T _A 25°C MOSFET2 @100 mA		14.5	18	mΩ
		T _A 70°C MOSFET2 @100 mA		17	22	mΩ
		T _A 85°C MOSFET2 @100 mA		18	23	mΩ
		T _A 85°C MOSFET2 @ 4.5 A		19.3	25.1	mΩ
MOSFET IDS	Current from Drain to Source for each MOSFET	Continuous			4.5	Α
V_{D}	Drain Voltage		0.9		V_{DD}	V
T _{ON_Delay}	ON pin Delay Time	50% ON to Ramp Begin	0	300	500	μs
		50% ON to 90% V _S	Configurable ¹			ms
T _{Total_ON}	Total Turn On Time	Example: CAP = 4 nF, $V_{DD} = V_D = 5 V$, Source_Cap = 10 μ F, $R_L = 20 \Omega$		2.0		ms
		10% V _S to 90% V _S	Co	onfigurable ¹		V/ms
T _{SLEWRATE}	Slew Rate	Example: CAP = 4 nF, $V_{DD} = V_D = 5 V$, Source_Cap = 10 μ F, $R_L = 20 \Omega$		3.0		V/ms
CAP _{SOURCE}	Source Cap	Source to GND			1000	μF
R _{DIS}	Discharge Resistance		100	150	300	Ω
ON_V _{IH}	High Input Voltage on ON pin		0.85		V_{DD}	V
ON_V _{IL}	Low Input Voltage on ON pin		-0.3	0	0.3	V
I _{LIMIT}	Active Current Limit	MOSFET will automatically limit current when V _S > 250 mV		6.0	8	Α
THERMON	Thermal shutoff turn-on temperature			125		°C

000-0059M1804-103 Page 3 of 11



Electrical Characteristics (continued)

T_A = -40 °C to 85 °C (unless otherwise stated)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
THERM _{OFF}	Thermal shutoff turn-off temperature			100		°C
THERM _{TIME}	Thermal shutoff time				1	ms
T _{OFF_Delay}	OFF Delay Time	50% ON to V_S Fall, $V_{DD} = V_D = 5 V$			15	μs
Notes: 1. Refer to tal	ole for configuration details.					

$\mathbf{T}_{Total_ON}, \mathbf{T}_{ON_Delay}$ and Slew Rate Measurement

000-0059M1804-103 Page 4 of 11

Application NotesSLG59M1804V Power-Up/Power-Down Sequence Considerations

To ensure glitch-free power-up under all conditions, apply V_{DD} first, followed by V_{D} after V_{DD} exceeds 1 V. Then allow V_{D} to reach 90% of its max value before toggling the ON pin from Low-to-High. Likewise, power-down in reverse order.

If V_{DD} and V_{D} need to be powered up simultaneously, glitching can be minimized by having a suitable load capacitor. A 10 μ F C_{LOAD} will prevent glitches for rise times of V_{DD} and V_{D} higher than 2 ms.

If the ON pin is toggled HIGH before V_{DD} and V_{D} have reached their steady-state values, the load switch timing parameters may differ from datasheet specifications.

The slew rate of output V_S follows a linear ramp set by a capacitor connected to the CAP pin. A larger capacitor value at the CAP pin produces a slower ramp, reducing inrush current from capacitive loads.

SLG59M1804V Current Limiting

The SLG59M1804V has two forms of current limiting.

Standard Current Limiting Mode

Current is measured by mirroring the current through the main MOSFET. The mirrored current is then sent through a resistor creating a voltage V(i) proportional to the MOSFET current. The V(i) is then compared with a Band Gap voltage V(BG). If V(i) exceeds the Band Gap voltage then the voltage V(g) on the gate of the main MOSFET is reduced. The V(g) continues to drop until V(i) < V(BG). This response is a closed loop response and is therefore very fast and current limits in less than a few micro-seconds. There is no difference between peak or constant current limit.

Temperature Cutoff

However, as the V(g) drops the Rds(ON) of the main MOSFET will increase, thus limiting the current, but also increasing the power dissipation of the IC. The IC is very small and cannot dissipate much power. Therefore, if a current limit condition is sustained the IC will heat up. If the temperature exceeds approximately 120°C, then V(g) will be brought low completely shutting off the main MOSFET. As the die cools the MOSFET will be turned back on at 100°C.

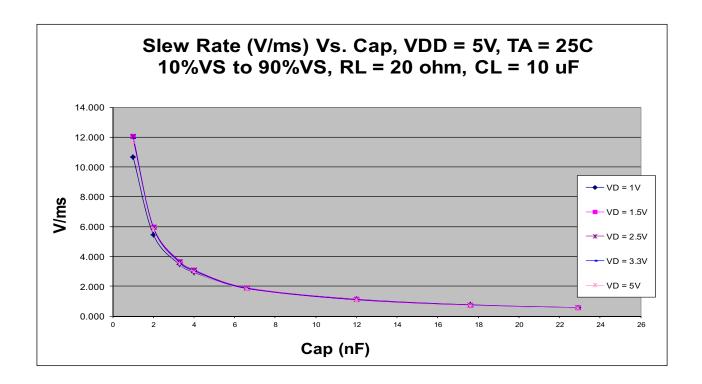
If the current limiting condition has not been mitigated then the die will again heat up to 120°C and the process will repeat.

Short Circuit Current Limiting Mode

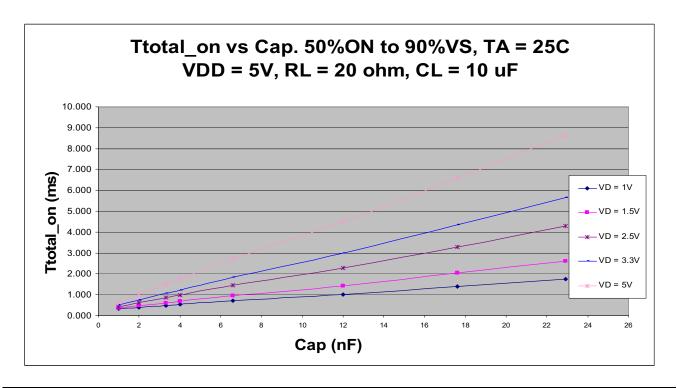
When $V(V_S)$ < 250 mV, which is the case if there is a solder bridge during the manufacturing process or a hard short on the power rail, then the current is limited to approximately 500 mA. This current limit is accomplished in the same manner as the Standard Current Limiting Mode with the exception that the current mirror is 12x greater. Because the current mirror is so much larger, a 15x smaller main MOSFET current is required to generate the same V(i). If $V(V_S)$ rises above approximately 250 mV, then this mode is automatically switched out.

Slew Rate Control

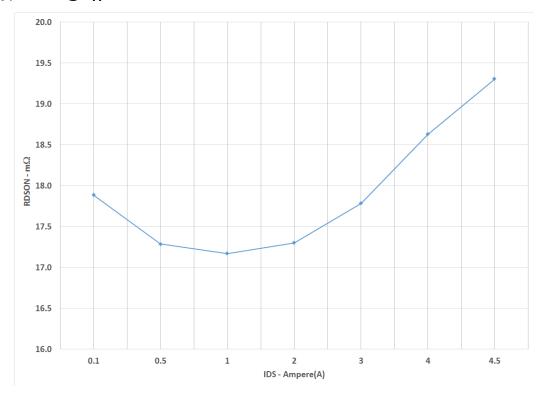
 V_S slew rate control, or in rush current control for each channel, is set by an external capacitor on pin 10 and pin 12. The charging current drawn from V_D is commonly referred to as " V_D Inrush Current" and can cause the input power source to collapse if the V_D inrush current, V_S slew rate and COUT is:


 V_D Inrush Current, A = COUT, μ F x Slew Rate, V/ms

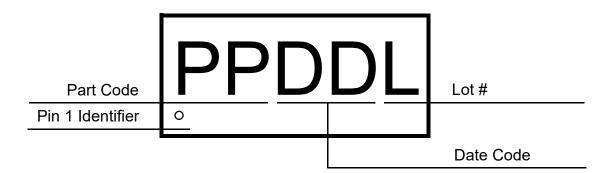
Dependence of Slew Rate from Cap on Pin 10 and pin 12 is illustrated on page 6. Since the load switch has some Ton Delay time before V_S starts rising, the dependence of Total ON time vs Cap on pin 10 and pin 12 can be estimated and is illustrated on page 6.


000-0059M1804-103 Page 5 of 11

T_{SLEW} vs. CAP

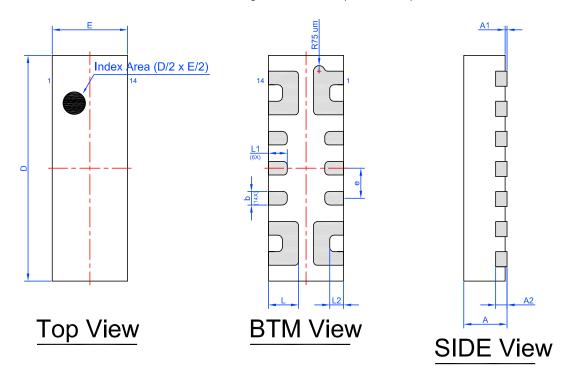

 T_{TOTAL_ON} vs. CAP

000-0059M1804-103 Page 6 of 11


RDS_{ON} (typ) vs IDS @ $T_A = 85$ °C

000-0059M1804-103 Page 7 of 11

Package Top Marking System Definition


Part Number: SLG59M1804V Production Part Code: CN

000-0059M1804-103 Page 8 of 11

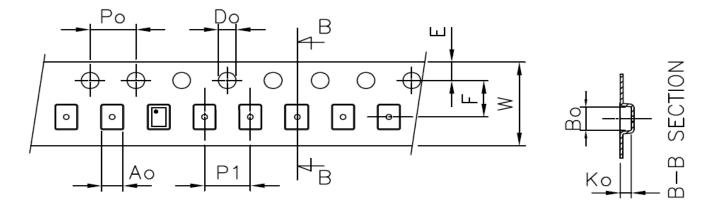
Package Drawing and Dimensions

14 Lead STDFN Package 1 mm x 3 mm (Fused Lead)

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.50	0.55	0.60	D	2.95	3.00	3.05
A1	0.005	-	0.050	Е	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.13	0.18	0.23	L1	0.20	0.25	0.30
е	().40 BSC	,	L2	0.06	0.11	0.16

000-0059M1804-103 Page 9 of 11



Tape and Reel Specifications

Package	# of	Nominal	Units per Max			Reel &	-	er A	Lead	ler B	Pocket Ta	ape (mm)
Type	Pins	Package Size	Reel	Units per Box	Hub Size (mm)	Pockets	Length (mm)	Pockets	Length (mm)	Width	Pitch	
STDFN 14L	14	1x3x0.55mm	3000	3000	178/60	100	400	100	400	8	4	

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length [mm]	PocketBTM Width [mm]	Pocket Depth [mm]	Index Hole Pitch [mm]	Pocket Pitch [mm]	Index Hole Diameter [mm]	Index Hole to Tape Edge [mm]		Tape Width [mm]
	A0	В0	K0	P0	P1	D0	E	F	W
STDFN 14L	1.15	3.15	0.7	4	4	1.5	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 1.65 mm³ (nominal). More information can be found at www.jedec.org.

000-0059M1804-103 Page 10 of 11

Revision History

Date	Version	Change
2/8/2022	1.03	Renesas rebranding Fixed typos
2/16/2018	1.02	Updated VDD Max to 5 V Added UL certification
10/26/2017	1.01	Updated Part Code Marking Fixed typos
10/03/2017	1.00	Production Release

000-0059M1804-103 Page 11 of 11

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/